Under review as submission to TMLR

Proximal Weighted L' and L Method with
Global Convergence

Anonymous authors
Paper under double-blind review

Abstract

This paper develops a joint weighted L'- and L°-norm (WL1L0) regularization method
by leveraging proximal operators and translation mapping techniques to mitigate the bias
introduced by the L'-norm in applications to high-dimensional data. A weighting parameter
« is incorporated to control the influence of both regularizers. Our broadly applicable model
is nonconvex and nonsmooth, but we prove global convergence for the alternating direction
method of multipliers (ADMM), Peaceman—Rachford splitting method (PRSM) and strictly
contractive Peaceman—Rachford splitting method (SCPRSM). Moreover, we evaluate the
effectiveness of our model on both simulated and real high-dimensional genomic datasets
by comparing with adaptive versions of the LASSO, smoothly clipped absolute deviation
(SCAD) and minimax concave penalty (MCP). The results show that WL1LO0 outperforms
the LASSO, SCAD, and MCP by consistently achieving the lowest mean squared error
(MSE) across all datasets, indicating its superior ability to handling large high-dimensional
data.

1 Introduction

High-dimensional statistics is a rapidly growing field of research that deals with statistical analysis in the
presence of a large number of variables (predictors), often much larger than the sample size. For exam-
ple, high-throughput measurements in genomics contain thousands or millions of variables, such as single
nucleotide polymorphism (SNP) markers and gene expression data for each individual. In such settings,
traditional statistical methods often fail due to issues like overfitting, multicollinearity and computational
complexity. In recent years, a number of regularization methods have been developed that impose a penalty
on the size of the regression coefficients, which encourages sparsity and reduces the number of variables in
the model (Fan et al.,|2011; Fan & Lv, |2010; Heinze et al., |2018). Sparse learning techniques are essential in
analyzing high-dimensional data for increased prediction accuracy, reduced computational complexity and
enhanced interpretability of the results (Biuhlmann & Van De Geer} 2011} |Giraud, |2015; Wainwright|, 2019)).

Among various sparsity-inducing methods, the L' regularizer (also known as LASSO) stands out for its
convex nature and computational efficiency (Tibshirani, [1996). It adds a penalty term to the loss function
proportional to the absolute value of the coefficients (L'-norm), which tends to shrink the coefficients towards
zero and force some coefficients exactly zero. Shrinking these coefficients helps to avoid overfitting, which
can happen when a model memorizes the training data too well and does not perform well on new data.
By reducing overfitting, LASSO can lead to more accurate predictions on unseen data. However, when
coefficients are being shrunk, LASSO tends to favor keeping larger coeflficients over smaller ones. This can
lead to a bias towards larger coefficients in the model estimation process. In cases where variables are highly
correlated, LASSO may randomly select variables. In cases where variables are highly correlated, LASSO
may randomly select variables. For example, when two or more variables are highly correlated due to high-
dimensionality, LASSO may choose one variable over another. In the specific context of genomic data,
where the goal is often to identify genes associated with certain traits or diseases, this inaccurate selection
can lead to the inclusion of incorrect genes in the model. This also poses a risk in terms of prediction,
as the estimated coefficients of the selected genes contribute to predicting the outcome of interest (Fan
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et al.l 2014b; [Fan & Li, 2001} Johnstone & Titterington, [2009; [Tolosi & Lengauer, 2011)). Furthermore,
after shrinkage, very small coefficient values can be produced, making them difficult to interpret and offering
minimal information. Hence, LASSO requires the fulfillment of the irrepresentable condition to obtain valid
estimations (Zhao & Yu, [2006). In cases where the underlying datasets fail to meet this condition, the
LASSO method may not accurately select the appropriate variables, leading to incorrect discoveries and
wrong conclusions. In practice, implementing the irrepresentable condition can be challenging. Studies show
that nonconvex regularizers such as SCAD and MCP reduce bias and have better prediction properties than
the L' regularizer (Bertsimas et al., 2020; Fan & Li, [2001; [Zhang, 2010)).

On the other hand, L° regularization, which is also known as best subset selection (Hocking & Leslie,
1967), directly penalizes the number of non-zero coefficients in the model. It encourages sparsity, mean-
ing it tends to produce models with fewer non-zero coefficients without any shrinkage. This results in
a model that only includes the most relevant variables, simplifying the model and potentially improving
its predictive performance by reducing overfitting. However, finding the optimal subset of variables using
L%-norm is an NP-hard problem, meaning the computational cost grows exponentially with the number of
variables (Natarajan, [1995). While L' regularization is commonly used because of its convex nature, the
L%-norm is computationally expensive and often intractable, and hence not frequently used on large data
sets (Hastie et al., |2020)).

In this paper, we propose combining L' and L° regularization. We now revise a regression model
y=Xb+e, (1)

where y € R” is the response vector, X € R™*? is the predictor matrix, b € R” is the vector of regression
coefficients, and € € R" is a noise (error) vector. For a vector b, we write the ¢g-norm notation as

S 1(b; #0), ifg=0,
1Blly = { (3, 16D, if0 < ¢ < oo,
max; |bl|, if q = OQ.

Here, the ||b]|o is the L%-norm that is the number of nonzero elements in b. It is noteworthy that the L’-norm
does not meet the criteria of a norm, specifically lacking the homogeneity property (Beckl [2017)). Despite
this, the term is widely used in the literature, and for the sake of consistency, we will retain its adoption.

To achieve higher sparsity, one can use an L' regularizer with a constrained best-subsets estimator that has
fewer nonzero coefficients than the LASSO as

b= argmin|ly — Xb[3 + Nblly st [b]o < s (2)

where b represents the estimate of the vector of regression coefficients, A > 0 is the regularization parameter,
and s is the desired level of sparsity (i.e., the maximum number of nonzero coefficients). The optimization
problem can be expressed in the Lagrangian form as

b= axgmin [y — XblJ3+ A |6l + ] bl (3)

We extend by introducing a weight paremeter « € (0,1) and employing a common regularization param-
eter \ as .
WLIL0: b = argmin ||y — Xb||2 + X (a||b]|1 + (1 — a)||b]]o) - (4)
b

Hence, we propose WL1LO0 , which aims to combine the benefits of both L' and L regularization using
a common regularization parameter A and a weight parameter a that determines the relative importance of
both L' and L° regularization.

Later in our main work, we split b into the sparse components ¢ and d using L' and L° regularization,
respectively. By using L' regularization, we encourage ¢ to be sparse, meaning many entries in ¢ will be
zero. By using L° regularization, we ensure that d is sparse, meaning it has a small number of non-zero
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entries. Here, L° debiases the LASSO, and since we first fit the LASSO, the computation of L° is now
feasible.

Our primary contribution lies in developing a model that mitigates the bias introduced by regularization
methods in high-dimensional data, specifically for prediction tasks. This is achieved through a novel in-
tegration of the proximal operator and translation mapping. Our proposed model is nonconvex and
nonsmooth. Nowadays, nonconvex nonsmooth problems arise in various practical applications across nu-
merous fields including statistical genetics, signal processing, and control theory. Analyzing convergence for
these types of problems ensures that optimization algorithms can be applied effectively to a wide range of
real-world scenarios. Therefore, we provide convergence proofs for ADMM, PRSM, and SCPRSM when ap-
plied to our model. We also implement adaptive versions of all LASSO, SCAD and MCP using the ADMM
algorithm. Finally, we assess the efficacy of our proposed method through comprehensive evaluations on
simulated and real-world datasets.

2 Related Work

In the rapidly evolving landscape of technology and data, prediction has become a cornerstone for making
informed decisions across various domains. Regularization techniques are pivotal in enhancing the per-
formance and generalizability of predictive models, particularly when dealing with complex datasets and
high-dimensional data. By imposing penalties on the model parameters, regularization helps prevent over-
fitting, ensuring that the model captures the underlying patterns in the data. In this section, we will review
key related works on regularization methods, highlighting significant advancements and methodologies.

Ridge regression, also known as Tikhonov regularization was introduced by Hoerl & Kennard| (1970), uses
an L? penalty term that shrinks all the coefficients and reduces their magnitudes. The ridge regression can
be formulated as

13=argininl\y—XbI@Jr)\HbII%- (5)

This method is particularly effective in addressing multicollinearity in linear regression models. However, it
does not necessarily set any coefficients to zero. Hence, ridge regression does not produce a sparse solution
of estimated coefficients. On the other hand, LASSO regression

b= argmin |[y = X[ + bl (6)

incorporates an L' regularization penalty, which encourages sparsity in the solution by setting some coeffi-
cients exactly to zero (Tibshiranil |1996).

Other penalty functions are introduced to provide a balance between inducing sparsity and reducing estima-
tion bias, aiming to solve the optimization problem as

b = argmin ||y — Xb|[3 + Py(b). (7)
b

For example, the SCAD penalty function was introduced by [Fan & Li| (2001)) as an improvement over Lasso
regularization, particularly for bias reduction. The SCAD penalty function is defined as

Alb| if |b] < A,
PECAD () = { RPN g ) b < a), (8)
2
(a+DA" if |b] > aX,

2

where A > 0 and a > 0 are unknown parameters. |[Fan & Li| (2001) suggested that a = 3.7 is a good choice
for various problems, and A needs to be tuned.

The MCP is another type of penalty function introduced by Zhang (2010). The MCP penalty function is
defined as )
Alb| — & if |b] < Aa,

PMCP b) =
o) {g if b > a.

9)
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According to the estimation theorems of [Zhang (2010), a = 3 is a good choice for MCP, and A still needs
to be tuned. MCP was developed to address the estimation bias of the LASSO and is generally easier to
optimize computationally compared to SCAD.

Both SCAD and MCP aim to eliminate unimportant variables while preserving important ones, achieving
the ’oracle property’ as the sample size grows (n — 00). They both asymptotically select the correct model
and produce normal, accurate coefficient estimates. MCP is effective with many sparse predictor groups but
struggles with tightly clustered non-zero coefficients while SCAD has weaker grouping behavior compared
to MCP (Ogutu & Piepho, |2014). We maintain the use of a = 3.7 for SCAD and a = 3 for MCP throughout
the paper.

Another example is the elastic net regression which combines both L' and L? regularization penalties,
providing a balanced approach to prediction accuracy on future data and model interpretation in linear
regression models. It is formulated as

b= axgminJy — b3+ X161 + Xal|b], (10)

which has two regularization parameters A; and A2 to tune (Zou & Hastiel [2005). The LAVA regression
model is based on the splitting of the regression component into one sparse and one dense part b = ¢+ d
and thereby obtaining the following optimization problem

éd= argmin ly = X(c+d)|3 + Mllels + Aa|d]f3, (11)
c,

where the resulting estimator b = é + d (Chernozhukov et al., 2017).

Waldmann| (2021 developed a proximal operator algorithm based on the recent LAVA regularization method
that jointly performs L'- and L?-norm regularization. Our paper develops a novel method for combined L!-
and L°-norm regularization.

3 Methodological Framework

We study the performance of the proposed method in the ADMM, PRSM and SCPRSM settings using the
augmented Lagrangian method that combines the original objective function with the constraints of the
optimization problem into a single function. Here, the augmented Lagrangian’s advantage lies in enabling
the study of convergence for the proposed methods without requiring assumptions like strict convexity (Boyd
et al.l [2011)). First, for clarity, we rewrite as

b= arg;nin {f(b)+g(d)} <— b :argtf,nin {f(b) + g(u)} (12)
subject to b= u,

where f(b) is a loss function and g(b) is a penalty function. We now write the augmented Lagrangian
function corresponding to as

Ly (b,u, z) =f(b)+g(U)+zT(b—U)+%Hb—U\Igv (13)

where z is a dual variable or Lagrange multiplier and v > 0 is a learning rate. Here, b and u are called
primal variables.

3.1 Method of Multipliers and ADMM Framework

The method of multipliers jointly minimizes the two primal variables whereas the ADMM efficiently solves
optimization problems by alternately updating primal and dual variables, effectively decomposing complex
problems into manageable subproblems (Boyd et al., 2011)). A convenient way to implement ADMM, PRSM
and SCPRSM using proximal operator is obtained by completing the square with the dual variable z and
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residual b — w in the augmented Lagrangian function (Parikh & Boyd, |2013). Now, we introduce the
1

scaled dual variable m = ~z. Then, 27 (b — u) + %Hb —ull3 = %Hb —u+m|3 - %HmH% Consequently,
v

we write the scaled form of as

gl gl
Ly (b,u,m) = f(b) + g(u) + [[b—w+ml3 — - |Imll. (14)

The method of multipliers for can be written as

(D 4Dy .= argmin L, (6%, u®) m®*)), (15)
bu
mETD = (B 4 plkt1) _ g (k41) (16)

The method of multipliers is generally not an implementable method since the primal update step ([15]), can
be as hard to solve as the original problem (Beckl 2017; Boyd et al., 2011). To overcome this challenge,
ADMM employs an iterative approach in the primal update step. In this approach, b and u are updated
sequentially in an alternating fashion, which is why the method is called the alternating direction method of
multipliers.

An iterative scheme for the scaled ADMM associated with is presented as

pk+1) . argmin Lv(b(’f)7 u(k), m(k)), (17a)
b

kD) . argmin Lv(b(lﬁ_l),u(k), m(k)), (17b)
u

mETD . — g (B) 4 pkt1) _ g (k+1) (17¢)

3.2 PRSM Framework

Here, unlike ADMM, the PRSM updates the dual variable m twice: once after each primal minimization of
the augmented Lagrangian function (He et al., [2014; [Li & Yuan| 2015} [Peaceman & Rachford, [1955). We
write the iterative scheme of the generalized PRSM for the augmented Lagrangian function as

b* ) = argmin L, (6™, u® m®)), (18a)
b

m(k‘*'%) = m(k) + T(b(k+1) - u(k))a (18b)

w* ) = argmin L, (6D 4 mk+3)), (18¢)

m+D = g (+3) 4 p(BHFD) — (1)) (18d)

where the parameter r € (0, 1] is a relaxation factor. If » = 1, the algorithm is referred to as PRSM whereas
r € (0,1) enforces the strict contractiveness of the iterative sequence and is usually denoted SCPRSM (He
et al., 2014).

3.3 Convergence Analysis

Now, we delve into the convergence properties of ADMM, PRSM and SCPRSM when applied to our devel-
oped nonconvex and nonsmooth problem framework. This analysis will elucidate the conditions under which
these methods converge and the nature of the solutions they yield.

The derivatives of the Lagrangian with respect to (b, u, m) is given as

OpLy(b,u,m) =V f(b)+v(b—u+m), (19a)
DL (b, u,m) = Dg(u) — (b~ + m). (19b)
OmL~(b,u,m) =~(b—u). (19c¢)
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Let (b*,u", m") be the equilibrium points (also called critical points) of (19a|-|19¢|). Then, they must satisfy
the following condition

—ym* = Vf(b),
ym* € dg(u*), (20)
b* —u* =0.

The convergence analysis of our proposed method is based on the following theorems.

Theorem 1 Let the sequences {b™, u™ m*  be generated by the ADMM scheme - and its
Lagrangian is given by . Then the following four conditions hold:

(a) Sufficient decrease condition: For each iteration step k, 361 > 0 such that

Lv(b(’f“),u(k“),m(’““)) _ Lv(b(k),u(k),m(k)) < _51||b(k+1) _ b(k)||§.

(b) Boundness condition: The sequences {b™ u® m®™12 = are bounded and its Lagrangian
L, (6 u® m®)y is lower bounded.

(¢c) Sub-gradient boundness condition: There exists "™ € 9L, (b*+D w*+D) mF+1y 4nd s, >
0 such that

1D < 8o [pHD — p)j2,

(d) Global convergence: The Lagrangian in is a Kurdyka-Lojasiewicz (KL) function (see Ap-
pendiz , hence the proposed method has global convergence.

Note that the function f(b) = ||y — Xb||3 is a continuously differentiable function with respect to b. Its
gradient is computed as Vf(b) = —2X 7y + 2XT Xb. Then the Lipschitz constant for the gradient of the
function f(b) can be computed as

< 2Amax (X T X)[|pF) — pk+1))|
] o

where || X7 X]|| is the largest eigenvalue of X7 X computed as Amax(X? X). We denote the Lipschitz

0%L., (b

7E‘az;zL ™) _aXTX 441
which is positive definite. We will frequently use the properties of the Lipschitz gradient constant of f(b)
and the positive definite properties of L. (b, w, m) with respect to b in the proof (see Appendix .

gradient constant as Iy = 2Apax (X Tx ). From Equation , we obtain that

Theorem 2 Let the sequences {b*) u®) mF)}% ' be generated by the scheme - and its La-
grangian is given by (L})). Then conditions (a)-(d) in Theorem[d] hold.

The proof of Theorem [2]is found in Appendix [C]
In conclusion, the sufficient decreasing and boundedness conditions are satisfied when the learning rate vy >

212
max{—f7 l¢} in both Theore and Theorem |2l In practice, computing the eigenvalues becomes laborious
p

as the size of X increases. Hence, the learning rate 7 can generally be determined using backtracking
line search (see Section [3.5)). The sufficient decreasing condition can be verified for the mean squared error
(MSE) loss as the update step inherently minimizes the loss, ensuring it decreases as the number of iterations
increase.
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3.4 Implementation
Here, we simplify — as
b s argmin {F(6) + 716 — (u®) —m() 3},
D = argmin {g(u®™) + Z{[u® — G + m®)|3}, (22)
m kD) . m(:) 4 pEtD) gy (k1)
With proximal operators, we can now easily write the ADMM scheme for as

b = prox, (u®) — m*)),
AR R proxgv(b(k"’l) +m), (23)
4D B) 4 phD) _ g (1),

Similarly, the proximal version of equation (|18af-[18dl) can be written as

b+ .= proxf,y(u(k) —m),
m*t3) = ®) L p(pktD) _ (R,
wh D = proxgv(b(k‘H) + mt3))y,

mF+D) — g (k+3) 4 r(b(k'H) _ u(k+1)).

(24)

We are interested in splitting b into ¢ and d with respect to L' and L° regularization, respectively. Hence, we
implement the WL1L0-ADMM, WL1L0-PRSM, and WL1L0O-SCPRSM schemes by defining two translation
functions: 7 (u) = f(u+v) —v and T (v) = f(v + u) — u. Then, for WL1LO-ADMM we obtain

) = proxT(u),y(u(k) —m®),
wlht) = proxg,y(c(kﬂ) +m),
mEHD = ) D) g (k1)
d*+) = proxT(v)5(v(k) —w®),

oD = proxh(;(d(’”'l) + w(k))7
wFHD) .= u(B) - gk+1) _ gy(k+1)

For WL1LO-PRSM and WL1L0-SCPRSM we obtain
Y = proxr (), (u®) —m®),
m*+3) = m®) (kD (),
wFH) = proxm(c(k'*‘l) + m(’”‘%)),

m(k+1) — m(k-‘r%) 4 T(C(k+1) _ u(k—i—l))7 (26)
dk+1) .— pI‘OXT(v)(g('U(k) - w(k))a

wFT2) .= ) 4 T(d(k+1) _ ,U(k))7
v+ = prox, s (d* ) + 'u)(’”%)),

w* D) = (k+3) 4 T(d(k+1) _ v(k+1))

with r = 1 and 7 € (0, 1), respectively. Here, prox . (c+ m) is the soft-thresholding function with learning
rate 7, defined as
prox,. (¢ +m) = 8,(c+m) = max(0, |c + m| — v)sgn(c + m), (27)
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and prox,s(d + w) = H /55(d + w) is hard thresholding operator defined by

0, if |d + w| < v/20,
H g5(d+w) =< d+w, if |d 4+ w| > v/20, (28)

{0,d +w}, if |d+w| =26

The iterations are terminated when convergence is reached according to ||(¢® + d®) — (u® 4+ v®)||, <
B+ [[m™ +w®)|| ) for tolerance parameter 8 which was set to 1072,

For comparison purposes, we implement LASSO-ADMM . Here, we use
prox,. (b +m) = max(0, |b + m| — v)sgn(b + m). (29)

We also implement adaptive versions of both SCAD and MCP using the ADMM algorithm. The iterative
scheme for the SCAD can be formulated as

b+l .= proxfw(u(k) —m®),

b+1) scadﬂ/(b<k+1) + m(k))a (30)
D) () (k1) g (k1)

u! ‘= prox

Similarly, the iterative scheme for the MCP is given as

b+ .= proxf,y(u(k) —m®),

mepy (BFTY +m*)), (31)
mEtD = g (B) kD) g (et 1)

wht = prox

The closed-form proximal mappings of the SCAD and MCP @ penalty functions can be found in (Fan
& Li, 2001} [Liao et all, 2023 Wang & Liul [2024; [Yun et al., 2021)). Here, we utilize the scaled versions

Sa(b+m) if |b+m| < (14 9)A,
PTOX, o, (b) = { LDEHMISBEEMIENT ¢ (1 4 4)\ < [b+ m| < a, (32)
b+m if |b4+ m| > al,

T-Sa(b+m) if [b+m| <ayA
rox, .. (b+m) =< 9177 - ’
P Cp’y( ) {b +m otherwise,

(33)
with respect to SCAD and MCP, respectively. All iterations of LASSO-ADMM, SCAD-ADMM, and MCP-
ADMM terminate upon achieving convergence, defined by the condition [|[b*) —u® | < (1 + |m®| ),
where the tolerance parameter /3 is set to 107°.

3.5 Determining the Learning Rate

Choosing the learning rate (step size) is crucial for optimization algorithms’ efficiency and convergence.
There are two main methods for determining the learning rates v and § (Beck] [2017; [Bertsekas), |2016; [Boyd
& Vandenberghe) 2004): 1. Constant learning rate uses a fixed learning rate throughout the process. If set
correctly, it can lead to quick convergence, but it’s sensitive to the chosen value. 2. Backtracking line search
adjusts the learning rate based on certain criteria, making it more robust and often faster, though more
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computationally expensive. We applied backtracking line search to determine ~ following

Initialize 7=0.5, ~*=2 =0.9

For each iteration &

AB) — A (k=1)

while  f(u®) > {f(c®)+
V)T (=e®)+

(7)1 = ()31

repeat fy(k) = T'y(k)

(34)

end

Here, Vf(c™) = XT(X (¢®)—m) represents the gradient. Likewise, the procedure applies to d by replacing
c¢®) and u® with d*) and v(®), respectively.

3.6 Bayesian Optimization for Hyperparameter Tuning

Tuning the regularization parameter A, the weight parameter o and the relazation factor r via cross-validation
or grid search can be computationally expensive. Bayesian Optimization (BO) is a more advanced, data-
driven approach which offers a probabilistic model-based method for hyperparameter tuning (Gao et al.
2021; |Shahriari et al., [2015). For the latest advancements, see Wang et al.| (2023) and [Yang et al.| (2024).

BO uses a surrogate model, often a Gaussian Processes (GP), to approximate the true objective func-
tion. Hyperparameters are collected in ¢ = [a, A, 7] and the objective function ¢[¢] is modeled as
L[9] ~ GP(m[V], k[9,9']), where m[¥)] is its mean and k[9,9'] the kernel (variance) function. The objec-
tive function is evaluated at ¢ sequential points MSE®) = 1(9®)), with MSE®) ~ N (.(9"), o2). This process
induces a posterior over the acquisition function, guiding the selection of the next hyperparameters. Common
acquisition functions include probability of improvement (PI), expected improvement (EI), upper confidence
bound (UCB), and mutual information (MI) (Snoek et al., 2012). BO starts with an initial set of hyperpa-
rameters and objective function values to train the surrogate model. The acquisition function balances the
posterior mean (w(¥)) for exploitation and variance (v(¢)) for exploration. The GP-UCB is given by

Y+ — argmax{w(¥) + »v(9)},
9

where w(1) is driven by the mean function m(?), v(¥) by the variance function k(), and » determines the
trade-off between exploitation and exploration. |Contal et al| (2014) improved GP-UCB with the Gaussian

Process Mutual Information algorithm (GP-MI) 9+ = argmax{u(9®) + v/log(2/0)(1/Z(9®)) 4 ¢(t-1) —
9

Vs(t=D)} where ¢ controls exploration, 0 < ¢ < 1, and X(9") is the variance function at 9(). Hence, BO

algorithm iteratively tunes hyperparameters by optimizing the acquisition function to find the next point

9®) | sampling the objective function at 9* to obtain MSE(t)7 augmenting the dataset with this observation,
and updating the GP accordingly.

3.7 Materials

We evaluate our proposed method using one simulated genomic dataset as well as two real-world genomic
datasets.

3.7.1 Simulated QTLMAS 2010 Dataset

The dataset comprises 3226 individuals across 5 generations, with 20 founders (5 males and 15 females) (Szyd-
lowski & Paczynskal [2011). Each female mates once, producing approximately 30 progeny per birth. SNP
data were simulated using a coalescent model on five autosomal chromosomes, each 100 Mbp long. A total of
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10,031 markers were generated, including 263 monomorphic SNPs and 9768 biallelic SNPs. The continuous
quantitative trait is controlled by 9 major QTLs at fixed positions, including two pairs of epistatic genes, 3
maternally imprinted genes, and two additive major genes with phenotypic effects of -3 and 3. The additive
genes are positioned at SNP indices 4354 and 5327, whereas the major epistatic locus is at SNP 931. Addi-
tionally, a dominance locus was positioned at SNP 9212, with an effect of 5.00 assigned to the heterozygote
and 5.01 to the upper homozygote. Moreover, an over-dominance locus was placed at SNP 9404, with an
effect of 5.00 assigned to the heterozygote, -0.01 to the lower homozygote, and 0.01 to the upper homozygote.
After filtering SNPs with MAF < 0.01, 9723 markers were retained and transformed into one-hot encoding,
resulting in 29169 genomic markers. Generations 1 to 4 (individuals 1 to 2326) were used for training, and
generation 5 (individuals 2327 to 3226) served as test data.

3.7.2 Real Pig Dataset

The Pig dataset contains data from 3,534 individuals, with high-density genotypes and phenotypes for five
traits (Cleveland et all 2012). Using the PorcineSNP60 chip, 52,842 SNPs were assessed and filtered to
50,282 based on a minor allele frequency threshold of <0.01. The chosen trait had a heritability of 0.58.
After adjusting phenotypic data and excluding individuals with missing data, the final dataset included 3,152
individuals.

3.7.3 Real Mice Dataset

This dataset comes from an experiment aimed at identifying and locating quantitative trait loci (QTLs)
associated with various complex traits in a population of mice. The dataset contains 1814 individuals who
were genotyped for 10,346 polymorphic markers and two traits: body length (BL) and body mass index
(BMI). In this study, BL is used. The dataset is from the Wellcome Trust and is available in the R package
BGLR (Pérez & de Los Campos, 2014).

4 Results

The WL1LO-ADMM, WL1LO-PRSM, WL1L0-SCPRSM, and LASSO-ADMM methods were implemented
in Julia 1.10.1 (Bezanson et al., 2017)) using the ProximalOperators package (Antonello et all |2018). For
SCAD-ADMM and MCP-ADMM, we wrote our own code manually in Julia. For all methods, the BO was
performed with the BayesianOptimization package using an ElasticGPE model and the squared exponential
automatic relevance determination (SEArd) kernel (Fairbrother et al., 2018). The initial values of b, é and
d were set to the marginal covariances between y and X, multiplied by 0.0001. By conducting preliminary
runs for each set of hyperparameters using BO, we identified the optimal range of parameters. BO with the
MI acquisition function was executed for 250 iterations across all methods, with 4 GP function evaluations
per iteration. The test MSE was monitored during the optimization process to ensure convergence, indicated
by no further decrease in MSE. All analyses were executed on a Linux computing platform equipped with
an AMD EPYC 7302P 16-Core Processor and 32GB of system memory.

4.1 Simulated QTLMAS 2010 Dataset

For the BO, the lower and upper bounds for A regularization were set to 0.01 and 500.0, 0.01 and 1000.0, and
0.1 and 800.0 with respect to LASSO-ADMM, SCAD-ADMM, and MCP-ADMM, respectively. For WL1L0-
PRSM, the lower and upper bounds for a were set to 0.01 and 0.99, and for A, they were set to 0.001 and
500.0, respectively. Similarly, for WL1LO-SCPRSM, the lower and upper bounds for o were set to 0.001 and
0.999, for r they were set to 0.001 and 1.0, and for A they were set to 0.001 and 500.0, respectively. The best
result, with a minimum test MSE of 64.67, was found with WL1LO-SCPRSM at A = 347.80, a = 0.87, and
r = 0.63 (Table . The timing of the last evaluation with optimized parameters showed that MCP-ADMM
was the fastest, taking only 10.44 seconds. It should be noted that those methods with one regularization
parameter tend to be faster to train compared to other methods with two or three hyperparameters.

Figure [4] (see Appendix @ illustrates that the MSE of all six methods decreases as the number of BO
iterations increases, demonstrating improved error minimization.
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Method min MSE A « r Timeﬂ
LASSO-ADMM 67.27 269.29 - - 17.47
SCAD-ADMM 66.88 328.74 - - 11.53
MCP-ADMM 69.78 381.16 - - 10.44
WL1L0-PRSM 64.92 398.66 | 0.77 | 1.00 | 99.73
WL1L0O-SCPRSM 64.67 347.80 | 0.87 | 0.63 | 64.23
WL1L0-ADMM 64.73 445.50 | 0.77 - 82.84

%The time in seconds corresponds to the last evaluation with optimized parameters.

Table 1: Minimum test MSE and optimal parameters for LASSO-ADMM, SCAD-ADMM, MCP-ADMM,
WL1LO-PRSM, WL1L0-SCPRSM and WL1L0O-ADMM are evaluated on the simulated QTLMAS data.

4.1.1 Real Pig Dataset

For the Pig dataset, we employed 5-fold cross-validation with random allocations into training and test
data to obtain the minimum test MSE, which was averaged over the folds. Here, for all methods, BO was
executed for 100 iterations with 3 GP function evaluations per iteration due to the large dataset size. The
lower and upper bounds for A were set to 200.0 and 2000.0, 0.01 and 1500.0, and 0.01 and 400.0 with respect
to LASSO-ADMM, SCAD-ADMM, and MCP-ADMM, respectively. For WL1L0O-ADMM, the lower and
upper bounds for a were set to 0.001 and 0.999, and for A, they were set to 0.001 and 3000.0. Similarly, for
WL1L0-PRSM and WL1L0-SCPRSM, the lower and upper bounds for « and )\ were set identically to those
for WL1L0-ADMM. Finally, for WL1LO-SCPRSM, the lower and upper bounds for r were set to 0.001 and
1.0, respectively. We observed little variability in the minimum test MSE across the CV-folds for all methods.
Hence, we report the mean minimum test MSE using the average estimates of the respective parameters for
all methods. The best result, with the mean minimum test MSE of 4.520, was found with WL1L0-SCPRSM
at (A = 444.60,a = 0.30,7 = 0.62) (Table[2). The timing of the last evaluation with optimized parameters
showed that MCP-ADMM was the fastest, taking only 24.15 seconds.

Method min MSE A « r Timeﬂ
LASSO-ADMM 4.94 248.91 - - 26.78
SCAD-ADMM 4.72 135.88 - - 24.19
MCP-ADMM 4.76 75.01 - - 24.15
WL1L0-PRSM 4.523 1406.25 | 0.09 | 1.00 | 632.05
WL1L0-SCPRSM 4.520 444.60 | 0.30 | 0.62 | 655.90
WL1L0-ADMM 4.54 2631.36 | 0.04 - 490.83

%The time in seconds corresponds to the last evaluation with optimized parameters.

Table 2: Mean minimum test MSE and optimal parameters over 5 CV-folds for LASSO-ADMM, SCAD-
ADMM, MCP-ADMM, WL1L0O-PRSM, WL1L0-SCPRSM and WL1L0O-ADMM were evaluated on the pig
data.

4.1.2 Real Mice Dataset

Similar to the Pig dataset, we employed 5-fold cross-validation. The lower and upper bounds for A were set
to 0.01 and 2000.0, 0.1 and 3000.0, and 0.01 and 1800.0 with respect to LASSO-ADMM, SCAD-ADMM,
and MCP-ADMM, respectively. For WL1L0-ADMM, the lower and upper bounds for « were set to 0.01 and
0.99, and for A, they were set to 0.001 and 500.0. Similarly, for WL1L0O-PRSM, the lower and upper bounds
for a and A\ were set identically to those for WL1L0-ADMM. Finally, for WL1LO-SCPRSM, the lower and
upper bounds were set to 0.01 and 0.99, 0.001 and 500.0, and 0.001 and 1.0, with respect to a, A, and 7,
respectively. The best result, with the mean minimum test MSE of 0.261, was found with WL1L0-SCPRSM
at (A = 78.13,a = 0.16,r = 0.53) (Table 3). The timing of the last evaluation with optimized parameters
showed that MCP-ADMM was the fastest, taking only 3.16 seconds.
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Method min MSE A « r Timeﬂ
LASSO-ADMM 0.273 750.01 - - 5.48
SCAD-ADMM 0.273 1125.10 - - 4.86
MCP-ADMM 0.273 675.01 - - 3.16
WL1L0-PRSM 0.267 234.38 | 0.10 | 1.00 | 67.13
WL1LO-SCPRSM 0.261 78.13 | 0.16 | 0.53 | 46.54
WL1L0-ADMM 0.265 234.38 | 0.10 - 66.58

“The time in seconds corresponds to the last evaluation with optimized regularization parameters.

Table 3: Mean minimum test MSE and optimal parameters over 5 CV-folds for LASSO-ADMM, SCAD-
ADMM, MCP-ADMM, WL1L0-PRSM, WL1L0-SCPRSM and WL1L0-ADMM were evaluated on the mice
data.

5 Discussion

WL1LO-SCPRSM consistently achieves the lowest MSE across all datasets, indicating its superior ability to
minimize prediction errors. This makes it highly effective in terms of accuracy and reliability for various
types of data. The WL1LO0 method is specifically designed to address the bias introduced by regularization
methods like LASSO, SCAD, and MCP. By combining the weighted L' and L°-norms, WL1L0-SCPRSM
effectively reduces bias while maintaining model sparsity and interpretability. The weighting parameter «
provides flexibility in tuning the regularization effect, making the method adaptable to different datasets
and problem settings. This adaptability enhances its robustness and applicability across diverse scenarios.

The use of SCPRSM introduces an additional parameter r, allowing for finer control over the optimization
process that potentially leads to better convergence properties and more precise model fitting. It is well
known that L° regularization is computationally infeasible, as it is an NP-hard problem. Despite its higher
computational time compared to some other methods, WL1L0-SCPRSM remains scalable for larger datasets
due to its structured approach to optimization. The sparsity induced by the L' component and the precise
variable selection by the L component make the resulting model more interpretable. This is crucial in many
scientific and industrial applications where understanding the model is as important as its predictive power.

Furthermore, WL1LO-PRSM and WL1L0O-ADMM consistently achieve lower minimum MSE than LASSO-
ADMM, SCAD-ADMM, and MCP-ADMM across all datasets, although both are outperformed by WL1LO0-
SCPRSM. Recent studies have shown that SCPRSM outperforms ADMM (Li & Yuan) [2015; |[Li et al., 2021]),
and SCAD and MCP often outperform the LASSO (Fan et all 2014a; [Fan & Li 2001} [Zhang, [2010).

6 Conclusion

This paper introduces a novel joint weighted L'- and L-norm method based on proximal mapping and
translations, aiming to debias the bias introduced by regularization methods for handling high-dimensional
data. Our model introduces a weighting parameter, a, allowing for the adjustment of the influence of both
regularizers. All parameters are optimized using Bayesian optimization, a data-driven method. The WL1L0
model outperforms all known regularization methods (LASSO, SCAD, and MCP). The global convergence
of WL1LO-ADMM, WLI1L0-PRSM, and WL1L0-SCPRSM is proved under reasonable assumptions. Fur-
thermore, WL1LO-SCPRSM consistently achieves the lowest MSE across all datasets, indicating its superior
ability to minimize prediction errors. The WL1L0-SCPRSM’s superior performance across different datasets
demonstrates its versatility. Our current paper focuses on prediction rather than variable selection (estima-
tion). This leaves room for future work to address variable selection properties specifically.
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A Appendix

A.1 Theoretical Background

We now provide selected theory that are most useful for solving . Our approach closely follows (Beck, |2017))
and (Bertsekas| [2016). For an extended real-valued function f : RP — [—o00, o0], we define the following;:

(a) The domain of f is the set
dom(f) ={beRP: f(b) < 0}.

(b) f is proper if dom(f) # @ and f is never —oo.
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(c) The epigraph of f is defined by
epi(f) = {(b,a) € R? x R : f(b) < a}.

(d) The function f is closed if its epigraph is closed.

e is called lower semicontinuous at b € R? if
(e) f

f(b) < liminf f(b,,)

n— o0
for any sequence {by,},>1 C R? for which b,, — b as n — cc.

(f) For any n € R, the n-level set of a function f is the set
Lev(f,n) ={beR": f(b) <n}.
(g) A proper function f is called coercive if

f(b) = oo.

|[B]| =00

For any set S C R™ and any point b € R?, the distance from b to S is defined as D(b,S) := inf{||m —b||, m €
S}, and D(b,S) = oo for all b when S = &.

A proper closed and coercive function f attains its minimal value over S for a nonempty closed set satisfying
SN dom(f) = 0. Moreover, a closed coercive function possesses a minimizer on any closed set that has a
nonempty intersection with the domain of the function (Beck) |2017)). For an extended real-valued function
f:RP — [—00, 0], the following three claims are equivalent:

i f is lower semicontinuous.
ii f is closed.

iii For any (n € R), the level set
Lev(f,n) ={beR”: f(b) <n}

is closed.
The proof of these claims can be found in (Beckl [2017)), see Theorem 2.6.

A.2 Subdifferentials of nonconvex and nonsmooth functions

Subdifferentials are important in analyzing complex functions, especially when dealing with nonsmooth and
nonconvex functions. Following|Clarke et al.| (2008) and Mordukhovich|(2006), we explore subdifferentiability.

Let g : R™ — (—o00,+00] be a proper and lower semicontinuous function. Then

(i) For a given b € dom g, the Fréchet subdifferential of g at b, denoted by dg(b), is the set of all vectors
u € R? which satisfy

o 907) = 9(b) — (s, — b)

>0
m—b [|m — b

- 9

and we set dg = @ when b ¢ dom g.

(ii) The limiting-subdifferential, or simply the subdifferential, of g at b, written by dg(b), is defined by
8g(b) = {’U, cR™: ku — bag(bk) N g(b) and ag(bk> kﬂo u}

(iii) A point b* is called critical point or stationary point of g if it satisfies 0 € dg(b™*).
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A.3 The Kurdyka—tojasiewicz Inequality and its Property

The Kurdyka-Fojasiewicz (KL) inequality deals with the behavior of certain functions near their critical
points. It is an important tool for analyzing the global convergence of nonconvex nonsmooth optimization
problems (Attouch et al., [2013; [2010; [Bolte et al., [2014). We now revice the Kt property.

Let g : R™ — (—00,4+00] be a proper lower semicontinuous function. Then,

(a) The function g : R — R U {+oo} is said to have the KL property at b* € dom dg if there exist
n € (0, +0c0], a neighborhood U of b*, and a continuous concave function ¢ : [0,7) — RT such that

(i) ¢(0) =0,

(ii) ¢ is continuously differentiable on (0,7),

(iii) Va € (0,400], ¢'(a) > 0,

(IV) For all b e UN{g(b*) < g(b) < g(b") + n}, the KE property holds:

¢'(9(b) — g(b7))d(0,dg(b)) = 1. (8)

(b) Proper lower semicontinuous functions which satisfy the K¥. inequality at each point of dom dg are
called K¥. functions.

A.4 Proximal Operators

Proximal operators are a fundamental concept in optimization, especially for problems involving non-
smooth or non-convex functions, which are increasingly common in a wide range of real-world applica-
tions (Fukushima & Mine| [1981; Kaplan & Tichatschke, 1998} |Parikh & Boyd, 2013)). A proximal operator,
denoted as prox;(u), aims to find a point closer to u that also minimizes a specific objective function, f(v)
in a specific optimization subproblem. This subproblem is assumed to be more manageable to solve than
the original problem. The proximal operator can be mathematically expressed as

prox(u) = argmin {f(v) + (1/2)l[lv — ul3}, (35)

where u and v are vectors of length p. Here, prox, (u) is a point that compromises between minimizing f and
being close to u. Note that the right-hand side of is strongly convex, hence there is a unique minimizer
for every u € RP. Introducing the parameter v > 0 that represents a trade-off parameter between the two

1
terms v and w yields a scaled version of (35)), in which 3 is replaced by o The proximal operator has

useful properties (Beckl |2017). For example, for an affine transformation f(u) = (m,u) + a, the proximal
operator defined in becomes prox; (u) = u — m, which represents a translation mapping. Therefore,
we can express a translation function as 7(u) = f(u + m) — m. Another important property arises in
the context of separable sum functions f(u, m) = g(u) + h(m), where the proximity operator is written in
prox;(u,m) = prox,(u) + prox,(m). In the following section, we discuss the problem in detail.

A.5 Discussion of the Problem
A.5.1 Optimality Conditions
We write as

b = argmin F(b) :=T'(b) + A\(1 — a)||b]|o, (36)
b
where T'(b) := ||y — Xb||3 + Aa||b||;. Since I'(b) is a convex function, it has a global minimum value.

By the Weierstrass theorem, a continuous function over a nonempty compact set attains a minimum. The
existence of an optimal solution is guaranteed if a function is continuous over a closed set and coercive over
the set (Bertsekas| [2016)). Beck| (2017)) demonstrates that the latter extends to closed functions, i.e. a closed
and coercive function over a closed set attains an optimal solution.
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P
For the case |[b|lo = Zl(bi # 0) with A(1 — a) > 0, we need to show it is a closed function. Let

i=1
p

g(b) = Z I(b;) then for any b € R? we have

i=1

I(t) = {3(1 ~ ) z i 8

The function I(.) is closed since its level sets, given by

0, n <0,
Lev(l,n) = < {0}, n€][0,1), (37)
R, n2>1,

are closed sets. Here, g is a sum of closed functions. Hence, g is closed. Furthermore, Using Theorem 2.6
in (Beck, [2017), the closedness of ||b||o implies its lower semi-continuity.

A vector b is a local minimum of the function F, if there exists € > 0 such that F(b*) < F(b) for all b € R?
with ||b — b*|| < e. A vector b* is a global minimum if F(b*) < F(b) for all b € RP.

The function F' is nonconvex because any point between the endpoints A and B, as indicated by the solid
red line in Figure [T lies outside the domain of F. In fact, the shape of the function F is similar to that
of nonconvex regularization methods such as SCAD and MCP (Fan & Li, 2001} Zhang, 2010; |Zhao et al.,
. Various shapes of the function F' for different values of « are depicted in Figure [3| Now, we define a

15
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F(b)

Figure 1: Hlustration of the nonconvexity of the function F
set S, = {b € R” : F(b) < n}, as shown in the Figure |2 This set represents the n-sublevel set of F', where

n € R. Within this set, a global minimum b* exists such that F'(b*) < 7. However, for any b not in S,, we
have F'(b) > n > F(b").
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Figure 2: n-sublevel set of F
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Figure 3: Different function values of F with regularizer A = 1 and o = 0 (L%), 0.2, 0.5, 0.8, 1 (L!).

B Appendix

Proof for Theorem [1} While our model differs from that of Wang et al| (2019} |2018)), we adopt a similar
proof framework.

Proof (a): From (17a)), b**Y) minimizes L, (b, u® m*) and since L, (b, u, m) is strongly convex with
respect to b, the Lagrangian function satisfies the following inequality (Beckl, [2017):

P
Lv(b(kﬂ),u(k),m(k)) — Lv(b(k),u(k),m(k)) < _§||b(k+1) —bM) 2, (38)

where L. () is a p-strongly convex function (p > 0). From the augmented Lagrangian function in , we
have

Lo (6D _qu b1 D)y _ [ (p(kD) gy (k1) (k) — (b(k+1) _ u(k+1))T (m(k+1) _ m(k)) . (39)
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Now we rewrite (17¢]) as
ph+D) _ (k1) — gy (b+1) _ oy (R) (40)

From and (19a)), we get
VFOFD) 44 (p*+) — b+ L,y — o, (41)
Substituting into , we obtain
VIOFD) = —ymt+D), (42)

Using (40) and (42)), (39) becomes
1 1 15
(k1) _ o (k)[12) — T (k+1) - ONIEAPSA (k+1) _ p(k)|(2
7 (llm m®|2) 7<| VI £ 2V >|)7(||b bO|2).  (43)

Hence,

2
Lo (0D g (b1 D)y [ (pkt1) gy (k1) g (R)) < Lf (Hb(k+1) _ b(k)||2> . (44)
Y
Here, the term [y > 0 denotes a Lipschitz gradient of the function f(b). From (17b)) we have that

L.Y(b(k+1), u(k+l)’ m(k)) _ L,y(b(kJrl), u(k)7 m(k)) <0. (45)

Finally, combining , and , we obtain the desired inequality as
Lw(b(’““),u(k“),m(k“)) _ L»y(b(k),u(k),m(k))
= Ly(b(’”l),u(“l),m(k“)) _ Lv(b(k“),u(k“),m(k))
+ Ly(b(kﬂ),u(k“),m(k)) _ L,y(b(k“),u(k),m(k))
+L7(b(k+1),u(k),m(k)) — Lv(b(k),u(k),m(k))

l2
p
< (;‘ - 2) 61 — b 3

= —01|[p"*+Y — ™ 3, (46)

l2 2

21
where 01 = g — L and v > iy Hence, the sufficient decreasing condition is met.
p

Proof (b): We utilize the descent lemma to prove that Lny(b(k)7 u® m®) is lower bounded for any k.

Descent lemma: Let the function f belongs to the class of continuously differentiable functions with a
constant iy Lipschitz continuous gradients. Then for any two points b*) and u®,

l
F®) < FO0) + V)T @~ 60 4 L — 503 (47)

The proof of the descent lemma can be found in (Beck, [2017)), see Lemma 5.7.

As a result of the lemma, the sequence is lower bounded as

1 1
Ly (6", ul, ml) =f(b) + g(w) + 5o = wt —mlf — |- mlf3
=0 + g(u®) £ mT(6® —u®) + (3/2)[p® —u®|3
> ) o)+ (3= %) u® - 2

> —oco for v > Iy. (48)
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Hence, from , Lv(b(k), u®), m(k)) is lower bounded.

As established in the proof of (a), the sufficient descent property implies that L. (b(k), u®, m(k)) is upper-
bounded by Lv(bo, ul, mo). To prove the sequence {b(k), u®), m(k)} is bounded, we start by rewriting

as
, 1
||b(k+1) — b(k)H% Sg(Ly(b(k),u(k),m(k)) — Lv(b(k—H),u(k+1),m(k+1)))
l

1

DB — b3 < (L (b, ) = Ly (B4l )

k=0
< 00.

Equation also holds as [ — co. Hence, b%®) is bounded.
From ([43), we obtain

12
[m D —m B3 < |t — b @) 3.

l
> m D —m B3 < oo,
k=0

This implies that m* is bounded.

Finally, from (40) we obtain w1 = p*+1) — g+ £ () and w® = p®) — m*) 4 m+=1 Then

||u(k+1) _ UUC)H% :Hb(k+1) _ b(k) + m(k) _ m(k+1) + mk—l _ m(k)H%

<™+ — bW+ [[m P+ — m @[3 4 ||m® —m |,

Consequently, we obtain

Z [+ —u®)2 < oo
k=1

Hence, the sequence {b(k),u(k)7m(k)} is bounded.
Proof (c):
oL
ob

87L
ou

Since 0 € dg(uFt1)) — 5 (b(’““) — ) 4 m(k+1)), we have

~ (Qm(k+1) _ m(k)) € dg(uF+).

oL
om
Collecting Equations - , we have

(B (D) (1)) — (k1) _ gy (1) — (k1) _ o (B),

mE+1) _ (k)
(ngﬂ) = |y (2m(k+1) —_m®)
mE+D) — (k)

<p§k+1) c 8L7(b(k+1)’ wk+D), m(k+1)).

21

(b1 (kD) (k1Y — 7 f(p(ED)Y 4 (b(k+1) WS m(k+1>) — (m(k+1> _ m(k)) .

(B*FD) D) (k1)) = 9g(ukHD)) — (b(k+1) — kD) 4 m(k+1)) .

(55)
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Following , we arrive at the conclusion
i V13 < o2l — bW 3, (56)

where o5 > 0. Hence, the desired condition is proved.

Proof (d): The augmented Lagrangian function L, (b, u,m) = f(b)+g(u)+2||b—u+m|3—3||m||3 defined
as L, : R" — (—o0,00] is proper and lower semi-continuous, where f(b) = ||y — Xb||3, g(u) = |Ju||1 + ||ulo
and j(b,u,m) = J|[b—u+m|3 - %||m|[3. If L, (b, u,m) is semi-algebraic, then it satisfies the KL property
at any point of its domain. Note that both f and j are real polynomial functions, which are semi-algebraic
functions (Attouch et all 2013} Bolte et al., |2014)). Both ||u||p and ||u||; have piecewise linear graphs and
are therefore semi-algebraic (see Example 3 and 4 in (Bolte et al., 2014)), respectively).

Furthermore, consider that g;(u) = Aa||u||1 and go = AM(1—a)||u||o. Their proximal operators have piecewise
linear graphs and are perfectly known objects (Attouch et al.l |2013; [Beck, [2017). The proximal operator for

g91(u) = Aallull1, prox,  (u)= [|ul—Aal; sgn(u) (the so-called soft thresholding function) is defined as

u— A, ifu> A,
[lu] — Aoy sgn(u) = ¢ 0, if |u| < A,
u+ A, ifu< -

Hence, prox,, e (u) has a piecewise-linear graph and is semi-algebraic. Now, we show that using the
proximal operator for gs, the prox of g, can be written as

0, if |u| < 4/2X(1 — a),
ProXy, (A(1—a)) (®) = { U, if |ul > /2A(1 — ),

{0,u}, if |u| =/2X(1 — «).

Clearly, prox,,x(1—q)(u) is also piecewise linear and semi-algebraic. Note that prox,,\(1—a)(u) = Hx(u)
the so-called hard thresholding operator, is defined as

0, if |u| < v,
Ho(u) = u, if |u| > v, (57)
{0,u}, if ju|=v,

where v = \/2A(1 — «). Here, g1 + g2 is also semi-algebraic.

Consequently, for any nonnegative real numbers A and «, the function f(b) + Ac||u|l1 + A(1 — a)||ullo +
21|b — u 4+ m||3 — Z||m]|3 is semi-algebraic. Hence, we conclude that the Lagrangian function in is a
KL function.

Since {b) u® m*)} is bounded, there exists a subsequence {b*', u* m*} converging to a stationary

point {b*,u*, m*}, where | € N. Since the Lagrangian function in is a KL function (using the lower
semicontinuous property), we have

Ly (6", u",m”) < lim L, (b* ukt, mHkh). (58)
— 00

In conclusion, all the conditions (a)-(d) in Theorem [1] hold.
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C Appendix
Proof for Theorem [2} Starting with r = 1 (PRSM), we update b, m, and u iteratively according to
- [18d)
b*+) .= argmin L., (b®), u® m®), (59a)
b
m+3) = m®) | p+D) (k) (59b)
w1 = argmin L., (b*+D) u®) m(kt3)), (59¢)
mktD) = g (5) | p(k+1) g (k1) (59d)

Proof (a): From 1) since b**1) minimizes L, (b(k), u(k),m(l’“)) and Lagrangian is strongly convex with
respect to the variable b, holds.

Next, using the augmented Lagrangian function in , we compute
Loy (6D 1) (1)) (ptD) gy () bty — (b<k+1) _ u<k+1))T (m<k+1> _ mk+%) . (60)

Now we rewrite (59d)) as

k1) _ g (k+1) _ (k1) o kts (61)
From and , we obtain
Vf(b““*”) + 'y(b(k“) — kD mk+$) —0. (62)
Substituting into , we obtain . Again, from and , we obtain
VIOFD) 4 4(bF) — ®) 1 m )y =0, (63)

Substituting (59b]) into , we obtain

VHO*HD) = —ymhts, (64)
Using (42)),(61)) and (64), becomes
1 1 1
3 (I e ) = (11 29700 4 295000 2) <o (65)
v v
Hence, )
L (b HD) (D) (k1)) 1 (p(FHD) g (k+D) btz < 0, (66)
Using , we have
Lﬂ/(b(k+1),u(k),mk+%) — Lo (6*FD) ) g k)y = (b(k+1) _ u(k))T (m’”% _ m(k)) . (67)
Next, we reformulate (59b)) as
bR+ — ) = bt k), (68)
Using and , (@ becomes
k1 (k)2 1 (h+1)y 4 L (F)\[12
7 (b5 = m®I2) = (1= Z9F@D) + ST FEW) ). (69)
Therefore,
12
Lo (0% ) mbta) — L 60+ ) k) < ;f (||b<k+1> _ b(k)\|2) , (70)
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where [y > 0 is a Lipschitz gradient of the function f(b). From (59¢) we have that
Lw(b(k+1)7u(k+1)7mk+%) _ Lv(b(’““%u(k%m“f) <0. (71)

Finally, combining , , and , we get the desired inequality as follows.

Lo (00D B0 40y L (50 49 m (R))

= Lo (b*HD) D) (k1) Lﬂy(b(k+1),u(k+1),mk+%)
+ L,Y(b(kJrl)’u(kJrl)’kar%) _ Lv(b(kﬂ)’u(k)’mk%)
+ L,Y(b(kJrl)’u(k)’kar%) — L (bR () (k)

+L7(b(k+1),u(k),m(k)) — Lv(b(k),u(k),m(k))

l2
g<f—g>nwww—wwﬁ
v
= —&1[p* D — b 3,

which is the sufficient decreasing condition ([46]).

Proof (b): The difference lies in some steps to show the boundedness of u® and m®™. The rest is the
same as in the proof of Theorem b). From and we obtain u®* 1) = p+D) _p(E+D) 4 pkts ang
u® = pk+) _gpkty 4 m(k), respectively. Then

Hu(k+1) _ u(k)Hg _ ||mk+% — D okt m(k)H%

< |lm*H) — mEE| 2 4 [mh e - m W),

This inequality can be rewritten using and as
l2
D — a5 < 560 — 50,

Consequently, we obtain

> D — k)3 < oo (72)
k=0

Equation implies that u® is bounded. To show that m® is bounded, we analyze the difference
mF+D) — m () as follows. m*F T — m®E) = G+ _pkts | pkts (k) Then, we obtain

l2
[[mEHD —m ™2 < LyjpktD) —pth) 2,
Z [lm D) —m @2 < o0 (73)
k=0

Hence, m® is bounded.
Proof (c):

oL

%(b(kﬂrl)’ a® D D) = 7 p(p*HD) 4 <b(k+1) _ kD) m(k+1)) — v (m(k+1) _ mk+%) . (74)

oL

au(b(k+1)7u(k+1)7m(k+1)) _ 8g(u(k+1)) — (b(k+1) — kD) 4 m(k+1)) .

~ (2m<k+1> - mk+%) € dg(u*+D). (75)
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Equation holds because 0 € 8g(u(k+1)) — (b(kﬂ) — D) 4 m(l”l)).

OL (k1) gy (b)) (1)) k1) _ (k1) (1) _ gkt (76)

om

Collecting Equations - , we have

Y mF+D — mk"'%)

gagkﬂ) = |y (2mHD — m’“‘%)
m*k+D) _ mkts
(Pé’“*l) c a[W(b(k-&-l)7 MR m(k-&-l)). (77)

Hence, the desired condition is proved. Using Equation with a parameter oy > 0, we obtain
k+1
95113 < oo [p+1) — B3, (78)

Hence, the desired condition is proved.
Proof (d): See the proof of Theorem [I| (d).

For the case r € (0,1), all conditions are valid. Hence, for the sequences {b(k)7 u®), m(k)}zzo generated by
the SCPRSM scheme - [18d), and its Lagrangian given by (14)), the four conditions from Theorem
(a)-(d) hold, achieving a worst-case convergence rate of O(1). Here, a worst-case O(4) convergence rate
indicates that the solution’s accuracy, based on specific criteria, improves gradually at a rate proportional
to one divided by the number of iterations (k) within an iterative algorithm (He et al., 2014).
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Figure 4: Convergence Speed of MSEs of the Simulated QTLMAS2010 Data.
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