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Abstract
State-of-the-art face recognition models rely on
deep, complex neural net architectures that pro-
duce relatively compact template vectors, mak-
ing their mechanisms of operation difficult to in-
terpret and understand. Recently, mechanistic
interpretability has emerged as a promising ap-
proach to explain large language models. In this
paper, we aim to apply such approaches to explain
face recognition models. Our method involves
transforming face image templates into sparse
representations and analyzing their components
by identifying images that maximize activation.
Our results demonstrate that existing mechanis-
tic interpretability techniques generalize well to
previously unconsidered tasks and architectures,
and that differentiable image parametrizations can
serve as a useful additional means of confirming
the interpretation of sparse representations.

1. Introduction
Face recognition models are becoming increasingly vital
for high-stakes applications like personal identification and
law enforcement. However, as face recognition models
become more complex to improve accuracy (Rajpal et al.,
2023), their decision-making processes become less under-
standable. They often operate as black-box models, raising
concerns about transparency, especially where precise ex-
planations are necessary. Face recognition templates encode
information in a highly entangled manner, where individ-
ual features often encapsulate multiple factors of variation,
rendering them non-understandable to humans. To better
understand and interpret face recognition models and their
decisions, the field of eXplainable Face Recognition (XFR)
aims to clarify their decision-making processes (Williford
et al., 2020).
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Figure 1. Illustration of our methodology. Given a face recogni-
tion model mFR and face images I , we first extract templates
x = mFR(I). Templates are then used to train a sparse auto-
encoder with an encoder f and decoder fdec to produce sparse
representations f(x). In the second stage, we investigate the in-
terpretability of components f(x)i by optimizing input images to
maximally activate individual components of the sparse encoding.

While the interpretability of face recognition models can
be approached from different angles, in this work, we draw
inspiration from the recent success of mechanistic inter-
pretability in explaining large language models (Bricken
et al., 2023; Bereska & Gavves, 2024). The high-level
overview of our approach is illustrated in figure 1. The
idea is to visually inspect which input images maximize the
activation of a certain sparse component obtained from a
template x. Instead of considering a feature in the original
template space x, known to encode information in a highly
entangled, compressed manner, we first expand the tem-
plates into a sparse representation f(x), obtaining a more
decomposed representation. In the first stage, we train a
sparse auto-encoder (SAE) on the original templates x to
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produce sparse representations f(x). In the second stage,
we visualize which input images maximize the activation
of specific neurons in these sparse representations. By com-
paring the optimized visualizations with dataset images that
maximally activate a given component of the sparse visu-
alization, we are able to interpret some components of the
highly polysemantic face templates, and show that inter-
pretability methods developed for large language models
generalize well to different modalities and domains.

2. Related Work
2.1. Mechanistic interpretability

Techniques for mechanistic interpretability are an emerg-
ing subgroup of explainable artificial intelligence (XAI)
techniques that aim to explain the decision making of mod-
els by analyzing their underlying algorithms (Bereska &
Gavves, 2024; Conmy et al., 2023). While the majority
of the literature applies mechanistic interpretability to lan-
guage models (Bricken et al., 2023; Rajamanoharan et al.,
2024), vision models have been proportionally less studied
using such methods (Palit et al., 2023).

2.2. Sparse auto-encoders for interpretability

Sparse auto-encoders turned out to be useful for obtain-
ing interpretable features directions in large language mod-
els (Cunningham et al., 2023). In (Bricken et al., 2023), the
authors decompose features obtained by a language model
by expanding them into a sparse representation of a higher
dimension using a sparse auto-encoder. They analyze which
passages from a large text corpus activate individual com-
ponents in the sparse representation. In this work, we adapt
this approach for a computer vision task, specifically face
recognition.

3. Methodology
High-level overview. The high-level overview of our in-
terpretation methodology is presented in Figure 1. Using
the state-of-the-art SwinFace (Qin et al., 2023) pretrained
face recognition model mFR and the VGGFace2 (Cao
et al., 2018) face image dataset, we extract templates
x = mFR(I), where I is the input face image. We then
use a sparse autoencoder to transform the image templates
into sparse encodings f(x), which encode the same infor-
mation in a more decomposed manner. We look for im-
ages that maximally activate a sparse encoding component
f(x)i = f(mFR(I))i by solving the constrained optimiza-
tion problem

Iopt = argmax
I

f (mFR (I))i ,

s.t. I = DIP (z) (1)

using gradient ascent over I while the parameters of the
sparse encoder f and the face recognition model mFR

are kept frozen, and DIP (z) is the differentiable image
parametrization constraint.

Differentiable Image Parametrizations (Mordvintsev
et al., 2018). When optimizing an input image that max-
imizes some activation of a neural net, it was shown that
further parametrizing the image e.g. by optimizing its com-
plex spectrum as opposed to RGB pixel values, can improve
the interpretability of the generated images.

Deep image prior (Ulyanov et al., 2018). Related to the
above, the authors show that randomly-initialized convolu-
tional neural nets with random noise inputs can serve as a
strong prior towards natural images. To that end, we use
the proposed Deep Image Prior as our image parametriza-
tion. Here, the input image is generated as I = mUNET (z),
where mUNET is a U-Net (Ronneberger et al., 2015) CNN,
z is a tensor of random white noise, and the optimization of
eq. (1) is only over the parameters of the U-Net.

Gated sparse auto-encoder (Rajamanoharan et al., 2024).
The aim of sparse autoencoders is to decompose highly com-
pressed templates, in ideally case resulting sparse features,
which encode information in a more disentangled, inter-
pretable manner. To obtain sparse template representations,
we implement gated SAE as it was shown to improve dictio-
nary learning. The idea of G-SAE in comparison to vanilla
SAE is to replace the simple ReLU encoder with a gated
ReLU encoder by separating the gating and magnitude en-
coding roles,

f̃(x) := 1 [(Wgate(x− bdec) + bgate) > 0]︸ ︷︷ ︸
fgate(x)

⊙ReLU(Wmag(x− bdec) + bmag)︸ ︷︷ ︸
fmag(x)

(2)

where 1 stands for the Heaviside step function, and
Wgate,Wmag,bdec and bmag are trainable parameters. The
decoder is again a single linear layer.

We design G-SAE such that it expands templates x ∈ R512

by a factor of 128, producing sparse encodings of f(x) ∈
R65,536. Since the step function is non-differentiable, but
the gate and magnitude weights are tied, after training the
G-SAE, we optimize I to maximize Wgate(x − bdec) in
practice.
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4. Experimental setup
Face recognition models and templates. State-of-the-art
face recognition models are typically trained on pre-aligned
face images, and are known to be sensitive to misalign-
ment. To extract templates x, we align face images from the
VGGFace2 dataset using the MTCNN (Zhang et al., 2016)
keypoint detector and down-scale them to 112× 112 pixels.
We then extract the face templates of all the images in ad-
vance. This speeds up the autoencoder training considerably,
as it obviates the need to run the face recognition model at
the same time.

Gated sparse auto-encoder (G-SAE). Using the extracted
templates, we train the autoencoder using the loss function
proposed by (Rajamanoharan et al., 2024), with sparsity
factor λ = 10−7. We use a batch size of 1024, and train
the autoencoder using the AdamW (Loshchilov & Hutter,
2017) update rule with an initial learning rate of 5× 10−4

and weight decay factor of 10−2. The training run lasts 100
epochs, during which we decay the learning rate towards
10−6 using the cosine schedule.

Input image optimization. To optimize input images,
which maximized the activation of a targeted feature in the
sparse encoding, we use AdamW optimizer with a learning
rate of 10−4, and we run the optimization for 4, 096 steps.
We experimentally determine a batch size of 1 results in the
most interpretable images, since running the optimization
with larger batch sizes results in very similar images. To
produce multiple images of the same sparse encoding com-
ponent, we re-run the optimization with different random
parameter initialization of the DIP instead.

5. Experiments and Results
Evaluating the sparse feature composition. We first eval-
uate how many of the images I activate each of the sparse
features f(x)i. The results are presented in the Figure 2.
We note that unlike previous results from language mod-
els (Bricken et al., 2023), the features are mainly divided
into two clusters: a small cluster of 451/65, 536 features
that are activated by 40% − 48% of the dataset images
at non-zero magnitudes, and a much larger cluster of very
low-density features that are only activated by 1 − 20 out of
the 3.2× 106 dataset images. We investigate the difference
between the features of those two clusters in subsequent
experiments.

Reconstruction and redundancy. Next, we evaluate the
redundancy of the sparse representation. We note that only
39.64% of the sparse features are left alive (i.e., activated by
at least one dataset image) by the end of the training. This
is despite using the neuron re-sampling procedure proposed
by (Bricken et al., 2023). The mean L0 norm of f(x) is
105.2. We also evaluate performance of the trained G-SAE
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Figure 2. Feature density histogram. Note the logarithmic x-axis.

in terms of the reconstruction loss. The average MSE over
the dataset is Ex||x− x̂||22 = 7.13×10−6, whereas we have
pre-scaled the face templates x such that Ex||x||22 = 1 by
applying a uniform scaling factor to the entire dataset.

Loss explained. We also evaluate the quality of the recon-
structed templates for downstream tasks (i.e., face verifica-
tion). We attempt to decode the templates using either only
the high-density feature cluster (i.e., the rightmost features
in Figure 2), or the entire sparse representation. Using the re-
constructed features, we perform the standard LFW (Huang
et al., 2007) face verification experiment. LFW is known as
a “solved dataset” in the sense that modern face recognition
models approach 100% performance. However, it fits our
purpose here as we are primarily interested in the amount
of performance degradation introduced by the autoencoder
given different settings. We present the results in table 1. We
note that the features from the high density cluster account
for most of the loss explanation.

Table 1. LFW results using decoded templates.
Setting Verification

accuracy (µ± σ)

Original templates x = mFR(I) 0.9948± 0.0017
Decoded from high-density cluster of f(x)i 0.9128± 0.0110
Decoded from low-density cluster of f(x)i 0.6120± 0.0511
Decoded from entire f(x) 0.9655± 0.0062

Interpreting individual sparse features. In this set of ex-
periments, we analyse individual components of the sparse
encoding f(x)i by optimising input images to activate them,
as well as comparing with the dataset images that produce
highest magnitude activations. We find that many of the
features in the high density cluster correspond to general
face attributes, and some are also explainable using the op-
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Table 2. Qualitative feature interpretation.

i, f(x)i Comment Quality-equivariant Explanation from DIP

2396 Young east Asian men ✓ ✓
2500 Middle-aged men with rectangular glasses ✗ ✓
7715 Young east Asian women with long hair ✓ ✗
9341 Men with occluded or poorly-visible eyes ✗ ✗
12230 Dionne Warwick, age-invariant ✓ ✗
28105 Women with occluded or closed eyes ✗ ✓
28177 Older white women ✗ ✗
28617 East Asian women with short or tied hair ✓ ✗
48971 “Bangs” hairstyle ✗ ✗
55143 White women with pronounced nasolabial folds ✓ ✓
58513 Bianca Balti ✓ ✗
60871 Women or men with thick dark eyebrows ✗ ✓
63922 Men with a V-shaped hairline ✗ ✗

2396 2500 7715 9341 12230

28105 28177 28617 48971 55143

58513 60871 63922

Figure 3. Dataset samples and optimised images for selected feature components. Best viewed zoomed in.

timized images. We note that most of these “face attribute
neurons” are pose-invariant, activating with similar magni-
tudes given images of different yaw poses. We also note that
some are quality-equivariant, i.e., they produce higher acti-
vation magnitude for sharper, high-quality images, whereas
others are quality invariant in the sense that there is no
correlation between perceptual image quality and feature
activation magnitude. We also examine whether the inter-
pretation derived from the qualitative inspection of dataset
images that activate a given feature is apparent from the
optimised input images. We summarise the properties of
some identified features in table 2 and present visualizations
in Figure 3. We note that within the high density feature
cluster, almost none of the features correspond to a specific
identity. To the contrary, all of the low density cluster fea-
tures examined correspond to a specific person and are less
readily interpretable.

6. Conclusion
We have demonstrated the successful application of LLM
mechanistic interpretability techniques to face recognition
models. By converting face image templates into sparse
representations with gated sparse autoencoders, we have
achieved a more interpretable form of the encoded informa-
tion.

We have shown the encoded representations consist of two
feature clusters - a small group of high-density features that
encode various general face attributes, and a large amount
of low-density features that probably encode information
specific to individual identities from the training set.

In some cases, the qualitative feature interpretation of the
dataset samples can be confirmed by generating input im-
ages using differentiable image parametrizations and the
deep image prior.
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Impact Statement
This paper presents work aimed at advancing the inter-
pretability of face recognition models. Research in this
direction can contribute to more trustworthy and account-
able applications in biometric identification. The ethical
aspects of our work include promoting fairness and reduc-
ing bias in automated decision-making, as well as providing
clearer insights into model operations, which is crucial for
high-stakes applications such as law enforcement.

While there are many potential societal consequences of our
work, including improved user trust and regulatory compli-
ance, we believe that the positive implications of making
face recognition models more interpretable and transparent
should be highlighted. This increased transparency can help
mitigate issues related to misuse and bias, ensuring these
technologies are deployed ethically and responsibly.
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