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Abstract
Knowledge Graph Completion has been increas-
ingly adopted as a useful method for several tasks
in biomedical research, like drug repurposing or
drug-target identification. To that end, a vari-
ety of datasets and Knowledge Graph Embed-
ding models has been proposed over the years.
However, little is known about the properties that
render a dataset useful for a given task and, even
though theoretical properties of Knowledge Graph
Embedding models are well understood, their
practical utility in this field remains controver-
sial. We conduct a comprehensive investigation
into the topological properties of publicly avail-
able biomedical Knowledge Graphs and establish
links to the accuracy observed in real-world ap-
plications. By releasing all model predictions
and a new suite of analysis tools we invite the
community to build upon our work and continue
improving the understanding of these crucial ap-
plications.

1. Introduction and Background
Knowledge Graphs (KGs) have developed into an impor-
tant tool to capture and represent knowledge within a do-
main, based on heterogeneous data originating from di-
verse sources. KGs represent facts in the form of triples
(h, r, t), connecting entities h and t via the relationship r.
In biology-focussed KGs, entities correspond to genes, dis-
eases, drugs or pathways (among others), which, together
with their interactions, represent biological knowledge at
a range of different abstraction levels. Knowledge Graph
Embedding (KGE) models learn embeddings for all en-
tities and relation types in a KG and can be used to infer
likely but missing triples, a task known as Knowledge Graph
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Completion (KGC). Since the adoption of representation
learning for KGC, there has been an interest in linking the
predictive performance of models to topological properties
of KGs (Bordes et al., 2013). These properties have been
largely divided into two categories: edge cardinalities and
relational patterns (see Section 2). Early work considered
the impact of relational patterns on validation metrics for
different train/test splits (Toutanova & Chen, 2015). Believ-
ing that better ability to model these patterns is beneficial
to predictive performance, it has become common practice
to develop KGE models to specifically capture them (Wang
et al., 2014; Yang et al., 2015; Sun et al., 2019; Chao et al.,
2021; Yu et al., 2022). While such studies have provided
valuable insights into the theoretical capabilities of KGE
models, the prevalence of edge cardinalities and relational
patterns in real-world datasets and their correlation with
predictive performance has been less studied. A recent step
in this direction investigates the frequency of graph topolog-
ical patterns in public KGs from different domains (Teneva
& Hruschka, 2023a;b), whilst other work explores their con-
nection to the performance of KGE models (Ali et al., 2021;
Jin et al., 2023). However, an obstacle arises in a lack of
agreement regarding concrete definitions of several patterns
across the literature. Further, prior studies do not focus on
the biomedical domain, where KGC is increasingly used to
support the complex and costly drug discovery process (Pali-
wal et al., 2020). Despite the fact that many biomedical KGs
continue to be constructed (Königs et al., 2022; Chandak
et al., 2023; Bonner et al., 2022a), it is still unclear how
they topologically compare to general-domain ones, against
which models are often developed. Also, quantifying the
impact of differences in the graph structure on model predic-
tions remains an open problem when it comes to complex
tasks such as inferring new gene targets for a disease.

In this paper, we explore the relationship between biomed-
ical KG topology and KGE model accuracy. Our main
contributions are as follows:

• We provide an in-depth analysis of the topological
properties of six public KGs, focussing on the biomed-
ical domain, and compare the corresponding predic-
tive performance of four well-established KGE models.
While previous work has limited the investigation at
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the macro-level of relation types, we are able to de-
tect stronger patterns linking topological properties
to predictive accuracy by zooming in at the level of
individual triples.

• We look in detail at highly relevant relations that
biomedical practitioners are most interested in infer-
ring. We give evidence of the topological differences
in how they are represented in different KGs and how
this reflects on predictive performance.

• To address inconsistencies in how KG properties
are defined and utilized in the literature, we pro-
pose a standardized framework to describe KG
topology and release a dedicated Python package
kg-topology-toolbox implementing it1.

Finally, to help bridge the gap between industry and
academy, we make the predictions of the trained models
available to the community (Cattaneo et al., 2024) to con-
duct further analysis.

2. Knowledge Graph Topological Properties
For a triple (h, r, t) in a KG G we define the head out-
degree as the cardinality of the set {t̂ | ∃r̂ : (h, r̂, t̂) ∈ G}
and, analogously, the tail in-degree as the cardinality of {ĥ |
∃r̂ : (ĥ, r̂, t) ∈ G}. We further define the head out-degree
of same relation degr(h) and the tail in-degree of same
relation degr(t) as the cardinalities of {t̂ | (h, r, t̂) ∈ G}
and {ĥ | (ĥ, r, t) ∈ G}, respectively. The edge cardinality
of a triple (h, r, t) is then defined as follows:

degr(h)
degr(t) = 1 > 1

= 1 one-to-one many-to-one
> 1 one-to-many many-to-many

We also define the following edge topological patterns for
triples (h, r, t) ∈ G:

• (h, r, t) is symmetric ⇐⇒ h ̸= t and (t, r, h) ∈ G;

• (h, r, t) has inference ⇐⇒ ∃r′ ̸= r : (h, r′, t) ∈ G;

• (h, r, t) has inverse ⇐⇒ ∃r′ ̸= r : (t, r′, h) ∈ G;

• (h, r, t) has composition ⇐⇒ ∃r1, r2 and n /∈
{h, t} : (h, r1, n), (n, r2, t) ∈ G.

In the biomedical domain, a compositional pattern could,
for instance, be useful to infer that a drug can treat a disease
because they share a common gene connection. Similarly,
an inference pattern might be used to infer potentially novel

1https://github.com/graphcore-research/
kg-topology-toolbox

therapeutic gene-disease connections by aggregating multi-
ple types of gene-disease associations. See Figure A.1 for
an illustration of edge cardinalities and edge topological
patterns and additional notation. It is important to note that
a triple can satisfy multiple topological patterns simultane-
ously, or none at all.

While the above cardinalities and topological patterns have
an intuitive definition for individual triples, previous stud-
ies (Jin et al., 2023; Teneva & Hruschka, 2023a) have consid-
ered them as properties of relation types as a whole, despite
the fact that a given property might be satisfied only by a
fraction of the triples of a certain relation. We find that such
conceptual generalization lacks a proper formalization in the
literature, with inconsistencies in how it is performed, and is
prone to introducing noise in results (see Section 4.1). Thus,
we consider the above defined properties only as properties
of triples.

3. Experimental Setup
We investigate five public biomedical KGs: Hetionet (Him-
melstein et al., 2017), PrimeKG2 (Chandak et al., 2023),
PharmKG (Zheng et al., 2021), OpenBioLink (Breit et al.,
2020), PharMeBINet (Königs et al., 2022) (detailed in
Table A.1). We also include the trivia KG FB15k-237
(Toutanova & Chen, 2015) as a baseline, to detect any re-
sults unique to the biomedical domain. On all KGs we
train four of the most popular KGE models: TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), RotatE (Sun et al.,
2019) and TripleRE (Yu et al., 2022), which, whilst being all
well-established among practitioners (Hu et al., 2020), differ
in complexity and in the relational patterns they can cap-
ture (Table A.3). In particular, TransE and DistMult model
the interaction between head entity, relation type and tail
entity in quite simple terms. Nevertheless, despite missing
certain topological patterns, they remain strong baselines.
On the other hand, RotatE and TripleRE are more recent
approaches able to capture all four investigated topological
patterns. Notice however that the theoretical capability of
a scoring function to model a particular edge topological
pattern is not per se a guarantee of stronger predictive per-
formance on such edges (Jin et al., 2023). Our experiments
are designed to quantify this impact.

The training scheme and hyperparameter optimisation de-
tails are presented in Appendix B. The results reported in
the following sections refer to tail predictions generated on
the held out test split, by scoring each (h, r, ?) query against
all entities in the KG and computing the rank of the ground
truth tail t, after masking out scores of other (h, r, t′) triples
contained in the graph.

2In the original PrimeKG graph, for every triple (h, r, t) the
reverse triple (t, r, h) is present as well. We prepocessed PrimeKG
to remove these reverse edges.

https://github.com/graphcore-research/kg-topology-toolbox
https://github.com/graphcore-research/kg-topology-toolbox
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4. Results
4.1. Effect of Topological Properties on MRR

We observe a significant variance in mean reciprocal rank
(MRR) across the different KGs and KGE models (Fig-
ure 1). In an attempt to understand its cause, we focus our
analysis on the edge cardinalities and topological patterns
described in Section 2. We find that they occur with varying
frequencies in the different KGs (Figure A.2 and Table A.2).
However, the data does not support a conclusion about the ef-
fect of these topological properties on model accuracy when
only considering their average occurrence per dataset (Fig-
ure C.1). Previous work (e.g., Teneva & Hruschka (2023a))
went one step further, classifying relation types based on
the predominant edge topological pattern/cardinality, how-
ever this also does not yield conclusive results (Figure C.2).
This is due to the fact that the confounding effects of covari-
ates, such as node degrees and different topological patterns,
remain too difficult to disentangle, as these properties are
often not homogenous within a relation type. Therefore, we
dissect the link between topological properties and KGE
models accuracy on the level of individual triples to allow
for a finer-grained analysis with improved statistical power.
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Figure 1: Mean reciprocal rank on the test split achieved by
different models, for the six datasets.

While all investigated KGs are dominated by many-to-many
triples (Figure A.2), there is a wide variability in the ef-
fect of edge cardinality on MRR across different KGs (Fig-
ure 2). This suggests that the exact entity degrees, together
with other topological properties, might be better suited to
explain the MRR than a binary one/many cardinality clas-
sification. Indeed, for a given triple, we observe a strong
correlation between model accuracy and both the out-degree
of the head entity and the in-degree of the tail entity (Fig-
ure C.3), especially for degrees of same relation (Figures 3
and C.4; see Figure A.3 for the distribution of degrees in
the different KGs). In fact, a high in-degree of the tail node
in a tail prediction task has been linked to a higher score
(Bonner et al., 2022b), therefore increasing the likelihood of
predicting it, as confirmed in Figure C.5. On the other hand,
a high out-degree of same relation of the head node in a
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Figure 2: Effect of edge cardinality on MRR.

query (h, r, ?) implies multiple correct tail entities. Some of
these might not be present in the graph and thus cannot be
filtered out during inference, making the task of predicting
the specific entity that is expected by the model harder.

Figure 3: Effect of the head and tail degrees of same relation
type on MRR.

Consequently, to reduce confounding, we investigate the
effect of edge topological patterns within sets of triples with
similar head and tail degrees. We find that such effects are
more relevant if the degrees of head and tail entity are small.
When this is the case, compositions are beneficial to MRR
across all datasets and models (Figure 4 and Figure C.6). In-
terestingly, this is true even for DistMult that can’t explicitly
model compositional patterns.

For the patterns is symmetric, has inference and has inverse
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Figure 4: The effect of having compositions on MRR, triples
grouped by their head and tail degrees of same relation.

we need to distinguish whether the counterpart of the tested
edge was present in the training split. In this case, the pre-
diction typically gets much easier due to the availability
of additional information (Toutanova & Chen, 2015), see
Figure C.7. An exception to this rule is the prediction of
symmetric triples with the scoring function TransE. This
is unsurprising since TransE by design cannot model sym-
metric relations – a factor likely contributing to the poor
performance of TransE on OpenBioLink and PharmKG,
which have a large fraction of symmetric triples (Figure 1
and Table A.2). On the other hand, our experiments confirm
an above average performance of DistMult (which models
all relations as symmetric) on symmetric triples (Figure C.7).
In the more challenging case where the counterpart edge is
not present in the training data, symmetry shows a detrimen-
tal effect on MRR whereas having inverse or inference has
only little impact on accuracy (Figure C.7).

Note that all the above remarks apply equally to biomedical
KGs and the general-domain KG FB15k-237.

4.2. Predicting Specific Relation Types

To apply the analysis conducted in the previous section to
real-world tasks, we focus on the relations between pairs
of entity types that are of particular interest to practitioners.
We investigate how they are represented in different biomed-
ical KGs, and how these differences affect the predictive
performance of KGE models. Statistics for the interactions
of the considered entity types are given in Figure C.8, while
MRR is plotted in Figure 5.

As displayed in Figure C.9, the trained models tend to con-
sistently predict entities of the correct type (for instance,
gene entities when predicting drug-gene interactions), albeit
with different levels of accuracy. Interestingly, DistMult of-
ten shows worse capabilities in this so-called demixing task
than other scoring functions. As a consequence of demixing,

the size of the potential set of tails for a given interaction
needs to be taken into consideration when comparing MRR
across different datasets and relation types (the smaller the
set of candidates, the higher the expected MRR achieved by
random ranking).

Gene-Gene. As shown in Figure C.8a, these interactions
are characterized by a large number of potential tails and a
large head out-degree of same relation (with the exception of
PharmKG for the latter), making predictions hard. However,
a high MRR is observed for PharmKG and OpenBioLink:
this is explained by the fact that, for these datasets only
(Figure C.8b), most triples are symmetric (and a significant
portion also have inverse/inference edges), with the counter-
part likely to have been seen during training (Section 4.1).
This also explains the relative ordering of scoring functions
for OpenBioLink and PharmKG, with DistMult being the
best and TransE the worst.

Drug-Gene. In Hetionet, PrimeKG and OpenBioLink these
interactions are easier to predict than gene-gene interactions
(Figure 5), likely due to an overall smaller number of poten-
tial tails seen during training and, in the case of PrimeKG, a
markedly smaller head out-degree. PharmKG and PharMe-
BINet do not satisfy either of these properties, and indeed
we observe no improvements in MRR. The strong predic-
tive power observed for OpenBioLink can be linked to the
presence of inverse edges for the vast majority of these
triples.

Drug-Disease. Despite a small number of training triples
(which is reflected in the sub-optimal demixing profile, Fig-
ure C.9c), drug-disease interactions are easily predicted in
Hetionet as only 91 disease entities appear as tails of such
triples. Remarkably good performance across all scoring
functions is observed for PrimeKG, where the number of
candidate tails is larger but the out-degree of head entities
remains contained. When both these parameters increase
(as in PharMeBINet and PharmKG) performance visibly
degrades, despite larger in-degree of tails.

4.3. Case Study: Effect of Additional Training Data

Even when focussing on specific interactions that are rep-
resented in multiple KGs, a direct comparison of KGE pre-
dictive power across different datasets is limited by having
to compare different test sets. In the case of Hetionet and
PharMeBINet, however, the latter is constructed by aug-
menting the former with data coming from other biological
databases (Königs et al., 2022). One can therefore often
match individual triples in Hetionet to their exact counter-
part in the larger PharMeBINet, which opens up the possi-
bility of studying at a more fundamental level the impact
of additional training data on the predictive performance
of KGE models. This is relevant to practitioners as they
construct the training KG for a specific task, which is usu-
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Figure 5: MRR of specific interaction types.

ally done by sub-sampling relevant triples from larger (often
proprietary) databases (Chandak et al., 2023).

We consider eight relation types where we can find a signif-
icant number of common triples between the two datasets
(statistics are given in Table C.1). We extract 10% of the
shared triples of the considered relation type as test set and
use all other edges in each graph for training. In the case
of Hetionet, in addition to the embedding size selected in
Section 4.1 maximizing memory utilization, we also train
models with the same embedding size chosen for PharMeBI-
Net, which is generally strictly smaller (Hetionet max and
Hetionet same in Figure 6; hyperparameters in Table B.1).
To further ensure a fair comparison, at test time we restrict
predictions to a custom set of candidate tails that is the same
for the two datasets, namely the set of entities appearing as
tails in shared triples of the given relation type.

As shown in Figures 6 and C.10, across all tested relation
types there is no indication that the KGE models are able
to benefit from the additional data seen when training on
the larger PharMeBINet graph. On the contrary, models
trained on Hetionet consistently perform better, even when
using the same embedding size. Interestingly, the gap in
MRR varies strongly across relation types and also across
scoring functions, with DistMult showing generally little
difference when comparing models trained with the same
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Figure 6: Comparison of models trained on Hetionet and
PharMeBINet when testing MRR on a set of common edges.

embedding size, while distance-based scoring functions ex-
perience worse degradation. From Table C.1 we notice that
the relation types where the MRR gap is more significant
tend to have a larger overall head out-degree (and more
relation types coming out from head nodes) for triples in
PharMeBINet, compared to Hetionet. We hypothesise that
the fact that these nodes are used as head entities for more
relation types and triples, many of which are likely not
relevant for the specific task at hand, negatively impacts
the quality of embeddings. On the other hand, Compound-
downregulates-Gene and Compound-causes-Side Effect ex-
emplify relation types where PharMeBINet contains far
more triples in addition to the ones in Hetionet. Even in this
case, where we could expect the additional training data in
the larger dataset to be strictly relevant to the prediction task,
all scoring functions show markedly degraded performance
when trained on PharMeBINet.

All this suggests that, in scenarios where the memory budget
is fixed, training on smaller, tailored graphs and increasing
the embedding size could be more beneficial than expanding
the size of the KG, as the additional data can be a source of
confusion for shallow KGE models.

5. Conclusions
This paper analyses the topological properties of widely
used biomedical KGs and compares the corresponding pre-
dictive performance of different KGE models, focussing
in particular on link-prediction tasks relevant to practition-
ers. Deviating from previous studies, we justify the need
to look at properties of individual edges when trying to
explain results, as pooling at the relation level introduces
too much noise to detect any patterns. By going beyond
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the coarse one/many binary classification typically used for
edge cardinality, we find that considering the actual degrees
of head and tail nodes gives a stronger predictor explaining
model accuracy. Interestingly, similar interpretations apply
to both biomedical KGs and the general-domain KG. Edge
topological patterns also impact predictive accuracy, espe-
cially when entity degrees are small. For such patterns, we
observe an improved accuracy when the counterpart edge
(e.g., the reverse edge for symmetric triples) has been seen
during training. This in turn raises the problem of incon-
sistent model validation schemes and topological property
definitions when comparing results of previous studies on
similar datasets. We address this problem by releasing all
predictions from our experiments, together with a new tool-
box for KG topological analysis. Finally, by performing a
case study comparing predictions on common sets of edges
shared by different KGs, we show that training on larger
graphs, encoding more biomedical data, can unintuitively
harm predictive performance. This evidence should encour-
age a wider discussion on the guiding principles to adopt
when constructing the training KG for biomedical tasks –
a crucial problem for real-world practitioners, but scarcely
investigated in the literature.
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A. Edge, Dataset and Model Properties
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Figure A.1: (a-d) Edge topological patterns. We refer to the dashed edge(s) as counterpart edge of (h, r, t). (e) Example of
edge cardinalities in a KG with two relation types (blue, red). These are defined using the head/tail degree of same relation.

Table A.1: Dataset properties.

Graph # Entities # Relations # Triples Avg node degree

Hetionet 45,158 24 2,250,197 99.66
OpenBioLink 184,635 28 4,563,405 49.43
PharMeBINet 2,653,751 208 15,883,653 11.97
PharmKG 188,296 39 1,093,236 11.61
PrimeKG 129,375 30 4,050,064 62.61

FB15k-237 14,541 237 310,116 42.65
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Figure A.2: Occurrence of edge cardinalities in the datasets.
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(a) Hetionet
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(b) OpenBioLink
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(c) PharMeBINet
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(d) PharmKG
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(e) PrimeKG
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(f) FB15k-237

Figure A.3: Relative frequency of triples when grouped by head out-degree and tail in-degree of the same relation type.

Table A.2: Occurrence of edge topological patterns as fraction of total triples in the datasets. Note that, since PrimeKG was
pre-processed to remove reverse edges as described in Section 3, it does not contain any symmetric triples.

Graph Symmetry Inference Inverse Composition

Hetionet 0.002 0.124 0.001 0.693
OpenBioLink 0.317 0.372 0.359 0.840
PharMeBINet 2.420× 10−4 0.052 0.002 0.598
PharmKG 0.197 0.124 0.059 0.651
PrimeKG 0 2.081× 10−4 0 0.807

FB15k-237 0.113 0.161 0.217 0.645

Table A.3: Scoring functions and their ability to model four fundamental relation properties: S = Symmetry; INF = Inference;
INV = Inversion; C = Composition. For RotatE we assume d even and denote by C d

2 the vector space Rd = (R⊕ iR) d
2

with the structure of R-algebra induced by the product of complex numbers. ◦ denotes the Hadamard product; p ∈ {1, 2}.

Model Scoring function S INF INV C

TransE −∥h+ r − t∥p h, r, t ∈ Rd ✗ ✓ ✓ ✓

RotatE −
∥∥h ◦ eir − t

∥∥
p

h, t ∈ C d
2 , r ∈ R d

2 ✓ ✓ ✓ ✓

DistMult ⟨r,h, t⟩ h, r, t ∈ Rd ✓ ✓ ✗ ✗

TripleRE −∥h ◦ rh + rm − t ◦ rt∥ h, rh, rm, t, rt ∈ Rd ✓ ✓ ✓ ✓
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B. Details on Experimental Setup and Hyperparameter Selection
All datasets were randomly split into training, validation and test set (80% / 10% / 10%; in the case of PharMeBINet,
99.3% / 0.35% / 0.35% to mitigate the increased inference cost on the larger dataset). To ensure comparability across KGs,
this random split was used even if pre-defined training, validation and test sets were provided with a dataset. We adopted
log-sigmoid loss with negative adversarial sampling (Sun et al., 2019) and margin 12.0, and the Adam optimiser (Kingma &
Ba, 2015) for updating parameters. During training we always used negative sample sharing (Cattaneo et al., 2022). All
experiments were performed on Graphcore IPUs using the BESS framework3 (Cattaneo et al., 2022). A fixed batch size
of 128 triples per device (192 for PharMeBINet, with gradient accumulation) was adopted, while the embedding size for
entities and relations was chosen for each KG and each scoring function independently to maximise the memory utilisation
of a Bow-2000 IPU machine with 4 IPU processors (in the case of PharMeBINet, a Bow Pod16 with 16 IPUs). This is to
ensure a fair comparison between scoring functions with different memory costs. For some scoring functions, especially
DistMult, the memory footprint is typically dominated by the model parameters, allowing a larger hidden size for smaller
KGs. For other scoring functions, especially TripleRE, memory is typically dominated by activations, resulting in a similar
hidden size for differently sized KGs. The learning rate, the norm used by the scoring function (L1 or L2) and the number
of negative samples were determined by a hyperparameter sweep, based on the validation MRR (Table B.1).

Table B.1: Experiment hyperparameters for different datasets. Hetionet same refers to the alternative experimental
configuration used in Section 4.3.

Graph Model Hidden size Learning Rate Scoring Norm # Negative samples / positive

Hetionet

DistMult 2048 0.0003 - 16
RotatE 512 0.001 L2 16
TransE 1024 0.0001 L1 16
TripleRE 384 0.0001 L1 16

Hetionet same

DistMult 300 0.0003 - 16
RotatE 128 0.003 L2 16
TransE 256 0.0003 L1 16
TripleRE 256 0.0001 L1 16

OpenBioLink

DistMult 768 0.0003 - 16
RotatE 256 0.003 L2 16
TransE 512 0.0001 L1 16
TripleRE 256 0.001 L2 16

PharMeBINet

DistMult 300 0.003 - 16
RotatE 128 0.001 L2 16
TransE 256 0.00003 L1 16
TripleRE 256 0.0001 L2 16

PharmKG

DistMult 768 0.003 - 16
RotatE 384 0.003 L2 16
TransE 768 0.0001 L1 16
TripleRE 384 0.0003 L1 16

PrimeKG

DistMult 1024 0.0003 - 16
RotatE 384 0.001 L2 16
TransE 768 0.0001 L1 16
TripleRE 256 0.0001 L1 16

FB15k-237

DistMult 4096 0.001 - 16
RotatE 1024 0.003 L2 16
TransE 2048 0.0001 L1 16
TripleRE 256 0.001 L1 16

3https://github.com/graphcore-research/bess-kge
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C. Additional Results
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Figure C.1: Mean reciprocal rank plotted against the average occurrence of edge topological patterns in the six datasets.
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Figure C.2: Spearman-rank correlation between the average MRR of a relation type and the average frequency of edge
cardinalities (a) and of topological patterns (b) in that relation type.
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Figure C.4: Effect of head out-degree and tail in-degree on MRR for additional datasets.
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Figure C.5: Distribution of Spearman-rank correlation between in-degree of same relation and how frequently the entity
is incorrectly selected among the top-100 tail predictions, grouping test queries by relation type. A positive correlation
means that KGE models are biased towards predicting entities with a larger number of incoming edges of the relation type
considered in the query.

Table C.1: Statistics of the relation types compared between Hetionet and PharMeBINet in Section 4.3. Matching rate
denotes the fraction of triples of the relation type that are matched to triples in the other dataset. For the rows Unique
heads/tails/out-relations/in-relations and Head/Tail out-/in-degree (same relation), the median value is reported. For the
rows Has inverse/inference/composition, we report the fraction of total relation triples with the given property.

Relation Disease-localizes-Anatomy Compound-binds-Gene Gene-covaries-Gene Anatomy-expresses-Gene
Dataset Hetionet PhMBNet Hetionet PhMBNet Hetionet PhMBNet Hetionet PhMBNet
Relation triples 3602 3602 11571 11622 61690 61615 526407 526180

Matching rate 1.0 1.0 0.998 0.993 0.999 1.0 0.999 1.0

Test triples 360 360 1141 1141 6161 6161 52618 52618

Unique heads 133 133 1389 1426 9043 9034 241 241

Unique tails 398 398 1689 1701 9542 9518 18094 18074

Head out-degree 212 227 132 2085 74 128 11952 11945

Head out-degree s.r. 34 34 14 14 20 20 7937 7935

Unique out-relations 4 6 4 20 4 8 3 3

Tail in-degree 11 11 102 162 83 114 77 112

Tail in-degree s.r. 11 11 36 36 17 17 44 44

Unique in-relations 1 1 7 13 6 11 6 11

Has inverse 0.0 0.0 0.0 0.03 0.001 0.001 0.0 0.0

Has inference 0.0 0.0 0.006 0.08 0.002 0.002 0.263 0.263

Has composition 0.591 0.594 0.571 0.957 0.501 0.507 0.907 0.907

Relation Compound-causes-Side Effect Gene-regulates-Gene Gene-interacts-Gene Compound-downregulates-Gene
Dataset Hetionet PhMBNet Hetionet PhMBNet Hetionet PhMBNet Hetionet PhMBNet
Relation triples 138944 154511 265672 265667 147164 147133 21102 231156

Matching rate 0.909 0.817 0.999 1.0 0.999 1.0 0.997 0.098

Test triples 12630 12630 26566 26566 14713 14713 2105 2105

Unique heads 1071 1358 4634 4634 9526 9525 734 2631

Unique tails 5701 6023 7048 7047 14084 14073 2880 21912

Head out-degree 245 2186 203 254 214 267 515 4144

Head out-degree s.r. 201 182 104 104 54 54 225 1413

Unique out-relations 5 19 6 10 5 10 5 20

Tail in-degree 164 254 309 370 106 145 252 116

Tail in-degree s.r. 164 193 208 208 27 27 20 15

Unique in-relations 1 3 8 12 7 11 8 11

Has inverse 0.0 0.0 0.003 0.003 0.006 0.006 0.0 0.002

Has inference 0.0 0.142 0.006 0.003 0.006 0.006 0.001 0.164

Has composition 0.366 0.893 0.881 0.886 0.703 0.713 0.913 0.800
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Figure C.6: The effect of having compositions on MRR, triples grouped by their head and tail degrees.



Towards Linking Graph Topology to Model Performance for Biomedical Knowledge Graph Completion

Hetionet PharMeBINet PharmKG FB15k-237

In
ve

rs
e

in
 tr

ai
n

no
t i

n 
tra

in

Sy
m

m
et

ry

in
 tr

ai
n

no
t i

n 
tra

in

In
fe

re
nc

e

in
 tr

ai
n

no
t i

n 
tra

in
OpenBioLink

Figure C.7: The effect on MRR of being symmetric and having inference/inverse, distinguishing based on whether the
counterpart edge is present or absent in in the training data. Triples grouped by their head and tail degrees.
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Figure C.8: Statistics of topological properties for the interaction types investigated in Section 4.2.
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Figure C.9: Demixing for the interaction types investigated in Section 4.2. For each test query, we compute how many of the
top-100 predictions made by the model are contained in the set of entities used as tails by triples of the considered relations.
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Figure C.10: MRR comparison for additional relation types, when testing on a set of common edges between Hetionet and
PharMeBINet.


