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Abstract

Federated learning offers a paradigm to the challenge of preserving privacy in distributed
machine learning. However, datasets distributed across each client in the real world are
inevitably heterogeneous, and if the datasets can be globally aggregated, they tend to be
long-tailed distributed, which greatly affects the performance of the model. The tradi-
tional approach to federated learning primarily addresses the heterogeneity of data among
clients, yet it fails to address the phenomenon of class-wise bias in global long-tailed data.
This results in the trained model focusing on the head classes while neglecting the equally
important tail classes. Consequently, it is essential to develop a methodology that consid-
ers classes holistically. To address the above problems, we propose a new method FedLF,
which introduces three modifications in the local training phase: adaptive logit adjust-
ment, continuous class centred optimization, and feature decorrelation. We compare seven
state-of-the-art methods with varying degrees of data heterogeneity and long-tailed distri-
bution. Extensive experiments on benchmark datasets CIFAR-10-LT and CIFAR-100-LT
demonstrate that our approach effectively mitigates the problem of model performance
degradation due to data heterogeneity and long-tailed distribution. our code is available
at https://github.com/18sym/FedLF.

Keywords: Federated learning, long-tailed distribution, data heterogeneity

1. Introduction

Due to the availability of large-scale data Deng et al. (2009), Lin et al. (2014), Horn et al.
(2018)and privacy-preserving policies Mohassel and Zhang (2017), there is no way for data
distributed across clients to be sent to a central server for model training. To address this
problem, federated learning (FL) enables multiple clients to collaboratively train a global
model without uploading their local private data to the server. As deep learning continues
to evolve, FL shows great potentials as a privacy-preserving and communication-efficient
framework in various application domains Zeng et al. (2022), Nazir and Kaleem (2023).

However, in FL, the data sets of the participating clients come from different sources, and
data heterogeneity is inevitable Li et al. (2023b,a). Existing federated learning methods
mainly discuss the scenario of clients’ data heterogeneity under a balanced global class
distribution, ignoring the phenomenon of an unbalanced global class distribution in actual
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Framework of the proposed method FedLF

Dataset with long-tailed distribution are shown 

in the figure, the head class has a large number 

of samples while the tail class is associated with 

a small number of samples, such as iNaturalist

species dataset with more than 8,000 classes. 
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Figure 1: Left: global long-tailed distribution; Right: framework of FedLF

scenarios. In these scenarios, the global data often follows a long-tailed distribution, where a
large number of samples are concentrated in a few classes, while other classes are represented
by only a few samples. As shown in Fig. 1 (left), the classes with a large number of
samples are called head class and the classes with a small number of samples are called tail
class. Under the dual challenges of client data heterogeneity and the long-tailed distribution
of global data, it gets harder for FL to train an effective global model, which we call
federated long-tailed learning Zhang et al. (2023), Shang et al. (2022b). For instance,
multiple companies come together for joint training to develop an autonomous driving
model Nguyen et al. (2022). Normal driving behaviours are well represented in the dataset,
while rare critical behaviours are underrepresented. This leads to local models that can
handle typical situations but fail to correctly handle rare scenarios, making them perform
poorly in emergencies, such as sudden obstacles, sharp turns and so on. Furthermore,
insufficient recognition and prediction of different behaviours of pedestrians and non-motor
vehicles will lead to the model not being able to respond correctly to sudden situations,
increasing the risk of accidents. This indicates that tail class judgement is also a significant
factor, and that a method to resolve the federated long-tail problem is urgently required.

To address the impact of long-tailed distribution, a straightforward solution is to apply
existing solutions to data heterogeneity and long-tailed distribution to the federated long-
tailed problem. However, the extensive experimental results in Table 1 and Table 2 show
that these solutions do not lead to effective improvement. We propose a novel privacy-
preserving federated learning method, FedLF, inspired by FedRS Li and Zhan (2021) and
Logit adjustment Menon et al. (2021). It counteracts the federated long-tailed problem by
adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
Specifically, we make three modifications to the local training. Firstly, we adaptively adjust
the logits of the local model according to the different local data distribution information of
each client. The purpose is to ensure that the model does not overfit the head classes and
can pay more attention to the tail classes, ensuring that the model treats each class fairly.
Secondly, we maintain a set of continuously optimizable class centers locally, which greatly
improves intra-class compactness and inter-class separability by adjusting the distance be-
tween features and their corresponding class centers. Finally, we continuously reduce the
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similarity among features by introducing the relationship matrix of features. Unlike com-
plex algorithms that need to deal with large amounts of data or expose private data Shang
et al. (2022b), Luo et al. (2021), our method utilizes local information to operate on local
training, ensuring simplicity, efficiency, and data privacy. The contributions of this paper
can be summarised as follows:

• We study federated learning with client-side data heterogeneity and global long-tailed
distribution, where the server does not have access to data and distribution sensitive
information.

• We propose a novel privacy-preserving federated learning method FedLF to address
the problem of poor tail classes performance of the model. In particular, only the
local training process of the model needs to be modified to achieve satisfactory results
without the risk of privacy disclosure.

• Our method achieves superior performance through extensive comparative experi-
ments on the benchmark datasets CIFAR-10-LT and CIFAR-100-LT with seven state-
of-the-art methods.

2. Related Work

2.1. Federated Learning with Data Heterogeneity

One of the most common challenges in federated learning is data heterogeneity. During the
training process of federated learning, data heterogeneity hinders the convergence speed
of the model and leads to degradation of model performance. Currently, many schemes
are proposed to solve the data heterogeneity problem, which are mainly classified into two
strategies: client side and server side. On the client side Li et al. (2020), Jin et al. (2022),
strategies with local regulation limit the training process. For instance, FedProx Li et al.
(2020) introduces regularization terms to prevent local updates from significantly deviating
from the global model, thus minimizing the impact of data heterogeneity. An alternative
approach is FedDyn Jin et al. (2022), which incorporates server-distributed penalty terms
into each client’s learning objective in each round of training, thereby guiding the local
model towards global optimisation. On the server side Zhang et al. (2024), global knowledge
is usually used to mitigate the negative impact of data heterogeneity among clients. An
excellent example is FedTGP Zhang et al. (2024), which maintains a set of trainable global
prototypes on the server to help clients train prototypes with better intra-class compactness
and inter-class separation. Although these methods effectively solve the challenge of data
heterogeneity among clients, they generally ignore the long-tailed distribution of global
data, which often leads to poor performance of the model in judging the tail classes.

2.2. Long-tailed Learning

Long-tailed data distributions widely exist in the real world, which put forward new re-
quirements for the development of deep learning, have received extensive attention in re-
search Zhang et al. (2023). The existing solutions to the long-tailed problem are mainly
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divided into two perspectives: data side and model side. On the data side, it mainly con-
tains two kinds of approaches: reweighting and resampling. Reweighting methods Lin et al.
(2017), Cui et al. (2019) modify the weights of the loss values assigned to different classes
of samples. For instance, Focal Loss Lin et al. (2017) assigns greater weight to challenging
samples based on predicted probabilities, which enables the model to prioritize the training
of difficult samples. Resampling methods Zhang and Pfister (2021), Zang et al. (2021)
mitigate the detrimental effect of the limited number of tail classes on the performance of
the model through under-sampling the head classes or over-sampling the tail classes. On the
model side, it mainly includes model decoupling and logit adjustment mechanism. Model
decoupling Kang et al. (2020), Wang et al. (2020) focuses on reducing the model’s prefer-
ences by recalibrating the classifiers, which prompts the model to look at each class more
fairly. Logit adjustment Menon et al. (2021), Hong et al. (2021) is a more fine-grained so-
lutionand aims to equalize the impact of each class, improving the model’s overall accuracy.
Such as LADE Hong et al. (2021) matches the target label distribution by post-processing
the model prediction trained by the cross-entropy loss and the Softmax function. However,
all the above schemes assume a centralised training scenario. Faced with the challenges
posed by distributed training, most of these methods are ineffective. Moreover, in the case
of data heterogeneity, the complexity of training increases further, making it lose its effec-
tiveness. Therefore, it is important to develop an approach that deals with the federated
long-tailed problem.

2.3. Federated Learning with Long-tailed Data

To address the federated long-tailed learning problem, recent research uses mechanisms
such as distillation Shang et al. (2022a), model decoupling Shang et al. (2022b), and so
on. In FEDIC Shang et al. (2022a), A new distillation method with logit adjustment and a
calibration gating network is proposed to alleviate the problems associated with long-tailed
data. CReFF Shang et al. (2022b) develops a set of constantly updated federated fea-
tures to retrain classifiers on the server-side, achieving comparable performance to training
models on real data. While the above methods relieve the problems posed by long tailed
data to some extent, they usually require complex operations using auxiliary data or may
pose significant risks to data privacy. Therefore, we propose FedLF, which requires only a
modification of the local training part to obtain superior performance. In addition, it also
provides maximum performance of tail classes, with details in Table 1 and Table 2.

3. Proposed Method

Our work is inspired by FedRS and Logit adjustment. In this section, we first introduce
some basic notations and then present three modifications for local training. Finally, we
describe the overall optimization objective. The overall framework of FedLF is shown in
Fig. 1 (right).

3.1. Preliminaries

Settings and Notations. We consider a classical federated learning setup where K clients
with heterogeneous datasets D1,D2,D3, . . . ,DK . They collaborate on a task of C classifica-
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tion. Our goal is to learn a global model without uploading the data to the server. In this
paper, we set xi be the i-th input sample and yi corresponds to the label. The global data
D ≜ ∪kDk is a long-tailed distribution X = {(xi, yi)|Nall

i=1 , xi ∈ D, yi ∈ {1, . . . , C}}, where
Nall expresses the number of all samples in D.

We define the total number of samples for each client dataset as N , which is not nec-
essarily the same for each client. ϕ is the distance function, B is the batchsize of local
training. For i-th sample xi, we denote hi = Fθ (xi) ∈ Rd as the feature vector, where d is
the feature dimension. In order to simplify, the bias is omitted, and the weight matrix of
the last classification layer is denoted as W = [w1, w2, . . . , wC ]

⊤ ∈ RC×d.
Basic Algorithm of Federated Learning. In this paper, we use FedAvg McMahan

et al. (2017) as the foundational algorithm, upon which we propose our improvements.
The typical federated learning process unfolds as follows: In round t, the server initially
distributes the global model wt to all participating clients. Each client k, using their unique
local dataset Dk for k = 1, . . . ,K, updates their local model wt

k according to the following
update rule:

wt+1
k ← wt

k − η∇wℓ
(
wt;Dk

)
, (1)

where η denotes the learning rate, and ℓ denotes the loss function, typically a cross-entropy
loss in classification tasks. Following the local updates, a subset of clients, denoted by
Kt, is selected to upload their updated models to the server. The server then aggregates
these models using a weighted averaging scheme based on the volume of data each client
contributes, thereby producing a new global model for the subsequent round t+ 1:

wt+1 =
∑
k∈Kt

|Dk|∑
k∈Kt |Dk|

wt+1
k . (2)

3.2. Adaptive Logit Adjustment

To address the imbalance in the distribution of classes, we locally adjust the classifier’s
influence weights on each class on the client side. This adjustment makes the training
process more fair and improves sensitivity to all classes. Specifically, the score matrix for
each class is multiplied by the adjusted local label distribution matrix. The details are as
follows:

Firstly, the local label distribution is dist = [n1, n2, ..., nC ], where ni denote the number
of samples in class i. All elements within dist are divided by the total number of local
samples. The normalised ndist is used to calculate the adjustment matrix adist:

adist =
ndist

max(ndist)
· (1.0− α) + α · 1. (3)

Here, the smoothing factor α is a critical hyperparameter, 1 is the unit vector. When α is
close to 0, the adist are primarily determined by the original normalized distribution. As
α approaches 1, the weights in adist for each class become nearly equal. This smoothing
step introduces a certain degree of uniformity while preserving the original distributional
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characteristics of the data. It ensures that the model does not become overly sensitive to
classes with extreme distribution during training. By retaining the essential information of
each class and reducing the influence of outliers, this approach enhances the model’s ability
to learn from less frequent classes. Ultimately, this helps improve the model’s generalization
ability and fairness across uneven datasets.

Secondly, the calculated adist is element-wise multiplied with the original score matrix
hi ·W⊤to obtain the adjusted logits zi:

zi = adist⊙ hi ·W⊤. (4)

Finally, the loss function LA is calculated from the modified logits zi,j :

LA = − 1

N

N∑
i=1

yi log

(
exp (zi,yi)∑C
j=1 exp (zi,j)

)
, (5)

where zi,j denotes the adjusted logit of sample xi on class j, N denoted total number of
sample.

3.3. Class Center Optimization

Inspired by contrast loss, we adjusting the Euclidean distance of features and the corre-
sponding class centers, which improve the model’s ability to discriminate among samples of
different classes. Particularly, we maintain constantly updated set of class centers locally
P̂ = [p̂c | c = 1, 2, ..., C]. We assume that hci represents the features whose sample xi is
class c, Nc is the total number of local samples belonging to class c, and p̂c is computed as
follows:

p̂c =
1

Nc

Nc∑
i=1

hci , (6)

and then, we keep optimizing the class centers P̂ during the training process by:

LC =

C∑
c=1

Nc∑
i=1

− log(
e−ϕ(hc

i ,p̂c)

e−ϕ(hc
i ,p̂c) +

∑
c′ ,c′ ̸=ce

−ϕ(hc
i ,p̂c′ )

). (7)

Here, c
′
represents all classes not equal to class c. Although the above formula is the

standard contrast loss, it does not significantly reduce the intra-class distance, and the
learned inter-class boundaries are not clear enough.

To further clarify the boundaries, we force the learning of inter-class margins Q during
training by introducing a class spacing threshold τ , which is calculated as follows:

Q = min(( max
c⊆[C],c′⊆[C],c ̸=c′

ϕ(p̂c, p̂c′ )), τ), (8)
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where τ is a hyperparameter. The loss function is rewritten as follows:

LC =
C∑
c=1

NC∑
i=1

−(log( e−ϕ(hc
i ,p̂c)+Q)

e−(ϕ(hc
i ,p̂c)+Q) +

∑
c′ ,c′ ̸=ce

−ϕ(hc
i ,p̂c′ )

). (9)

The LC partially takes into account the distribution of sample features, which helps the
model to better distinguish among samples of different classes and improves the classifica-
tion performance of the model. The introduction of the class spacing threshold controls
the spacing among classes to avoid the influence of abnormal samples and enhances the
generalization ability of the model.

3.4. Feature Decorrelation

To further enhance the robustness of the model against correlated feature distributions, we
introduce the loss function for decorrelation. Through evaluating the covariance matrix of
the features and penalising non-diagonal elements , this loss function aims to minimise the
correlation among features. The method is as follows:

The feature matrix X is first normalised:

Xnorm
ij =

Xij − µj

σj
, (10)

Here Xnorm
ij is the element in row i and column j. µj and σj represent the mean and

standard deviation of column j. Then estimate the correlation matrix Cor:

Cor =
1

B
XnormTXnorm, (11)

where Xnorm is the normalised representation matrix, B is the batch size. The loss function
LD is computed as follows:

LD =
N∑
i=1

N∑
j=1

(Corij)
2 . (12)

Here, Corij is the element of row i and column j of the correlation matrix Cor. The
non-diagonal (Corij , i ̸= j) elements within the matrix are the values corresponding to the
correlation among the features. We effectively reduce the correlation among the features
by continuously optimizing the loss function, enhance the robustness and generalization of
the model.

3.5. Overall Optimization Objective

We combine the above three losses, and this combined loss function optimizes intra-class
compactness and inter-class separation while adapting to logits adjustment, and improves
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feature independence. It significantly improves the generalization ability and effectiveness
of the overall model. The combine loss are as follows:

L = LA + λLC + γLD, (13)

Here, λ and γ are hyperparameters, and the clients trains using L. Algorithm 1 summarizes
the recommendation framework FedLF.

Algorithm 1: FedLF

Input: Initialized global model w0, smoothing factor α, class spacing threshold τ , weights of the two
loss functions λ and γ.

Output: global model wt+1.

1 for t = 1 to T do
2 Randomly select a set of active clients Kt.

// Clients execute:

3 for k ∈ Kt do
4 Calculate LA by Equation 5;
5 Calculate LC by Equation 7;
6 Calculate LD by Equation 12;

7 Update local model wt+1
k by Equation 1;

8 Send wt+1
k to the server.

9 end
// Server executes:

10 Aggregate local models to wt+1 by Equation 2.

11 end

4. Experimental Results

In this section, we compare FedLF with seven state-of-the-art methods to demonstrate
that FedLF is effective in relieving the federated long-tailed problem. In order to evaluate
the effectiveness of all methods in more detail, we conduct extensive experiments on two
benchmark datasets and evaluated four accuracies, namely head classes accuracy, middle
classes accuracy, tail classes accuracy and overall accuracy.

4.1. Experimental Setup

The basic experimental setup is as follows: the total number of clients K is set to 20, the
number of local iterations E for each client is 5, and the local batchsize B is 32.

Implementation details. All experiments use ResNet-8 He et al. (2016) as the base
model and run under PyTorch with an Nvidia GeForce RTX 3060 Laptop GPU. We conduct
experiments on the CIFAR-10/100-LT Krizhevsky (2009) dataset and set IF Cao et al.
(2019) to 100, 50,and 10. IF is long-tailed factor to describe the degree of imbalance in the
long-tailed case. The heterogeneous dataset is partitioned into each client using Dirichlet
coefficients based on previous research Xiao et al. (2024), where Dirichlet coefficients are
set to 0.5 and 1.0. The learning rate is mildly set to 0.1. We set the online rate of clients
to 40%, and the clients online each time are randomly selected.
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In addition, we have four different metrics when evaluating model performance: header
classes accuracy, middle classes accuracy, tail classes accuracy, and all classes accuracy. To
define the head and tail classes, we introduce thresholds. We set the classes with more
samples above the thresholds as head classes, and the classes with fewer samples than the
thresholds as tail classes. We have different thresholds for different degrees of long-tailed.
Specifically, for CIFAR-10-LT, the thresholds are set to (1500, 200) when the long-tail factor
IF is 100 and 50, and (1500, 600) when the IF is 10. For CIFAR-100-LT, the threshold is
set to (200,20) when the long-tail factor IF is 100 and 50, and (300, 60) when the IF is 10.

Baselines. We compare with the following baseline: FedAvg McMahan et al. (2017),
FedBN Li et al. (2021), FedRS Li and Zhan (2021), FEDIC Shang et al. (2022a), Focal
Loss Lin et al. (2017), FedProx Li et al. (2020), CReFF Shang et al. (2022b).

Hyperparameters. Unless stated otherwise, most hyperparameters of these baseline
are configured according to the original literature. We utilize the official open-source codes of
these methods. There are four hyperparameters in FedLF, namely smoothing coefficient α,
class spacing threshold τ , and the weights of the loss function λ, γ. The smoothing coefficient
α is set to 0.25 with reference to Li and Zhan (2021). It enhances the generalization ability
of the model, reduces the sensitivity to outliers, and effectively reduces the interference
of extreme sample distributions on model training. We set the threshold τ to 100 with
reference to Zhang et al. (2024). In our loss function formulation: L = LA + λLC + γLD,
the hyperparameters λ and γ are crucial for balancing the contributions of the losses LC

and LD to the aggregate loss L. We set both λ and γ to 0.01, a decision driven by the need
to ensure that the additional terms enhance the model’s performance without overwhelming
the primary loss, LA. The values of λ and γ are determined through a systematic exploration
of various settings, where 0.01 emerged as the optimal value that subtly integrates the
corrective effects of LC and LD, improving overall model robustness and accuracy. For
details, please see Fig. 3.

4.2. Results and Analysis

The results are shown in Table 1 (α = 0.5) and Table 2 (α = 1). In the table, results in bold
and underlined represent the best and second best results for that column. Our method
achieves superior results in all experiments. Compared to the baseline method FedAvg, our
method achieves the highest performance improvement of 13.27% when IF=100, α = 0.5 at
CIFAR-10-LT. This demonstrates that our method has good generalization ability in the
case of severe long-tailed global class distributions.

FedProx, FedBN and FedRS mainly address data heterogeneity. The results of FedProx
and FedBN perform similarly to FedAvg because they primarily focus on addressing data
heterogeneity without considering long tailed distribution. In addition, FedRS, although
not specifically designed for long-tailed distribution, still performs well in long-tailed cases,
suggesting that logit adjustment effectively addresses the long-tailed problem.

CReFF and FEDIC consider long-tailed distribution and show good results in solving
this problem. In few cases, the CReFF method slightly outperforms our method, but when
identifying tail classes, our method significantly outperforms CReFF.

The performance gap between the above methods and ours is due to the fact that
FedProx, FedBN and FedRS mainly solve the problem of data heterogeneity among clients
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Table 1: test accuracy (%) by compared FL methods on CIFAR-10/100-LT at α=0.5.

Datsset
Non-IID α = 0.5
Imbalance Factor IF=100 IF =50 IF=10
Method/Model Head Middle Tail All Head Middle Tail All Head Middle Tail All

CIFAR-10-LT

FedAvg 86.17 53.67 28.07 55.74 90.87 55.84 31.70 61.52 85.34 63.30 64.90 74.48
FedProx 83.33 59.60 28.27 57.32 91.53 58.52 31.80 63.08 84.86 70.70 53.60 76.07
CReFF 82.30 50.48 18.70 69.21 89.13 59.30 31.50 71.90 84.38 73.22 57.20 78.51
FedBN 86.47 50.35 29.20 54.84 91.50 54.30 36.30 61.86 84.44 62.48 65.60 73.77
FEDIC 62.40 60.90 78.03 66.49 68.97 63.88 71.03 67.55 73.50 61.40 73.76 71.21
FedRS 65.17 69.05 67.87 67.53 70.73 70.30 79.85 72.34 72.54 83.40 86.00 78.51
Focal Loss 80.97 50.95 13.23 48.64 88.73 47.36 17.60 53.82 76.76 65.42 64.50 71.00
FedLF 72.73 65.67 69.67 69.01 74.43 68.86 82.15 73.19 80.38 78.45 85.90 80.16

CIFAR-100-LT

FedAvg 67.15 32.10 3.67 30.58 65.25 31.53 7.50 35.30 66.77 41.51 12.25 44.73
FedProx 66.90 33.24 6.10 31.83 64.88 31.84 9.11 35.68 65.09 42.96 17.13 45.46
CReFF 63.12 47.83 9.00 34.60 65.34 48.06 10.32 37.64 60.35 53.74 15.00 47.08
FedBN 62.65 30.06 5.03 29.07 60.79 28.91 4.78 32.22 55.68 42.04 13.00 42.72
FEDIC 50.30 41.26 10.49 33.67 48.13 39.08 13.00 36.74 57.84 40.16 17.65 41.93
FedRS 50.45 41.80 8.53 33.23 48.79 40.45 15.44 37.12 51.27 48.69 15.88 46.70
Focal Loss 58.70 28.86 2.23 26.84 59.17 27.10 5.44 30.94 60.14 41.39 12.63 43.21
FedLF 52.10 41.86 11.33 34.48 49.67 42.41 16.06 39.52 53.18 50.63 19.38 48.69

Table 2: Test accuracy (%) by compared FL methods on CIFAR-10/100-LT at α=1.0.
Non-IID α = 1
Imbalance Factor IF=100 IF =50 IF=10Datsset
Method/Model Head Middle Tail All Head Middle Tail All Head Middle Tail All
FedAvg 83.93 61.28 35.17 60.24 91.93 60.84 22.60 62.52 87.76 69.07 47.20 76.23
FedProx 83.03 65.87 35.40 61.88 90.13 61.78 28.45 63.62 85.02 73.02 65.50 78.27
CReFF 89.17 52.08 23.50 69.94 93.60 55.34 25.65 72.68 86.46 71.95 60.50 80.56
FedBN 80.00 60.65 36.70 59.27 79.90 58.60 35.65 61.68 73.48 82.94 62.20 76.14
FEDIC 73.37 59.35 68.50 66.30 71.40 59.15 71.60 69.05 73.43 68.00 75.94 73.16
FedRS 62.27 69.45 69.50 67.31 71.43 70.80 77.30 72.29 79.08 80.95 90.90 80.93
Focal Loss 74.53 56.63 21.10 51.34 85.40 51.64 9.30 53.30 82.54 66.90 66.60 73.69

CIFAR-10-LT

FedLF 65.27 69.87 70.77 68.76 74.17 71.92 80.25 74.05 81.60 82.95 86.60 82.64
FedAvg 66.95 33.88 3.87 31.18 67.33 32.03 6.78 35.96 66.86 45.33 14.25 46.33
FedProx 66.85 33.64 3.83 31.35 66.92 31.88 9.83 36.32 66.50 46.93 16.00 47.15
CReFF 67.23 55.87 3.20 35.23 65.89 53.62 14.32 38.65 70.83 58.01 15.06 48.03
FedBN 57.10 32.94 3.10 29.28 60.83 28.81 9.72 33.06 60.18 41.40 10.13 43.03
FEDIC 49.85 41.36 8.60 33.98 50.63 40.19 11.68 37.26 65.39 42.60 13.03 45.36
FedRS 51.15 43.10 8.37 34.29 46.54 41.48 17.00 37.90 48.73 50.89 12.50 47.34
Focal Loss 60.55 28.78 3.30 27.49 60.21 29.83 2.33 32.17 64.55 41.64 12.12 44.32

CIFAR-100-LT

FedLF 49.55 44.54 9.93 35.16 52.17 42.19 13.83 40.12 54.27 52.31 15.12 49.77

and do not take into account the long-tailed factor, which is the most common factor in
real life. CReFF and FEDIC is designed for the long-tailed problem have good overall
performance but do not effectively improve the accuracy of determining the tail classes. In
contrast, our approach takes into account the long-tailed problem. It obtains good overall
performance without losing the ability to judge tail classes. Fig. 2 represents the convergence
curves of algorithms for the IF = 10 and α = 0.5 and feature TSNE plot after 200 rounds
of training.

Figure 2: (1) denotes the convergence curves on CIFAR-10-LT with IF=10 and α = 0.5,
(2) denotes feature TSNE plot after 200 rounds of training.

4.3. Ablation Study

Our loss function consists of three components, in order to assess the impact of each com-
ponent of FedLF on model performance in the same long-tailed environment, we design a
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Table 3: Ablation Experiments result(%) for IF=50 and IF=10 at α = 0.5

Long-tailed factor
Components Multi-precision
LC LD Head Middle Tail All

IF = 50

✗ ✗ 72.70 68.34 72.10 70.40
✓ ✗ 73.63 68.34 79.20 72.10
✗ ✓ 73.13 69.70 77.80 72.35
✓ ✓ 74.43 68.86 82.15 73.19

IF = 10

✗ ✗ 71.64 83.53 89.80 78.21
✓ ✗ 73.96 82.75 89.70 79.05
✗ ✓ 74.92 81.13 91.10 79.02
✓ ✓ 77.48 81.80 88.20 80.28

Table 4: Ablation Experiments result(%) on CIFAR-10-LT at α=0.1 and IF=0.1
Non-IID and IF factor α = 0.1 and IF = 0.1

Method/Model Head Middle Tail All
FedAvg 75.80 45.30 45.00 60.52
FedProx 79.32 62.52 43.60 69.03
CReFF 75.98 44.55 42.30 73.56
FedBN 57.80 50.08 88.90 57.82
FEDIC 74.60 54.23 46.90 72.16
FedRS 72.12 63.30 65.50 67.93

Focal Loss 65.36 61.180 43.60 61.51
FedLF 75.70 72.20 69.90 73.72

series of ablation experiments. By progressively removing or modifying weights of compo-
nents, we aim to clarify the contribution of each component to the overall performance.
In particular, we hope to reveal the role of each component in improving model accuracy
under data distributions characterized by varying degrees of long-tailed.

Comparisons under the same long-tailed. We evaluate the impact of each compo-
nent in the same long-tailed environment to demonstrate its effectiveness.

• Effectiveness of LC : The effect of LC is evident in Table 3. The experimental results
are significantly improved with the addition of this component, which increases the
ability of intra-class compactness and inter-class separability of features.

• Effectiveness of LD: As can be seen from Table 3, LD plays an vital role. After adding
this component, the experimental results are significantly improved, indicating that
this loss function effectively reduces the correlation of features.

Comparisons under the different long-tailed and heterogeneous. As shown in
Table 1 and Table 2, varying degrees of long-tailed distribution significantly impacts the
algorithm’s accuracy. As the extent of the long-tailed distribution increases, the accuracy
of the algorithm correspondingly decreases. To ensure the rigor of our conclusions, we
conduct ablation experiments under different levels of long-tail distribution to verify the
effectiveness of each component. The experimental results are shown in Table 3, indicating
that each component is effective under different degrees of long-tailed environmental condi-
tions. In addition, we conduct an experiment in a serious heterogeneous scenario, such as
α=0.1 in Table 4. The results show that FedLF demonstrates effectiveness in such severe
heterogeneous scenarios.

Impact of different weights. We investigate the effect of the weights λ of LC and
γ of LD on model performance. The 3 show that different parts of the loss function play
different roles in training and optimization. Therefore, to better exploit the contribution
of each loss term, we adjust the weights of LC and LD separately and observe their effects
on model performance. The results are shown in Fig. 3. The model performance is optimal
when λ and γ are set to 0.01.
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Figure 3: Impact of λ and γ weights.

5. Conclusion

In this paper, we present FedLF to enhance federated learning under data heterogeneity
and global long-tailed data. FedLF is a client-side approach, which introduces three mod-
ifications in the local training phase: adaptive logits adjustment, continuous class centred
optimization, and feature decorrelation. Furthermore, the effectiveness of each component
of FedLF is verified. Experiments show that FedLF achieves superior results on datasets
with heterogeneous and long-tailed settings compares to seven other state-of-the-art meth-
ods. For future works, we aim to study federated learning robustness against noisy labels
Wu et al. (2023); Jiang et al. (2022, 2024a,b), especially in long-tailed data environments.
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