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ABSTRACT

Degraded image understanding remains a significant challenge in computer vi-
sion. To mitigate the domain shift between high-quality and low-quality image
distributions, we propose an adaptation approach based on activation functions
rather than adjusting convolutional parameters. First, inspired by physiological
findings in the human visual system, we introduce Quality-adaptive Activation
(QuAC), a novel concept that automatically adjusts neuron activations based on
input image quality to enhance essential semantic representations. Second, we
implement Quality-adaptive meta-ACON (Q-ACON), which incorporates hyper-
parameters learned from image quality assessment functions. Q-ACON is effi-
cient, flexible, and plug-and-play. Extensive experiments demonstrate that it con-
sistently improves the performance of various networks—including convolutional
neural networks, transformers, and diffusion models—against challenging degra-
dations across multiple vision tasks, such as semantic segmentation, object detec-
tion, image classification, and image restoration. Furthermore, QuAC integrates
effectively with existing techniques like knowledge distillation and image restora-
tion, and can be extended to other activation functions. The code will be released
after peer review.

1 INTRODUCTION

Image understanding tasks, such as semantic segmentation and object detection, have achieved sig-
nificant progress over the past decade due to advances in deep learning techniques (Minaee et al.,
2021; Liu et al., 2024). For example, the Segment Anything Model (SAM) (Kirillov et al., 2023)
demonstrates remarkable performance in general image segmentation and has inspired numerous
extensions (Ke et al., 2024; Zhang et al., 2023). However, practical applications like autonomous
driving (Ji et al., 2024; Sakaridis et al., 2021) often encounter complex degradations, causing sig-
nificant performance drops in these models when processing low-quality images (Kim et al., 2022;
Chen et al., 2024).

To enhance degraded image understanding, the most straightforward approach is to improve image
quality through super-resolution (SR) (Liu et al., 2022) or restoration techniques (Li et al., 2022).
However, these methods heavily depend on restoration performance and often fail on severely de-
graded images (Pei et al., 2019). Moreover, they do not fundamentally improve the robustness of
segmentation models. Another effective strategy involves adapting pretrained models using adapters
and data augmentation (Wang et al., 2022; Endo et al., 2023; Chen et al., 2024; Zhang et al., 2024).
Nevertheless, excessive use of degraded images may cause catastrophic forgetting, potentially de-
grading performance on high-quality images or generalization to out-of-distribution samples (Zhong
et al., 2023; Xu et al., 2023).

To mitigate the distribution shift between high-quality and low-quality images (Zhang et al., 2024),
existing methods primarily focus on adjusting model parameters. However, when processing two
images with similar semantics but different quality levels, a fixed convolution filter produces sig-
nificantly different neuron activations (Figure 1a). This highlights the importance of activation
functions, which directly control feature rectification and scaling but remain underexplored. Fur-
thermore, physiological studies of the human visual system (HVS) reveal that visual neurons in
the cortex (Hubel & Wiesel, 1962; Kersten et al., 2004; Reynolds et al., 1999) actively suppress
noise and ambiguous signals through feedback mechanisms, which can be modeled using dynamic
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(a) Domain shift between HQ and LQ images.

Dynamic ActivationStatic Activation

Input 
Tensor
�

Output Tensor

� = �(�,�(�;�))

Activation 
Function

�(�,�)

Hyper 
Function

�(�;�)

Quality 
Tensor
�

Output Tensor 

� = �(�,�(�))

Activation 
Function

�(�,�)

Hyper 
Function

�(�)

Input 
Tensor
�

Output Tensor 

� = �(�,�)

Activation 
Function

�(�,�)

Input 
Tensor
�

Quality-Adaptive Activation

(optional)

(b) Comparison between QuAC and existing activations.

Figure 1: Motivations. (a) Activation distributions differ significantly between high-quality (HQ)
images and their low-quality (LQ) counterparts in the base model (Guo et al., 2022). QuAC mitigates
this divergence by reducing the Kullback–Leibler divergence (KLD) and root mean squared error
(RMSE) between HQ and LQ activation distributions. (b) Comparison between quality-adaptive
activation (QuAC) and existing static or dynamic activation functions.

thresholds (Gollisch & Meister, 2008). These findings inspire us to ask: Can we develop learnable
activation functions that adapt to input quality, enabling robust extraction of semantic features from
degraded images?

To this end, the main contributions of this paper are threefold:

First, we propose a novel concept of Quality-adaptive Activation (QuAC), inspired by dynamic
activations (Chen et al., 2020; Ma et al., 2021). As summarized in Figure 1b, unlike static activations
(e.g., ReLU (Jarrett et al., 2009)) that are identical for all inputs, or existing dynamic activations that
derive parameters from the input tensor (Chen et al., 2020), our method learns activation parameters
from a quality representation of the input. This ”minor” change enables QuAC to enhance the
capacity and robustness of deep neural networks for varying input quality.

Second, building on the QuAC concept, we develop an implementation based on meta-ACON (Ma
et al., 2021) by modulating it with hyperparameters learned from image quality assessment (Wang
& Bovik, 2006). The resulting quality-adaptive meta-ACON (Q-ACON) is efficient, flexible, and
plug-and-play. The QuAC concept can be readily extended to other activation functions, such as
ReLU Jarrett et al. (2009), demonstrating its broad applicability.

Third, we conduct extensive experiments across various vision tasks, including semantic segmenta-
tion (Chen et al., 2024), face parsing (Lee et al., 2020), object detection (Khanam & Hussain, 2024),
image classification (He et al., 2016a), and image restoration (Zheng et al., 2024). Experimental
results show that Q-ACON consistently improves the performance of diverse networks—including
RobustSAM (Chen et al., 2024), YOLOv11 (Khanam & Hussain, 2024), and SinSR (Wang et al.,
2024a)—against challenging degradations. Moreover, QuAC integrates effectively with knowledge
distillation and image restoration techniques (Zhou et al., 2022), further enhancing degraded image
understanding.

2 RELATED WORKS

Activation Functions. Activation functions are essential components in neural networks, introduc-
ing nonlinearity to enable complex function modeling. Early activation functions such as Sigmoid
(Rumelhart et al., 1986) and Tanh (LeCun et al., 1989) are smooth and bounded but often suffer
from vanishing gradients (Bengio et al., 1994). ReLU (Jarrett et al., 2009; Nair & Hinton, 2010)
and its parametric variants (Maas et al., 2013; Clevert et al., 2016; Hendrycks & Gimpel, 2016)
have gained popularity due to their efficiency and favorable properties. Swish (Ramachandran et al.,
2017) explores optimal functions through neural architecture search (NAS), while other functions
like Softplus (Dugas et al., 2000), Maxout (Goodfellow et al., 2013), and SiLU (Elfwing et al., 2018)
also demonstrate performance improvements.

Recent research has focused on dynamic activation functions that learn input-adaptive hyperparam-
eters (Chen et al., 2020). For example, DY-ReLU (Chen et al., 2020) generates piecewise functions

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

by learning parameters from input elements. The ACON family (Ma et al., 2021), particularly
meta-ACON, can automatically switch between linear and nonlinear operations. More recent works
include DiTAC (Chelly et al., 2024) and AdaShift (Cai, 2024), which adapt activation curves to
changing data distributions, and Swish-T (Seo et al., 2024) and t-Sigmoid (Masoudian et al., 2024)
that incorporate task-specific adjustments.

Blind Image Quality Assessment (BIQA). In the context of QuAC and image understanding, we
utilize existing blind image quality assessment (BIQA) models to extract effective features represent-
ing image degradation (Wang & Bovik, 2006). Early BIQA methods primarily rely on hand-crafted
features based on pixel value statistics (Mittal et al., 2012b;a) or transformed coefficients (Gao et al.,
2013; Moorthy & Bovik, 2011). While computationally efficient, these approaches are typically ef-
fective only for limited degradation types. Recent BIQA methods are predominantly based on deep
neural networks (Madhusudana et al., 2022; Qin et al., 2023; Ke et al., 2021; Shi et al., 2024), which
offer improved effectiveness at the cost of higher computational complexity.

Degraded Image Understanding. Various efforts have been made to address the challenges of
degraded image understanding (Gao et al., 2025), particularly in segmentation and object detection
tasks (Rajagopalan et al., 2023; Endo et al., 2023). Some methods aim to learn quality-agnostic
features (Kim et al., 2021) or employ auxiliary classification guidance (Son et al., 2020). To
adapt pretrained segmentation models to degraded images, existing approaches typically incorpo-
rate lightweight networks into the backbone to enhance representation capacity or reduce adaptation
costs (Endo et al., 2023; Chen et al., 2024). Recent work by (Zhang et al., 2024) uses weakly super-
vised domain adaptation to improve SAM’s performance on corrupted images. Additionally, many
methods utilize knowledge distillation to align low-quality features with high-quality features (Feng
et al., 2021; Wang et al., 2022; 2020; Chen et al., 2024). In this paper, we demonstrate that QuAC
effectively cooperates with existing techniques to achieve better performance.

3 METHOD

Figure 2 presents the pipeline of Quality-adaptive Activation (QuAC) for image segmentation. We
first define QuAC and then introduce its implementation through quality-adaptive meta-ACON (Q-
ACON), discussing its application in image understanding tasks.

3.1 QUALITY-ADAPTIVE ACTIVATION (QUAC)

Following the framework of dynamic activation (Chen et al., 2020), we define quality-adaptive
activation as follows. Given an input image I encoded into a tensor X by a neural network, we use
a quality function FQ to obtain the quality representation:

q = FQ(I). (1)
The quality-adaptive activation is then defined as f(X, θ(X;q)), where the learnable parameters
θ(X;q) adapt to the quality and semantic (optional) properties of the input.

QuAC comprises three components:

• Quality function FQ: encodes the input sample into a quality representation q.
• Hyper function θ(X;q): computes activation parameters based on the input tensor X and

quality tensor q.
• Activation function f(X, θ(X;q)): generates activations for X using the parameters
θ(X;q).

In QuAC, the hyperparameters adapt to the quality of input sample I , enabling stronger represen-
tation capabilities for varying input quality compared to static or conventional dynamic activation
functions.

3.2 IMPLEMENTATION OF QUAC

QuAC can be implemented by incorporating quality information into existing dynamic activation
functions, as illustrated in Figure 1b. In this part, we take meta-ACON (Ma et al., 2021) as an
example and extend it to quality-adaptive meta-ACON (Q-ACON).
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Figure 2: Pipeline of Quality-Adaptive Activation (QuAC) and its application. QuAC dynamically
modulates semantic features X based on quality representation q. Besides, the framework can
optionally incorporate knowledge distillation (KD) for enhanced performance.

Quality-adaptive meta-ACON (Q-ACON). We implement QuAC by extending meta-ACON (Ma
et al., 2021), a smooth, differentiable, and efficient activation function that achieves strong perfor-
mance across various tasks. Following the QuAC concept, we learn the switching parameter β based
on both the input tensor X and quality tensor q. The hyperfunction is formulated as:

βQ = MLP([GAP(X);q]). (2)

For an input x ∈ X, Q-ACON outputs:

f(x) = (p1 − p2)x · σ (βQ · (p1 − p2)x) + p2x. (3)

Here, p1 and p2 are learnable channel-wise parameters from the original meta-ACON, determining
the upper and lower bounds of its first derivative.

Quality Function. The quality function FQ can utilize any quality assessment (QA) model that
effectively represents signal quality in the target scenarios (Kim et al., 2022). In our implementa-
tion, we default to BRISQUE (Mittal et al., 2012a) for its balance of efficiency and effectiveness.
BRISQUE extracts 36-dimensional handcrafted features based on spatial statistics of natural images,
effectively characterizing various image degradations. We also demonstrate that different BIQA
models consistently yield stable performance improvements (Section 4.5).

3.3 DISCUSSIONS

(1) Minimum Design. QuAC minimally modifies the hyperfunction to preserve the characteristics
of original activation functions. For example, Q-ACON retains meta-ACON’s smoothness, differ-
entiability, and efficiency (Ma et al., 2021), while facilitating easy extension to other activation
functions.

(2) Flexible Structures. Following meta-ACON (Ma et al., 2021), Q-ACON can be implemented
as channel-wise, spatial-wise, or pixel-wise. We use the channel-wise structure recommended by
meta-ACON to validate the QuAC concept, leaving other structures for future work.

(3) Plug-and-Play Applications. QuAC can be applied to various models and tasks by replacing
original activation functions and incorporating a lightweight quality function. By default, we apply
QuAC in the decoding stage for dense prediction tasks (Section 4.5).

(4) Computational Efficiency. The additional cost of QuAC depends primarily on the quality
function. Using efficient quality representations (Kim et al., 2022; Mittal et al., 2012a), QuAC
achieves stable performance with minimal overhead (Section 4.5).
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3.4 APPLICATION TO IMAGE UNDERSTANDING TASKS

Q-ACON can be applied to neural networks by replacing activation functions and incorporating
a lightweight quality function. We use image segmentation as an example application and also
introduce its optional integration with knowledge distillation.

Example: Image Segmentation. We apply Q-ACON in the decoding stage before the prediction
head (Figure 2), as the encoder is more sensitive and replacing its activations may cause overfitting
(Li et al., 2024; Ma et al., 2021). The training uses cross-entropy loss between predicted mask M̂

and ground-truth M: LSeg = CE(M̂,M).

Cooperation with Knowledge Distillation (Optional). Optionally, Q-ACON can integrate with
knowledge distillation (KD) using a pretrained segmentation model EHQ (Yang et al., 2022; Chen
et al., 2024). As shown in Figure 2, we input the high-quality version of I into EHQ to obtain
features YHQ, then align Q-ACON’s output Y with YHQ using Kullback–Leibler divergence: LKD =
KLD(YHQ,Y). The total loss is: L = λ1LSeg + λ2LKD. This KD guidance cooperates effectively
with Q-ACON’s flexibility to further enhance performance (Section 4.6).

4 EXPERIMENTS

We evaluate the effectiveness and generalization of QuAC by integrating it into various deep learning
models for multiple vision tasks, including image classification (He et al., 2016a), object detection
(Khanam & Hussain, 2024; Hai et al., 2023), image segmentation (Chen et al., 2024; Guo et al.,
2022), and image restoration (Zheng et al., 2024; Wang et al., 2024b; Zhou et al., 2024).

Degradations. To evaluate robustness against complex degradations, we adopt a hybrid degradation
strategy commonly used in image restoration (Zhou et al., 2022). Given a high-quality image Ih, it
is degraded as:

Il = {[(Ih ⊗ kσ)↓r
+ nδ]JPEGq

}↑r
, (4)

where Ih undergoes Gaussian blurring with kernel kσ , downsampling by factor r, random noise ad-
dition, JPEG compression, and finally upsampling to the original size. Following CodeFormer (Zhou
et al., 2022), we construct five degradation levels (LQi, i = 1, . . . , 5) for task-specific datasets, with
higher i indicating more severe degradation. We also include real-world degradations from datasets
like CODaN (Lengyel et al., 2021) and HazyDet (Feng et al., 2024), which contain naturally occur-
ring low-quality images without additional processing.

4.1 TASK I: IMAGE SEGMENTATION

Settings. We compare our approach with static activation functions (ReLU (Jarrett et al., 2009),
GELU (Hendrycks & Gimpel, 2016), SiLU (Elfwing et al., 2018)) and dynamic activation functions
(DY-ReLU-B (Chen et al., 2020), DiTAC (Chelly et al., 2024), meta-ACON (Ma et al., 2021)) on
image segmentation tasks. We also implement a simplified Q-ACON variant (Q-ACONq) that uses
only the quality tensor q in the hyperfunction. Evaluation metrics include mean Intersection over
Union (mIoU) and Dice Coefficient.

Baselines. We evaluate QuAC on two segmentation baselines: (1) SegNeXt (Guo et al., 2022) for
face parsing: We apply hybrid degradations to CelebAMask-HQ (Lee et al., 2020), training on both
pristine and augmented images, and evaluate on five degradation levels. (2) RobustSAM (Chen
et al., 2024) for semantic segmentation: Following official settings, we use point-based prompts on
the Robust-Seg dataset (Cheng et al., 2014) and apply hybrid degradations to MSRA10K test set to
assess generalization. Note that DiTAC is excluded from RobustSAM due to its lack of multi-GPU
support required for training.

Face Parsing. Table 1a presents performance across different hybrid degradation levels and the
overall average. Q-ACON outperforms other activation functions, demonstrating that quality-
adaptive activation enhances representation capabilities on degraded images. Notably, Q-ACON
achieves an absolute improvement of over 1.27 points compared to meta-ACON (Ma et al., 2021).
Even the simplified Q-ACONq variant, which uses only quality features, surpasses meta-ACON
on heavily degraded images. Figure 3 further illustrates Q-ACON’s superior face parsing results,
particularly in detailed regions. These qualitative observations, consistent with quantitative results,
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Clear Degrade(seen) Average
mIoU Dice mIoU Dice mIoU Dice

ReLU 71.79 81.78 59.68 71.16 61.70 72.93
GELU 72.69 82.65 59.84 71.33 61.98 73.22
SiLU 72.87 82.70 60.30 71.82 62.40 73.64
DY-ReLU-B 72.56 82.56 59.57 71.06 61.73 72.98
DiTAC 72.09 82.05 60.32 71.82 62.28 73.53

meta-ACON 72.72 82.59 60.04 71.52 62.16 73.37
Q-ACONq 72.76 82.58 60.40 71.89 62.46 73.67
Q-ACON 73.52 83.08 61.41 72.85 63.43 74.56

(a) SegNeXt on CelebAMask-HQ (Lee et al., 2020)
with hybrid degradations (seen).

Clear Degrade(seen) Average
mIoU Dice mIoU Dice mIoU Dice

ReLU 89.46 93.94 85.99 91.75 86.20 91.89
GELU 89.56 93.95 86.44 92.02 86.64 92.14
SiLU 89.26 93.71 86.24 91.84 86.43 91.96
DY-ReLU-B 88.98 93.58 85.89 91.66 86.09 91.78
DiTAC - - - - - -

meta-ACON 89.50 93.90 86.11 91.78 86.32 91.91
Q-ACONq 90.02 94.26 86.92 92.38 87.12 92.49
Q-ACON 90.09 94.27 86.98 92.39 87.18 92.50

(b) RobustSAM performance on MSRA10K (Cheng
et al., 2014) with 15 single-type degradations (seen).

Clear Degrade(unseen) Average
mIoU Dice mIoU Dice mIoU Dice

ReLU 89.46 93.94 76.22 85.08 78.43 86.56
GELU 89.56 93.95 77.58 86.14 79.58 87.44
SiLU 89.26 93.71 77.05 85.74 79.08 87.07
DY-ReLU-B 88.98 93.58 76.87 85.62 78.89 86.94

meta-ACON 89.50 93.90 77.01 85.71 79.10 87.07
Q-ACONq 90.02 94.26 77.31 85.94 79.43 87.33
Q-ACON 90.09 94.27 77.69 86.20 79.76 87.54

(c) RobustSAM performance on MSRA10K (Cheng
et al., 2014) with hybrid degradations (unseen-
degradations / seen-data).

Clear Degrade(seen) Average
mIoU Dice mIoU Dice mIoU Dice

ReLU 80.47 88.20 75.10 84.32 75.43 84.56
GELU 81.16 88.69 75.74 84.84 76.08 85.08
SiLU 80.65 88.24 75.46 84.56 75.78 84.79
DY-ReLU-B 80.42 88.18 75.11 84.40 75.44 84.64

meta-ACON 80.48 88.23 75.03 84.31 75.37 84.56
Q-ACONq 81.65 89.09 76.28 85.27 76.62 85.51
Q-ACON 81.21 88.75 76.01 85.06 76.34 85.29

(d) RobustSAM performance on NDD20 (Trotter
et al., 2020), STREETS (Snyder & Do, 2019), and
FSS-1000 (Li et al., 2020) (unseen-data).

Table 1: Image segmentation performance on diverse datasets, with seen or unseen degradations.

SegNeXt in CelebAMaskHQ Dataset RobustSAM on hybrid degradations

YOLOv11 in HazyDet Dataset RADet in Occluded-LINEMOD Dataset

Official +meta-ACON +QuAC GT

Official +meta-ACON +QuAC GT Official +meta-ACON +QuAC GT+QuAC* LQLQ

Official +meta-ACON +QuAC GT

AST in AGAN Dataset

Official +meta-ACON +QuAC GTInput Official +meta-ACON +QuAC GTInput

SinSR in DIV2K-valid Dataset

Figure 3: Qualitative evluation of QuAC on image segmentation, detection, and restoration tasks. ∗

indicates the cooperation of QuAC with knowledge distillation.

demonstrate QuAC’s effectiveness in enhancing segmentation model stability across varying input
quality.

Semantic Segmentation. We evaluate RobustSAM on diverse datasets under four settings:

(1) For the 15 seen distortion types on the MSRA10K test set (Cheng et al., 2014). Q-ACON
consistently improves segmentation accuracy on both clear and distorted images (Table 1b).

(2) For the hybrid degradations on the MSRA10K test set (unseen-degradations), Q-ACON
also consistently improves performance, achieving competitive results on severely degraded images.
Recall that the hybrid degradations are not used during training.
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(3) For the unseen datasets with 15 seen distortion types, Q-ACON and Q-ACONq achieve the
top-2 mIoU values on degraded images (Table 1d). Note that the NDD20 (Trotter et al., 2020),
STREETS (Snyder & Do, 2019) and FSS-1000 (Li et al., 2020) datasets are not included in the
training data. Accordingling, Figure 3 shows that Q-ACON improves the segmentation accuracy on
degraded images in challenging scenarios. These observations solidly validate the significance of
our core idea, QuAC, in boosting generalization capacity on out-of-distribution samples.

(4) Generalization to real-world degradations (unseen). To validate the capabilities against real-
world degradations, we additionally evaluate the learned segmentation models on the BDD-100K
(Yu et al., 2018), LIS (Chen et al., 2023), and ACDC (Sakaridis et al., 2021) datasets, which contain
challenging degradations, including weather and lighting conditions. Additionally, we change the
input prompt to box hints and replaced the quality function with CONTRIQUE (Madhusudana et al.,
2022), to verify the performance of QuAC under different settings.

RobustSAM BDD100K LIS ACDC
box hints (ALL) (ALL) (fog) (night) (rain) (snow) (AVG)

Official 68.01 74.19 73.83 77.15 62.77 57.20 67.74
meta-ACON 63.66 73.13 64.50 77.75 50.45 47.16 59.97
Q-ACON 70.41 72.83 77.33 78.38 67.70 62.98 71.60

Table 2: Zero-shot segmentation performance (mIoU)
for real degradations (unseen), while using box hints.

As shown in Table 2, Q-ACON leads to
absolute improvements of 2.4 and 3.86
points on BDD100K and ACDC, respec-
tively, but shows a decrease of 1.36 points
on LIS. The possible reason might be the
limited capacity of CONTRIQUE in repre-
senting dark images in LIS (Madhusudana
et al., 2022). It is promising and necessary
to boost the performance by exploring specific quality representations.

4.2 TASK II: IMAGE CLASSIFICATION

Settings. We performed image classification on the CODaN (Lengyel et al., 2021) dataset using
ResNet (He et al., 2016a) as the baseline model. CODaN is constructed from the high-quality
ImageNet (Deng et al., 2009) and ExDark (Loh & Chan, 2019) datasets, and consists of 10,000
training images across 10 classes, along with 2,500 daytime and 2,500 nighttime test images. The
model was trained for 100 epochs. To assess the effectiveness of different activation functions, we
compared their top-k classification accuracy under consistent training conditions.

Results. As shown in Table 3a, Q-ACON improves the model’s performance under different lighting
conditions, especially at night, demonstrating its strong ability to adapt to varying degradations.

4.3 TASK III: OBJECT DETECTION

Settings. For the object detection task, we select two baselines to verify the effectiveness of our
method. (1) We used YOLOv11 (Khanam & Hussain, 2024) as the base model and used the official
settings for training. We compared the baseline model with two variants: one with meta-ACON and
the other with Q-ACON. We used the HazyDet (Feng et al., 2024) dataset, which is designed for
object detection in foggy conditions. (2) We select a challenging task, i.e., occluded object detection,
and conduct experiments on the Occluded-LINEMOD dataset (Brachmann et al., 2014). We adopt
RADet (Hai et al., 2023) as the baseline and use its official experimental settings. The training and
testing images are distorted with the five levels of hybrid degradation.

Results. As shown in Table 3b and Figure 3, the model incorporating Q-ACON demonstrates out-
standing performance for degraded images in terms of mean Average Precision (mAP) with different
thresholds (Lin et al., 2014; 2017), on both datasets.

4.4 TASK IV: IMAGE RESTORATION

Settings. We finally evaluate QuAC on image restoration tasks, including universal image restora-
tion, image deraining and single image super-resolution reconstruction (SISR). For universal image
restoration, we choose DiffUIR (Zheng et al., 2024) as the base model and add Q-ACON as a variant
for comparison. We train and test according to the official settings of DiffUIR. For the deraining
task, we use AST(Zhou et al., 2024) as the baseline network and add Q-ACON as a variant for
comparison. We train and test AST and its variant with Q-ACON on the AGAN (Qian et al., 2018)
dataset. For the SISR task, we use SinSR (Wang et al., 2024b) as the baseline model and add Q-
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(a) Image Classification. ResNet (He et al., 2016a) on the CODaN dataset (Lengyel et al., 2021).
ResNet18 ResNet34 Average

Day Night Day Night (Overall)
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

Official 74.47 92.75 97.84 26.80 56.21 78.08 80.06 95.39 98.68 38.95 67.17 83.02 55.07 77.88 87.96
+ meta-ACON 76.83 93.83 97.60 28.42 58.06 77.75 81.09 95.88 98.87 39.33 69.35 84.77 56.42 79.28 89.75
+ Q-ACON 77.46 94.41 98.19 31.26 63.00 79.98 80.79 95.88 98.82 44.17 73.15 87.00 58.42 81.61 91.00

(b) Object Detection. Higher mAP indicates better detection accuracy.
YOLOv11 (on the HazyDet dataset) RADet (on the Occluded-LINEMOD dataset)

mAP mAP50 mAP mAP75
Car Track Bus Average Car Track Bus Average Clear Degrade Average Clear Degrade Average

Official 53.80 20.30 53.70 42.60 80.80 32.30 73.40 62.10 63.20 41.48 45.10 74.70 46.58 51.27
+ meta-ACON 53.50 20.30 53.50 42.50 80.80 32.50 73.60 62.30 63.50 42.24 45.78 75.00 47.66 52.22
+ Q-ACON 53.80 20.90 53.40 42.70 81.00 33.60 74.00 62.80 63.60 42.40 45.93 75.10 48.26 52.73

(c) Image restoration. Higher PSNR/SSIM values indicate better clairity.
DiffUIR (Zheng et al., 2024) AST SinSR

Derain Enhancement Desnowing Dehazing Deblurring AGAN DIV2K-valid
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Official 28.40 0.8700 22.80 0.8783 28.87 0.8951 29.83 0.9518 27.27 0.8186 32.34 0.9355 26.28 0.7249
+ meta-ACON 28.11 0.8648 22.38 0.8689 29.45 0.8968 30.88 0.9532 27.22 0.8166 32.21 0.9340 25.87 0.7436
+ Q-ACON 28.16 0.8665 23.43 0.8841 30.01 0.9006 29.85 0.9490 27.51 0.8236 32.33 0.9364 27.70 0.7736

Table 3: Impacts of QuAC on image classification, object detection and image restoration tasks. In
the table, bold represents the highest score, and underlined represents the second-highest score.

ACON to its output layer. Following settings of Real-ESRGAN (Wang et al., 2021), we fine-tune
SinSR and its Q-ACON variant.

Results. As shown in Table 3c, Q-ACON enables competitive results on all metrics, confirming
its effectiveness. Correspondingly, Figure 3 shows that the restored images with Q-ACON present
clearer structures and fewer artifacts.

4.5 ANALYSIS OF QUAC

Impact of Quality Functions. We evaluate three Q-ACON variants using BRISQUE (Mittal et al.,
2012a), Re-IQA (Saha et al., 2023), and CONTRIQUE (Madhusudana et al., 2022) as quality func-
tions. Table 4 shows that CONTRIQUE and BRISQUE achieve better performance on severely
distorted images. These results demonstrate that QuAC allows flexible choice of quality representa-
tions while consistently improving performance.

Computational Cost. Table 4 compares computational complexity. Q-ACON with BRISQUE
achieves significant performance improvements with minimal parameter overhead—only about
2.3% over the ReLU baseline (27.57M parameters). This demonstrates QuAC’s parameter efficiency
and practical value in enhancing model expressiveness and generalization.

Impact of Positions. We analyze Q-ACON’s placement by inserting it into the encoder, decoder, or
both in SegNeXt. Table 5 shows that applying Q-ACON to encoder layers decreases performance,
likely because early encoding layers are more sensitive and prone to overfitting (Li et al., 2024; Ma
et al., 2021). Therefore, we apply Q-ACON after the backbone by default.

Q-ACON (mIoU) Q-ACON + KD (mIoU) Complexity
SegNeXt Clear Degrade avg. Clear Degrade avg. GFLOPs Params (M)

BRISQUE 72.22 60.26 62.25 74.25 61.73 63.82 32.51 28.21
Re-IQA 72.76 60.17 62.27 73.70 61.95 63.91 53.99 59.81
CONTRIQUE 72.44 60.10 62.16 73.95 62.32 64.26 32.52 59.82

Table 4: Impact of quality functions & knowledge distillation (KD).

mIoU
SegNeXt Clear Degrade avg.

Encoder 69.67 58.02 59.97
Decoder 72.44 60.10 62.16
Both 69.56 58.40 60.26

Table 5: Impact of positions.
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4.6 EXTENSION EXPERIMENTS

Cooperation with Knowledge Distillation. We incorporate knowledge distillation (KD) into Seg-
NeXt, as illustrated in Figure 2 and Section 3.4. As shown in Table 4, Q-ACON cooperates effec-
tively with KD and further enhances performance. However, the first example in Figure 3 illustrates
that the teacher network can sometimes mislead the student network (Stanton et al., 2021).

SegNeXt Clear Degrade avg.

ReLU (off.) 71.79 57.59 61.62
meta-ACON 72.72 59.99 62.11
Q-ACON 73.52 62.79 64.58

Table 6: Cooperation with image
restoration.

Cooperation with Image Restoration. We further ana-
lyze the cooperative performance of Q-ACON with im-
age restoration. Specifically, we use CodeFormer (Zhou
et al., 2022) to restore facial images and then apply the
pre-trained face parsing models to them. As shown in
Table 6, Q-ACON achieves the best overall performance,
particularly on distorted images.

Extension to Different Activation Functions: Quality-adaptive ReLU (Q-ReLU). To validate
the concept of Quality-adaptive Activation (QuAC), we extend it to the ReLU function, termed Q-
ReLU. Following DY-ReLU-B (Chen et al., 2020), we concatenate the quality vector q with the input
tensor x to learn the activation parameters [a, b] (Figure 1b). For each neuron activation x ∈ X, the
output of Q-ReLU is defined as:

Q-ReLU(x) = a · x+ b with [a, b] = MLP(GAP(X);q), (5)

Day Night
ResNet18 Top1 Top3 Top5 Top1 Top3 Top5

DY-ReLU 76.09 94.02 97.89 32.50 63.05 80.08
Q-ReLU 76.19 93.97 98.38 35.48 64.33 82.16

Table 7: Quantitative evaluation of Q-ReLU.

where [; ] denotes channel-wise concatenation; GAP
and MLP denote global average pooling and multi-
layer perceptron, respectively. Similar to DY-ReLU
(Chen et al., 2020), we implement a small, three-
layer MLP with a reduction factor of r = 16 in the
first layer, mapping the dimension back to the chan-
nel number. We integrate Q-ReLU into ResNet18
and evaluate it on the CODaN dataset. As shown in
Table 7, Q-ReLU improves the model’s classification performance under nighttime conditions.

5 CONCLUSIONS

In this work, we address the challenge of degraded image understanding by proposing a novel
concept of quality-adaptive activation (QuAC) and its implementation, Q-ACON. Extensive ex-
periments demonstrate that QuAC effectively enhances various networks—including convolutional
neural networks (e.g., SegNeXt), transformers (e.g., RobustSAM), and diffusion models (e.g.,
SinSR)—across diverse image understanding and low-level vision tasks. In the future, we will ex-
plore the potential of this quality-adaptation concept for network design and additional tasks toward
building universal models.

6 ETHICS STATEMENT

This work does not involve human subjects or sensitive personal data. All datasets are publicly
available and used in compliance with their licenses. Our methods are intended solely for research
purposes, and we will release code and documentation to support transparency and reproducibility.

7 REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. The model architecture, training
settings, and evaluation metrics are described in detail in the main paper. Additional implementa-
tion details, data preprocessing steps, and experimental settings are provided in the appendix and
supplementary materials.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and Carsten
Rother. Learning 6d object pose estimation using 3d object coordinates. In 13th European Con-
ference of Computer Vision, pp. 536–551. Springer, 2014.

Sudong Cai. Adashift: Learning discriminative self-gated neural feature activation with an adap-
tive shift factor. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5947–5956, 2024.

Irit Chelly, Shahaf E Finder, Shira Ifergane, and Oren Freifeld. Trainable highly-expressive activa-
tion functions. In European Conference on Computer Vision, pp. 200–217. Springer, 2024.

Linwei Chen, Ying Fu, Kaixuan Wei, Dezhi Zheng, and Felix Heide. Instance segmentation in the
dark. International Journal of Computer Vision, 131(8):2198–2218, 2023.

Wei-Ting Chen, Yu-Jiet Vong, Sy-Yen Kuo, Sizhou Ma, and Jian Wang. Robustsam: Segment
anything robustly on degraded images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4081–4091, 2024.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
relu. In European conference on computer vision, pp. 351–367. Springer, 2020.

Ming-Ming Cheng, Niloy J Mitra, Xiaolei Huang, Philip HS Torr, and Shi-Min Hu. Global contrast
based salient region detection. IEEE transactions on pattern analysis and machine intelligence,
37(3):569–582, 2014.
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A APPENDIX

A.1 PLUG-AND-PLAY APPLICATIONS OF QUAC

To validate the effectiveness of QuAC, we conducted extensive experiments on multiple low-quality
image tasks. By default, we apply QuAC in the latter stage of the entire network, i.e., the decoder
stage. For the image classification task, we chooose ResNet He et al. (2016b) as the baseline. For
the image detection task, we choose YOLOv11 Khanam & Hussain (2024) and RADetHai et al.
(2023) as the baseline. For the face parsing experiment, we choose SegNeXt Guo et al. (2022) as
the baseline. For the general image segmentation task, we choose RobustSAM Chen et al. (2024) as
the baseline. For the image deraining task, we use AST Zhou et al. (2024) as the baseline. For the
single-image super-resolution (SISR) task, we choose SinSR Wang et al. (2024b) as baseline. For
each base network, we apply QuAC in the following settings:

• ResNet. We add QuAC after the fourth convolutional block and before the average pooling
layer.

• SegNeXt. We add QuAC after Hamburger in the SegNeXt decoder Guo et al. (2022), that
is, before the multilayer perceptron (MLP) for mask prediction.

• RobustSAM. In RobustSAM Chen et al. (2024), we add QuAC at the end of Anti-
degradation Mask Feature Generation (AMFG) in MaskDecoder, before the feature fusion
stage for mask prediction.

• YOLOv11. We also insert QuAC into the C3k2 module block.

• RADet. We choose RADetHai et al. (2023) as baseline, Q-ACON is added to the end of
decoder head.

• AST. For image deraining, we use ASTZhou et al. (2024) as the baseline network and add
three Q-ACONs at the end of the encoder, the bottleneck, and the beginning of the decoder.

• SinSR. For the SISR task, we adopt SinSR Wang et al. (2024b) as baseline networks and
integrate the proposed Q-ACON activation into their output layers.

A.2 HYBRID DEGRADATION SETTINGS

To simulate complex degradation, we augment every original high-quality (HQ) image Ih using
hybrid degradation following advanced image restoration works Zhou et al. (2022), which is for-
mulated as:

Il = {[(Ih ⊗ kσ)↓r + nδ]JPEGq}↑r , (6)

Ih is first blurred with a Gaussian kernel kσ , then downsampled by a factor of n, followed by
additional random noise and JPEG compression, and finally upsampled to its original size. Follow-
ing CoderFormer Zhou et al. (2022), we set 5 levels of hybrid degradations, by randomly choose
the degradation parameters in separate intervals, as shown in Table 8. The augmented images are
denoted by LQi, i = 1, ...5 in the following part; a greater value of i generally indicates heavier
degradation.

Degradation: Il =
{
[(Ih ⊗ kσ) ↓r +nδ]JPEGq

}
↑r

Level kσ σ r δ q

LQ1 41 [1.0, 2.4] [1.5, 1.7] [0, 5] [85, 90]
LQ2 41 [2.5, 4.9] [1.8, 2.0] [5, 10] [75, 80]
LQ3 41 [5.0, 7.4] [3.0, 3.2] [10, 15] [65, 70]
LQ4 41 [7.5, 10.9] [4.2, 4.4] [15, 20] [55, 60]
LQ5 41 [11, 15] [4.6, 4.8] [25, 30] [45, 50]

Table 8: Comprehensive degradation parameter selection for 5 levels on RobustSAM dataset and
CelebAMask-HQLee et al. (2020).
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Quality score HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

CONTRIQUE 22.06 34.81 47.41 54.69 64.68 78.48 50.36
BRISQUE 12.97 42.45 49.27 58.40 69.36 70.56 50.50

Table 9: Quality scores of different degradation levels, measured by the CONTRIQUE Madhusu-
dana et al. (2022) and the BRISQUE Mittal et al. (2012a) respectively.

Figure 4: Violin plots of predicted quality scores by IQA models vs. degradation levels, on
CelebAMask-HQ.

A.3 ANALYSIS OF QUAC

A.3.1 QUALITY FEATURE

To verify the impact of quality features, we use BRISQUE Mittal et al. (2012a) and CONTRIQUE
Madhusudana et al. (2022) as quality functions to implement QuAC. To examine the impact of
QuAC on segmentation performance, we first systematically evaluate the effectiveness of the quality
function. Specifically, we conducted the following analysis on the CelebAMask-HQ dataset:

• Quality Assessment: As shown in Table 9, the quality score of each image was predicted
using BRISQUE and CONTRIQUE, respectively.

• Correlation Analysis: The Pearson Linear Correlation Coefficient (PLCC) and Spearman
Rank Correlation Coefficient (SRCC) were calculated between the predicted scores and the
degree of image degradation, with the degree of degradation for high-quality (HQ) images
marked as 0.

As shown in Figure 4, both quality functions exhibit significant correlation with image degrada-
tion. The predicted score distributions of both methods effectively reflect the gradual changes in
degradation levels.

Experimental results show that different quality functions have their own advantages, and the ap-
propriate evaluation metric can be selected based on the specific application scenario. This provides
important insights for subsequent research: by combining the advantages of multiple quality fea-
tures, it is expected to further improve the robustness of the segmentation model under complex
degradation conditions.

A.4 MORE EXPERIMENTS

A.4.1 ROBUSTSAM: DETAILED RESULTS

For 15 types degraded(seen), as shown in Table 10 and Table 11, QuAC demonstrates significant
advantages under diverse degradation conditions. It shows improvements across all 15 distortion
types. Even QuACq comprehensively outperforms traditional activation functions. These results
demonstrate the necessity of QuAC in complex scenarios. For hybrid degradation(unseen), as
shown in Table 12, Q-ACON demonstrates comprehensive advantages over RobustSAM under un-
seen hybrid degradation conditions: Q-ACON achieves the best average performance in both mIoU
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mIoU bright elastic color compress contrast fog frosted gauss impulse ISO motion rain resample snow zoom Avg

+ ReLU 89.73 81.60 89.02 78.93 88.32 89.78 86.32 88.41 88.57 86.07 81.72 88.18 87.63 84.66 80.87 85.99
+ GELU 89.66 81.77 89.17 79.70 88.50 89.71 87.23 88.93 88.66 86.47 82.04 88.49 88.24 85.17 82.91 86.44
+ SiLU 89.30 82.13 88.69 80.44 88.04 89.30 87.61 88.02 88.47 85.72 81.96 88.32 87.86 85.12 82.57 86.24

+ DY-ReLU-B 89.33 81.96 88.84 77.99 87.96 89.67 86.94 88.22 88.17 85.80 81.85 88.13 87.84 84.34 81.38 85.89
Q-ReLUq 89.47 81.69 88.99 79.44 88.28 89.46 87.55 88.19 88.60 85.64 82.03 88.45 87.99 85.00 82.53 86.22
Q-ReLU 89.73 81.86 89.18 79.91 88.55 89.82 87.72 88.96 88.68 86.38 81.96 88.68 88.34 85.32 82.40 86.50

+ meta-ACON 89.68 81.58 89.03 79.38 88.10 89.92 87.12 88.41 88.61 85.89 81.76 88.36 87.73 84.72 81.35 86.11
+ QuACq 90.17 82.20 89.51 80.62 89.05 90.27 87.82 89.34 89.09 86.90 82.46 89.29 88.65 85.88 82.58 86.92
+ QuAC 90.13 82.45 89.45 81.00 88.91 90.14 88.07 89.21 89.19 86.92 82.45 89.07 88.81 85.76 83.17 86.98

Table 10: Segmentation results(mIoU) of RobustSAM model variants on different types of degrada-
tion.

mDice bright elastic color compress contrast fog frosted gauss impulse ISO motion rain resample snow zoom Avg

+ ReLU 94.09 88.92 93.63 87.22 93.20 94.08 92.04 93.23 93.37 91.69 89.18 93.13 92.80 90.95 88.70 91.75
+ GELU 93.99 89.04 93.67 87.72 93.27 94.04 92.56 93.54 93.36 91.95 89.38 93.31 93.14 91.31 89.95 92.02
+ SiLU 93.71 89.35 93.35 88.17 92.90 93.73 92.84 92.85 93.20 91.37 89.29 93.16 92.88 91.18 89.65 91.84

+ DY-ReLU-B 93.79 89.19 93.49 86.46 92.94 93.96 92.40 93.11 93.08 91.49 89.29 93.09 92.94 90.71 89.00 91.66
Q-ReLUq 93.82 88.99 93.55 87.38 93.04 93.80 92.74 92.93 93.28 91.29 89.34 93.26 92.93 91.13 89.68 91.81
Q-ReLU 94.03 89.09 93.67 87.67 93.30 94.08 92.87 93.54 93.37 91.83 89.33 93.38 93.18 91.30 89.66 92.02

+ meta-ACON 94.01 88.91 93.58 87.48 92.97 94.15 92.47 93.12 93.31 91.48 89.20 93.21 92.86 90.96 89.00 91.78
+ QuACq 94.35 89.44 93.94 88.42 93.67 94.40 93.03 93.82 93.69 92.22 89.74 93.87 93.49 91.76 89.83 92.38
+ QuAC 94.29 89.57 93.87 88.58 93.53 94.29 93.18 93.71 93.71 92.27 89.69 93.69 93.54 91.70 90.17 92.39

Table 11: Segmentation results(mDice) of RobustSAM model variants on different types of degra-
dation.

and mDice. Experimental results demonstrate that Q-ACON effectively improves the model’s gen-
eralization ability to unseen degradations. Notably, Q-ACON demonstrates excellent robustness to
extreme degradations while maintaining high-quality image performance, demonstrating its value in
real-world scenarios. It should be noted that we adopt the same mixed distortion method as used in
CelebAMask-HQ for the MSRA10K test set. However, since the images in the MSRA10K test set
are smaller than those in CelebAMask-HQ, the LQ5 distortion level is almost absent. As a result,
our model (QuAC) performs slightly worse than GELU under this setting.

A.4.2 SEGNEXT: DETAILED RESULTS

Table 13 reports the performance comparison under varying levels of hybrid degradations, along
with the overall average results (avg.). Q-ACON consistently outperforms other activation functions,
demonstrating its effectiveness in enhancing feature representation for degraded images through
quality-adaptive activation. In particular, both Q-ACONq and Q-ACON achieve the highest mIoU
scores under severe degradation, while also delivering strong performance across the entire test set.
Q-ACONq shows a slight but consistent advantage over meta-ACON Ma et al. (2021) in handling
heavily degraded inputs. These findings highlight the importance of incorporating quality-adaptive
mechanisms to improve the robustness of models in challenging visual conditions.

mIoU mDice
RobustSAM HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg. HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

GELU 89.56 88.67 84.82 77.31 70.96 66.16 79.58 93.95 93.44 91.13 86.20 81.75 78.17 87.44
SiLU 89.26 88.33 84.36 76.53 70.02 66.00 79.08 93.71 93.20 90.82 85.62 81.01 78.04 87.07
ReLU 89.46 88.09 84.30 76.47 69.51 62.72 78.43 93.94 93.14 90.74 85.57 80.63 75.32 86.56
DY-ReLU-B 88.98 88.15 84.80 76.84 70.34 64.22 78.89 93.58 93.14 91.14 85.87 81.29 76.64 86.94
meta-ACON 89.50 88.25 84.39 76.99 70.4 65.04 79.10 93.90 93.21 90.82 85.95 81.32 77.24 87.07
Q-ACONq 90.02 89.10 84.92 77.36 70.83 64.36 79.43 94.26 93.79 91.25 86.30 81.70 76.65 87.33
Q-ACON 90.09 89.12 85.16 77.64 71.05 65.47 79.76 94.27 93.76 91.38 86.47 81.82 77.56 87.54

Table 12: Face parsing performance (mIoU and mDice) of RobustSAM with different activation
functions on hybrid degradations (unseen).
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mIoU mDice
SegNeXt HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg. HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

ReLU 71.79 68.68 63.24 59.12 55.54 51.83 61.70 81.78 78.94 74.32 70.81 67.62 64.10 72.93
GELU 72.69 68.96 63.75 59.12 55.49 51.86 61.98 82.65 79.21 74.87 70.82 67.59 64.18 73.22
SiLU 72.87 69.29 64.01 59.74 56.17 52.29 62.40 82.70 79.54 75.12 71.46 68.32 64.67 73.64
DY-ReLU-B 72.56 68.47 62.86 59.01 55.58 51.92 61.73 82.56 78.80 74.05 70.67 67.61 64.16 72.98
DiTAC 72.09 68.70 63.79 60.13 56.49 52.48 62.28 82.05 78.98 74.91 71.81 68.59 64.81 73.53
meta-ACON 72.72 69.02 63.46 59.65 56.12 51.97 62.16 82.59 79.20 74.60 71.33 68.22 64.26 73.37
Q-ACONq 72.86 69.82 63.23 59.61 56.88 53.76 62.69 82.58 79.00 74.63 71.91 68.73 65.16 73.67
Q-ACON 72.78 69.32 62.56 59.63 56.92 53.66 62.48 83.08 80.72 76.00 72.34 69.43 65.77 74.56

Table 13: Semantic segmentation performance (mIoU and mDice) of SegNeXt with different
activation functions on hybrid degradations (seen).

SegNeXt HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

DY-ReLU-B 72.56 68.47 62.86 59.01 55.58 51.92 61.73
Q-ReLUq 72.44 68.50 63.22 59.31 55.95 52.44 61.98
Q-ReLU 72.95 70.06 63.67 60.60 57.73 53.99 63.17
RobustSAM HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

DY-ReLU-B 88.98 88.15 84.80 76.84 70.34 64.22 78.89
Q-ReLUq 89.45 88.64 84.77 77.33 70.74 65.77 79.45
Q-ReLU 89.62 88.63 84.70 76.81 70.15 65.98 79.32

Table 14: Performance of DY-RELU-B Chen et al. (2020) and its quality-adaptive version, i.e. Q-
ReLU.

A.4.3 QUALITY-ADAPTIVE RELU (Q-RELU)

To verify the concept of Quality-adaptive Activation (QuAC), we further apply it to DY-RELU-B
Chen et al. (2020). We simply concatenate the quality vector q to the input tensor x for learning
activation parameters in DY-RELU-B. We refer to the quality-adaptive version of ReLU as Q-ReLU.
Additionally, we implement a simplified variant of our Q-ReLU by using only the quality tensor q in
the hyperfunction (denoted by Q-ReLUq). As shown in Table 14, Q-ReLU, demonstrates significant
advantages over both baselines. In particular, in SegNeXt, Q-ReLU improves the average mIoU for
low-quality images (LQ1-LQ5) from 61.73% to 63.17% (+1.44%). Notably, this improvement is
quality-dependent—the lower the image quality, the more significant the performance gain (+2.07
percentage points for LQ5). In RobustSAM, Q-ReLUq achieves the best average performance, while
Q-ReLU performs best under extremely degraded conditions (LQ5), which shows the effectiveness
of QuAC.

A.4.4 PERFORMANCE WITH FIXED ENCODER

To evaluate the flexibility and effectiveness of QuAC, we conducted face parsing experiments, based
on SegNeXt Guo et al. (2022). Specifically, we use the official pre-trained encoder to initialize the
model, and fixed the whole encoder during training. Similar to previous experiments, we compare
four model variants, i.e. Official, +meta-ACON, +QuAC, and +QuAC*. The corresponding
results are shown in Table 15.

Obviously, by merely training the decoder and QuAC, with negligible parameters, we can signifi-
cantly boost the segmentation performance on degraded images. Such comparison results demon-
strate the remarkable flexibility and effectiveness of QuAC in adaptively modulating semantic fea-
tures. Besides, the cost for fine-tuning merely the decoder and QuAC is negligible.

A.4.5 RADET: DETAILED RESULTS

In our object detection experiments, we select RADet Hai et al. (2023) as our baseline and evaluate
it on the Occluded-LINEMOD dataset Brachmann et al. (2014), a widely adopted benchmark for 6D
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SegNeXt mIoU
fixed encoder HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

Official 53.92 51.12 41.54 33.46 25.94 19.87 37.64
+ meta-ACON 53.62 51.08 41.55 33.60 26.32 19.77 37.66
+ QuAC 73.79 68.79 58.75 49.62 40.93 32.73 54.10
+ QuAC* 73.90 69.17 59.01 48.56 38.12 28.81 52.93

Table 15: Face parsing performance of SegNeXt and its model variants, while the encoder is initial-
ized by the official model and fixed during training. In other words, only the prediction head, as well
as QuAC, are optimized during training.

AP HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

Official 63.2 54.5 49.4 41.8 33.7 28.0 45.1
+ GELU 63.4 54.6 48.7 41.0 33.3 27.0 44.5
+ Q-ReLU 62.7 53.6 48.6 41.8 34.6 28.6 44.9
+ meta-ACON 63.5 53.8 49.0 42.8 35.9 29.7 45.78
+ Q-ACON 63.6 54.4 49.8 42.9 35.5 29.4 45.9
AP75 HQ LQ1 LQ2 LQ3 LQ4 LQ5 avg.

Official 74.7 63.9 57.8 46.8 35.7 28.7 51.3
+ GELU 75.1 64.0 56.7 46.5 36.0 27.9 51.0
+ Q-ReLU 74.3 63.0 56.5 47.9 37.3 29.4 51.4
+ meta-ACON 75.0 62.7 57.0 48.7 39.2 30.7 52.2
+ Q-ACON 75.1 63.9 58.3 48.7 38.7 30.9 52.6

Table 16: Detection performance (AP and AP75) of RADet Hai et al. (2023) model variants, on the
Occluded-LINEMOD test set.

pose estimation. This dataset is specifically designed to assess the performance of object detection
and pose estimation algorithms under challenging and occluded conditions. We report key eval-
uation metrics, including AP and AP75, which are standard benchmarks in object detection tasks.
The results, presented in Table 16, highlight the superior detection capabilities of our proposed
QuAC method, particularly in scenarios involving extremely low-quality imagery. Notably, QuAC
outperforms other activation functions by achieving significant improvements in both accuracy and
robustness.

A.5 MORE VISUALIZATION RESULTS

As shown in Fig. 5, our proposed QuAC module generates restoration results with superior clar-
ity and more vivid, realistic visual effects compared to the baseline and the meta-ACON variant.
Fig. 6 present more face parsing results and general image segmentation results. Both QuAC and
QuAC* consistently and lead to better segmentation results, especially near the boundaries. Figure
7 demonstrates performance under hybrid degradation conditions.

A.6 IMPLEMENTATION DETAILS

In all comparative experiments, we followed the training procedures exactly as described in the
original paper, and we have summarized them in Table 17.

• SegNeXt: In the face parsing experiment, we choose CelebAMask-HQ Lee et al. (2020) as
the dataset, which is split into 24,183 images for training, 2,993 for validation, and 2,824
for testing. The learning rate was set to 6e−5, batch size was set to 8, and the maximum
number of iterations was 160K. All experiments were conducted on a single 24GB RTX
4090 GPU.

• RobustSAM: For the robustness-aware segmentation experiment, we use the Robust-Seg
dataset, consisting of 26,000 training images, 5,229 validation images, and 2,000 test im-
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ages. The model was trained for 20 epochs using a learning rate of 1e−4 and a batch size
of 2. We utilized two 24GB RTX 4090 GPUs for training.

• ResNet: In the low-light scene classification experiment, we adopt the CODaN Lengyel
et al. (2021) dataset, which contains 10,000 training images, 500 validation images, and
5,000 test images (2,500 from daytime and 2,500 from nighttime conditions). We evaluate
both ResNet18 and ResNet34 architectures, using learning rates of 1e−4 and 1e−3 respec-
tively. Each model was trained for 100 epochs with a batch size of 96 on a single 24GB
RTX 4090 GPU.

• YOLOv11: For object detection in hazy conditions, we utilize the HazyDet Feng et al.
(2024) dataset, which includes 8,000 images for training and 1,000 for validation. The
model was trained for 100 epochs with a learning rate of 1e−2 and a batch size of 16.
Training was conducted using a single 24GB RTX 4090 GPU.

• RADet: In the 6D object pose estimation task under occlusion, we use the Occluded-
LINEMOD dataset Brachmann et al. (2014). The model was trained for 30,000 iterations
with a learning rate of 1e−3 and a batch size of 16. Experiments were carried out on a
single 24GB RTX 4090 GPU. Details on the exact data splits for training, validation, and
testing follow the standard Occluded-LINEMOD protocol.

• DiffUIR: For the image diffusion reconstruction task, we utilize a merged dataset consist-
ing of 380,250 training samples and 11,404 test samples. The training lasted for 300,000
steps, with a learning rate of 8e−5 and batch size of 10. All training was performed on a
single 24GB RTX 4090 GPU.

• AST: We compared the performance of QuAC on the raindrop removal task. This dataset,
AGAN Qian et al. (2018), has a training set of 861 images and a test set of 58 images. The
original paper adopted progressive learning, with the number of iterations and learning rate
required for each stage shown in the table. We followed this schedule and used two 24GB
RTX 4090 GPUs during training.

• SinSR: In the single-image super-resolution task, we adopt a dataset with 26,479 training
images patches and 100 test images. The model was trained for 30,000 iterations with a
learning rate of 5e−5 and a batch size of 6. Training was done using a single 24GB RTX
4090 GPU.
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Figure 5: Image restoration results of DiffUIR and its variants. QuAC leads to better visual effects.
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Model Train dataset Test dataset epoch learning rate batch size GPU

SegNeXt
CelebAMask-HQ

(Train:24,183, val:2,993, test:2,824) 160,000 iterations 6e-5 8 24GB RTX4090 GPU

RobustSAM
Robust-Seg

(Train:26,000 val:5,229, test:2,000) 20 1e-4 2 2×24GB RTX4090 GPUs

ResNet
CODaN

(Train:10,000, val:500,
test:2,500 daytime and 2,500 nighttime)

100
ResNet18:1e-4
ResNet34:1e-3 96 24GB RTX4090 GPU

YOLOv11
HazyDet

(Train:8,000, val:1,000) 100 1e-2 16 24GB RTX4090 GPU

RADet Occluded-LINEMOD 100,000 iterations 1e-3 16 24GB RTX4090 GPU

DiffUIR
Merged Dataset

(Train:380,250, test:11,404) 300,000 steps 8e-5 10 24GB RTX4090 GPU

AST
AGAN

(Train:861 Test:58)

Stage1:300
Stage2:200
Stage3:150

Stage1:2e-4
Stage2:1e-4
Stage3:8e-5

Stage1:32
Stage2:10
Stage3:4

2×24GB RTX4090 GPUs

SinSR
Dataset

(Train:26,479, test:100) 30,000 iterations 5e-5 6 24GB RTX4090 GPU

Table 17: Experiments details in various tasks.
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Figure 6: Face parsing results of SegNeXt and its variants. QuAC and QuAC* lead to better results.
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Figure 7: Segmentation results of RobustSAM and its variant with QuAC. QuAC leads to better
qualitative results.
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Figure 8: Segmentation results of RobustSAM and its variant with QuAC. QuAC leads to better
qualitative results.
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