
Non-conflicting Energy Minimization
in Reinforcement Learning based Robot Control

Skand Peri Akhil Perincherry∗ Bikram Pandit∗ Stefan Lee
Oregon State University

Project Page: https://pvskand.github.io/projects/PEGrad

Abstract: Efficient robot control often requires balancing task performance with
energy expenditure. A common approach in reinforcement learning (RL) is to pe-
nalize energy use directly as part of the reward function. This requires carefully
tuning weight terms to avoid undesirable trade-offs where energy minimization
harms task success. In this work, we propose a hyperparameter-free gradient op-
timization method to minimize energy expenditure without conflicting with task
performance. Inspired by recent works in multitask learning, our method applies
policy gradient projection between task and energy objectives to derive policy
updates that minimize energy expenditure in ways that do not impact task per-
formance. We evaluate this technique on standard locomotion benchmarks of
DM-Control and HumanoidBench and demonstrate a reduction of 64% energy
usage while maintaining comparable task performance. Further, we conduct ex-
periments on a Unitree GO2 quadruped showcasing Sim2Real transfer of energy
efficient policies. Our method is easy to implement in standard RL pipelines with
minimal code changes, is applicable to any policy gradient method, and offers a
principled alternative to reward shaping for energy efficient control policies.

Keywords: Energy-efficient Locomotion, Reinforcement Learning,

1 Introduction
Untethered robots are inherently constrained by their battery capacity limiting their deployment
duration. For example, the Unitree Go2 [1] typically operates for only 1–4 hours per charge under
low-speed locomotion using its factory controllers, with charging times ranging from 1–2 hours. To
maximize operational time, control policies must minimize energy expenditure while still ensuring
task completion – any excess energy use shortens battery life while insufficient effort may result in
higher rates of task failure. Furthermore, high-energy behaviors can pose safety risks to the robot
and its environment, such as excessive actuator wear or destabilizing interactions with the ground.

One of the most common and increasingly popular ways of learning robot control policies has been
using reinforcement learning (RL) [2, 3, 4, 5, 6, 7, 8] – especially for complex and highly dynamic
embodiments like legged robots. During policy training, energy minimization is typically incorpo-
rated into the reward function through penalties on joint torques [6, 8] or mechanical work [9, 10].
A common formulation is a weighted sum: r = rtask +λ renergy, where rtask is the task specific re-
ward and renergy is the energy penalty. The λ coefficient then becomes a critical hyperparameter for
balancing between these (often competing) objectives. However, different embodiments and tasks
naturally demand different effort, e.g., running being more energetic than standing. Consequentially,
the performance of learned policies can be highly sensitive to the choice of λ , making it difficult to
tune in practice. As shown in the left plot in Figure 1, different values of λ offer different trade-offs
between a trained policy’s average return and overall motor torque for a quadruped running task.
While λ ’s of 0, 0.001, and 0.01 all produce similar returns (though differing torques), higher values
begin to significantly degrade task performance as energy minimization starts to dominate.
∗Equal contribution.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://pvskand.github.io/projects/PEGRAD

500010000

Torque Applied (N-m)

0

200

400

600

800

R
et

ur
n

dog-run

05000100001500020000

Torque Applied (N-m)

0

200

400

600

800

R
et

ur
n

h1-sit_simple-v0

𝐎𝐮𝐫𝐬

𝝀 = 𝟎. 𝟓

𝝀 = 𝟎

𝝀 = 𝟎.𝟏

𝐎𝐮𝐫𝐬

𝝀 = 𝟎

05000100001500020000
Torque Applied (N-m)

0

200

400

600

800

R
et

ur
n

h1-sit_simple-v0

∏ = 0 ∏ = 0.001 ∏ = 0.01 ∏ = 0.1 ∏ = 0.5 PEGrad

Figure 1: RL control policies often optimize a weighted combination of task reward and energy
penalties, i.e., rtask + λ renergy. However, tuning the weighting factor λ is challenging due to high
variability in its optimal value across tasks, environments, and embodiments. (Left) When a Soft
Actor Critic (SAC) agent is trained on the dog-run task, λ=0.01 and λ=0.1 result in significantly
different performance – with the policy at λ=0.1 achieving low returns by crawling rather than
running. However, λ=0.1 works well in the less dynamic dog-walk environment (Not shown).
(Right) For a humanoid sitting task, both λ=0.01 and 0.1 yield policies that are equally energy-
efficient and task-effective, showcasing the inter-environment variability. In both cases, our pro-
posed hyperparameter-free method, PEGrad (⋆), leads to performant and energy efficient policies.
(The lightly shaded markers represent the checkpoint with the highest average evaluation score over
50 episodes, while the solid markers indicate the overall average value across all runs.)

Rather than tuning a trade-off between energy expenditure and task performance, we would ideally
like to specify an ordering of these objectives. That is to say, we would like robots to expend the least
amount of energy necessary to successfully complete the task – adapting energy use to task demands
without requiring per-task manual tuning. To address this, we propose PEGrad – a hyperparameter-
free method that trains policies that simultaneously achieve high task performance and low energy
expenditure. As shown by the orange stars (⋆) Figure 1, PEGrad-based policies can automatically
find performant policies with low energy expenditure across different tasks and embodiments.

Our key idea is to formulate policy training as a multi-objective optimization problem and derive a
descent direction for policy parameters which minimize energy by moving along approximate level-
sets of the reward function. Specifically, we modify the gradients of energy with respect to the policy
parameters to be orthogonal to the task reward gradient at each time step of optimization. We con-
duct experiments on various locomotion benchmarks such as DM-Control suite, HumanoidBench,
and IssacLab that show the efficacy of PEGrad. Specifically, we show an average of 64% energy-
efficiency on these benchmarks compared to vanilla RL policy (λ = 0). Finally, we transfer a learned
policy to a real robot to demonstrate real-world improvements to battery life from running our poli-
cies.

Contributions. We summarize our main contributions:
- We propose PEGrad, a hyperparameter-free gradient optimization method that minimizes energy
expenditure without conflicting with task performance in policy gradient RL methods.
- We experiment in two simulated benchmarks, DM-Control [11] and HumanoidBench [12], and
show that PEGrad decreases energy expenditure by 64% while maintaining task performance.
- We demonstrate the Sim2Real transfer of PEGrad on Unitree GO2 robot and evaluate energy
efficiency in terms of the current drawn from the battery and the net torque applied by the robot
while executing Standing and Walking (SaW) policies.

2 Related Works

Multi-objective optimization: Multi-objective optimization (MOO) studies the problem of opti-
mizing a set of potentially conflicting objectives. We focus on MOO methods that explicitly manip-
ulate gradients to mitigate negative task interference [13, 14, 15, 16, 17]. GradNorm [18] balances
magnitudes of task gradients by modulating them based on task training rates. However, it dis-

2

regards gradient directional conflicts and relies on hyperparameter tuning. PCGrad [16] modifies
task gradients by conditionally projecting a task’s gradient onto the orthogonal sub-space of another
task’s gradient only when a conflict is detected based on negative cosine similarity, and does not
consider orderings for the objectives. In our work, we project energy minimization gradients onto
the orthogonal sub-space of reward maximization gradients at all times thereby prioritizing reward
maximization over energy minimization. We show empirically that directly applying PCGrad-style
conditional projection leads to sub-optimal policies in Sec. 4.1. Grad-Similarity [19] uses cosine
similarity between task gradient vectors to estimate task-relatedness. However, the objective of
Grad-Similarity is to select auxiliary tasks that can optimize a single main task objective whereas
our work attempts to jointly optimize multiple task objectives. CAGrad [17] uses a hyperparame-
ter to find a vector that maximizes worst-case improvement while staying within a ball around the
average gradient of tasks. Our method is hyperparameter free and does not explicitly constrain the
resulting vector to be proximate to the average gradient. GradDrop [20] randomly drops conflict-
ing gradient components based on their signs to reduce interference. However, in contrast to our
work, GradDrop does not consider gradient magnitudes and task importance. Xu et al. [21] perform
adaptive gradient updates to ensure that no single objective dominates, whereas, our work assumes
a priority ordering where gradients of the task reward are more important than that of energy.

Energy optimization in Legged Robots: Nai et al. [22] train a surrogate model to predict en-
ergy consumption by deploying a pre-trained policy and collecting real-world power usage data.
This surrogate model is then used to define an additional energy-based reward, which guides the
fine-tuning of the original policy. The authors adopt an iterative refinement loop involving real-
world data collection, surrogate model training, and policy fine-tuning. In contrast, our approach
focuses on directly optimizing for energy efficiency in simulation, followed by transfer to the real
world—eliminating the need for a learned energy model as well as an iterative refinement process.
Fu et al. [23] train reinforcement learning policies to minimize energy—formulated as mechani-
cal work—alongside task and survival rewards, and observe that the resulting behaviors resemble
natural gaits in biological animals. While they manually tune the reward weights, we propose to au-
tomatically learn a policy that minimizes energy while preserving task performance. Mahankali et
al. [24] formulate the energy-performance trade-off as a constrained optimization problem by main-
taining two separate policies: one for the combined task and energy objective (π) and another for
the task objective alone (π ′). While π ′ is optimized conventionally, the updates to π are penalized
whenever its task reward falls below that of π ′, with the penalty scaled by a learnable parameter
α . This parameter α is dynamically adjusted to keep the returns of π and π ′ close. Although their
problem setting aligns with ours, we take a different approach: instead of maintaining two policies,
we introduce two critics and optimize a single policy.

3 Methodology

We formulate our problem as a Multi-Objective Markov Decision Process (MOMDP) [25] defined
by the tuple (S,A,T,R,γ,µ0) where S and A are the state and action spaces, T (s′|s,a) is the transition
dynamics, R(s) is a vector-valued reward function representing scalar rewards for each objective, γ

is the discount factor, and µ0(s) is the start state distribution. In our setting, we consider the reward
function to be 2-dimensional – returning both a task reward r(s) and energy consumption e(s) at
state s. Our overall goal will be to minimize energy consumption without sacrificing task reward.

3.1 Preliminaries

While our proposed method is applicable to any policy-gradient algorithm, we present results on two
popular actor-critic [26] algorithms – Soft Actor Critic (SAC) [27] and Proximal Policy Optimization
(PPO) [28] – and focus our discussion here on SAC to describe our approach. For a matching
discussion of PPO, see the Appendix 8.1.

Soft Actor Critic (SAC). In standard single-objective settings, SAC aims to maximize both expected
returns and policy entropy. Following the actor-critic framework, SAC learns a scalar action-value

3

function Qφ (s,a) and a stochastic policy πθ (a|s). The critic network Qφ (s,a) is trained to minimize

LQ =
(

Qφ (s,a)−
(

r+ γQφ̄ (s
′,a′)−α logπθ (a′ | s′)

))2
(1)

where a′ ∼ πθ (.|s′), α is an entropy coefficient, and Qφ̄ is the target Q-network implemented as an
exponential moving average of Qφ . The policy function πθ (a|s) is trained to minimize

Lπ = Ea∼πθ

[
α logπθ (a | s)−Qφ (s,a)

]
. (2)

Both the critic and policy networks are trained simultaneously.

Multi-Objective SAC. For our dual objective setting, we employ two critic networks – one for
estimating the task action-value function Qr

φ
(s,a) and the other for the energy action-value func-

tion Qe
φe
(s,a). Each critic can be trained independently following Eq. 1 for rewards and energy

consumption. These critics can share parameters; however, we implement them independently here.

For deriving a policy in multi-objective settings, a common approach is to introduce (or learn) a
utility function U that maps the vector-valued Q-function to a scalar by encoding some notion of
the relative importance of each objective. This reduces the policy-learning problem back to that of
a single-objective MDP where the resulting utility can be maximized. A common choice of utility
function when it comes to energy minimization is a simple linear combination parameterized by a
trade-off parameter λ . For SAC, this corresponds to the following actor objective:

Lπ = Ea∼πθ

[
α logπθ (a | s)−Qr

φ (s,a)+λQe
φe
(s,a)

]
(3)

Larger values of λ will more strongly move the policy’s distribution away from high energy states
and actions. However, it is often difficult to set the trade-off parameter λ a priori for a new task. Too
high and the policy may fail to learn or produce sluggish behaviors. Too low and energy may not be
effectively optimized. Furthermore, optimizing combinations of conflicting objectives can result in
sub-optimal learning [16] – which certainly include task reward and energy expenditure for highly
dynamic robot control tasks like locomotion.

3.2 Projecting Energy Gradients (PEGrad)
To alleviate this issue, we introduce our method Projecting Energy Gradients (PEGrad). To moti-
vate our proposed method, we consider a multi-objective setting in which energy minimization is a
subordinate objective that should be optimized only when doing so does not interfere with reward
maximization. To start, let us separate the actor objective into two losses corresponding to the task
reward and energy reduction, denoting these as

LR(θ)=Ea∼πθ

[
α logπθ (a | s)−Qr

φ (s,a)
]

and LE(θ)=Ea∼πθ

[
α logπθ (a | s)+Qe

φe
(s,a)

]
(4)

For a small change d in policy parameters θ , the reward objective for the resulting policy under a
first-order Taylor approximation can be written as

LR(θ +d)≈LR(θ)+gT
Rd (5)

where gR is the gradient of the reward loss with respect to network parameters evaluated at θ , i.e.,
gR = ∇θ LR(θ). From this, standard gradient descent algorithms setting d = −αgR can be derived
where α is a learning rate hyperparameter. More to our point however, this approximation also
implies that a small change in a direction orthogonal to gR results in no change to the reward loss
function – corresponding to movement along a level-set of the approximated reward loss hyperplane.
Naturally, this is only valid in a small region around θ where the approximation holds.

This suggests a straight-forward algorithm in which the energy consumption loss is minimized only
by shifting parameters in this orthogonal space of the reward loss gradient. By the same reasoning
as above, changing θ by adding−gE =−∇θ LE(θ) would move to minimize energy; however,−gE
may have components that would also modify LR. Instead, we consider the orthogonal projection
of gE onto gR denoted as gE⊥R , taking the overall descent direction d as

d =−αgR−β gE⊥R =−αgR−β

(
gE −

gT
RgE

gT
RgR

gR

)
(6)

4

Rather than tuning β as an independent learning rate hyperparameter, we define it adaptively as

β = α ∗min
(

1,
|| gR ||2
|| gE⊥R ||2

)
(7)

such that the norm of βgE⊥R is no greater than the norm of αgR. We provide an empirical justification
for this choice, finding it to work well across multiple settings.

Implementing PEGrad. Alg. 1 outlines a practical implementation of our proposed approach. Af-
ter performing backward passes for each policy loss component, energy loss gradients are directly
adjusted via projection and conditionally rescaled. Rather than setting α as a learning rate directly,
we pass the updated gradient direction gR +gE⊥R to any choice of optimizer. This is applied at each
step of training. Applying this algorithm represents a relatively small code change in existing RL
frameworks but does incur the cost of a second backward pass to compute gR and gE separately.

Algorithm 1 PEGrad

Require: Policy (π) parameters θ , task minibatch B = {Tk}
1: gR← ∇θ LR(θ) ▷ Compute task reward loss gradient from batch
2: gE ← ∇θ LE(θ) ▷ Compute energy expenditure loss gradient from batch

3: gE⊥R ← gE −
gT

R gE
gT

R gR
gR ▷ Compute orthogonal projection

4: if
∥∥gE⊥R

∥∥
2 > ∥gR∥2 then

5: gE⊥R = gE⊥R
∥gR∥2
∥gE⊥R∥2

▷ Rescale if larger norm than reward gradient

6: end if
7: return update ∆θ = gR +gE⊥R ▷ Pass returned value as gradient to optimizer

4 Experiments
We center our experiments and discussion around the following questions: (Q1) Can PEGrad min-
imize energy while retaining task performance across various environments and tasks? (Sec. 4.1);
and (Q2) Can we use PEGrad to reduce battery usage on a real robot? (Sec. 4.2)

Formulation of energy. Prior works have used various formulations of energy such as torque
penalty and mechanical work. In our experiments, we choose the sum of absolute torques applied
to actuated motors as a proxy for energy. Concretely, we compute the energy function as e(s) =
∑

M
m=1 |τm| where M is the total number of actuated motors of the robot and τm is the torque applied

to the mth motor. This formulation aims to minimize battery current draw rather than system energy.
In simulation, current I is unmeasurable but proportional to motor torque τ , and taking |τ| captures
draw regardless of direction. On contrary, mechanical power (τ.ω) depends on the velocity, and
can underestimate I during high-torque, low-motion phases. Thus, ∑ |τ| better reflects battery load.
However, we note that this ignores differences in motors and gear ratios that impact current draw. If
these are heterogeneous and known for an embodiment, appropriate coefficients may be included.

4.1 Simulation Experiments
Setting. For our simulation experiments, we use two environments based on the MuJoCo [29]
physics simulator – DM-Control suite [11] and HumanoidBench [12].

DM-Control: We consider two robot embodiments Quadruped and Dog and conduct our experi-
ments on Quadruped-{Walk, Run}, and Dog-{Stand, Walk, Run, Trot}. Tasks on the Dog

embodiment are the most challenging in the suite owing to their 228-dim state space and 38 dimen-
sional action space. Policy actions correspond directly to motor torques.

HumanoidBench: The HumanoidBench benchmark consists of 27 whole body control tasks. We
focus on four fundamental locomotion tasks {Stand, Walk, Run, Sit}, all of them trained on
Unitree H1 humanoid robot in simulation. All the tasks have state dimension of 51 and action
dimension 19. Policy actions correspond directly to motor torques.

5

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

2500500075001000012500
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

dog-stand

10001500200025003000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

quadruped-walk

1000200030004000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

quadruped-run

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)
0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

500010000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

dog-trot

500010000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

dog-run

01000020000
Abs. Torque/Step (Nm)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-walk-v0

∏ = 0 ∏ = 0.5 ∏ = 0.1 ∏ = 0.07 ∏ = 0.05 ∏ = 0.03 ∏ = 0.01 ∏ = 0.005 ∏ = 0.001 ∏ = 0.0005 ∏ = 0.0001 PCGrad PEGrad

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

2500500075001000012500
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

dog-walk

Figure 2: DMControl Suite Results: We show results on six tasks from DMControl suite [11].
Low applied torque and higher returns are better.Across all tasks, PEGrad achieves high task perfor-
mant policies that are also energy-efficient. For 4 out of 6 tasks, PEGrad achieves results beyond the
Pareto front identified by adjusting λ .

For the experiments on DM-Control suite and HumanoidBench we use SAC as the base RL algo-
rithm that is implemented using LeanRL [30] (a PyTorch library based on CleanRL [31]). A list of
hyperparameters and network architectures for critics and actor is described in Appendix 8.4.

Baselines. To validate our method, we compare PEGrad against the following baselines:

- Base: The base SAC implementation has a single critic and is trained on default environment
reward functions. For DM-Control this corresponds to an energy unconstrained policy (denoted
as λ=0), whereas HumanoidBench includes some default energy penalties (denoted as Base).

- Multi-Objective (λ=X): This baseline includes two critics as described in Sec. 3.1 with a
factor λ in the policy loss to trade off between task reward and energy efficiency as in Eq. 3.
We use energy as defined above for all environments and remove default energy penalties from
HumanoidBench rewards. We select λ ∈ {0.001,0.01,0.1,0.5} for our experiments.

- PCGrad+ [16]: While originally proposed for multi-objective problems where all objectives are
equally important, we adapt PCGrad to our setting where reward takes precedence over energy.
The resulting method will first subtract the parallel component of gE when gE and gR are con-
flicting i.e g⊤R gE < 0, but otherwise aggregates both gradients directly. We build on the public
PyTorch implementation of this work [32].

Results. For each task setting, we provide three result plots – (i) a Pareto front showing our energy
formulation vs. return for converged policies; (ii) a sample efficiency plot showing environment steps
vs. return; and (iii) an energy efficiency plot showing environment steps vs. our energy formulation.

6

05000100001500020000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-run-v0

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

01000020000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-walk-v0

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

05000100001500020000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-sit_simple-v0

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

0

200

400

600

800

1000

A
vg

.
R
et

ur
n

0.0 0.4 0.8 1.2 1.6 2.0

Env Steps (M)

0

5

10

15

20

25

30

A
bs

.
T
or

qu
e/

St
ep

(N
m

)

025005000750010000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-stand-v0

01000020000

Torque Applied (N-m)

0

200

400

600

800

R
et

ur
n

h1-walk-v0

Base ∏ = 0.5 ∏ = 0.1 ∏ = 0.07 ∏ = 0.05 ∏ = 0.03 ∏ = 0.01 ∏ = 0.005 ∏ = 0.001 ∏ = 0.0005 ∏ = 0.0001 PCGrad PEGrad

Figure 3: HumanoidBench Results: We show results on four tasks from HumanoidBench suite
[12]. Low applied torque and higher returns are better. Across all tasks, PEGrad achieves highly
performant policies that are also energy-efficient with PEGrad. Further, energy minimization also
improves sample-efficiency on h1-run-v0 and h1-walk-v0 tasks.

All results shown are run for 1.5-2M steps and run for 3 seeds. Shaded areas in (ii)/(iii) are 95%
bootstrapped CIs. For (i), mean results are plotted with individual seeds as shaded markers.

We report results for the DMControl suite of tasks in Fig. 2. We observe that PEGrad consistently
produces energy efficient policies – achieving high rewards on-par with the unconstrained Base

(λ = 0) policy while executing with significantly reduced torques. Interestingly, we observe that
on both the quadruped and the more energetic dog-run and dog-trot tasks, PCGrad+ leads to
sub-optimal policies – sacrificing substantial returns for gains in energy efficiency.

We report results for the HumanoidBench suite of tasks in Fig. 3. We observe PEGrad not only leads
to lower-energy and highly-performant policies but also shows significant sample-efficiency gains
compared to the Base on run and walk tasks. The λ = 0.1 models also exhibit this phenomenon
– indicating that minimizing energy objectives can lead to improved sample-efficiency in some RL
tasks. Interestingly, we find that PCGrad+ over-optimizes energy to the point of achieving nearly no
return for any of the four tasks. The corresponding policy effectively falls without much actuation.
Speculatively, we attribute this to PCGrad+’s lack of any adaptive gradient scaling analogous to β .

4.2 Sim2Real on Go2 Quadruped

Experimental Setting. For our Sim2Real experiments, we train a standing and walking (SaW)
controller for the Unitree Go2 quadruped in simulation using IsaacLab [33] and deploy it in the
real world. We train using PPO [34] on flat terrain with standard domain randomization, and adopt
the Adversarial Motion Prior (AMP) framework [35] for ”natural-looking” gaits which has been
adopted extensively in robotic settings [36, 37, 38, 39, 40, 41]. AMP models a motion prior over a
set of demonstration trajectories by training a discriminator that learns to distinguish between real
trajectories and the robot’s generated motions. The robot’s control policy is trained in an adversarial
fashion to this discriminator, thereby encouraging the robot to produce motions that are similar to the
collected trajectories. To build a dataset of demonstrations, we use the factory-issued Go2 controller
to collect a 90 second sequence of standing and walking trajectories. The trajectories consist of 24
dimensional states (joint positions and velocities) and 12-dimensional actions (joint-delta positions
with respect to the canonical pose of the robot) recorded at 50Hz. During training, the robot’s
policy receives two rewards: one for tracking desired velocities (task performance), and another
style reward from the AMP discriminator, encouraging gaits similar to the factory-issued controller.
We provide more details about the specific architecture and details of AMP in Section 8.3.

7

SaW Controller Standing Walking

Current
Drawn (mA)

Net Torque
Applied (Nm)

Current
Drawn (mA)

Net Torque
Applied (Nm)

Factory 4.029 ±0.005 3.97 ±0.001 6.46 ±0.19 4.58 ±0.04

AMP+PPO λ = 0 3.473 ±0.005 3.47 ±0.083 ✗ ✗
AMP+PPO λ = 0.0002 2.389 ±0.170 2.52 ±0.006 7.04 ±0.90 4.68 ±0.01

AMP+PPO PEGrad 2.533 ±0.022 2.45 ±0.105 5.65 ±0.45 3.94 ±0.01

Table 1: Current and Torque usage in the real-world: We compare Unitree’s Factory controller and
AMP+PPO λ baselines against PEGrad for Standing and Walking tasks and report current drawn
and net torque applied. We find that PEGrad is ∼20% more efficient than the tuned multi-objective
AMP+PPO λ=0.0002 on the task of walking and has a comparable performance on standing.

For the standing task, we command 0 velocity and compute metrics over 20 seconds. For the
walking task, we command the robot with a velocity of 0.5m/s in the forward direction to cover
a distance of 12 feet (∼ 3.66m). For both, we report the current drawn as well as the net absolute
torque applied in that time. For standing, we allow policies an initial burnin period during which
we do not collect metrics. For walking, we likewise ignore the initial and final period where the
commanded speed of the robot changes due to start-up and slow-down. These filtering steps are to
account for input delays and the effects of switching from default to learned controllers.

Baselines. We compare the energy efficiency of PEGrad against the factory-issued Go2 controller
(denoted as Factory) as well as AMP+PPO λ baselines with λ = 0 and λ = 0.0002 which corre-
sponds to the best baseline policy (on task reward) that we could achieve with tuning this hyperpa-
rameter manually. We note that task performance across all three policies is similar in simulation.

Results. Across both standing and walking tasks shown in Tab. 1, we find policies trained with
PEGrad lead to significantly lower currents being drawn from the battery as well as reduced torques
being applied compared to the factory policy. When deployed for the task of walking, the AMP+PPO
λ = 0 policy was unsuccessful in completing the 12 feet distance and showcased unsafe behaviors
such as taking large jumps – because of which we decided to omit it from the evaluation (marked
with ✗ in the table). Interestingly, we find that the tuned torque penalty (AMP+PPO λ = 0.0002) and
PEGrad achieve similar performance on all metrics for the standing task; however, we observe
a significant gap in performance between the two on the walking task. PEGrad is 19.74% more
efficient on current usage and 15.8% on net torques applied. We would like to point out that these
numbers denote per-timestep current and torque usage and can show significant difference especially
when a robot operates for a longer period of time.

Time Analysis. On a stand-alone RTX 4090 GPU, both PEGrad and the baseline AMP+PPO take
∼4.5 hours to complete 10k iterations, achieving ∼62k steps per second (SPS). On an HPC cluster
with an L40 GPU, PEGrad takes 8.4 hours (∼35k SPS), while the baseline takes 7.6 hours (∼37k
SPS). This difference likely stems from other bottlenecks such as simulation overhead rather than
policy update, particularly given that most RL control policies use relatively shallow networks.

5 Conclusion

In this work, we introduced PEGrad, a method for incorporating energy minimization into RL-based
robot control without compromising task performance. By projecting energy gradients orthogonal
to task reward gradients, PEGrad avoids the need for sensitive hyperparameter tuning between the
two objectives and prioritizes task success over energy objectives. Our extensive evaluations across
DMControl, HumanoidBench, and real-world deployments on the Unitree Go2 quadruped demon-
strate that PEGrad consistently achieves significant reductions in energy usage—up to 64% in sim-
ulation—while retaining or improving policy performance. Moreover, PEGrad enables Sim2Real
transfer of energy-efficient policies, offering practical gains in battery usage and robot longevity.

8

6 Limitations
Interplay Between PEGrad and Style Rewards. Throughout this project, we found it challeng-
ing to combine the energy minimization objective with style rewards. In tasks like DMControl and
HumanoidBench, which lack explicit style constraints, PEGrad effectively learned energy-efficient
and task-performant policies. However, when we initially conducted experiments without AMP-
based style rewards i.e traditional reward engineering with style-enforcing rewards such as feet-air
time [8], mirror loss [42], and other penalties not directly tied to energy—e.g., joint deviation, base
acceleration, and action rate—we observed interesting behaviors that were sometimes infeasible
or unsafe for Sim2Real transfer. For instance, in the absence of a constraint on base height, one
policy learned to maximize its base height as a way to reduce per-step torque, which resulted in a
constrained set of allowable joint displacements. This, in turn, led to shorter, rapid steps so as to
maintain the task reward. Another policy that was trained without any style reward robot learned
a dragging behavior where 2 legs are actively moving and the rest are dragging themselves, mini-
mizing the overall torque. Additional cases are discussed in Appendix 8.6. These instances depict
the challenges while training with multiple reward functions and one potential way to alleviate this
could be to recursively use PEGrad in the order of priority of objectives, with each of the objectives
having a separate critic. We leave this as a future direction of our work.

7 Acknowledgements
SP would like to thank Mohit Gadde and Aayam Shrestha for their help with the real-world ex-
periments, Hunter Brown for his inputs on energy formulation, Rob Yelle for his support of GPU
resources during the deadline, and ViRL lab members for their feedback on the draft of this work.
This work is supported in part by NSF Award No. 2321851. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S. Government, or any sponsor.

References
[1] Unitree Robotics. Go2 developer documentation, 2024. URL https://support.unitree.

com/home/en/developer/about_Go2. Accessed: 2025-04-24.

[2] J. Hwangbo, J. Lee, A. Dosovitskiy, C. S. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter.
Learning agile and dynamic motor skills for legged robots. In Science Robotics, 2019.

[3] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. In Science Robotics, 2020.

[4] X. Long et al. Robust terrain-adaptive locomotion for legged robots via h-infinity reinforce-
ment learning. In IEEE Robotics and Automation Letters, 2023.

[5] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots. Fast and efficient locomotion via learned
gait transitions. Proceedings of the Conference on Robot Learning, 2022.

[6] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots. In
Robotics: Science and Systems (RSS), 2021.

[7] J. Siekmann, Y. Godse, A. Fern, and J. W. Hurst. Sim-to-real learning of all common bipedal
gaits via periodic reward composition. arXiv preprint arXiv:2011.01387, 2020.

[8] B. van Marum, A. Shrestha, H. Duan, P. Dugar, J. Dao, and A. Fern. Revisiting reward design
and evaluation for robust humanoid standing and walking. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2024.

[9] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: Learning a unified policy for
manipulation and locomotion. In Proceedings of The 6th Conference on Robot Learning,
Proceedings of Machine Learning Research, 2023.

9

https://support.unitree.com/home/en/developer/about_Go2
https://support.unitree.com/home/en/developer/about_Go2

[10] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-
to-real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332,
2018.

[11] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm control: Software and tasks for continuous control. Software
Impacts, 2020.

[12] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel. Humanoidbench: Simu-
lated humanoid benchmark for whole-body locomotion and manipulation. arXiv preprint
arXiv:2403.10506, 2024.

[13] W. Chen, X. Zhang, B. Lin, X. Lin, H. Zhao, Q. Zhang, and J. T. Kwok. Gradient-based
multi-objective deep learning: Algorithms, theories, applications, and beyond. arXiv preprint
arXiv:2501.10945, 2025.

[14] O. Sener and V. Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

[15] J.-A. Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective opti-
mization. Comptes Rendus Mathematique, 350:313–318, 2012. URL https://api.

semanticscholar.org/CorpusID:120459561.

[16] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multi-
task learning. In Advances in Neural Information Processing Systems, 2020.

[17] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu. Conflict-averse gradient descent for multi-task
learning. Advances in Neural Information Processing Systems, 34:18878–18890, 2021.

[18] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich. Gradnorm: Gradient normalization
for adaptive loss balancing in deep multitask networks. In International conference on machine
learning, pages 794–803. PMLR, 2018.

[19] Y. Du, W. M. Czarnecki, S. M. Jayakumar, M. Farajtabar, R. Pascanu, and B. Lak-
shminarayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint
arXiv:1812.02224, 2018.

[20] Z. Chen, J. Ngiam, Y. Huang, T. Luong, H. Kretzschmar, Y. Chai, and D. Anguelov. Just pick
a sign: Optimizing deep multitask models with gradient sign dropout. Advances in Neural
Information Processing Systems, 33:2039–2050, 2020.

[21] P. Xu, X. Shang, V. B. Zordan, and I. Karamouzas. Composite motion learning with task
control. ACM Transactions on Graphics (TOG), 2023.

[22] R. Nai, J. You, L. Cao, H. Cui, S. Zhang, H. Xu, and Y. Gao. Fine-tuning hard-to-simulate
objectives for quadruped locomotion: A case study on total power saving. arXiv preprint
arXiv:2502.10956, 2025.

[23] Z. Fu, A. Kumar, J. Malik, and D. Pathak. Minimizing energy consumption leads to the emer-
gence of gaits in legged robots. arXiv preprint arXiv:2111.01674, 2021.

[24] S. Mahankali, C.-C. Lee, G. B. Margolis, Z.-W. Hong, and P. Agrawal. Maximizing quadruped
velocity by minimizing energy. In 2024 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2024.

[25] C. F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane, M. Reymond, T. Ver-
straeten, L. M. Zintgraf, R. Dazeley, F. Heintz, et al. A practical guide to multi-objective
reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1):26,
2022.

10

https://api.semanticscholar.org/CorpusID:120459561
https://api.semanticscholar.org/CorpusID:120459561

[26] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. Technical report, MIT, 1999. Appears
in NeurIPS 1999 workshop-style proceedings.

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning, 2018. URL https://proceedings.mlr.press/v80/

haarnoja18b.html.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[29] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.
doi:10.1109/IROS.2012.6386109.

[30] V. Moens and contributors. Leanrl: Turbo-implementations of cleanrl scripts.
https://github.com/pytorch-labs/leanrl, 2024. URL https://github.com/

pytorch-labs/leanrl. GitHub repository. Fork of CleanRL, optimized for PyTorch 2.0
features.

[31] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. Araújo. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal of
Machine Learning Research, 2022. URL http://jmlr.org/papers/v23/21-1342.html.

[32] W.-C. Tseng. Weichengtseng/pytorch-pcgrad, 2020. URL https://github.com/

WeiChengTseng/Pytorch-PCGrad.git.

[33] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo, H. Mazhar,
A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg. Orbit: A unified simulation
framework for interactive robot learning environments. IEEE Robotics and Automation Letters,
8(6):3740–3747, 2023. doi:10.1109/LRA.2023.3270034.

[34] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Proceedings of the 5th Conference on Robot Learning,
Proceedings of Machine Learning Research. PMLR, 2022. URL https://proceedings.

mlr.press/v164/rudin22a.html.

[35] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. Amp: adversarial motion priors
for stylized physics-based character control. ACM Transactions on Graphics, 40(4):1–20, July
2021. ISSN 1557-7368. doi:10.1145/3450626.3459670. URL http://dx.doi.org/10.

1145/3450626.3459670.

[36] Y. Wang, Z. Jiang, and J. Chen. Learning robust, agile, natural legged locomotion skills in the
wild. arXiv preprint arXiv:2304.10888, 2023.

[37] H. Huang, W. Cui, T. Zhang, S. Li, J. Han, B. Qin, T. Zhang, L. Zheng, Z. Tang, C. Hu,
et al. Think on your feet: Seamless transition between human-like locomotion in response to
changing commands. arXiv preprint arXiv:2502.18901, 2025.

[38] A. Tang, T. Hiraoka, N. Hiraoka, F. Shi, K. Kawaharazuka, K. Kojima, K. Okada, and M. Inaba.
Humanmimic: Learning natural locomotion and transitions for humanoid robot via wasserstein
adversarial imitation. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), 2024.

[39] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg, and P. Abbeel. Adver-
sarial motion priors make good substitutes for complex reward functions. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2022.

11

https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
http://dx.doi.org/10.1109/IROS.2012.6386109
https://github.com/pytorch-labs/leanrl
https://github.com/pytorch-labs/leanrl
https://github.com/pytorch-labs/leanrl
http://jmlr.org/papers/v23/21-1342.html
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://dx.doi.org/10.1109/LRA.2023.3270034
https://proceedings.mlr.press/v164/rudin22a.html
https://proceedings.mlr.press/v164/rudin22a.html
http://dx.doi.org/10.1145/3450626.3459670
http://dx.doi.org/10.1145/3450626.3459670
http://dx.doi.org/10.1145/3450626.3459670

[40] F. Zargarbashi, J. Cheng, D. Kang, R. Sumner, and S. Coros. Robotkeyframing: Learning
locomotion with high-level objectives via mixture of dense and sparse rewards. arXiv preprint
arXiv:2407.11562, 2024.

[41] T. Li, Y. Zhang, C. Zhang, Q. Zhu, J. Sheng, W. Chi, C. Zhou, and L. Han. Learning terrain-
adaptive locomotion with agile behaviors by imitating animals. In 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2023.

[42] M. Mittal, N. Rudin, V. Klemm, A. Allshire, and M. Hutter. Symmetry considerations for
learning task symmetric robot policies. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pages 7433–7439, 2024. doi:10.1109/ICRA57147.2024.10611493.

[43] H. Lee, D. Hwang, D. Kim, H. Kim, J. J. Tai, K. Subramanian, P. R. Wurman, J. Choo,
P. Stone, and T. Seno. Simba: Simplicity bias for scaling up parameters in deep reinforce-
ment learning. In International Conference on Learning Representations (ICLR), 2025. URL
https://openreview.net/forum?id=jXLiDKsuDo.

12

http://dx.doi.org/10.1109/ICRA57147.2024.10611493
https://openreview.net/forum?id=jXLiDKsuDo

8 Appendix

8.1 Multi-Objective PPO

Proximal Policy Optimization (PPO). PPO [28] is a widely used on-policy algorithm that opti-
mizes a surrogate objective based on the clipped probability ratio between the new and old policies.
Specifically, PPO seeks to maximize the expected advantage while limiting the deviation from the
previous policy using a clipped objective:

LPPO = Et
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât

)]
(8)

where rt(θ) =
πθ (at |st)

πθold (at |st)
is the probability ratio between the current and old policies, ε is a hyper-

parameter controlling the clip range, and Ât is an estimate of the advantage function. The value
function is learned via regression to the discounted returns, and the policy and value networks are
trained simultaneously. An entropy bonus is often added to the objective to encourage exploration.

Multi-Objective PPO. In our multi-objective setting, we extend PPO to optimize over both task
performance and energy consumption. We maintain two separate reward signals: one for task reward
rr and another for energy usage re, and compute separate advantage estimates Âr

t and Âe
t accordingly.

To combine them, we use a linear scalarization approach with a trade-off parameter λ , forming a
scalarized advantage:

Âtotal
t = Âr

t −λ Âe
t (9)

This scalarized advantage is used in the PPO surrogate objective:

LMO-PPO = Et

[
min

(
rt(θ)Âtotal

t ,clip(rt(θ),1− ε,1+ ε)Âtotal
t

)]
(10)

As with SAC, setting the trade-off parameter λ is crucial: larger values more strongly penalize
energy usage but can degrade task performance or convergence.

8.2 Environments

We consider 10 simulation tasks (six from DMControl suite [11] and 4 locomotion tasks from
HumanoidBench benchmark [12] as shown in Figure 4. The dimensionality of the observation
space and action space is mentioned in Table 2.

Dmcontrol-dog Dmcontrol-Quadruped

HumanoidBench Humanoid Unitree Go2

Observation

Linear

LayerNorm

Linear

ReLU

Linear

LayerNorm

×"

(a) Environments (b) Policy Encoder

Figure 4: a) Environments – We consider 4 locomotion environments – (i) DMControl-Dog, (ii)
DMControl-Quadruped, (iii) HumanoidBench-H1 Humanoid, and (iv) Unitree Go2. We test
PEGrad on 10 simulated tasks with DMControl and HumanoidBench environments and conduct a
Sim2Real evaluation of standing and walking tasks with Unitree Go2 quadruped. b) Policy Encoder
– We choose a SimBa-like [43] architecture that has shown sample-efficiency and better task perfor-
mance by carefully selecting the architecture encoder for Actor and Critic in Deep-RL algorithms.

13

Task Observation dim Action dim
quadruped-walk 78 12
quadruped-run 78 12
dog-stand 223 38
dog-walk 223 38
dog-trot 223 38
dog-run 223 38

h1-stand 51 19
h1-sit simple 51 19
h1-walk 51 19
h1-run 51 19

Go2-Sim2Real 48 12
Table 2: State and Action spaces of each of the tasks.

8.3 AMP + PPO Training

Dataset Collection. Demonstration trajectories are collected using a factory-provided controller
by manually operating the robot via a joystick for the locomotion task, capturing joint positions
and joint velocities at 50 Hz. This yields a 24-dimensional observation vector (joint positions and
velocities) corresponding to 12 actuated joints. The trajectory spans 20 seconds, and we further
augment the dataset by extracting all possible sliding windows of 0.2 seconds to get a large batch of
trajectories.

The discriminator is implemented as a fully connected multilayer perception (MLP) with two hid-
den layers of 1024 and 256 units, respectively, with ELU activations. It receives the 24-dimensional
proprioception as input and outputs a single logit that denotes the confidence that the original obser-
vation is from real demonstrations. The discriminator is trained jointly with the policy, with updates
occurring at every learning step.

The style reward is derived by applying a sigmoid activation to the discriminator’s logits to obtain
the probability that a sample is classified as real. Denoting this probability by p = σ(logits), the
style reward is then computed as the negative log-probability of the discriminator predicting “real”:

rstyle =− log(max(1−σ(logits),ε)) , (11)

where ε is a small constant to prevent numerical instability. This reward encourages the policy to
provide behaviors the indistinguishable from real demonstration. The style reward is scaled by a
factor λstyle and combined with the task reward and penalties.

The task reward promotes velocity tracking locomotion by minimizing the L2 deviation between
commanded and actual linear (X, Y) and angular velocities. Additionally, for the Baseline
(AMP+PPO), we incorporate auxiliary penalty terms such as linear motion in the Z-axis and angular
velocities about the X and Y axes (roll and pitch rates) to promote stable locomotion. Termination
conditions, such as minimum base height and base contact, are also added. We describe the exact
reward structure used to train GO2 SaW (Standing and Walking) controller with Adverserial Motion
Priors (AMP) [35] in Table 3.

8.4 SAC Hyperparameters and Architecture

We show our encoder architecture for policy as well as for the critic in Figure 8.2 where we base our
model on SimBa [43]. In this section we list out the hyperparameters for our SAC algorithm used
on DMControl and HumanoidBench training in Table 4.

14

Table 3: Individual task, style and penalty rewards for AMP+PPO baseline.
Reward Term Definition Weighting

Base linear x,y velocity e−
∥vcmd−vcurrent ∥2

0.25 1.5

Base angular yaw velocity e−
∥wcmd−wcurrent ∥2

0.25 0.75
AMP Style reward − log(max(1−σ(logits),ε)) 0.4

Feet air time

{
∑

k∈F
(tair,k− tthresh) ·1fc,k if ∥vcmd∥> δ

0 otherwise
0.25

Vertical velocity penalty ∥vz∥2 -2.0
Roll/pitch velocity penalty ∥wxy∥2 -0.05
Orientation penalty ∥θrp∥2 -2.5
Torque penalty (not used in PEGrad) ∥τ∥2 -0.0002

Notes.
• vcmd is the commanded linear velocity.
• vcurrent is the base linear velocity.
• wcmd is the commanded angular velocity.
• wcmd is the base yaw angular velocity.
• logits is a discriminator network output.
• ε is a numerical stability term to avoid computing log of zero.
• σ is the sigmoid function that computes the probability from the discriminator logits.
• F denotes the set of feet. In this case, it denotes four legs: front-left, front-right, rear-left,

and rear-right.
• tair,k is the air-time duration for foot k.
• tthresh is the threshold air-time for the penalty.
• 1fc,k is 1 if foot k just made contact with the ground, 0 otherwise.
• θrp is the roll and pitch angles of the robot base.
• δ is the minimum movement threshold to enable feet-air-time reward. This is required to

disable the feet-air-time reward when the command is near zero.
• τ is the applied torque for each of the joints

8.5 Energy Formulation

In addition to formulating energy as sum of absolute joint torques, we consider mechanical power
(τ.ω). It is important to note that mechanical power can underestimate the current I drawn from the
battery during high-torque, low-motion phases.

05000100001500020000
Mechanical Power (W)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-sit_simple-v0

Mechanical Power (𝝉×𝝎)

01000020000
Mechanical Power (W)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-walk-v0

01000020000
Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-walk-v0

∏ = 0 ∏ = 0.5 ∏ = 0.1 ∏ = 0.07 ∏ = 0.05 ∏ = 0.03 ∏ = 0.01 ∏ = 0.005 ∏ = 0.001 ∏ = 0.0005 ∏ = 0.0001 PCGrad PEGrad
01000020000

Torque Applied (N-m)

0

200

400

600

800

1000

1200

R
et

ur
n

h1-walk-v0

∏ = 0 ∏ = 0.5 ∏ = 0.1 ∏ = 0.07 ∏ = 0.05 ∏ = 0.03 ∏ = 0.01 ∏ = 0.005 ∏ = 0.001 ∏ = 0.0005 ∏ = 0.0001 PCGrad PEGrad

Figure 5: We show results on HumanoidBench’s sit simple and walk tasks with mechanical
power (τ.ω) as the energy formulation. We observe that PEGrad continues to achieve energy-
efficient and task-performant policies even with a different formulation.

15

Table 4: Hyperparameters Table. The hyperparameters listed below are used consistently across
all baseline and lagrange versions of SAC, unless stated otherwise.

Hyperparameter Notation Value

Common

Discount factor γ 0.99
Replay buffer capacity - 1M
Buffer sampling - Uniform
Batch size - 256

Actor

Number of SimBa-like blocks - 1
Hidden dimension - {256/512} (DMControl / HumanoidBench)
Entropy coefficient α 0.2
Update frequency - 2

Critic
Number of SimBa-like blocks - 2
Hidden dimension - {256/512} (DMControl / HumanoidBench
Update frequency - 1

Optimizer

Optimizer - Adam
Optimizer momentum (β1,β2) (0.9, 0.999)
Weight Decay - 0.0
Policy LR - 3e-4
Critic LR - 1e-3

8.6 Sim2Real Discussion

In this section, we first show some additional quantitative results that we conducted on Unitree
Go2 robot for Standing and Walking (SaW) tasks. Next we highlight some additional examples
of challenges we encountered during the process of performing Sim2Real experiments with style
rewards.

12 feet
20 meters

Figure 6: Real world setup. (left) Go2 in Lab-setting: We consider a rubber mat flooring terrain on
which the dataset for AMP has been collected. For the results in Table 1, we consider a distance of
12 feet (∼ 3.66 meters) (marked in red) where the robot is commanded a velocity of 0.5 m/s. Right
Outdoor setting where we test our policies on the concrete pathway as well as the adjacent grass
terrain. For this, we consider a larger distance of 20 meters (distance between the cones).

Additional Sim2Real results.

We deployed the trained SaW policies on different terrains to see if the lower energy consumption
that was trained using reference trajectories that were collected in a lab-setting in Section 4.2, trans-
ferred similarly to outdoor terrains such as grass and concrete. All the trained Go2 policies were
trained with dynamics randomization on a flat terrain. It is important to note that these set of experi-
ments are not to evaluate the generalization capability of the policy to various terrains – rather to see
if there is any significant deviation in terms of energy consumption of PEGrad versus the baselines.
We report our results in Table 5.

Across both the scenarios, we find PEGrad to perform significantly better in terms of both current
drawn as well as the net torque applied. Specifically, we find PEGrad to be better than the finetuned
AMP+PPO λ = 0.0002 baseline by ∼ 24.5% on concrete and ∼ 7.68% on grass. We suspect this
reduction of energy consumption even for the baseline on grass terrain is because grass can absorb
part of the impact, reducing the need for active damping or stabilization from the motors. On the
other hand, the average current drawn on Concrete is similar to the lab-setting where the robot was
deployed on a rubber sheet. One important observation was that in grassy & concrete terrains the
policy sometimes ends up at a lower speed than commanded. We attribute this sim2real gap to the

16

SaW Controller Walking (Concrete) Walking (Grass)

Current
Drawn (mA)

Net Torque
Applied (Nm)

Current
Drawn (mA)

Net Torque
Applied (Nm)

Factory 5.430 ±0.007 3.97 ±0.009 4.875 ±0.181 3.72 ±0.050

AMP+PPO λ = 0.0002 6.905 ±0.753 4.47 ±0.115 4.669 ±0.384 3.71 ±0.077

AMP+PPO PEGrad 5.208 ±0.399 3.45 ±0.014 4.310 ±0.002 3.26 ±0.005

Table 5: Current and Torque usage on different terrains: We compare Unitree’s Factory controller
and AMP+PPO λ baselines against PEGrad for Walking task on Concrete and Grass and report
current drawn and net torque applied. We find that PEGrad is ∼24.5% more efficient than the tuned
multi-objective AMP+PPO λ=0.0002 on Concrete terrain and ∼7.68% on Grass terrain. Results
averaged over two trials.

fact that all our GO2 policies were trained on flat terrain. We hypothesize that further training of
policies on a diverse terrain would alleviate this issue.

Additional examples for interplay between PEGrad and Style Rewards

As discussed in our limitations (Section 6), one of the challenges we faced with minimizing energy
was to learn a behavior alongside style rewards. In addition to the examples mentioned in the
Limitations section, we often observed hopping or trotting behaviors in simulation when working
with different style reward structures. With a reward structure the adds a mirror loss [8] which
is common in several humanoid and quadruped locomotion literature to encourage the gaits to be
symmetric about the sagittal plane, the robot learns a hopping behavior (we show a video of this in
the supplementary video).

17

	Introduction
	Related Works
	Methodology
	Preliminaries
	Projecting Energy Gradients (PEGrad)

	Experiments
	Simulation Experiments
	Sim2Real on Go2 Quadruped

	Conclusion
	Limitations
	Acknowledgements
	Appendix
	Multi-Objective PPO
	Environments
	AMP + PPO Training
	SAC Hyperparameters and Architecture
	Energy Formulation
	Sim2Real Discussion

