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ABSTRACT

Graphical User Interface (GUI) agents aim to automate a wide spectrum of
human tasks by emulating user interaction. Despite rapid advancements, current
approaches are hindered by several critical challenges: data bottleneck in
end-to-end training, high cost of delayed error detection, and risk of contradictory
guidance. Inspired by the human cognitive loop of Thinking, Alignment, and
Reflection, we present D-Artemis—a novel deliberative framework in this paper.
D-Artemis leverages a fine-grained, app-specific tip retrieval mechanism to
inform its decision-making process. It also employs a proactive Pre-execution
Alignment stage, where Thought-Action Consistency (TAC) Check module and
Action Correction Agent (ACA) work in concert to mitigate the risk of execution
failures. A post-execution Status Reflection Agent (SRA) completes the cognitive
loop, enabling strategic learning from experience. Crucially, D-Artemis enhances
the capabilities of general-purpose Multimodal large language models (MLLMs)
for GUI tasks without the need for training on complex trajectory datasets,
demonstrating strong generalization. D-Artemis establishes new state-of-the-art
(SOTA) results across both major benchmarks, achieving a 75.8% success rate on
AndroidWorld and 96.8% on ScreenSpot-V2. Extensive ablation studies further
demonstrate the significant contribution of each component to the framework.
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Figure 1: D-Artemis framework emulates the human cognitive loop of learning, planning, calibra-
tion, and reflection.

1 INTRODUCTION

Graphical User Interfaces (GUIs) Agents (Lai et al., 2025a; Bai et al., 2025; Wu et al., 2025b; Xie
et al., 2025a; Liu et al., 2024; Dai et al., 2025) are designed to automate daily and professional tasks
on various devices by emulating human-like interaction. Driven by the flexibility and versatility of
mobile devices, the field of Mobile GUI agents (Agashe et al., 2025a; Li et al., 2025a; Gu et al.,
2025; Ye et al., 2025; Qin et al., 2025) has witnessed rapid advancements in recent years.
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Most early GUI agents leverage the accessibility (a11y) trees to identify UI elements (Rawles et al.,
2024; Wanyan et al., 2025; Lai et al., 2025b; Xie et al., 2025b). To better emulate human-like
perception and enhance agent robustness, recent research pivots towards vision-based agents that
perceive the GUI directly from pixels. Current research on vision-based GUI agents largely follows
two strategic directions. The first approach involves engineering agentic frameworks to augment
the cognitive abilities of agents, for instance by enhancing reasoning with historical context or by
improving state awareness through reflective processes (Agashe et al., 2025a;c; Li et al., 2025a).
The second approach seeks to directly enhance the end-to-end capabilities of the core model through
specialized training paradigms. This often involves techniques such as reinforcement learning (RL)
on GUI trajectories to optimize decision-making, or fine-tuning on curated datasets designed to
bolster the fundamental skills of the model, like visual grounding or self-verification abilities (Gou
et al., 2025; Ye et al., 2025; Qin et al., 2025; Gu et al., 2025).

Despite this remarkable progress, significant challenges remain. 1) Data Bottleneck in End-to-End
Training. While end-to-end training methods often rely on the automated generation of mobile GUI
trajectory data to bypass the high costs of manual labeling, they are fundamentally constrained by
the limited scope of their data sources. This constraint compromises the diversity of the resulting
datasets, leading to models with diminished instruction-following abilities and poor compatibility
across GUIs developed with different frameworks. 2) High Cost of Delayed Error Detection.
Most framework methods employ the post-execution reflection strategy (Agashe et al., 2025a; Li
et al., 2025a), meaning errors are detected only after a flawed action has already derailed the task
trajectory. Furthermore, the feedback from this reflection is often limited to a conclusive judgment
(i.e., success or failure), lacking the diagnostic information necessary for the agent to refine its
faulty logic. Consequently, the agent not only incurs significant overhead for error recovery but
is also prone to getting trapped in a vicious cycle of repeated failures. 3) Risk of Contradictory
Guidance. A common strategy in agentic frameworks is to provide a generic set of tips guidance or
example trajectories as an external knowledge source to bolster agent performance (Xie et al., 2025b;
Agashe et al., 2025b; Lai et al., 2025a). However, in GUI tasks, even similar objectives often require
different operational logic across applications. Potentially contradictory information can therefore
introduce conflicting guidance, paradoxically hindering rather than helping the decision-making.

Human cognition in complex tasks often follows a deliberative cycle of learning, planning, calibra-
tion, and reflection (FIgure 1). Inspired by this cognitive model, we introduce the D-Artemis frame-
work, which instantiates this process for GUI agents through a core workflow of thinking, alignment,
and reflection. By emulating this human-like cognitive loop,it achieves significantly more robust and
adaptive autonomous operation. D-Artemis employs a fine-grained, app-specific tip retrieval mech-
anism to provide highly relevant tips guidance, which avoids the logical conflicts of coarse-grained
methods and enhances the effectiveness of guidance. Crucially, D-Artemis features a proactive Pre-
execution Alignment stage, where lightweight Thought-Action Consistency(TAC) Check module
and Action Correction Agent (ACA) cooperate to check and correct actions before execution, em-
ulating human-like deliberation to prevent costly trajectory deviations. To complete the cognitive
loop, a Status Reflection Agent (SRA) performs a post-execution strategic reflection, assessing the
effectiveness of each step and generating insights to inform future decisions. A key advantage of D-
Artemis is that it enhances the performance of general-purpose Multimodal large language models
(MLLMs) on GUI tasks without training on complex trajectory datasets, demonstrating remarkable
generalization capabilities. In summary, our contributions are four-fold:

• We introduce D-Artemis, a new vision-based agentic framework that integrates fine-grained tip
guidance, proactive pre-execution alignment, and strategic post-execution reflection to effectively
execute complex mobile GUI tasks.

• We propose a effective tip guidance mechanism that conducts fine-grained, app-specific retrieval,
avoiding the logical conflicts caused by heterogeneous tips for similar tasks across different ap-
plications.

• We design a deliberative loop that combines pre-execution alignment with post-execution re-
flection, empowering the agent to emulate human process of fine-tuning actions and reflectively
learning from outcomes.

• Extensive experiments on the AndroidWorld and ScreenSpot-V2 benchmarks demonstrate that
D-Artemis achieves state-of-the-art (SOTA) performance in GUI automation and exhibits strong
generalization capabilities. Moreover, thorough ablation studies confirm the significant contribu-
tion of each proposed components.
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2 RELATED WORK

GUI Agents. Early GUI agents relied on structured data like Accessibility Trees (Rawles et al.,
2024; Wanyan et al., 2025; Lai et al., 2025b; Xie et al., 2025b), but high costs and noise issues have
spurred a shift toward vision-based approaches, leading to two mainstream architectures (Cheng
et al., 2024). Single-agent models aim to enhance a core capabilities through several strategies:
large-scale pre-training (Hong et al., 2024; Qin et al., 2025; Guo et al., 2025), innovative data gener-
ation techniques (Wu et al., 2025b; Xu et al., 2025), and post-hoc refinement mechanisms (Gu et al.,
2025; Ye et al., 2025). In contrast, multi-agent frameworks improve efficiency through modular
cooperation (Wang et al., 2024; Ye et al., 2025; Dai et al., 2025), but their reliance on inefficient
post-execution verification means they cannot prevent flawed actions from causing erroneous state
transitions, severely impacting overall performance.

Post-Training Paradigms for GUI Understanding. To equip vision-based agents with GUI-
specific capabilities, two post-training paradigms are prevalent. Supervised Fine-Tuning (SFT)
has produced powerful grounding models (You et al., 2023; Cheng et al., 2024; Lu et al., 2024),
increasingly leveraging novel synthetic data generation pipelines to address data acquisition chal-
lenges (Gou et al., 2025; Wu et al., 2025b; Xu et al., 2025). More recently, Reinforcement Learning
(RL) has gained traction to overcome the limitations of static SFT data. Modern RL approaches
mitigate earlier challenges with long-horizon reasoning through techniques such as test-time plan-
ning with judge mechanisms (Yang et al., 2025a) and dense reward or preference optimization (Gu
et al., 2025; Tang et al., 2025). However, the heavy dependence of both SFT and RL paradigms on
large-scale training data underscores the value of our framework, which can significantly boost the
performance of general-purpose models on GUI tasks without such data-intensive training.

Retrieval-Augmented Generation (RAG) for Agents. To improve reasoning and provide agents
with relevant knowledge at inference time, many works employ techniques from RAG (Fan et al.,
2024). In the agent domain, this often involves augmenting the input prompt by retrieving task
exemplars (Kim et al., 2024), state-aware guidelines (Fu et al., 2024), or past trajectories from a
memory module (Kagaya et al., 2024). Our work departs from prior methods by employing a fine-
grained, app-specific tip retrieval strategy. This allows us to reduce informational noise and avoid
logical contradictions in the guidance, leading to a significant improvement in its effectiveness.

3 METHOD

D-Artemis, illustrated in Figure 2, is a novel framework designed for complex mobile GUI au-
tomation tasks. The framework operates on a three-stage lifecycle for each step: action generation,
pre-execution alignment, and post-execution reflection. The combination of task-specific tips from
the knowledge base and a continuously updated working memory equips the manager agent with
two crucial capabilities: task-oriented adaptability and real-time state awareness. The Thought-
Action Consistency Check (TAC) module serves as a pre-execution safeguard. It efficiently classi-
fies whether a thought-action pair is consistent or not, enabling proactive prevention of a significant
number of invalid operations. Action Correction Agent (ACA) is triggered to diagnose the action
error and apply a tailored correction. This proactive, pre-execution correction serves as a crucial
alignment mechanism. It not only enhances the likelihood of a successful execution but, more crit-
ically, mitigates the risk of derailing the entire task trajectory, which could be caused by a single
flawed action. Post-execution, Status Reflection Agent (SRA) assesses the outcome and generates
strategic guidance for the next step. This core learning loop enables the agent to learn from experi-
ence and avoid repeating mistakes.

3.1 ACTION GENERATION

The manager agent serves as the primary action generator, taking the user-provided task Tu and
the environment observation O (screenshot only) as input. D-Artemis adopts a fine-grained, app-
specific retrieval strategy. For the given task, it begins by querying the knowledge base K for a
concise set of highly relevant tips, denoted as PTu

. Recognizing that similar tasks often demand
different operational logic in different applications, our knowledge base is designed around app-
specific modules of tips. Further details are provided in the Appendix G. The retrieval is therefore
targeted to the specific applications within the task Tu, which avoids the critical issue of conflicting
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TASK：
Create a timer with 0 hours, 16 minutes, 
and 35 seconds. Do not start the timer.

START

Knowledge Base

THOUGHT:Since I need to create a timer, I should 
open the Clock app which is visible on the screen.
ACTION:Tap on the Timer tab at the bottom of the 
screen. < click(coordinate=(207, 1621)) >

TAC Check

Execution

Pre-Execution 
Correction

Action 
Visualization

Step History

Latest Reflection

Update Working Memory
Thought-Action 

Consistency Check

Legend：
TAC Check

Status Reflection Agent

Action Correction Agent

Action Error Analysis

• Action Type Error
• Parameters Error
• Invalid Action 

Action Correction

THOUGHT:The agent attempted to open 
the Clock app using a `click` action, but 
the coordinates were incorrect…
ACTION:Tap on the Timer tab at the 
bottom of the screen.
< click(coordinate=(175, 1420)) >

Post-Execution 
Reflection

Environment State Check

Summary and Suggestions

Action Effectiveness Analysis

-To set the time in the ‘ Timer’, 
tap the digits sequentially…

「Timer」 Tips

Working Memory
- Step History
- Latest Reflection

Text Input 
Formulation

Task-Driven
Retrieval Env. Input

Text Input

Env. Update

Manager Agent

Figure 2: Overview of the D-Artemis framework. (a) The manager agent is guided by two input
modalities: textual (task, tips, working memory) and visual (screenshot only). (b) Pre-execution,
TAC Check module verifies thought-action consistency. (c) A low consistency score triggers the
Action Correction Agent (ACA) to analyze the error type and rectify the action. (d) Post-execution,
the Status Reflection Agent (SRA) assesses the action effectiveness and the environmental state to
produce guidance for the next step. Upon completion of each step, the working memory is updated.

operational logic that arises from coarse-grained retrieval methods. The process is formally defined
as:

PTu = RetrieveTips(K,App(Tu))

The working memory Mt is initialized at the onset of task, comprising two key components: step
history and last reflection. The step history, denoted Ht, archives the thought-action pairs from
previous steps. We define the record of a single step t as st = ⟨τt, at⟩. To maintain a focus on recent
events, it is implemented as a sliding window with a size of five. This augmentation equips the
agent with crucial insight into the intent of its past steps, which is pivotal for preventing action loops
and for accurately tracking task progression. Furthermore, the latest reflection R is continuously
updated with the output r generated by the SRA at the end of each step (discussed in Section 3.3).

Mt = ⟨Ht, Rt⟩ = ⟨(si)t−1
i=max(1,t−5), rt−1⟩

Ultimately, the behavior of manager agent can be modeled as a policy π that maps all available
information to a thought-action pair. This process is formally expressed as:

st = ⟨τt, at⟩ = π(Tu, Ot, PTu
,Mt)

3.2 PRE-EXECUTION ALIGNMENT

The pre-execution alignment mechanism is a cornerstone of the D-Artemis framework, designed to
emulate the deliberate, fine-grained control that humans exhibit when interacting with mobile de-
vices. In essence, humans do not operate in a purely reactive loop. After establishing an objective,
they perform a crucial step of proactive calibration—adjusting their intended action (e.g., the pre-
cise tap location) to ensure it aligns perfectly with their goal before execution. This deliberative
process stands in stark contrast to a simplistic “act-then-observe” cycle, where actions are executed
without such prior validation. The nature of mobile GUI tasks is inherently sequential, with each
action potentially altering the environmental state. Consequently, a single misstep can derail the en-
tire trajectory, requiring a costly and extensive sequence of corrective actions to recover. Driven by
its two core components— TAC Check and ACA—the pre-execution alignment mechanism signifi-
cantly enhances both step-level efficiency and the overall fidelity of the task trajectory by proactively
minimizing the likelihood of execution errors.
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Step 1:
THOUGHT:Since I need to update a file in Markor, my first 
step should be to open the Markor app.
ACTION:Open the Markor app. <open(text=Markor)>

Step 2:
THOUGHT:I need to update the content of strong_jacket_h1hZ. 
txt, so my next step is to open this file for editing.
ACTION:Click on the file named strong_jacket_h1hZ. txt to 
open it for editing. <click(coordinate=(350, 1180))>

Data Sampling
……

TASK：
Update the content of strong_jacket_h1hZ.txt 
to ”afagareeea" in Markor and change its name 
to test_data_2025_03_22.md.

Action Visualization

Data Annotation

Figure 3: TAC data construction workflow.

3.2.1 THOUGHT-ACTION CONSISTENCY CHECK

To prevent the overhead of unnecessary corrections, we train a TAC check module. This lightweight
expert model acts as an efficient filter, judging whether the proposed action at aligns with the ob-
jective specified by the thought τt. Its decision is based on two inputs: the thought st and the action
visual representation Vat

, which is generated via action visualization.

ct = TAC(τt, at, Vat),

where ct ∈ {0, 1} denotes the output of TAC module. In the following, we discuss the design of
data construction and training for this module.

Data Sampling. As illustrated in Figure 3, to construct the training dataset, we first generated
task execution trajectories in the AndroidWorld environment with the Qwen2.5-VL-72B-Instruct
model (Bai et al., 2025). As the function of TAC is to assess consistency at the step level, we then
unrolled these trajectories, treating each thought-action pair as an individual data point. Following
a subsequent cleaning and filtering stage, we curated a final dataset of 2,247 samples.

Action Visualization. For each sample, we generate a visual representation of the proposed action
(Vat

) by annotating the corresponding screenshot. Recognizing that not all action types are read-
ily visualizable, our approach specifically targets coordinate-based actions (e.g., click, swipe, long
press). We employ distinct visual markers for each action type, rendered at their specified coordi-
nates, to create an intuitive depiction of the intended operation. Further details are provided in the
Appendix I.1. This multi-modal fusion provides the TAC module with a richer, more contextualized
input, significantly enhancing its ability to comprehend the intent of action and perform accurate
reasoning.

Data Annotation. The TAC dataset was annotated by a dedicated team of six trained experts. To
ensure consistency, the team held periodic calibration meetings to standardize the annotation criteria.
Each data point underwent a multi-stage quality control process, including cross-reviews and a final
audit by a senior expert. The inter-annotator agreement (IAA) achieved a Fleiss Kappa score (Fleiss,
1971) of 0.83, indicating almost perfect agreement. This rigorous process resulted in a high-fidelity
dataset, which will be open-sourced to foster future research within the community. Further details
regarding the annotation can be found in the Appendix F.

We utilized this dataset to fine-tune Qwen2.5-VL-7B (Bai et al., 2025) via SFT, creating our
lightweight TAC module. Further details can be found in the Appendix D. The lightweight de-
sign is a key advantage, allowing the framework to cost-effectively prevent flawed actions through
rapid pre-execution checks.

3.2.2 ACTION CORRECTION AGENT

Based on the extensive dataset collected in Section 3.2.1, we performed both a quantitative and
qualitative analysis of the failure cases (the results are shown in Figure 4). Our analysis categorizes
the errors into three primary types:

Action Type Error. This error occurs when the type of the generated action type of at does not
match the intent of the thought τt. For instance, the thought required long press to select text, but
the executed action was click.

Action Parameters Error. This was the most prevalent category of error. In these cases, the action
type is correct, but its parameters are flawed. Common examples include incorrect coordinates for a
click or the wrong text argument for a type action.

5
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Invalid Action. In some scenarios, the model hallucinates and generates an action that falls outside
the predefined action space.

28.57%

57.14%

14.29%

Action Type Error

Action Parameters Error

Invalid Action

Figure 4: Distribution of Error Cate-
gories by Proportion.

If the TAC check fails (ct = 0), ACA (denoted as fAC)
is triggered. It takes the complete thought- action context
as input— comprising thought τt, originally proposed
action at, and its visualization Vat— to perform analysis.
Its primary function is to first determine the category
of error by matching the action against the predefined
types and then apply a tailored rectification strategy. This
process outputs a revised thought-action pair, ⟨τ̂t, ât⟩.
Notably, the visual input Vat

is indispensable here, as the
spatial and semantic context it provides is instrumental
in resolving the most prevalent Action Parameters Error.

st = ⟨τ̂t, ât⟩ =
{
fAC(τt, at, Vat), if ct = 0

⟨τt, at⟩, if ct = 1

3.3 POST-EXECUTION REFLECTION

The SRA is the core component responsible for the post-execution reflection process. Pre-execution
alignment ensures thought-action consistency but cannot assess thought soundness. Higher-level
reflection is thus crucial for overall task context. To perform this reflection, the SRA (denoted as
fSR) takes the overall task Tu, the executed thought-action pair st, and the environmental state
transition (Ot → Ot+1) as input. Its first function is to judge the step effectiveness by verifying if
the outcome aligns with the objective of τt. If the step is judged as a failure, the agent performs
a deeper analysis: it summarizes the current situation and generates strategic guidance to avoid
repeating the mistake. This entire output, denoted rt, subsequently updates the last reflection within
the working memory Mt+1, thereby informing the subsequent decision-making process:

rt = fSR(Tu, st, Ot, Ot+1).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate the performance of D-Artemis on two key capabilities, dynamic task execution and
GUI element grounding, using the widely-used AndroidWorld and ScreenSpot-V2 benchmarks,
respectively. The specific implementation details are as follows.

AndroidWorld. For dynamic task execution, we evaluate D-Artemis on AndroidWorld (Rawles
et al., 2025), an online mobile agent benchmark that runs in a live Android emulator. It contains
116 core tasks across 20 applications. Through parameter randomization, these tasks yield millions
of unique variants, testing a model’s adaptability to diverse instructions and dynamic UI states.

ScreenSpot-V2. We evaluate the GUI element grounding performance of D-Artemis on ScreenSpot-
V2 (Wu et al., 2025b). This is a general-purpose, cross-platform benchmark that measures a model’s
ability to localize UI elements in common scenarios. For our evaluation, we specifically utilize the
mobile data subset of this benchmark. The dataset comprises 1,272 single-step instructions with
corresponding bounding boxes for target elements, which include text-based elements, icons (e.g.,
the trash can icon), and widgets (e.g., to-do lists).

Settings & Baselines. We employ the open-source multimodal language model Qwen2.5-VL-72B-
Instruct (Bai et al., 2025) and GUI-Owl-32B (Ye et al., 2025) as the base models, with the decoding
temperature fixed at 0 to ensure deterministic outputs. All experiments were conducted on a server
equipped with four 8 × NVIDIA A100 80G GPUs. Detailed prompt templates are provided in the
Appendix H. To demonstrate the effectiveness of our approach, we benchmark D-Artemis against a
comprehensive suite of state-of-the-art (SOTA) methods. Further details on the experimental setup
and the baselines can be found in Appendix C.
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Table 1: Success Rate (%) on the AndroidWorld benchmark. The best score is highlighted in bold.
The asterisk “†” indicates models trained on the GUI trajectory dataset.

Category Method Model SR↑

Closed-source
Models

Gemini (Team et al., 2024) Gemini-1.5-Pro 22.8
Claude (Anthropic, 2024) Claude Computer-Use 27.9
GPT-4o (Achiam et al., 2023) GPT-4o 34.5
Aguvis (Xu et al., 2025) GPT-4o + Aguvis 37.1
UGround (Gou et al., 2025) GPT-4o 44.0
Aria-UI (Yang et al., 2025b) GPT-4o + Aria-UI 44.8
AndroidGen (Lai et al., 2025b) GPT-4o 46.8
Agent-S2 (Agashe et al., 2025c) Claude-3.7-Sonnet 54.3

General
Open-source
Models

Aguvis (Xu et al., 2025) Qwen2-VL-72B-Instruct† 26.1
Qwen2.5-VL (Bai et al., 2025) Qwen2.5-VL-72B-Instruct 35.0
UI-TARS (Qin et al., 2025) Qwen2.5-VL-72B-Instruct† 46.6
Seed1.5-VL (Guo et al., 2025) Seed1.5-VL 62.1
MobileUse (Li et al., 2025b) Qwen2.5-VL-72B-Instruct 62.9
UI-Venus (Gu et al., 2025) Qwen2.5-VL-72B-Instruct† 65.9

GUI-specific
Models

V-Droid (Dai et al., 2025) V-Droid 59.5
Mobile-Agent-v3 (Ye et al., 2025) GUI-Owl-7B 66.4
Mobile-Agent-v3 (Ye et al., 2025) GUI-Owl-32B 73.3

Ours D-Artemis Qwen2.5-VL-72B-Instruct 68.1
D-Artemis GUI-Owl-32B 75.8

Table 2: Success Rate (%) on the Mobile Subset of the ScreenSpot-V2 Benchmark. D-Artemis
utilizes Qwen2.5-VL-72B as the backbone model.

Category Method Text Icon/Widget Avg

Closed-source Models GPT-4o (Achiam et al., 2023) 26.6 24.2 25.6

General Open-source
Models

Qwen2.5-VL-7B (Bai et al., 2025) 98.3 85.3 92.8
Qwen2.5-VL-72B (Bai et al., 2025) 97.6 88.6 93.8

GUI-specific Models
(SFT)

SeeClick (Cheng et al., 2024) 78.4 50.7 66.7
UGround (Gou et al., 2025) 75.1 84.5 79.1
Aguvis (Xu et al., 2025) 89.3 68.7 80.6
OS-Atlas (Wu et al., 2025b) 95.2 75.8 87.0
UI-TARS-72B (Qin et al., 2025) 94.8 86.3 91.2
UI-TARS-7B (Qin et al., 2025) 96.9 89.1 93.6
GUI-Actor (Wu et al., 2025a) 97.6 88.2 93.6

GUI-specific Models
(RL)

Phi-Ground (Zhang et al., 2025) 96.5 62.0 82.0
UI-R1-E (Lu et al., 2025) 98.2 83.9 92.2
LPO (Tang et al., 2025) 97.9 82.9 91.6
GTA1-7B (Yang et al., 2025a) 99.0 88.6 94.6
GTA1-72B (Yang et al., 2025a) 99.3 92.4 96.4

Ours D-Artemis 99.3 93.4 96.8

4.2 MAIN RESULTS

AndroidWorld. Table 1 presents the performance comparison between D-Artemis and baseline
models. Our framework sets a new state-of-the-art (SOTA) with a 75.8% success rate, a 2.5%
absolute improvement over the GUI-specific Mobile-Agent-v3. These results clearly demonstrate
the superior performance of D-Artemis on mobile GUI automation tasks. Furthermore, within the
cohort of methods also employing Qwen2.5-VL-72B-Instruct, D-Artemis also establishes the state-
of-the-art at 68.1%, surpassing the strong UI-Venus baseline by 2.2%. This confirms that our novel
deliberative cognitive framework can significantly boost the capabilities of general-purpose models
for GUI tasks, independent of advantages from model scale or data.
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ScreenSpot-V2. As detailed in Table 2, D-Artemis demonstrates exceptional performance on the
ScreenSpot-V2 benchmark. It achieves a 97.9% average success rate, surpassing the previous SOTA,
UI-Venus-Ground-72B. The ability of Pre-execution Alignment to effectively correct the grounding
of UI elements is demonstrated by its performance on the more challenging “Icon/Widget” tasks,
where it reaches 95.6%. Crucially, D-Artemis outperforms its own base model, Qwen2.5-VL-72B,
by a significant 4.1%. Our analysis reveals that pre-execution alignment significantly improves UI
element grounding in common scenarios by proactively correcting flawed actions, demonstrating
the overall effectiveness of our framework.

4.3 ABLATION STUDY

To validate the contribution of each module in D-Artemis, we designed and conducted a comprehen-
sive set of ablation studies on the AndroidWorld benchmark. For a fair comparison, Qwen2.5-VL-
72B was used as both the baseline model and the foundational LLM backbone for all experimental
variants of our framework.

0 10 20 30 40 50 60 70
Success Rate (%)

35.0%

38.8%

47.4%

61.2%

68.1%

Baseline

+) Status Reflection Agent

+) Action Correction Agent

+) TAC Check module

+) Tips Retrieval (D-Artemis)

(a)

0 10 20 30 40 50 60 70
Success Rate (%)

68.1%

52.2%

45.3%

44.0%

D-Artemis

D-Artemis - Status Reflection Agent

D-Artemis - Action Visualization

D-Artemis - Pre-execution Alignment

(b)
Figure 5: Ablation study on AndroidWorld.

Pre-execution Alignment improves overall performance by enhancing step-level action effec-
tiveness. The Pre-execution Alignment process in D-Artemis involves the collaboration of TAC
Check module and ACA. To assess the individual contribution of each component, we conducted a
series of ablation studies where we systematically removed each module and observed the impact
on task performance. The results are shown in Figure 5a. The ablation study demonstrates a tiered
performance gain: adding the ACA alone improves the success rate by 8.6%, and further introduc-
ing the TAC Check module increases the total gain to 22.4%. The initial gain stems from improved
execution efficiency, while the larger boost from the TAC module highlights its dual function as
both an effective error filter and a safeguard against incorrect modifications. As shown in Figure 5b,
removing the entire pre-execution alignment mechanism leads to a significant drop in performance,
which highlights its importance to the framework. Furthermore, the significant performance drop
observed upon removing action visualization demonstrates the visual information is crucial in the
design.

Post-execution Reflection enhances the state awareness of the agent. The effectiveness of the
SRA is quantified in Figure 5. On the baseline model, its inclusion yields a 3.8 % performance gain.
This effect is significantly amplified within the D-Artemis framework, where the agent contributes
15.9% improvement. This highlights its dual capability to enhance perception of environmental
changes and to provide effective guidance that informs the decision-making process.

Tip Retrieval mechanism improves the decision-making ability of agent by minimizing con-
flicting guidance. As detailed in Figure 5a, integrating the tip retrieval mechanism yields a signif-
icant 6.9% performance gain for D-Artemis. This improvement is particularly noteworthy because
the base D-Artemis framework is already adept at accurately translating a given thought into its
corresponding action. Therefore, this gain stems from the enhanced decision-making capabilities
conferred by the task-specific tips. To further evaluate our app-specific tip retrieval strategy, we
conduct a comparative study against two baseline strategies (as shown in Figure 6): (1) “without
tips” baseline, which uses no external guidance, and (2) “mixed tips” baseline, which provides a
generic, heterogeneous mixture of tips from different applications. Detailed information regarding
the applications can be found in the Appendix 6. Our results reveal that providing the agent with a
generic mixture of tips is often worse than providing no tips at all. This highlights a critical flaw in
untargeted guidance: the introduction of noisy and logically conflicting information can paradoxi-
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Figure 6: Success rates of different tip guidance strategies across AndroidWorld applications.

cally degrade, rather than improve, the decision-making process of the agent. This outcome, which
is contrary to the very purpose of providing tips, validates the need for our tip retrieval strategy.

4.4 ERROR ANALYSIS

Table 3: The statistic of Error Rate(%) on AndroidWorld that D-Artemis failed to complete.
Qwen2.5-VL-72B is used as both the baseline model and the foundational LLM backbone for D-
Artemis. Method marked with “†” uses GUI-OWL-32B as backbone.

Error Metric Planning Navigation Grounding Perception Others
Baseline 42.3 34.6 73.1 30.8 30.8
D-Artemis 75.0 12.5 5.0 62.5 20.0
D-Artemis† 35.7 10.7 3.6 71.4 14.3

We conducted a thorough error analysis of the failure cases for D-Artemis on the AndroidWorld
benchmark. Inspired by the methodology of Li et al. (2025a), we categorized the errors into five
distinct types. Detailed descriptions of each error category are provided in Appendix E.

For our error analysis, we examined the trajectories of failed tasks from each method. We then
identified and classified each error according to the five predefined categories, noting that a single
failed task can contain multiple errors. Finally, we calculated the proportional distribution of each
error type relative to the total number of observed errors. The results of this analysis are presented
in Table 3. Compared to the baseline, D-Artemis shows a substantial reduction in errors related to
Grounding and Navigation, a result that directly reflects the architectural advantages of our frame-
work. Notably, the majority of the remaining failures are now attributed to higher-level Planning and
Perception errors. This suggests that while our framework effectively resolves issues of execution
and guidance, the final performance is still bound by the inherent, end-to-end reasoning limitations
of the underlying base model. A case study of error occurrence can be found in Appendix I.3.

5 CONCLUSION

In this work, we presented D-Artemis—a novel deliberative multi-agent framework designed to
enhance the reliability and efficiency of mobile GUI agents by emulating a human-like cognitive
process. Through the D-Artemis framework, we show the significant benefits of a proactive, de-
liberative control loop over traditional reactive, post-hoc reflection methods. By leveraging app-
specific knowledge retrieval, proactive Pre-execution Alignment, and strategic Post-execution Re-
flection, D-Artemis demonstrates state-of-the-art performance on benchmarks like AndroidWorld
and ScreenSpot-V2. We demonstrate the potential for agentic frameworks to significantly enhance
the capabilities of general-purpose VLMs without GUI task-specific training, thus opening a dis-
course on more data-efficient and robust methods for developing autonomous GUI agents.
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A LIMITATIONS

Looking ahead, three promising research directions emerge from our work. First, while our current
framework prioritizes maximizing task performance, we believe the key to broader real-world ap-
plication lies in more lightweight model designs. Future work will explore adapting our framework
to smaller, open-source models to enhance both speed and precision, particularly for on-device de-
ployment. Second, building on the demonstrated effectiveness of the tip-based guidance, we plan to
investigate strategies for the automated, on-the-fly generation of high-quality tips. Moving beyond a
predefined knowledge base would further enhance the robustness and adaptability of the GUI agent.
Finally, to further assess the generalization capabilities of the agent, we plan to extend our evaluation
to a broader spectrum of datasets and application environments beyond the two benchmarks used in
this study.

B USE OF LARGE LANGUAGE MODELS

We acknowledge using Large Language Models (LLMs) to assist with the writing of this manuscript.
Their use was limited to improving grammar, spelling, and overall readability. The LLMs did not
contribute to any of the core research ideas, methods, or analyses presented. The authors are fully
responsible for all content in this paper.

C SETTING & BASELINES

AndroidWorld. On the AndroidWorld benchmark, we compare D-Artemis against various state-
of-the-art baselines from different model categories: (1) Closed-source Models: GPT-4o (Achiam
et al., 2023), Claude (Anthropic, 2024), and Gemini (Team et al., 2024), Agent-S2 (Agashe
et al., 2025c), Aguvis (Xu et al., 2025) , Aria-UI (Yang et al., 2025b) and UGround (Gou et al.,
2025).(2)General Open-source Models: Qwen2.5-VL (Bai et al., 2025), GUI-OWl-7B (Ye et al.,
2025) , UI-Venus (Gu et al., 2025), Aguvis (Xu et al., 2025)and Seed1.5-VL (Guo et al., 2025).(3)
GUI-specific Models: V-droid (Dai et al., 2025) and mobile-agent-v3 (Ye et al., 2025).

ScreenSpot-V2. In the experiments, we compare D-Artemis against various state-of-the-art base-
lines across different model categories: (1) Closed-source Models: GPT-4o (Achiam et al., 2023)
(2) General Open-source Models: Qwen2.5-VL-7B/72B (Bai et al., 2025). (3) GUI-specific Mod-
els via Supervised Fine-Tuning (SFT): SeeClick (Cheng et al., 2024), UGround (Gou et al., 2025),
Aguvis (Xu et al., 2025), OS-Atlas (Wu et al., 2025b), UI-TARS-7B/72B (Qin et al., 2025) and
GUI-Actor (Wu et al., 2025a). (4) GUI-specific Models via Reinforcement Learning (RL) : GTA1-
7B/72B (Yang et al., 2025a), UI-R1-E (Lu et al., 2025), LPO (Tang et al., 2025) and GTA1-7b/72B
(Yang et al., 2025a).

Action Space. To ensure precise and effective task execution, we define a constrained action space.
This approach simplifies the decision-making process by enabling the agent to ground its reasoning
in a well-structured set of operations. The complete action space, detailing the parameters and
description for each action, is summarized in Table 4. Each action type has certain parameters and
detailed in description.

D TRAINING DETAILS FOR THE TAC MODULE

The TAC check module is built upon the Qwen2.5-VL-7B architecture and underwent a comprehen-
sive Supervised Fine-Tuning (SFT) stage. To achieve optimal performance and training stability in
a multi-node, multi-GPU environment, we carefully selected a set of hyperparameters. The train-
ing was efficiently managed under the DeepSpeed framework utilizing the ZeRO-3 optimization
strategy, significantly reducing GPU memory footprint and enabling the accommodation of larger
models. Notably, we employed a module-wise learning rate strategy, assigning a lower learning rate
to the vision encoder (1 × 10−6) to preserve its pre-trained representations while the base model
was updated at a higher rate (1× 10−5). Training stability was enhanced through gradient clipping
(max norm = 1.0), BF16 mixed-precision, and FlashAttention-2. A large effective batch size of 16
was achieved via gradient accumulation across 16 GPUs. The complete set of hyperparameters for
our main training runs is summarized in Table 5.
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Table 4: Agent Action Space, Descriptions, and Arguments.

Agent Action Action Details

Arguments Description

key text Performs a key event on the device
(e.g., volume up, power).

click coordinate Clicks a specific (x, y) coordinate on
the screen.

long press coordinate, time Long-presses a coordinate for a
specified duration.

swipe coordinate, coordinate2 Swipes from a start coordinate to an
end coordinate.

type text Inputs specified text into the active
element.

clear text None Clears all text in the active input field.
system button button Presses a system-level button (e.g.,

Back, Home).
open text Opens a specified application.
wait time Pauses execution for a specified

duration.
take note text Extracts and saves important

information for future use.
terminate status Terminates the task and reports the

final status.

Table 5: training hyperparameters details

Category Hyperparameter Value

Model & Data

Base Model Qwen2.5-VL-7B
Finetuning Type Full (unfrozen)
Max Image Pixels 3,211,264
Cutoff Length 10,000
Mask History False

Optimization

Optimizer AdamW (via DeepSpeed)
Precision BF16
Flash Attention fa2
Max Gradient Norm 1.0

Learning Rate

LR Scheduler Cosine
Warmup Ratio 0.1
Base Learning Rate 1e-5
Vision Encoder LR (vlr) 1e-6
Module-wise LR True

Batching & Epochs

Training Epochs 6
Per-Device Batch Size 1
Gradient Accumulation Steps 4
Total Effective Batch Size 16 (on 16 GPUs)

Infrastructure Environment 2 nodes x 8 A100 (80GB)
Framework DeepSpeed (ZeRO Stage 3)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E FAILURE TYPES

The failure types on AndroidWorld benchmark with and without hierarchical reflection.

• Planning failures, whether the agent produces action is incorrect, insufficient, or early termination.

• Navigation failures, where the agent struggles to find a certain element or function, suggesting
deficiencies in layout understanding and navigation.

• Perception failures, where the agent is misunderstanding the text content on the screen or the
function of the icon.

• Grounding failures, where the agent produces inaccurate coordinates for the language description
provided.

• Other failures, the other types of failures, for example, incorrect answers.

F ANNOTATION GUIDELINES

Figure 7 illustrates the annotation guidelines for our TAC module. These guidelines were estab-
lished through a collaborative and iterative process involving the authors and the annotation team,
undergoing multiple rounds of refinement and optimization.

SOP for UI Action Validity Annotation

Annotation Guidelines and Process
This appendix outlines the principles and procedures for building a dataset

for UI action validity verification. The dataset is used to evaluate the
logical soundness and executability of actions proposed by an AI agent on
mobile device UIs. The core objective of annotation is to determine if an
action is "logically feasible" and "accurately grounded" within the
current UI context, rather than its "optimality."

↪→
↪→
↪→
↪→
↪→
1. Annotation Objective and Label Definitions
Each sample is assigned a binary label based on the following criteria:
Valid (1): The action is correct in its logic, semantics, and visual

grounding.↪→
Invalid (0): The action contains at least one error in its logic, execution,

or grounding.↪→
Annotation is based on the following fields:
original_screenshot: A screenshot of the UI before the action is executed.
marked_screenshot: A screenshot with a red circle indicating the action's

target location.↪→
ACTION_THOUGHT: The agent's reasoning process for executing the action.
ACTION: The structured action command (e.g., with coordinates, text).
ACTION_DESCRIPTION: A natural language description of the action.
2. Annotation Process
The annotation employs a progressive, two-step validation model, detailed

below:↪→
Step 1: Logical Coherence Validation (Required for all actions)
Core Question: Are the agent's intent (Thought), command (Action), and

description (Description) semantically consistent and logically coherent?↪→
Validation Criteria:
ACTION and ACTION_DESCRIPTION must correspond accurately.
ACTION must be a reasonable operation to achieve the intent of

ACTION_THOUGHT.↪→
A failure at this stage results in a label of 0, and the process stops for

that sample. If passed, the annotation proceeds to the next step.↪→
Step 2: Visual Grounding Accuracy Validation (For visually-grounded actions

only: click, long_press, swipe)↪→
Core Question: Is the action's grounding accurate? Is the target element

interactive?↪→
Validation Criteria:
The red circle must mark an interactive element.
The grounding must be free of significant offsets or errors.
A failure results in a label of 0; a pass results in a label of 1.
3. Action Types
{******}

Figure 7: Annotation Guidelines
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G TIP RETRIEVAL

We predefined a set of tips for the applications in AndroidWorld to serve as an informational knowl-
edge base for improving the performance of D-Artemis. Detailed information on the specific appli-
cations included from the benchmark is presented in Table 6. Our predefined knowledge base of tips
is not intended to be exhaustive. Instead, we strategically focused on authoring tips for a subset of
applications characterized by complex operational workflows. This targeted approach is designed
to enhance the decision-making of the agent in challenging scenarios where such guidance is most
critical. Illustrative examples of these tips are presented in Figure 8.

H PROMPTS

The complete prompts for all components of D-Artemis are provided in this section. This includes
the main system prompt for the manager agent (Figure 10), the prompts for the ACA (Figures 12
and 13). Prompts for the TAC check module (Figure 15) and SRA (Figure 14). Additionally, we
detail the dynamic tip integration process: retrieved tips are first formatted according to the template
in Figure 9 before being injected as a retrieval tips variable into the main prompt for the manager
agent (Figure 11).

I CASE STUDY

I.1 ACTION VISUALIZATION: GROUNDING ACTIONS IN VISUAL CONTEXT

The figures 16 present visualizations of key model actions. To intuitively illustrate spatial operations
like click, long press, and swipe, we render the model’s predicted coordinates onto the original
screenshot after appropriate resizing. This rendering adheres to a consistent visual protocol: click
operations are marked with a red circle, long press operations with a blue circle, and swipe actions
are depicted as a blue trajectory line with its endpoint explicitly identified by a green circle.

I.2 TAC CHECK: PROACTIVE INCONSISTENCY DETECTION

The figures in figure17 present representative examples for the six action categories handled by
the TAC module. All displayed cases are the raw outputs from the GUI model before being
processed by TAC. The examples for click and long press illustrate spatial inaccuracies, where the
predicted coordinates deviate from the optimal target. The remaining examples demonstrate logical
inconsistencies, where a mismatch occurs between the model’s internal thought process and the
generated action.

I.3 CASE STUDY: THE FULL DELIBERATIVE LOOP OF D-ARTEMIS

We present task examples from a variety of domains. Figures 18, 19,20, respectively illustrate a
successful case, a failed case, and the detailed correction process of the pre-execution aligment.

As shown in Figure 18, the thought at step 4 indicates a two-step plan: first inspect the file extension,
and then click the “OK” button. However, the initially proposed action attempts to prematurely skip
the inspection step by directly targeting the “OK” button. The TAC module correctly identifies this
inconsistency between the thought and the action, triggering the ACA, which then successfully rec-
tifies the flawed action. After step 4, the SRA’s strategic reflection determines that the file extension
is already correct, advising the agent in step 5 to bypass redundant typing and directly click “OK”.
Later, in step 7, the pre-execution alignment mechanism performs a tactical correction, ensuring
the agent targets the correct “SAVE” button instead of a potentially erroneous one. Figure 19 illus-
trates a failed case rooted in a cognitive error within the thought process of the agent. In step 2, the
agent hallucinates that a prerequisite step (switching the camera mode) is complete and proceeds to
execute the ”start shooting” action. This premature action derails the subsequent trajectory. Such
failures are not caused by our deliberative framework, but are instead attributable to the inherent
limitations in the GUI understanding of the underlying base model. Figure 20 presents a specific
case study of the Pre-execution Alignment stage, illustrating how a flawed action is corrected before
execution.
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Tips

[Markor Tips]
- To change the name or rename of a file in [Markor], in the note list, long press the

item and click the ["A"] button on the right top corner!↪→
- To delete a note in [Markor], you should first return to the note list, long press

the item to be deleted, and then click the "trash bin" button on the right top
corner.

↪→
↪→
- To create a folder in [Markor], after entering the folder name, you should click

[FOLDER] button to confirm!↪→
- To create a note in [Markor], long_press the original suffix and use 'type' to input

correct suffix, such as 'md', 'txt', etc.↪→
- After deleting / moving / creating the notes required, you should terminate the task

in time!↪→

---

[Pro Expense Tips]
- For more Expenses, 'click' the [MORE]button.
- **Duplicate entriesin [pro expense] only when the[UI], [name], [date], and [cost]

are exactly same! **↪→
- After deleting the expenses required, you should terminate the task in time!
- It is prohibited to delete any expenses that are not explicitly specified in the

#Instruction#.↪→
- When the screen remains visually identical for two consecutive swipes, do not swipe

again. If task has been finished, consider terminating the task.↪→

---

[Retro Music Tips]
- Strictly check the ###History Operations ### before determining the next song.
- To add songs to the playlist, click three-dot menu beside the song! click 'Add to

playlist' to confirm, do not click the song name directly!↪→
- All songs in the Instruction must be processed correctly.
- When the screen remains visually identical for two consecutive swipes, do not swipe

again. If task has been finished, consider terminating the task.↪→

... ...

Figure 8: Tips knowledge base.

Table 6: List of AndroidWorld apps and number of tasks for each one.

App name Description # tasks
Simple Calendar Pro A calendar app for creating, deleting, and managing events and appoint-

ments.
17

Settings The Android system settings app for managing device settings such as
Bluetooth, Wi-Fi, and brightness.

15

Markor A note-taking app for creating, editing, deleting, and managing notes
and folders.

14

Broccoli - Recipe App A recipe management app for adding, deleting, and organizing recipes. 13
Pro Expense An expense tracking app for adding, deleting, and managing expenses. 9
Simple SMS Messenger An SMS app for sending, replying to, and resending text messages. 7
OpenTracks A sport tracking app for recording and analyzing activities, durations,

and distances.
6

Tasks A task management app for tracking tasks, due dates, and priorities. 6
Clock An app with stopwatch and timer functionality. 4
Joplin A note-taking app. 4
Retro Music A music player app. 4
Simple Gallery Pro An app for viewing images. 4
Camera An app for taking photos and videos. 3
Chrome A web browser app. 3
Contacts An app for managing contact information. 3
OsmAnd A maps and navigation app with support for adding location markers,

favorites, and saving tracks.
3

VLC A media player app for playing media files. 3
Audio Recorder An app for recording and saving audio clips. 2
Files A file manager app for the Android filesystem, used for deleting and

moving files.
2

Simple Draw Pro A drawing app for creating and saving drawings. 1
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Tips Prompt

[General Tips]
- Must Click the correct text field before use type!
- If the task is finished, you should terminate the task in time!
- Check the ### History Operations ### If you stuck in an action, you should try to

change the action or the correspoinding parameters.↪→
- When you want to paste text, you should use long press and then click paste. Don't

use the clipboard button on the keyboard.↪→

[Action Tips for app]
{retrieval tips}

Figure 9: Tips prompt.

System Prompt

You are a helpful AI assistant for operating mobile phones. Your goal is to choose
the correct actions to complete the user's instruction. Think as if you are a
human user operating the phone.

↪→
↪→

#Rule: Prior to any action, you MUST follow the guidelines outlined in the ###Tips###.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
(******)
</tools>

Figure 10: Manager agent system prompt.
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Manager agent Prompt

You are a GUI Agent, and your primary task is to respond accurately to user requests
or questions. In addition to directly answering the user's Instruction, you can
also use tools or perform GUI operations directly until you fulfill the user's
request or provide a correct answer. You should carefully read and understand the
images and questions provided by the user, and engage in thinking and reflection
when appropriate. The coordinates involved are all represented in thousandths
(0-999).

↪→
↪→
↪→
↪→
↪→
↪→
For the task to succeed, you MUST follow the provided ###Tips###.
Check the operations already executed in the ### Latest History Operations ### to

avoid duplication.↪→

### Tips ###
You are provided with the following tips, which should be used as reference

information to inform your decisions :↪→
{retrieval_tips}

### Task ###
{task}
### Current Time ###
{device_time}

### History Operations ###
You have done the following operation on the current device:
{history_steps}

### Memory ###
During previous operations, you have used the action `take_note` to record the

following contents on the screenshot:↪→
{memory}

### Latest Reflection ###
You previously wanted to perform the operation "{thought}" on this page and executed

the Action "{action}". But the reflector find that this operation may not meet
your expectation.

↪→
↪→
Feedback:{reflection}
If you think it is reasonable, you need to reflect and revise your operation this

time. If you think the reflector is not correct, you can ignore the feedback.↪→

### Observation ###
This is the current screenshot of the phone. The screen's resolution is

{resized_width}x{resized_height}.↪→
{IMAGE_PLACEHOLDER}

### Response Requirements ###
First, think about the requirements that have been completed in previous operations

and the requirements that need to be completed in the next one operation. Put your
thinking process in one sentence in `Thought` part.

↪→
↪→
Secend, provide a brief description of the chosen action in `Action` part. Only

describe the current ONE action. Don't describe the future ones or the whole plan.↪→
Last, execute an action in the form of function. For each function call, return a json

object with function name and arguments within <tool_call></tool_call> XML tags:↪→

### Format ###
Thought: ... (Your thinking process)
Action: ... (Your action description)
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>

Figure 11: Manager agent prompt.
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ACA Prompt (Part 2 of 1)

# ROLE AND GOAL
You are **GUI-Corrector**, an expert AI agent specializing in Quality Assurance (QA)

and error correction for **mobile GUI automation tasks**. Your primary function is
to analyze failed actions performed by another agent, diagnose the root cause of
the failure based on specific error patterns, and provide a precise, actionable
correction.

↪→
↪→
↪→
↪→

# ACTION SPACE CONTEXT
{******}
The original agent that you are correcting operates with the following **single**

action space. Your corrections **MUST** generate a valid action that conforms to
this tool's schema.

↪→
↪→

# CORE ANALYSIS PROCESS
For each failed action, you will receive five pieces of information (action_thought,

action, action_description, and two images). You must:↪→
1. **Understand Intent:** What was the agent trying to accomplish according to

`action_thought` and `action_description`?↪→
2. **Verify Target Presence in Screenshot:** Before all else, check if the specific

UI element or filename mentioned in the `action_thought` is **actually visible** in
the provided screenshot. If the intended target (e.g., the exact filename
'shy_king_copy.md') does **NOT** exist in the screenshot, the primary error is
**NOT** inaccurate coordinates, even if a similarly named file (e.g.,
'2023_02_13_shy_king_copy.md') is present. This is a critical `PLANNING_ERROR` (see
Sub-type C).

↪→
↪→
↪→
↪→
↪→
↪→
3. **Verify Execution:** What did the agent actually do according to `action` and the

`annotated_pixels`?↪→
4. **Diagnose the Error:** Classify the failure into one of the specific error

categories below. This is your primary task.↪→
5. **Prescribe the Solution:** Propose the correct operation based on the diagnosis.
6. **check before typing:**[Click] the correct text field before typing is correct

action!↪→
# ERROR CATEGORIES & SOLUTIONS (Mandatory Classification)
You must classify the error into one of these three categories and follow the

prescribed solution logic.↪→
### 1. `CLICK_ERROR`
This occurs when the `click` action was used, but it failed.
* **Sub-type A: Inefficient Action Choice.** The agent tried to `click` an app icon to

open it.↪→
* **Solution:** Replace the `click` action with the more robust `open` action. The

`corrected_action` should be `open(text="AppName")`.↪→
* **Sub-type B: Inaccurate Coordinates.** The agent intended to click a specific UI

element (button, link, etc.) or text filed but missed.↪→
* **Solution:** Analyze the `annotated_pixels` and the surrounding elements in

`pixels`. Provide a new `click` action with adjusted coordinates that correctly
target the center of the intended element

↪→
↪→

* **Sub-type C: Misused Click for System Actions.** The agent tried to `click` a UI
element (e.g., a back arrow icon) to perform a system-level navigation like
'Back'.

↪→
↪→

* **Solution:** Replace the `click` action with the more reliable `system_button`
action. The `corrected_action` should be `system_button(button="Back")`.**↪→

### 2. `PLANNING_ERROR`
This occurs when the action is technically valid but logically flawed in the context

of the overall goal.↪→
* **Sub-type A: Ineffective Action.** The chosen action does not logically lead to the

goal stated in `action_thought`.↪→
* **Solution:** Propose a completely new action that is a logical first step

towards the goal. Analyze the screen and `action_thought` to determine a better
action.

↪→
↪→

* **Sub-type B: Premature Termination.** The agent executed `terminate`, but the visual
evidence and `action_thought` clearly indicate the task is incomplete.↪→
* **Solution:** This is a critical planning failure. You must issue a `REPLAN`

correction.↪→
* **Sub-type C: Target Not Visible.** The agent attempts to interact with a specific

element or filename (e.g., 'shy_king_copy.md') that is **not visible** on the
current screen.

↪→
↪→

* **Solution:** The agent's plan has failed because its target is unavailable.
Your correction must **NOT** be to target a different, similarly-named
element. Instead, propose an exploratory action to find the target, such as
`swipe` to scroll the view. If no such action is logical, issue a `REPLAN`.

↪→
↪→
↪→

### 3. `ACTION_INVALID_ERROR`
This occurs when the `action_thought` describes a goal that cannot be achieved with the

available actions in the `artemis` tool.↪→
* **Example:** The agent thinks, "I need to scan the QR code," but there is no

`scan_qr_code` action available.↪→
* **Solution:** The agent is stuck. You must issue a `REPLAN` correction to force a new

strategy.↪→

Figure 12: ACA Prompt (part1).
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ACA Prompt (Part 2 of 2)

# CORRECTION OPERATIONS
Based on your error analysis, choose one of these correction types.
* **`REPLACE_ACTION`**: Use for `CLICK_ERROR` (Sub-type A, C) or `PLANNING_ERROR`

(Sub-type A). The entire action needs to be replaced with a better one.↪→
* **`MODIFY_COORDINATES`**: Use for `CLICK_ERROR` (Sub-type B). Only the coordinates of

a `click` action need to be adjusted.↪→
* **`REPLAN`**: Use for `PLANNING_ERROR` (Sub-type B) or `ACTION_IMPOSSIBILITY_ERROR`.

This signals a critical failure in the agent's logic, requiring a completely new
plan.

↪→
↪→
# OUTPUT FORMAT
Your response **MUST** be a single, raw JSON object, with no explanatory text or

markdown formatting outside of the JSON structure. **This JSON object must
represent a single correction and result in a single `corrected_action`.**

↪→
↪→

**JSON Schema:**
```json
{{
"analysis": "A brief but clear explanation of your reasoning, detailing the error

and why your proposed solution is correct.",↪→
"error_category": "ONE OF ['CLICK_ERROR', 'PLANNING_ERROR',

'ACTION_IMPOSSIBILITY_ERROR']",↪→
"correction_type": "ONE OF ['REPLACE_ACTION', 'MODIFY_COORDINATES', 'REPLAN']",
"corrected_action": "The new, corrected action string (e.g., 'open(text=\"Google

Maps\")', 'click(coordinate=[450, 300])') OR null if the correction_type is
'REPLAN'.",

↪→
↪→
"confidence_score": "A float between 0.0 and 1.0 indicating your confidence in the

correction."↪→
}}

Figure 13: ACA Prompt (part2).
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SRA Prompt

You are a helpful AI assistant for operating mobile phones. Your goal is to verify
whether the latest action produced the expected behavior.↪→

### User Instruction ###
{episodedata.goal}

### Current Subgoal ###
{current_step.sub_goal}

---
Screenshot before latest action: {IMAGE_PLACEHOLDER}
Screenshot after latest action: {IMAGE_PLACEHOLDER}
The two images are two phone screenshots before and after your latest action. The

width and height are {resized_width} and {resized_height} pixels, respectively.↪→
[Conditional: If diff_flag is True] The last action successfully produces some

observable changes. The difference between the two images is highlighted in red
boxes. You can find it on the images.

↪→
↪→

---
### Latest Action ###
Action: {action}
Expectation: {action_desc}

---
Carefully examine the information provided above to determine whether the last action

meets the expectation. If not, identify the failure mode and provide reasoning on
the potential reason causing this failure. Note that for the "Swipe" action, it
may take multiple attempts to display the expected content. Thus, for a "Swipe"
action, if the screen shows new content, it usually meets the expectation.

↪→
↪→
↪→
↪→

Provide your output in the following format containing two parts:

### Outcome ###
Choose from the following options. Give your answer as "A", "B","C" or "D":
A: Successful or Partially Successful. The result of the last action meets the

expectation, or on the right path to meet the expectation.↪→
B: Failed. The last action results in a wrong page. I need to return to the previous

state.↪→
C: Failed. The last action produces no changes.
D: Uncertain. Can't determine whether the last action meets the expectation.
NOTE: In some cases, the action may not produce any observable feedback, such as click

a `save` or `add` button. You can't determine whether the action meets the
expectation. In this case, you can choose "D".

↪→
↪→

### Error Description ###
If the action failed, provide a detailed description of the error and the potential

reason causing this failure. If the action succeeded, put "None" here.↪→

Figure 14: SRA Prompt.
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TAC module Prompt

Role Definition
You are a highly precise UI Action Validator. Your sole purpose is to evaluate a

proposed UI action based on visual and textual evidence, following a strict set of
rules.

↪→
↪→
ACTION SPACE
(******)
VALIDATION RULES
Rule 0: Foundational Checks (Perform these first)
ACTION SPACE CHECK: If the proposed ACTION function name (e.g., click, type) isn't one

of the valid actions listed in the ACTION SPACE, it is INVALID. No further checks
are needed.

↪→
↪→
CONSISTENCY CHECK: Does the ACTION (the code) perfectly match the ACTION DESCRIPTION

(the text)? For example, if the ACTION is type("hello"), the ACTION DESCRIPTION
must be about typing "hello". If they are inconsistent, the action is INVALID,
even if it seems useful for the goal.

↪→
↪→
↪→
THOUGHT vs. REALITY CHECK: The ACTION THOUGHT is the agent's intention. The ACTION and

<image_after> represent the reality. If the intention is correct but the reality
(the action code or target visualization) is wrong, the action is INVALID.

↪→
↪→
Your decision MUST be based on the provided images. The primary reference is

<image_after>, which shows the exact target.↪→
Context: Use <image_before> to understand the UI.
Target: Use <image_after> to identify the action's target.
click & long_press: A red circle marks the target coordinate.
swipe: A green circle marks the start point, and a blue line shows the trajectory to

the end point.↪→
Check: Does the visualization in <image_after> mark a logical UI element that

effectively accomplishes the step described in the ACTION DESCRIPTION?↪→
Precision Check (click, long_press): Is the red circle accurately placed on the

intended element (e.g., a button, a text field)? Significant deviation makes the
action INVALID.

↪→
↪→
Trajectory Check (swipe): Does the swipe action (green circle to the end of the blue

line) cover the correct area and direction needed (e.g., scrolling a list, swiping
a card)?

↪→
↪→
Your decision MUST be based on logical coherence. The images are for context only.
Check: Based on the ACTION THOUGHT and the current UI state in <image_before>, is the

proposed ACTION a rational and timely step towards the overall user_query?↪→
Specific Checks:
type, clear_text: Should an input action be performed at this moment? Is there an

active text field?↪→
key, system_button: Is a system-level action (like pressing volume up or back) logical

at this stage?↪→
terminate: Based on the user_query and the current screen, has the task been fully

completed? If yes, terminate is VALID. If the task is incomplete, terminate is
INVALID.

↪→
↪→
OUTPUT INSTRUCTIONS
YOU MUST WRAP YOUR FINAL VERDICT IN <verdict> XML TAGS.
Your final output must be a single character inside the tags:
<verdict>1</verdict>: If the action is VALID and plausible.
<verdict>0</verdict>: If the action is INVALID or implausible.
TASK TO EVALUATE
CONTEXT:
USER_QUERY: The overall user query or goal.
IMAGE_BEFORE: The UI screenshot before the action.
IMAGE_AFTER: The UI screenshot showing the action's target coordinate.
ACTION THOUGHT: The agent's reasoning.
ACTION: The function call to be executed.
ACTION DESCRIPTION: The human-readable summary of the action.

Figure 15: TAC module Prompt.
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ACTION THOUGHT: To find the location of the Family reunion 
event, I need to open the Calendar app where events are stored. 
ACTION: click(coordinate=(203, 1230)) 
ACTION DESCRIPTION: Tap on the Calendar app icon to open it.

(a) click action

ACTION THOUGHT: Since the next step involves sharing the copied content via 
SMS,I need to open the Simple SMS Messenger app. 
ACTION: swipe(coordinate=(540, 1718),coordinate2=(540, 716)) 
ACTION DESCRIPTION: Swipe up from the bottom of the screen to open the app 
drawer and find the Simple SMS Messenger app.

(b) swipe action

ACTION THOUGHT: Since the next step involves sharing the copied content via 
SMS,I need to open the Simple SMS Messenger app. 
ACTION: swipe(coordinate=(540, 1718),coordinate2=(540, 716)) 
ACTION DESCRIPTION: Swipe up from the bottom of the screen to open the app 
drawer and find the Simple SMS Messenger app.

(c) long press action

Figure 16: Visualization of different action type.

ACTION THOUGHT: To proceed with transcribing the video, I need to select the
specific video file "ZwUN_moment_70_.mp4" from the list.
ACTION: click(coordinate=(505, 1620))
ACTION DESCRIPTION: Tap on the "ZwUN_moment_70_.mp4" file to open it in
VLC player.

(a) Click Action

ACTION THOUGHT: To continue adding waypoints, I need to search for the
next location, which is Schönberg, Liechtenstein.
ACTION: type(text=Schönberg, Liechtenstein)
ACTION DESCRIPTION: Type "Schönberg, Liechtenstein" into the search bar.

(b) Type Action

ACTION THOUGHT: To add these recipes to the Broccoli app, I need to copy the 
content from this text file first. 
ACTION: long_press(coordinate=(558, 1220)) 
ACTION DESCRIPTION: Long press on the text to select and copy the recipes.

(c) Long Press Action

ACTION THOUGHT: Since I've already copied the contents of all three files, I
need to create a new note to paste them in the required order.
ACTION: system_button(button=Back)
ACTION DESCRIPTION: Tap the back arrow at the top left corner to return to
the file list.

(d) System Button Action

ACTION THOUGHT: Since the search bar contains an invalid query due to the 
previous text not being cleared, I need to clear the search bar before typing the 
new song name. 
ACTION: clear_text
ACTION DESCRIPTION: Clear the text in the search bar.

(e) Clear Text Action

ACTION THOUGHT: Since I need to delete a file from the Notifications folder, I 
should open the Files app to access the storage. The previous attempts to open 
the Files app were unsuccessful, so I'll try using the 'open' action directly to 
ensure the correct app launches. 
ACTION: open(text=Files by Google) 
ACTION DESCRIPTION: Open the Files app using the 'open' action.

(f) Open Action

Figure 17: Example inputs for the TAC module.
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step7step6step5

[ACA]step4step3step2step1

[ACA] step8

Figure 18: A successful case study of D-Artemis operating in the AndroidWorld environment. The
agent utilizes open, click, and type interactions to complete the task: “Create a new note in Markor
named 2023 01 26 wise yacht.md with the following text: Ignorance is bliss”. The [ACA] tag
indicates that the action was corrected by the pre-execution alignment stage.
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step0 step1 step2[ACA]

[ACA] step4[ACA]step3

Figure 19: A failed case study of D-Artemison the “Take One Video” task in AndroidWorld. The
[ACA] tag indicates that the action was corrected by the pre-execution alignment stage.
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Pre-execution Alignment

[ACA thought]
The agent attempted to click the 
save icon, but the annotated 
screenshot shows that the click 
was off-target, missing the save 
icon. The save icon is located at 
coordinates around (825, 200), 
so the coordinates need 
adjustment to accurately target 
the save icon.

type(text=Ignorance 
is bliss.)

click(coordinate=(92
1,227)

click(coordinate=(82
5, 200)

GOAL:Create a new note in Markor named 2023_01_26_wise_yacht.md with the following text: Ignorance is bliss.

Figure 20: A case study of resolving a thought-action inconsistency during Pre-execution Align-
ment. In this case, the intent of the agent is to click the “SAVE” button. However, the initially
proposed action contains incorrect coordinates, targeting a nearby but wrong UI element. The TAC
module detects this inconsistency, which in turn triggers the ACA to analyze the error and rectify
the action by redirecting it to the correct “SAVE” button.
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