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ABSTRACT

In the face of the deep learning model’s vulnerability to domain shift, source-free
domain adaptation (SFDA) methods have been proposed to adapt models to new,
unseen target domains without requiring access to source domain data. Although
the potential benefits of applying data augmentation to SFDA are attractive, several
challenges arise such as the dependence on prior knowledge of class-preserving
transformations and the increase in memory and computational requirements. In
this paper, we propose Source-free Domain Adaptation Through the Lens of
Data Augmentation (SF(DA)2), a novel approach that leverages the benefits of
data augmentation without suffering from these challenges. We construct an
augmentation graph in the feature space of the pretrained model using the neighbor
relationships between target features and propose spectral neighborhood clustering
to identify partitions in the prediction space. Furthermore, we propose implicit
feature augmentation and feature disentanglement as regularization loss functions
that effectively utilize class semantic information within the feature space. These
regularizers simulate the inclusion of an unlimited number of augmented target
features into the augmentation graph while minimizing computational and memory
demands. Our method shows superior adaptation performance in SFDA scenarios,
including 2D image and 3D point cloud datasets and a highly imbalanced dataset.

1 INTRODUCTION

In recent years, deep learning has achieved significant advancements and is widely explored for real-
world applications. However, the performance of deep learning models can significantly deteriorate
when deployed on unlabeled target domains, which differ from the source domain where the training
data was collected. This domain shift poses a challenge for applying deep learning models in practical
scenarios. To address this, various domain adaptation (DA) methods have been proposed to adapt the
model to new, unseen target domains (Chen et al., 2019; Xu et al., 2019; Jin et al., 2020; Na et al.,
2021; Long et al., 2013; Ganin & Lempitsky, 2015; Tzeng et al., 2017; Qin et al., 2019). Traditional
domain adaptation techniques require both source domain and target domain data. However, practical
limitations arise when source domain data is inaccessible or difficult to obtain due to cost or privacy
concerns. Source-free domain adaptation (SFDA) overcomes the need for direct access to the source
domain data by using only a model pretrained on the source domain data. SFDA methods focus on
adapting the model to the target domain via unsupervised or self-supervised learning, which leverages
the class semantic information learned from the source domain data (Liang et al., 2020; Yang et al.,
2021a; Lee et al., 2022; Yang et al., 2022; Zhang et al., 2022).

Recent studies (Chen et al., 2022; Zhang et al., 2022) have explored using data augmentation to
enhance adaptation performance by enriching target domain information with transformations such
as flipping or rotating images. These methods, however, require prior knowledge to ensure the
preservation of class semantic information within augmented data. For instance, applying a 180-
degree rotation to an image of the digit 6 would result in the digit 9, which compromises the class
semantic information. Moreover, increasing the number of augmented samples can lead to higher
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Figure 1: Overview of SF(DA)2. Here, f and g indicate the feature extractor and the classifier, z
denotes a target feature, Σ is a covariance matrix for a class, and dist(·, ·) denotes a distance measure.

memory usage and computational load. In response to these challenges, we aim to devise an SFDA
method that effectively harnesses the advantages of data augmentation while mitigating its drawbacks.

In this paper, we propose a novel approach named Source-free Domain Adaptation Through the
Lens of Data Augmentation (SF(DA)2). We present a unique perspective of SFDA inspired by data
augmentation, which leads us to the introduction of an augmentation graph in the feature space of
the pretrained model. The augmentation graph depicts relationships among target features using
class semantic information learned by the pretrained model. Building upon the augmentation graph,
the proposed method consists of spectral neighborhood clustering (SNC), designed for maximal
utilization of the information from target domain data samples, and implicit feature augmentation
(IFA) along with feature disentanglement (FD), designed to leverage additional information from the
estimated distribution of the target domain data.

More specifically, we propose SNC within the prediction space to partition the augmentation graph
via spectral clustering. The SNC loss promotes clustering in the prediction space and guides the
classifier in assigning clusters, which facilitates effective adaptation. Furthermore, we explore the
inclusion of augmented target features (vertices) into the augmentation graph. This allows us to
identify better clusters, which might be challenging to discover using only the given target domain
data samples. To this end, we propose two regularization strategies: IFA and FD. We derive the
IFA loss as a closed-form upper bound for the expected loss over an infinite number of augmented
features. This formulation of IFA minimizes computational and memory overhead. The FD loss
serves as a crucial component in preserving class semantic information within the augmented features
by disentangling the feature space.

We performed experiments on challenging benchmark datasets, including VisDA (Peng et al., 2017),
DomainNet (Peng et al., 2019), PointDA (Qin et al., 2019), and VisDA-RSUT (Li et al., 2021). We
verified that our method outperforms existing state-of-the-art methods on 2D image, 3D point cloud,
and highly imbalanced datasets. Furthermore, we observed that IFA and FD effectively boost the
performances of existing methods. The contributions of this work can be summarized as follows:

• We provide a fresh perspective on SFDA by interpreting it through the lens of data augmen-
tation. Then, we propose SF(DA)2 that thoroughly harnesses intuitions derived from data
augmentation without explicit augmentation of target domain data.

• We propose the spectral neighborhood clustering (SNC) loss for identifying partitions in
the augmentation graph via spectral clustering. This approach effectively clusters the target
domain data in the prediction space.

• We derive the implicit feature augmentation (IFA) loss, which enables us to simulate
the effects of an unlimited number of augmented features while maintaining minimal
computational and memory overhead. To supplement the effectiveness of IFA, we propose
the feature disentanglement (FD) loss. This further regularizes the feature space to learn
distinct class semantic information along different directions.

• We validate the effectiveness of the proposed method through experiments performed on
challenging 2D image and 3D point cloud datasets. Our method significantly outperforms
existing methods in the SFDA settings.
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2 RELATED WORK

Source-free Domain Adaptation SHOT (Liang et al., 2020) utilizes information maximization and
pseudo-labeling with frozen classifier weights. CoWA-JMDS (Lee et al., 2022) estimates a Gaussian
mixture in the feature space to obtain target domain information. NRC (Yang et al., 2021a) and AaD
(Yang et al., 2022) are rooted in local consistency between neighbors in the feature space. Contrastive
learning-based methods such as DaC (Zhang et al., 2022) and AdaContrast (Chen et al., 2022) involve
data augmentation, which requires not only prior knowledge to preserve class semantic information
within augmented data but also computational and memory overhead. Our method circumvents these
issues, providing efficient adaptation without explicit data augmentation.

Data Augmentation Data augmentation improves the generalization performance of the model by
applying class-preserving transformations to training data and incorporating the augmented data in
model training. To minimize the reliance on prior knowledge, several studies propose optimization
techniques to find combinations of transformations within constrained search spaces (Cubuk et al.,
2019; Lee et al., 2020; Zheng et al., 2022). ISDA (Wang et al., 2019) implicitly augments data by
optimizing an upper bound of the expected cross-entropy loss of augmented features. We propose
implicit feature augmentation tailored for SFDA settings.

Spectral Contrastive Learning HaoChen et al. (2021) propose contrastive loss with the augmenta-
tion graph, connecting augmentations of the same data sample and performing spectral decomposition.
They prove that minimizing this loss achieves linearly separable features. Our work is motivated
by spectral contrastive learning but with two key differences. First, we define the augmentation
graph in the feature space, leveraging class semantic information learned by the pretrained model to
directly enhance predictive performance on target domain data. Second, our method does not rely
on explicit data augmentation for positive pairs; instead, we utilize neighbors in the feature space as
positive pairs, considering them as highly nonlinear transformation relationships. We further discuss
differences between existing work and the proposed method, as well as additional related work in
Appendix D.

3 PROPOSED METHOD

In the following sections, we propose Source-free Domain Adaptation Through the Lens of Data
Augmentation (SF(DA)2). We first formulate the scenario of SFDA (Section 3.1). From the intuitions
of data augmentation, we define the augmentation graph in the feature space of the pretrained model
(Section 3.2), find partitions of the augmentation graph (Section 3.3), and implicitly augment features
(Section 3.4). An overview of SF(DA)2 is illustrated in Figure 1.

3.1 SOURCE-FREE DOMAIN ADAPTATION SCENARIO

We consider source domain data Ds = {(xs
i , y

s
i )}

Ms
i=1, where the class labels ysi belong to C classes.

We also consider unlabeled target domain data Dt = {xt
i}

Mt
i=1 sampled from target domain data

distribution P (X t). Target domain data have the same C classes as Ds in this paper (closed-set
setting). In SFDA scenarios, we have access to a source pretrained model consisting of a feature
extractor f and a classifier g. The feature extractor f takes a target domain data sample as input and
generates target features zi = f(xt

i). The classifier g consists of a fully connected layer and predicts
classes from the target features pi = δ(g(zi)) where δ denotes the softmax function.

3.2 AUGMENTATION GRAPH ON FEATURE SPACE

In the proposed method, we focus on the relationships between target domain data samples within
the feature space of the pretrained model. We then build an augmentation graph grounded in our
intuitions on the SFDA scenario.

Deep neural networks trained on source domain data encode class semantic information into distinct
directions in their feature space (Wang et al., 2019; Bengio et al., 2013). For example, different
hairstyles for the ’person’ class or wing shapes for the ’airplane’ class can be represented along
specific directions. This property enables the pretrained model to map target domain data samples
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with similar class semantic information close to one another. From this motivation, we can make the
following assumption:
Intuition 1 (Clustering assumption of source model). Target domain data that share the same
semantic information are mapped to their neighbors in the feature space of the pretrained model. In
this context, neighbors refer to target features with small cosine distances to a given target feature.

We also hypothesize that target domain data samples with shared class semantic information can be
connected through highly nonlinear functions, representing potential augmentation relationships.
Intuition 2 (Augmentation assumption of target domain data). Target domain data sharing class
semantic information may have highly nonlinear functions to transform each other.

To formalize our intuitions of the relationships between target domain data, we introduce the concept
of an augmentation graph (HaoChen et al., 2021). The augmentation graph consists of vertices
representing target domain data and edge weights representing the probability of augmentation
relationships between the target domain data. From our intuitions, samples with shared semantic
information are neighbors in the feature space. These samples have also augmentation relation-
ships, enabling their connection in the augmentation graph. Consequently, we can construct the
augmentation graph on the feature space, which provides a structured representation of target domain
data.

Given a set of all target features in the population distribution of the target domain Z = {z =
f(xt)|xt ∼ P (X t)}, we define the population augmentation graph G(Z, e) with edges eij between
two target features zi and zj as follows:

eij = e (zi, zj) = Pr(zj ∈ Ni) (1)
where Ni is the set of neighbors of zi.

3.3 FINDING PARTITION ON PREDICTION SPACE

Using the augmentation graph, our next objective is to find meaningful partitions or clusters of the
graph that represent different classes. To achieve this, we employ spectral clustering on the graph
(Shi & Malik, 2000; Ng et al., 2001), which reveals the underlying structure of the data. In particular,
HaoChen et al. (2021) proposed a loss function that performs spectral clustering on the augmentation
graph:
Lemma 1 (HaoChen et al. (2021)). Let L be the normalized Laplacian matrix of the augmentation
graph G(X , l). The matrix H , which has the eigenvectors corresponding to the k largest eigenvalues
of L as its columns, can be learned as a function h by minimizing the following matrix factorization
loss:

min
h

L(h) = ∥(I − L)−HHT ∥2F (2)

= const− 2
∑
i,j

lxixj√
lxi

√
lxj

h(xi)
Th(xj) +

∑
i,j

(
h(xi)

Th(xj)
)2

(3)

where xi and xj are vertices of the augmentation graph, lxixj
is an edge between xi and xj ,

lxi
=

∑
j lxixj

denotes the degree of a vertex xi, and const is a constant term.

Using Lemma 1, we describe our approach for finding partitions in the augmentation graph, focusing
on the prediction space. Since we have the target domain data Dt sampled from P (X t), we now build
an instance of the population augmentation graph denoted by Ĝ. Each target feature zi is represented
as a vertex. We consider edges only between the K-nearest neighbors for each vertex, assuming that
these neighbors share the same class semantic information. The edge weight eij is set to 1 if zj is
among the K-nearest neighbors of zi in the feature space, denoted by NK

i . To efficiently retrieve
the nearest neighbors, we utilize two memory banks F and S to retain all target features and their
predictions as used in the previous studies (Yang et al., 2022; 2021a; Saito et al., 2020). Since all
samples are i.i.d. and each target feature has the same number of neighbors, the degree of all target
features is equal (i.e., ei = ej = K for ∀i, j ∈ [0,Mt]). Given a mini-batch B = {xt

i}bi=1 of target
domain data samples, we can derive the spectral neighborhood clustering (SNC) loss on Ĝ:

LSNC(pi) = − 2

K

∑
j∈NK

i

pTi pj +
∑
k∈B

(
pTi pk

)2
(4)
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The first term attracts the predictions of neighborhood features, leading to tight clusters in the
prediction space, similar to previous approaches (Yang et al., 2022; 2021a;b). In contrast, the second
term encourages distinct separation between different clusters by driving the predictions of all target
features apart from each other. We further incorporate a decay factor into the second term to make
predictions more certain as adaptation proceeds. As suggested in (Yang et al., 2022), we multiply the
second term by (1 + 10 × iter

max_iter )
−β where we set β to 5 in our experiments. Overall, the SNC

loss facilitates clustering in the prediction space and supports cluster assignment by the classifier g.

3.4 IMPLICIT FEATURE AUGMENTATION

In this section, we aim to obtain an improved partition by further approximating the population
augmentation graph G. We achieve this by augmenting target features connected to individual target
features. The key focus of this section is to perform feature augmentation without relying on prior
knowledge.

To preserve class semantic information while augmenting target features, we revisit the property of
deep learning models (Wang et al., 2019; Bengio et al., 2013), which suggests that class semantic
information is represented by specific directions and magnitudes in the feature space. We discern
the direction and magnitude for each class by estimating the class-wise covariance matrix of target
features (denoted as Σ = {Σc}Cc=1) online during adaptation using mini-batch statistics. The detailed
method for online covariance estimation, adopted from ISDA (Wang et al., 2019), is described in
Appendix C.3. As target features lack class labels, we use their pseudo-labels ŷi = argmaxc pi to
update the covariance matrices accordingly.

Using the estimated covariance matrices, we can preserve class semantic information in augmented
features by sampling features from a Gaussian distribution. Since an edge (Equation 1) connects a
target feature with its neighbors, we set the mean of the Gaussian distribution to the target feature
itself, and we use the estimated covariance matrix corresponding to the pseudo-label as the variance:

z̃j , z̃k, · · · ∼ N (zi, λΣŷi
) (5)

At the beginning of adaptation, the estimation of covariance matrices may be inaccurate. Therefore,
following Wang et al. (2019), we set λ = λ0 × iter

max_iter and λ0 = 5 in experiments. This gradually
increases the impact of the estimated covariance matrices on the model as the adaptation proceeds.

Augmented features can be used in calculating the first term of the SNC loss to promote similar
predictions. However, directly sampling features from the Gaussian distribution during adaptation
can increase training time and memory usage, undesirable in the SFDA context. Instead, we aim to
derive an upper bound for the expected SNC loss. Since obtaining a closed-form upper bound for the
first term of the SNC loss is intractable, we consider its logarithm. This simplifies the solution while
preserving the goal of adaptation. The explicit feature augmentation (EFA) loss of two augmented
features, z̃j and z̃k, sampled from the estimated neighbor distribution of zi, is expressed as follows:

LEFA(z̃j , z̃k) = − log p̃Tj p̃k (6)

where p̃j = δ(g(z̃j)) and p̃k = δ(g(z̃k)) are the predictions of the augmented features.

We then derive an upper bound for the expected EFA loss and propose the implicit feature augmenta-
tion (IFA) loss as follows:
Proposition 1. Suppose that z̃j , z̃k ∼ N (zi, λΣŷi), then we have an upper bound of expected LEFA

for an infinite number of augmented features, which we call implicit feature augmentation loss:

L∞
EFA(zi; f, g) = Ez̃j∼N (zi,λΣŷi

)

[
Ez̃k∼N (zi,λΣŷi

)

[
− log p̃Tj p̃k

]]
(7)

≤ −2

C∑
c=1

log
exp(g(zi)c)

C∑
c′=1

exp

(
g(zi)c′ +

λ

2
(wc′ − wc)

TΣŷi
(wc′ − wc)

) = LIFA(zi,Σŷi , g) (8)

where g(·)c denotes the classifier output (logit) for the c-th class, and wc is the weight vector for the
c-th class of the classifier g.

Proof of Proposition 2 is provided in Appendix B. Optimizing the IFA loss allows us to achieve the
effect of sampling an infinite number of features with minimal extra computation and memory usage.
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In the denominator of the IFA loss, the first term is proportional to the prediction for the c′-th class
of the target feature. The second term relates to the square of the cosine similarity between the
normal vector of the decision boundary separating the c-th and c′-th classes, and the direction of
feature augmentation. Namely, the denominator can be interpreted as a regularization term that aligns
the decision boundary between the predicted and other classes with the principal direction of the
covariance matrix of the predicted class. This is in accordance with the findings by Balestriero et al.
(2022), which suggest that the explicit regularizer of data augmentation encourages the kernel space
of the model’s Jacobian matrix to be aligned with the principal direction of the tangent space of the
augmented data manifold. Recalling that the target feature is augmented to the direction of variance
of target features with the same pseudo-label, the IFA loss promotes the decision boundaries for each
class to align with the principal direction of the variance of target features with the same pseudo-label.

Maintaining class semantics in augmented features relies heavily on a well-disentangled feature
space. If similar classes, such as cars and trucks, have similar covariances, it suggests that the feature
space may not capture their semantic differences sufficiently. This could lead to non-class-preserving
transformations during augmentation, possibly undermining the model’s performance when the IFA
loss is incorporated. To mitigate this, a more disentangled feature space is needed, ensuring a distinct
representation for each class.

To encourage each direction in the feature space to represent different semantics (i.e., to promote a
disentangled space), we maximize the cosine distance between covariance matrices corresponding to
similar classes. This indicates that features with different pseudo-labels are distributed in distinct
directions. Consequently, the semantic information of different classes is encoded in separate
directions within the feature space, resulting in a disentangled feature space. We propose the feature
disentanglement (FD) loss as follows:

LFD = −1

2

∑
i,j

aij

(
1− tr{Σi Σj}

∥Σi∥F ∥Σj∥F

)
(9)

where Σi and Σj denote the covariance matrices for the i-th and j-th classes, respectively, and the
weight aij serves as a measure of similarity between i-th and j-th classes, and it is calculated as the
dot product of the mean prediction vector (i.e., aij = p̄Ti p̄j , where p̄c =

1
|{i:ŷi=c}|

∑
i∈{i:ŷi=c} pi).

Therefore, the FD loss places greater emphasis on class pairs that exhibit similar predictions on the
target domain data. The weights are calculated at the beginning of each epoch.

The final objective for adaptation can be expressed as follows:

min
f,g

LSNC + α1LIFA + α2LFD (10)

where α1 and α2 denote hyperparameters. The procedure of SF(DA)2 is presented in Algorithm 1.

4 EXPERIMENTS

Algorithm 1 Adaptation procedure of SF(DA)2

Require: f and g (trained on Ds), Dt = {xt
i}

Mt
i=1

1: while training loss is not converged do
2: if epoch start then
3: Update aij for FD loss
4: end if
5: Sample batch B from Dt and update F , S
6: Retrieve neighbors NK

i for each zi in B
7: Update f and g using SGD
8: ∇f,g LSNC + α1LIFA + α2LFD

9: end while

In this section, we evaluate the performance of
SF(DA)2 on several benchmark datasets: Office-
31 (Saenko et al., 2010), VisDA (Peng et al.,
2017), DomainNet (Peng et al., 2019), PointDA-
10 (Qin et al., 2019), and VisDA-RSUT (Li et al.,
2021). The results on Office-31 and details of
the datasets are provided in Appendix A.1 and
C.2, respectively.

Implementation details For a fair compari-
son, we adopt identical network architectures,
optimizers, and batch sizes as benchmark meth-
ods (Liang et al., 2020; Yang et al., 2021a; 2022).
We run our methods with three different random seeds and report the average accuracies. SF in the
tables denotes source-free. More implementation details are presented in Appendix C.1.

Most hyperparameters of our method do not require heavy tuning. We set K to 5 on VisDA,
PointDA-10, and VisDA-RSUT, and 2 on DomainNet. We set α1 to 1e-4 on VisDA, DomainNet, and
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Table 1: Accuracy (%) on the VisDA dataset (ResNet-101).

Method SF plane bicycle bus car horse knife mcycl person plant sktbrd train truck Per-class

BSP (Chen et al., 2019) ✗ 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SAFN (Xu et al., 2019) ✗ 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
MCC (Jin et al., 2020) ✗ 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
FixBi (Na et al., 2021) ✗ 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

Source only (He et al., 2016) - 60.9 21.6 50.9 67.6 65.8 6.3 82.2 23.2 57.3 30.6 84.6 8.0 46.6
3C-GAN (Li et al., 2020) ✓ 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT (Liang et al., 2020) ✓ 94.6 87.5 80.4 59.5 92.9 95.1 83.1 80.2 90.9 89.2 85.8 56.9 83.0
NRC (Yang et al., 2021a) ✓ 96.1 90.8 83.9 61.5 95.7 95.7 84.4 80.7 94.0 91.9 89.0 59.5 85.3
CoWA-JMDS (Lee et al., 2022) ✓ 96.2 90.6 84.2 75.5 96.5 97.1 88.2 85.6 94.9 93.0 89.2 53.5 87.0
AaD (Yang et al., 2022) ✓ 96.8 89.3 83.8 82.8 96.5 95.2 90.0 81.0 95.7 92.9 88.9 54.6 87.3
SF(DA)2 ✓ 96.8 89.3 82.9 81.4 96.8 95.7 90.4 81.3 95.5 93.7 88.5 64.7 88.1

Table 2: Accuracy (%) on 7 domain shifts of the DomainNet-126 dataset (ResNet-50).

Method SF S→P C→S P→C P→R R→S R→C R→P Avg.

MCC (Jin et al., 2020) ✗ 47.3 34.9 41.9 72.4 35.3 44.8 65.7 48.9

Source only (He et al., 2016) - 50.1 46.9 53.0 75.0 46.3 55.5 62.7 55.6
TENT (Wang et al., 2021) ✓ 52.4 48.5 57.9 67.0 54.0 58.5 65.7 57.7
SHOT (Liang et al., 2020) ✓ 66.1 60.1 66.9 80.8 59.9 67.7 68.4 67.1
NRC (Yang et al., 2021a) ✓ 65.7 58.6 64.5 82.3 58.4 65.2 68.2 66.1
AaD (Yang et al., 2022) ✓ 65.4 54.2 59.8 81.8 54.6 60.3 68.5 63.5
SF(DA)2 ✓ 67.7 59.6 67.8 83.5 60.2 68.8 70.5 68.3

Table 3: Comparison of SF(DA)2++ and other two-stage methods on VisDA (ResNet-101).

Method SHOT++ (Liang et al., 2021) feat-mixup + SHOT++ (Kundu et al., 2022) SF(DA)2++
Per-class 87.3 87.8 89.6

Table 4: Accuracy (%) on the PointDA-10 dataset (PointNet).

Method SF Model→Shape Model→Scan Shape→Model Shape→Scan Scan→Model Scan→Shape Avg.

MMD (Long et al., 2013) ✗ 57.5 27.9 40.7 26.7 47.3 54.8 42.5
DANN (Ganin & Lempitsky, 2015) ✗ 58.7 29.4 42.3 30.5 48.1 56.7 44.2
ADDA (Tzeng et al., 2017) ✗ 61.0 30.5 40.4 29.3 48.9 51.1 43.5
MCD (Saito et al., 2018) ✗ 62.0 31.0 41.4 31.3 46.8 59.3 45.3
PointDAN (Qin et al., 2019) ✗ 64.2 33.0 47.6 33.9 49.1 64.1 48.7

Source only (Qi et al., 2017) - 43.1 17.3 40.0 15.0 33.9 47.1 32.7
VDM-DA (Tian et al., 2021) ✓ 58.4 30.9 61.0 40.8 45.3 61.8 49.7
NRC (Yang et al., 2021a) ✓ 64.8 25.8 59.8 26.9 70.1 68.1 52.6
AaD (Yang et al., 2022) ✓ 69.6 34.6 67.7 28.8 68.0 66.6 55.9
SF(DA)2 ✓ 70.3 35.5 68.3 29.0 70.4 69.2 57.1

PointDA-10, and 1e-3 on VisDA-RSUT. We set α2 to 10 on VisDA, PointNet-10, and VisDA-RSUT,
and 1 on DomainNet.

4.1 EVALUATION RESULTS

2D and 3D Datasets We compare SF(DA)2 with the source-present and source-free DA methods
on 2D image datasets. For VisDA, we reproduce SHOT, NRC, CoWA-JMDS, AaD using their official
codes and the pretrained models released by SHOT (Liang et al., 2020). As shown in Table 1, our
method outperforms all other methods on VisDA in terms of average accuracy. We find similar
observations on the results on DomainNet in Table 2.

Additionally, we extend SF(DA)2 into a two-stage version called SF(DA)2++. To ensure a fair
comparison, we utilize the second training stage, which follows the same approach as SHOT++
(Liang et al., 2021). The results presented in Table 3 demonstrate that SF(DA)2++ outperforms other
two-stage methods on the VisDA dataset.

We also conduct comparisons on a 3D point cloud dataset, PointDA-10. In Table 4, our method
significantly outperforms not only PointDAN (Qin et al., 2019) especially designed for source-present
domain adaptation on point cloud data, but also source-free methods by a large margin (about 4.5%p).
These results clearly demonstrate the effectiveness of SF(DA)2 in domain adaptation.
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Table 5: Accuracy (%) on the VisDA-RSUT dataset (ResNet-101).

Method SF plane bicycle bus car horse knife mcycl person plant sktbrd train truck Per-class

DANN (Ganin & Lempitsky, 2015) ✗ 71.7 35.7 58.5 21.0 80.9 73.0 45.7 23.7 12.2 4.3 1.5 0.9 35.8
BSP (Chen et al., 2019) ✗ 100.0 57.1 68.9 56.8 83.7 26.7 78.7 16.2 63.7 1.9 0.1 0.1 46.2
MCD (Saito et al., 2018) ✗ 63.0 41.4 84.0 67.3 86.6 93.9 85.6 76.3 84.1 11.3 5.0 3.0 58.5

Source only (He et al., 2016) - 79.7 15.7 40.6 77.2 66.8 11.1 85.1 12.9 48.3 14.3 64.6 3.3 43.3
SHOT (Liang et al., 2020) ✓ 86.2 48.1 77.0 62.8 92.0 66.2 90.7 61.3 76.9 73.5 67.2 9.1 67.6
CoWA-JMDS (Lee et al., 2022) ✓ 63.8 32.9 69.5 59.9 93.2 95.4 92.3 69.4 85.1 68.4 64.9 32.3 68.9
NRC (Yang et al., 2021a) ✓ 86.2 47.6 66.7 68.1 94.7 76.6 93.7 63.6 87.3 89.0 83.6 20.5 73.1
AaD (Yang et al., 2022) ✓ 73.9 33.3 56.6 71.4 90.1 97.0 91.9 70.8 88.1 87.2 81.2 39.4 73.4
SF(DA)2 ✓ 79.0 43.3 73.6 74.7 92.8 98.3 93.4 79.1 90.1 87.5 81.1 34.2 77.3
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Figure 2: Effectiveness of implicit feature augmentation.

Imbalanced Dataset In real-world domain adaptation scenarios, the classes of data can often be
imbalanced. In order to evaluate our method in these scenarios, we perform a comparison of our
method with competitive benchmarks on VisDA-RSUT, a dataset with highly imbalanced classes. For
VisDA-RSUT, we reproduce SHOT, NRC, CoWA-JMDS, AaD using their official codes. The results
presented in Table 5 demonstrate that our method surpasses the baseline methods by a significant
margin (about 4%p). The results show the robustness of our method on extreme class imbalance. We
also present results using additional metrics in Appendix A.2

4.2 ANALYSIS

Effectiveness of Implicit Feature Augmentation Figure 2 illustrates the performance improvement
of existing SFDA methods and our SNC after incorporating IFA and FD losses. The results highlight
that IFA and FD improve most existing SFDA methods. Remarkably, their effectiveness is prominent
in VisDA-RSUT, as shown in Figure 2 (b), leading to a 3%p performance gain on CoWA-JMDS and
SNC. The significant improvement from incorporating IFA and FD into SNC can be attributed to
their effective feature augmentation on the augmentation graph. The substantial performance gain in
CoWA-JMDS can stem from its use of Gaussian distribution estimation in the feature space. For AaD
and NRC, their use of neighbor information in the feature space aligns well with the assumptions of
IFA, leading to performance enhancement. However, the assumptions of SHOT do not align well
with IFA, resulting in a slight performance decrease when IFA loss is incorporated.

Loss Functions for Implicit Feature Augmentation We conduct ablation studies on the VisDA-
RSUT dataset to understand the impact of IFA and FD loss functions. In Figure 3, we measure (a)
average accuracy and (b) the cosine similarity between the weight vector w and the largest eigenvector
v of the estimated covariance matrix of the corresponding class. During adaptation with SNC, we
observe a consistent increment in the cosine similarity.

We then analyze the impact of adding IFA or FD loss alone to SNC loss. Firstly, adding IFA alone
decreases the cosine similarity, aligning the Jacobian matrix of the classifier (w) with the principal
direction of the tangent space of the augmented data manifold (orthogonal with v), as discussed
in Section 3.4. However, the sole addition of IFA results in a performance decrease. If different
directions in the feature space do not clearly correspond to distinct class semantics, performing
feature augmentation in such an entangled feature space may not preserve class information, causing
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Figure 3: Ablation study on loss functions for implicit feature augmentation.

Figure 4: tSNE visualization of the feature
space before and after adaptation.

Table 6: Runtime analysis on the VisDA dataset.

Method Runtime (s/epoch) Per-class

SHOT 353.53 83.0
AaD 274.36 87.3

SF(DA)2 (Ours) 284.49 88.1

AaD (5% of F ,S) 266.76 85.9
SF(DA)2 (5% of F ,S) 273.52 87.4

a degradation in performance. Secondly, applying only FD loss introduces additional constraints
to the model by disentangling the feature space. Therefore, the absence of a term utilizing the
disentangled space could result in a performance drop.

While the use of a single loss leads to a performance decrease, a synergistic effect arises when IFA
loss and FD loss are jointly employed. The disentangled feature space obtained via FD loss allows
the estimated covariance matrix to provide directions for class-preserving feature augmentation, and
IFA loss performs the feature augmentation. This leads to a notable performance improvement and a
further decrease in cosine similarity (compared to SNC+IFA).

We also present the ablation study of the hyperparameters used for the SNC loss in Appendix A.3

Runtime and tSNE Analysis We assess our method’s efficiency by measuring runtime on the
VisDA dataset. The first three rows of Table 6 show our method outperforming SHOT and AaD
with less runtime or marginal increase of runtime. The last two rows of Table 6 limit the memory
banks F and S to 5% of target domain data. Compared to AaD, our method shows more robust
performance against the reduction of memory bank size with a similar runtime. Figure 4 visualizes
the feature space before and after adaptation on the VisDA dataset, with distinct colors indicating
different classes. It clearly shows that target features are effectively clustered after adaptation.

5 CONCLUSION

In this work, we propose a novel method for source-free domain adaptation (SFDA), called SF(DA)2,
which leverages the intuitions of data augmentation. We propose the spectral neighbor clustering
(SNC) loss to find meaningful partitions in the augmentation graph defined on the feature space
of the pretrained model. We also propose the implicit feature augmentation (IFA) and feature
disentanglement (FD) loss functions to efficiently augment target features in the augmentation graph
without linearly increasing computation and memory consumption. Our experiments demonstrate
the effectiveness of SF(DA)2 in the SFDA scenario and its superior performance compared to state-
of-the-art methods. In the future, we plan to explore the potential of our method for other domain
adaptation scenarios and investigate its applicability to other tasks beyond classification.
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A ADDITIONAL RESULTS

A.1 ADDITIONAL DATASET

For Office-31, we reproduce SHOT, NRC, CoWA-JMDS, AaD using their official codes. Table 7
presents a comparison between SF(DA)2 and various DA methods, considering both source-present
and source-free approaches. Notably, our method exhibits the highest average accuracy among all
source-free DA methods.

Table 7: Accuracy (%) on the Office-31 dataset (ResNet-50).

Method SF A→D A→W D→A D→W W→A W→D Avg.

MCD (Saito et al., 2018) ✗ 92.2 88.6 69.5 98.5 69.7 100.0 86.5
CDAN (Long et al., 2018) ✗ 92.9 94.1 71.0 98.6 69.3 100.0 87.7
MCC (Jin et al., 2020) ✗ 95.6 95.4 72.6 98.6 73.9 100.0 89.4
SRDC (Tang et al., 2020) ✗ 95.8 95.7 76.7 99.2 77.1 100.0 90.8

Source only (He et al., 2016) - 68.9 68.4 62.6 96.7 60.7 99.3 76.1
SHOT (Liang et al., 2020) ✓ 93.8 89.6 74.5 98.9 75.3 99.9 88.7
NRC (Yang et al., 2021a) ✓ 92.9 93.5 76.0 98.1 75.8 99.9 89.4
3C-GAN (Li et al., 2020) ✓ 92.7 93.7 75.3 98.5 77.8 99.8 89.6
AaD (Yang et al., 2022) ✓ 94.5 94.5 75.6 98.2 75.4 99.9 89.7
SF(DA)2 ✓ 95.8 92.1 75.7 99.0 76.8 99.8 89.9

A.2 ADDITIONAL METRICS

SFDA methods have used accuracy as the performance metric for evaluation. However, accuracy can
sometimes be misleading when used with imbalanced datasets. To mitigate this and provide a more
comprehensive evaluation, we add our analysis on the VisDA-RSUT dataset with the harmonic mean
of accuracy and the F1-score. In Tables 8 and 9, The results highlight the capability of our method in
dealing with imbalanced datasets.

Table 8: Harmonic mean of accuracies (%) on the VisDA-RSUT dataset (ResNet-101).

Method Source only SHOT CoWA-JMDS NRC AaD SF(DA)2

Harmonic 16.7 45.2 61.1 61.3 65.9 70.1

Table 9: F1-score (%) on the VisDA-RSUT dataset (ResNet-101).

Method plane bicycle bus car horse knife mcycl person plant sktbrd train truck Per-class

Source only 6.2 17.0 9.8 5.3 53.6 17.2 38.1 18.9 55.3 23.7 69.3 6.3 26.7
SHOT 9.0 8.7 9.4 9.5 72.9 35.1 83.1 60.1 85.1 82.9 79.7 14.4 45.8
CoWA-JMDS 17.7 12.1 12.3 9.9 75.4 42.2 76.7 62.3 87.9 78.1 78.2 48.1 50.1
NRC 36.4 4.2 15.5 11.4 67.5 48.4 78.6 61.2 90.3 92.8 90.6 36.9 52.8
AaD 63.9 23.7 20.4 12.1 76.6 46.3 81.8 61.9 87.2 90.1 88.6 56.0 59.0
SF(DA)2 77.2 53.3 12.3 13.3 79.8 49.3 85.5 67.7 91.0 90.6 87.0 49.6 63.0

A.3 HYPERPARAMETERS

We present the ablation study of the hyperparameters used in SNC on the VisDA dataset. The
second term of the SNC loss ensures diverse predictions for different target features, preventing them
from collapsing into one class. During adaptation, weakening the second term can promote a more
clustered prediction space and improve performance. Figure 5 (a) shows the ratio of target features
that share the same and correct prediction with the 5-nearest neighbors, and Figure 5 (b) shows the
average confidence for the predicted labels of the target domain data. As the decaying factor increases
from 2 to 5, Figures 5 demonstrate that the target domain data are better clustered in (a) the feature
space and (b) the prediction space. Figure 5 (c) shows that our method is robust to the choice of
hyperparameters β and K.

We also present the ablation study of the hyperparameters (α1 and α2) used for IFA and FD losses
on the VisDA dataset. As shown in Tables 10 and 11, the model’s performance is not sensitive to
hyperparameters α1 and α2.
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Figure 5: Ablation study on hyperparameters for spectral neighbor clustering.

Table 10: Ablation study on the hyperpa-
rameter for spectral neighbor clustering.

α1 Per-class (%)

1e-3 87.3
1e-4 88.1
1e-5 88.0

Table 11: Ablation study on the hyperpa-
rameter for feature disentanglement.

α2 Per-class (%)

1 88.0
10 88.1
20 87.4

B PROOFS

Proposition 2. Suppose that z̃j , z̃k ∼ N (zi, λΣŷi), then we have an upper bound of expected LEFA

for an infinite number of augmented features, which we call implicit feature augmentation loss:

L∞
EFA(zi; f, g) = Ez̃j∼N (zi,λΣŷi

)

[
Ez̃k∼N (zi,λΣŷi

)

[
− log p̃Tj p̃k

]]
(11)

≤ −2
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log
exp(g(zi)c)
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exp

(
g(zi)c′ +

λ

2
(wc′ − wc)

TΣŷi
(wc′ − wc)

) = LIFA(zi,Σŷi
, g) (12)

where g(·)c denotes the classifier output (logit) for the c-th class, and wc is the weight vector for the
c-th class of the classifier g.

Proof. Let the classifier g consists of the weight matrix W = [w1 . . . wC ]
T and the bias b =

[b1 . . . bC ]. Now we will derive a closed-form upper bound of expected LEFA.

L∞
EFA(zi; f, g) = Ez̃j∼N (zi,λΣŷi

)

[
Ez̃k∼N (zi,λΣŷi
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where p̃cj denotes the prediction of z̃j for the c-th class. Inequality 16 is obtained by applying Jensen’s
inequality for concave functions (i.e., E[log

∑
X] ≤ log

∑
E[X]) given that the sum of log functions∑

log(·) is concave. To derive Equation 17, we require the lemma of the moment-generating function
for a Gaussian random variable:

Lemma 2. For a Gaussian random variable X ∼ N (µ, σ2), its moment-generating function is:

E[etX ] = etµ+
1
2σ

2t2 (22)

In the context of our proof, (wc′ −wc)
T z̃k+(bc′ − bc) is a random variable that follows the Gaussian

distribution:

(wc′−wc)
T z̃k+(bc′−bc) ∼ N

(
(wc′ − wc)

T zi + (bc′ − bc), λ(wc′ − wc)
TΣŷi

(wc′ − wc)
)

(23)

Lemma 2 then allows us to compute the expectation of this random variable, resulting in:

Ez̃k
[e((wc′−wc)

T z̃k+(bc′−bc))] = e(wc′−wc)
T zi+(bc′−bc)+

λ
2 (wc′−wc)

TΣŷi
(wc′−wc) (24)

Since z̃j and z̃k are drawn from the same distribution, we use the same process to derive Equation 19,
concluding the proof.

C DETAILS

C.1 IMPLEMENTATION DETAILS

We adopt the backbone of a ResNet-50 for DomainNet, ResNet-101 for VisDA and VisDA-RSUT,
and PointNet for PointDA-10. In the final part of the network, we append a fully connected layer,
batch normalization (Ioffe & Szegedy, 2015), and the classifier g comprised of a fully connected
layer with weight normalization (Salimans & Kingma, 2016). We adopt SGD with momentum 0.9
and train 15 epochs for VisDA, DomainNet, and VisDA-RSUT. We adopt Adam (Kingma & Ba,
2014) and train 100 epochs for PointDA-10. We set batch size to 64 except for DomainNet, where
we set it to 128 for a fair comparison. We set the learning rate for VisDA and VisDA-RSUT to 1e-4,
5e-5 for DomainNet, and 1e-6 for PointDA-10, except for the last two layers. Learning rates for the
last two layers are increased by a factor of 10, except for PointNet-10 where they are increased by a
factor of 2 following NRC (Yang et al., 2021a). Experiments are conducted on a NVIDIA A40.

C.2 DATASET DETAILS

We use five benchmark datasets for 2D image and 3D point cloud recognition. These include Office-31
(Saenko et al., 2010), with 3 domains (Amazon, Webcam, DSLR), 31 classes, and a total of 15,500
images; VisDA (Peng et al., 2017), with 152K synthetic and 55K real object images across 12 classes;
VisDA-RSUT (Li et al., 2021), a subset of VisDA with highly imbalanced classes; DomainNet (Peng
et al., 2019), a large-scale benchmark with 6 domains and 345 classes (we select 4 domains (Real,
Sketch, Clipart, Painting) with 126 classes, and evaluate SFDA methods on 7 domain shifts following
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AdaContrast (Chen et al., 2022).); and PointDA-10 (Qin et al., 2019), a 3D point cloud recognition
dataset with 3 domains (namely ModelNet-10, ShapeNet-10, and ScanNet-10), 10 classes, and a total
of around 27,700 training and 5,100 test images.

C.3 ONLINE COVARIANCE ESTIMATION

We follow the method for online covariance estimation proposed in ISDA (Wang et al., 2019) as
follows:

µ(t)
c =

n
(t−1)
c µ

(t−1)
c +m

(t)
c µ

′(t)
c

n
(t−1)
c +m

(t)
c

(25)

Σ(t)
c =

n
(t−1)
c Σ

(t−1)
c +m

(t)
c Σ

′(t)
c

n
(t−1)
c +m

(t)
c

+
m

(t)
c + n

(t−1)
c m

(t)
c (µ

(t−1)
c − µ

′(t)
c )(µ

(t−1)
c − µ

′(t)
c )T

(n
(t−1)
c +m

(t)
c )2

(26)

n(t)
c = n(t−1)

c +m(t)
c (27)

where µ
(t)
c and Σ

(t)
c represent the mean and covariance matrix, respectively, for the c-th class at time

step t. µ′(t)
c and Σ

′(t)
c denote the mean and covariance matrix, respectively, of target features which

are predicted as the c-th class in t-th minibatch. n(t)
c is the total number of target features that are

predicted as the c-th class in all t minibatches, and m
(t)
c is the number of target features that are

predicted as the c-th class in t-th minibatch.

D ADDITIONAL RELATED WORK

D.1 SPECTRAL CONTRASTIVE LOSS

While we were inspired by the spectral contrastive loss (Spectral CL) (HaoChen et al., 2021) to find
partitions of our augmentation graph, there are distinct differences between Spectral CL and our SNC
loss.

Spectral CL utilizes augmented data as positive pairs, and data augmentation requires prior knowledge
about the dataset. For instance, transforming the color of a lemon to green would turn it into a lime,
thus changing the class of the data. Such augmentation that fails to preserve class information can
introduce bias to the model, potentially bringing harm to the model’s performance (Balestriero et al.,
2022). Hence, while Spectral CL requires class-preserving augmentations based on prior knowledge,
our SNC loss determines positive pairs without needing explicit augmentation and prior knowledge.

D.2 IMPLICIT SEMANTIC DATA AUGMENTATION

The IFA loss is motivated by the ISDA (Wang et al., 2019), and we adopted the online estimation of
the class-wise covariance matrix from ISDA. However, there are two notable differences between the
IFA loss and ISDA.

Firstly, ISDA is designed for supervised learning, where data has labels and no domain shift. In
contrast, IFA loss is computed using target domain data without labels and considers SFDA setting
with domain shift. To perform implicit feature augmentation under these conditions, IFA loss utilizes
pseudo-labels of target domain data which dynamically change during the adaptation process to
estimate the class-wise covariance matrix.

Secondly, ISDA derives an upper bound for the expectation of the cross entropy loss for supervised
learning. On the other hand, IFA loss is designed to approximate the population augmentation graph,
which allows SNC loss to find an improved partition, and it is achieved by deriving an upper bound
for the expectation of (the logarithm of) our SNC loss tailored for SFDA.

D.3 OTHER DOMAIN ADAPTATION METHODS

To address the domain shift problem, domain adaptation has been actively studied, and numerous
methods have been proposed. (Yu et al., 2023; Zhao et al., 2020).
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NRC (Yang et al., 2021a) and “Connect, not collapse” (CNC) (Shen et al., 2022) are graph-based
domain adaptation methods and TSA (Li et al., 2021a) utilizes ISDA for domain adaptation. Our
paper presents clear methodological differences and performance advantages compared to existing
methods.

NRC (Yang et al., 2021a) is a graph-based source-free method that encourages prediction consistency
among neighbors in the feature space by utilizing neighborhood affinity, which is discussed in Section
2. In contrast, our method constructs the augmentation graph in the feature space based on the insights
from Intuitions 1 and 2. We then propose SNC loss to identify partitions of this augmentation graph.
These methodological differences result in significant performance gaps (e.g., the results on VisDA,
PointDA-10, and VisDA-RSUT in Tables 1, 4, and 5).

CNC (Shen et al., 2022) pretrains models using contrastive loss. While CNC depends on data
augmentation that needs prior knowledge, our method defines positive pairs without explicit data
augmentation. In Table 12, we present a comparative experiment with CNC on 12 domain shifts in
the DomainNet dataset (40 classes) and ResNet-50 architecture. The results demonstrate that our
approach outperforms the direct application of contrastive loss for pretraining the model in domain
adaptation.

Table 12: Accuracy (%) on 12 domain shifts of the DomainNet dataset (40 classes, ResNet-50).
For CNC, we brought the performances of SwAV+extra, which was the best-performing contrastive
learning method.

Method S→C S→P S→R C→S C→P C→R P→S P→C P→R R→S R→C R→P Avg.

SwAV+extra (Shen et al., 2022) 53.5 46.8 58.1 46.2 41.7 59.4 48.7 41.3 69.0 44.6 54.2 57.3 51.7
SF(DA)2 63.8 57.2 58.6 60.3 58.9 59.8 61.4 58.0 58.2 59.5 65.2 65.4 60.4

TSA (Li et al., 2021a) employs ISDA for training the source model. Similar to ISDA, it derives
an upper bound for the expectation of the cross entropy loss and requires labeled (source domain)
data. Conversely, IFA loss is designed to approximate the population augmentation graph, which
allows SNC loss to find an improved partition. IFA loss utilizes pseudo-labels of unlabeled target
domain data, which dynamically change during the adaptation process, to estimate the class-wise
covariance matrix. Using the covariance matrix, IFA loss is derived as a closed-form upper bound
for the expectation of (the logarithm of) our SNC loss. The difference in method results in a notable
performance gap (e.g., the results in Table 13).

Table 13: Additional performance comparison on the VisDA dataset.

Method BSP + TSA 3C-GAN + HCL SF(DA)2

Per-class 82.0 84.2 88.1

HCL (Huang et al., 2021) contrasts embeddings from the current model and the historical models.
In the paper, 3C-GAN+HCL is the best-performing method on the VisDA dataset, showing a large
performance gap compared to our method (e.g., the results in Table 13).

Feat-mixup (Kundu et al., 2022) improves domain adaptation performance via mixup in the feature
space with augmented samples. Since this method utilizes data augmentation, it requires prior
knowledge for class-preserving image augmentation and multiple forward passes for augmented
samples. In contrast, our SNC loss, grounded in Intuitions 1 and 2 in the manuscript, determines
positive pairs without explicit augmentation. This difference results in a large performance gap (e.g.,
the results in Table 3).

Additionally, ProxyMix (Ding et al., 2023) utilizes classifier weights as the class prototypes and
proxy features and employs mixup regularization to align the proxy and target domain. PGL (Luo
et al., 2023) leverages graph neural networks for open-set domain adaptation.

E CODE AVAILABILITY

Code is available in Supplementary Material.
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