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ABSTRACT

In real-world applications like medicine, machine learning models must often work
with a limited number of features due to the high cost and time required to acquire
all relevant data. While several static feature selection methods exist, they are
suboptimal due to their inability to adapt to varying feature importance across
different instances. A more flexible approach is active feature acquisition (AFA),
which dynamically selects features based on their relevance for each individual
case. Here, we introduce an AFA framework that leverages Shapley Additive
explanations

::::::
SHapley

::::::::
Additive

:::::::::::
exPlanations (SHAP) to generate instance-specific

feature importance rankings. By reframing the AFA problem as a feature prediction
task, we propose a policy network based on a decision transformer architecture,
trained to predict the next most informative feature based on SHAP values. This
method allows us to sequentially acquire features in order of their predictive
significance, resulting in more efficient feature selection and acquisition. Extensive
experiments across multiple datasets show that our approach achieves superior
performance compared to current state-of-the-art AFA techniques, both in terms of
predictive accuracy and feature acquisition efficiency. These results demonstrate
the potential of SHAP-based

:::::::::::::::::
explainability-driven

:
AFA for applications where

feature acquisition cost is a critical consideration, such as in disease diagnosis.

1 INTRODUCTION

In traditional machine learning settings, it is typically assumed to have all features available during
inference. However, in real-world scenarios, especially in medical settings, acquiring these features
can be expensive, time-consuming, and is often done sequentially. Therefore, it is crucial to develop
methods that can make accurate predictions with a limited number of features. This can be achieved
by selecting a static global subset of features, but it is suboptimal since the important set of features
may vary across different instances (Kachuee et al., 2019; Covert et al., 2023b). Additionally, the
chosen subset might not provide sufficient information for some cases, necessitating the acquisition
of more features to ensure a confident prediction. A more effective strategy is to identify important
features sequentially for each individual instance, a technique known as active (or dynamic) feature
acquisition (AFA), which has been gaining increasing attention in recent years (He & Chen, 2022;
von Kleist et al., 2023; Chattopadhyay et al., 2024).

The literature mainly contains two different ways of approaching AFA: reinforcement learning
(RL)-based and greedy-based methods. Both approaches aim to develop a feature selection policy
through exploration. RL-based methods (Kachuee et al., 2019; Yin et al., 2020; von Kleist et al.,
2023) train policy networks by maximizing different reward functions. While the RL-based approach
is intuitive for this sequential task and theoretically capable of finding the optimal policy, empirical
evidence shows that RL-based methods often underperform compared to greedy-based methods
Gadgil et al. (2024)

::::::::::::::::
(Gadgil et al., 2024). Greedy-based methods attempt to predict the next most

important available feature by calculating conditional mutual information (CMI). To compute CMI,
researchers have proposed both generative approaches (Rangrej & Clark, 2021; He et al., 2022) and
methods based on the variational perspective (Covert et al., 2023b; Gadgil et al., 2024). However,
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calculating CMI directly remains challenging, and methods leveraging the variational perspective
have demonstrated superior performance compared to generative alternatives.

In this work, we approached the problem by empirically observing that deep learning model
::::::::::::
learning-based local explanation methods, such as Shapley Additive Explanations

:::::::
SHapley

:::::::
Additive

::::::::::
exPlanations

:
(SHAP) (Lundberg & Lee, 2017), can be utilized to identify instance-wise feature

importance rankings. With this insight, we treated the AFA problem as a feature prediction task rather
than a feature exploration one. Our contributions are listed below:

• To the best of our knowledge, this is the first time in the AFA literature that the utility of local
explanation methods, specifically SHAP (Lundberg & Lee, 2017), has been demonstrated for
determining instance-wise feature importance rankings. We demonstrate that if we had an ideal
(oracle) policy network that sequentially selects features based on their SHAP values, sorted from
highest to lowest during inference, would outperform current state-of-the-art AFA techniques
in terms of accuracy for any fixed number of features. Similar observations were made in the
local explanation literature (Petsiuk et al., 2018; Jethani et al., 2021; 2022). They illustrate that
insertion (or deletion) of the important features ranked based on their respective explanation
methods improves (or degrades) model performance. However, these observations have yet to
be formally compared with AFA techniques, leaving a gap in understanding how AFA methods
compare to these explanation-based feature ranking approaches.

• We took a different approach by training
:::::
trained

:
our policy network to predict the next unacquired

feature with the highest SHAP value, based on the current observation.
• We employed recently developed decision transformer (Chen et al., 2021) architecture as a policy

network, and trained it using a two-stage approach. We showed that the feature importance ranking
order is predictable without observing them

:
it. Also, our experiments demonstrate that our technique

achieves better or comparable results with the state-of-the-art AFA methods on different datasets.

2 RELATED WORKS

Generally, the methods in the AFA literature have two networks: a policy network for feature
acquisition and a prediction network for prediction with available subset of features. These methods
mainly differ in training their policy networks, so we only highlight those differences.

The AFA problem can be formulated as a Markov decision process (MDP) (Zubek & Dietterich, 2002;
Dulac-Arnold et al., 2011); based on this formulation

:
, there have been many RL-based approaches

proposed (Dulac-Arnold et al., 2011; Shim et al., 2018; Kachuee et al., 2019; Yin et al., 2020; Li
& Oliva, 2021; von Kleist et al., 2023). These methods generally train their policy networks with
the objective of maximizing the defined reward functions. Namely, they try to approximate the
action-value function (i.e., Q-function). For example, in (Dulac-Arnold et al., 2011), the Q-function
is approximated linearly and later it is extended in (Janisch et al., 2019) using a deep Q network
(Mnih et al., 2015; van Hasselt et al., 2016). A similar approach was taken by the opportunistic
learning (OL) method in (Kachuee et al., 2019). Another type of mainstream methods (Rangrej
& Clark, 2021; He et al., 2022; Covert et al., 2023b; Chattopadhyay et al., 2023; Gadgil et al.,
2024) are the greedy-based methods

::::::::::
frameworks. These methods acquire the features by estimating

the conditional mutual information (CMI) between the current available subset of features and the
unacquired features. For CMI estimation, there are generative approaches (Rangrej & Clark, 2021;
He et al., 2022) that use variational autoencoders (Kingma & Welling, 2013), and discriminative
approaches (Covert et al., 2023b; Chattopadhyay et al., 2023; Gadgil et al., 2024) directly predicting
the feature index with the highest CMI without explicitly calculating CMI. Although, the MDP
formulation is theoretically appealing, RL-based methods often underperform compared to the dis-
criminative approaches such as the greedy-based methods Covert et al. (2023b); Gadgil et al. (2024)
:::::::::::::::::::::::::::::::::
(Covert et al., 2023b; Gadgil et al., 2024).

In addition to AFA methods, related approaches from the budget learning litera-
ture Trapeznikov & Saligrama (2013); Nan & Saligrama (2017); Ekanayake & Zois (2024)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Trapeznikov & Saligrama, 2013; Nan & Saligrama, 2017; Ekanayake & Zois, 2024) explore fixed
feature acquisition orders, limiting the number of potential feature subsets. These methods aim to
identify easily classifiable instances, enabling the acquisition of a minimal set of features in such
cases, thereby reducing overall acquisition costs.

2
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With regards to the local explanation literature (Petsiuk et al., 2018; Jethani et al., 2021; Lundberg &
Lee, 2017), various methods focus on quantifying the contribution of individual features to model
predictions for each instance. Among these methods, SHAP (Lundberg & Lee, 2017), based on game-
theoretic Shapley values Shapley (1953)

:::::::::::::
(Shapley, 1953), is particularly popular. However, SHAP

calculations are computationally intensive, leading to the development of several approximations
(Lundberg & Lee, 2017; Ancona et al., 2019; Jethani et al., 2022; Covert et al., 2023a). FastSHAP
(Jethani et al., 2022), for instance, provides an efficient approximation using a deep explainer model.
Additionally, global feature importance methods aim to identify the most relevant static features
across an entire dataset. For example, the Concrete Autoencoder (CAE) (Balın et al., 2019) trains an
autoencoder to select important features, while SAGE (Covert et al., 2020) extends Shapley values to
quantify global feature importance through an additive importance measure. For a detailed overview,
we refer readers to recent surveys (Samek et al., 2021; Bolón-Canedo et al., 2022).

Notation Description
x Input feature vector
d Dimensions of input feature vector
y Target label
C Number of classes
qπ Policy network(Causal transformer)
fθ Predictor network
π Parameters of policy network
θ Parameters of predictor network

rt ::
rt Index of the latest acquired feature (reward

:::::
Logits

::
of

:::
the

::::::::
predictor

::::::
(action) after acquiring t features

at Logits of the predictor (action
:::::
Index

::
of

:::
the

:::::
latest

:::::::
acquired

::::::
feature

:::::::
(reward) after acquiring t features

q̂ Output of policy network qπ
ŷ Output of predictor network fθ

φi(t) tth important feature of x(i) based on SHAP ranking
ˆφi(t) tth important feature of x(i) based on policy network’s predictions
Mt Set of t most important feature indices based on SHAP ranking
M̂t Set of first t feature indices acquired based on φ̂i

xMt
Input feature vector with features from Mt unmasked

xM̂t
Input feature vector with features from M̂t unmasked

ℓ Context length of causal transformer

Table 1: Mathematical notations used in the paper.

3 PROBLEM DESCRIPTION

Let x ∈ Rd represent the d-dimensional input feature vector 1, and y ∈ {1, 2, ..., C} denote the
associated target label, where C is the number of classes. Additionally, let M ⊆ [d] ≡ {1, ..., d} be
the subset of indices indicating the available features, and xM be the masked input vector with these
available features. Each feature j has an associated cost cj , and each input x is subject to a budget
constraint k. The objective is to find a predictor fθ, parameterized with θ, and a policy network qπ,
parameterized with π, such that the following constraint objective is minimized:

min
θ,π

ExykEM∼qπ [ℓ(fθ(xM ), y)], s.t.
∑
j∈M

cj ≤ k, (1)

where the first expectation is taken over the joint distribution of x, y, and k. The subset M is generated
sequentially by the policy network qπ, which determines the next missing feature to acquire, i.e.,
argmax qπ(xM ) ∈ [d]\M . And, the predictor fθ makes probabilistic predictions for any possible
subset M , i.e., fθ(xM ) ∈ [0, 1]C,1. For brevity, let the output of qπ be denoted as q̂, i.e., q̂ = qπ(xM )
and the output of fθ be denoted as ŷ, i.e., ŷ = fθ(xM ).

1Each feature can have different dimension size but ease of exposition, in here we have assumed each feature
is one dimensional.

3
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Typically, methods in the literature (Yin et al., 2020; Covert et al., 2023b) assume that features have
identical costs and that there is a fixed global budget k for all inputs. Given the available training
samples {(xi, yi)}Ni=1, these methods aim identifying input-specific important features to acquire
them sequentially in order of the most informative feature to the least one. To achieve this, they train
qπ through exploration using reinforcement learning (RL) (Yin et al., 2020) or information-theoretic
(Covert et al., 2023b) formulations, while simultaneously training the predictor network fθ.

In this paper, we approach the problem from a different perspective by assuming having access to
feature importance rankings for each training sample. Consequently, instead of treating it as a feature
exploration problem, we address it as a feature prediction problem (Figure 1).

4 OUR METHODOLOGY
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Figure 1: Overview of our active feature acquisition framework. a) Our training strategy consists
of two stages and this figure shows how the masked inputs are generated during the first and second
stages. In the first stage, features are selected based on their ranking order derived from SHAP values.
In the second stage, features are acquired by the policy network (qπ). During the first stage, the next
feature in the ranking is the target feature index. However, in the second stage, the target feature is
the feature index having the highest SHAP value among the ones that are not acquired; because of
this, the target feature remains the same until it is acquired. b) This part of the figure shows how
the policy network qπ, based on the decision transformer (Chen et al., 2021), processes the masked
inputs during training. Sequential data with a context length ℓ, set to 2 in this case, is fed into qπ.
At each time step, qπ receives three tokens: the masked input (xMt), action (a(i)t ) and reward (rt).
The action token represents the index of the last acquired feature, and the reward is the output of the
predictor network. To ensure causality, future tokens are masked while qπ predicts the next feature to
acquire at any time step. c) This figure illustrates the inference stage for image inputs in the causal
transformer model, where predicted features (or patches) are progressively acquired in a series of
sequential acquisition steps.

Feature importance ranking. In our method, we assume access to the feature rankings φi for each
training sample xi, sorted by their importance. While determining the importance of features for each
input is challenging, we found that local explanation methods, particularly SHAP (Lundberg & Lee,
2017), can effectively achieve this goal. Empirically, we observed

::
We

::::::::
assumed

:::
that

::
a
:::::
model

::::
with

:::::::::
reasonable

:::
task

:::::::::::
performance

:::::
would

::::::::
naturally

:::::::
prioritize

:::
the

:::::
most

::::::::
important

::::::::::::::
instance-specific

:::::::
features,

:::::
which

:::
can

:::
be

::::::::
identified

:::::
using

::::::::::
explanation

::::::::
methods.

::::
We

::::::::::
empirically

::::::::
validated

:::
our

::::::::::
assumption

:::
by

::::::::
observing

:
that if the policy network perfectly acquires features in the order of highest to lowest

absolute SHAP values sequentially during inference, the predictor achieves the best performance on
average for a given budget of k available features, compared to the current state of the art methods
(Figure 2).

To be able to get the SHAP values of the features for the each input, first, we train a classifier using
{(xi, yi)}Ni=1 with the standard cross-entropy loss minimization. Then, we calculate the SHAP values

4
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Dataset # Features (d) # Classes # Samples Image size Patch size
ImageNette 196 10 13,395 224× 224 16× 16
CIFAR-100 64 100 60,000 32× 32 4× 4
CIFAR-10 64 10 60,000 32× 32 4× 4
BloodMNIST 196 8 17,092 28× 28 2× 2
Spambase 57 2 4,601 - -
:::::::
Metabric

: :::
489

: :
6
: :::::

1,898
:
-

:
-

::::
CKD

: ::
50

:
2
: :::::

1,659
:
-

:
-

::::
CPS

:
8
: :

3
: :::

418
:
-

:
-

:::::
CTGS

: ::
23

:
2
: :::::

2,139
:
-

:
-

Table 2: Summary of datasets used in our experiments. For each dataset, we listed the number of
features (d), number of classes, number of samples, image size, and patch size utilized. Note that
Spambase is a tabular dataset; therefore, image size and patch size are not applicable.

of the features for each input xi and sort them to get φi, where φi(1) is the feature index having the
highest absolute SHAP value and φi(d) is the feature index having the lowest absolute SHAP value
for the input xi. So our training set is {(xi, yi, φi)}Ni=1.

Policy network - Decision transformer. By approaching the problem as the conditional sequence
modeling task, similar to in the “decision transformer” framework (Chen et al., 2021), we train qπ,
which is a causal transformer model, with the objective of next action/token prediction. We feed qπ
with sequential data with a sequence length (i.e., context length) of ℓ. At each timestep, there are
three tokens including the input, the action and the reward as described in Chen et al. (2021). During
training, at the timestep of t, the input is xi

Mt
, which is the i’th sample with the t many available

features and Mt = {φi(1), ..., φi(t)}2. Whereas, the action ait is the most recently acquired feature
index, i.e., ait = φi(t) and the reward rit is the output of the predictor with the current input, i.e.,
rit = ŷi

t = fθ(x
i
Mt

). The rewards in reinforcement learning-based methods (Kachuee et al., 2019; Li
& Oliva, 2021) are typically functions of the predictor output; in our method, we follow a similar
idea, but instead of defining a specific function, we directly feed our policy transformer network with
the predictor output. So, for a given sequence from the timestep t to t + ℓ − 1, the output of our
qπ for the input i is: q̂i

t = qπ(x
i
Mt

, ait, r
i
t) and q̂i

t+ℓ−1 = qπ(x
i
Mt:t+ℓ−1

, ait:t+ℓ−1, r
i
t:t+ℓ−1), where

t : t+ ℓ− 1 indicates all the tokens from the time step t to t + ℓ − 1. We used a mini version of
GPT3 architecture (Radford, 2018) as a transformer model. Please refer to the decision transformer
paper (Chen et al., 2021) for more details.

Training strategy. To train qπ, we minimized the standard cross-entropy loss by considering the
index of the next feature that is not acquired with the highest SHAP value (i.e., φi(t+ 1)) as the true
label with the minibatch setting. At each iteration, the loss function is:

Lq = − 1

Nb

Nb∑
i=1

ti+ℓ−1∑
t=ti

log(q̂i
t,φi(t+1)), (2)

where Nb is the batch size, q̂i
t,φi(t+1) is the φi(t + 1)’th element of q̂i

t, and ti is randomly sam-
pled integer determining the initial time step of sequence fed to the model for the i’th sample.
Simultaneously, we train the predictor fθ also by minimizing the standard cross-entropy loss:

Lf = − 1

Nb

N∑
i=1

ti+ℓ−1∑
t=ti

log(ŷi
t,y). (3)

During the first stage of training, both fθ and qπ are fed by the input with the features that are
acquired based on the SHAP value ranking order. However during inference, because qπ is not 100%
accurate, the feature subset M̂t, generated by qπ , may not always contain the top t features with the

2Each sample i has its own specific Mt, but we do not specify through superscript i if it is clear from the
context.

3https://github.com/karpathy/minGPT
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Figure 2: Model performance. Average classification performance of our AFA method compared
with other well-known methods across varying number of features on the Spambase tabular and four
image datasets: CIFAR-10, CIFAR-100, BloodMNIST and ImageNette.

highest SHAP values. To train both models to handle this new subset of features not encountered
in the first stage, we introduce a second stage of training. At the beginning of each iteration of the
second stage, we first generate empiric/predicted feature acquisition φ̂i order for each xi, where
φ̂i(t+ 1) = argmax q̂i

t and M̂t = {φ̂i(1), φ̂i(2), ..., φ̂i(t)}. Then, we minimize the same losses as
in the first stage with the same strategy. In Lq , the index of the feature, which is not acquired yet and
having the highest SHAP value among the features that are not acquired, is taken as the true label. For
example, if φi(1) /∈ {φ̂i(1), ..., φ̂i(t)} then φi(1) is taken as the true label; but if φi(1) is acquired
and φi(2) is not acquired then φi(2) is taken as the true label, i.e., φi(1) ∈ {φ̂i(1), ..., φ̂i(t)} and
φi(2) /∈ {φ̂i(1), ..., φ̂i(t)}. By this second stage, we train the predictor fθ to make its prediction
with the subset of features M̂t acquired by qπ. Also, the policy network qπ is trained to predict the
feature with the highest SHAP value among the features that are not acquired using the input with
the imperfect subset of features M̂t. This second stage helps both networks to perform better during
inference, where the imperfect subset of features M̂t can only be used. Note that both the predictor
and policy networks are dependent on each other. However, during training, we prevent the gradient
flow from one network to another. Therefore, each network has its own independent loss function;
because of the dependency, we trained them simultaneously. At t = 0, there is no feature acquired
yet, i.e., M0 = ∅; so for all i, the outputs of qπ are the same at t = 0. Consequently, at t = 0, for all
inputs we have to choose the same feature to be acquired. In our method, we initialized each input by
the fixed first feature that has the highest SHAP value on average calculated on the training set.

Implementation details. During training, we set number of epochs to 200 and 16 for the first and
second stage, respectively. We used Adam optimizer (Kingma & Ba, 2014) and a cosine scheduler
(Loshchilov & Hutter, 2017). Before starting training, we pre-trained the predictor network, as done
in (Covert et al., 2023b; Gadgil et al., 2024). We also employed a different augmentation strategy
proposed in (Hoffer et al., 2020). Also, as done by other methods in the literature (Kachuee et al.,
2019; Covert et al., 2023b; Gadgil et al., 2024), we shared the backbone between fθ and qπ . We used
this backbone in qπ to get the embedding of the input token. The embedding of action was extracted
using a learnable embedding dictionary. For the reward’s embedding, a simple MLP was used. In qπ ,
we set context length ℓ to 4, number of heads and layers 4 and 3, respectively.
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Spambase CIFAR-10 CIFAR-100 BloodMNIST ImageNette
# of classes: 2 10 100 8 10

First-stage 0.9512 75.68% 45.88% 79.08% 73.35%
Second-stage 0.9559 78.61% 47.06% 84.38% 79.08%

Table 3: Stage-wise classification performance. The table presents our model’s performance after
the first and second training stages, averaged over the first 20 features, on the Spambase, CIFAR-10,
CIFAR-100, BloodMNIST, and ImageNette datasets. For the Spambase dataset, we reported the
area under the receiver operating characteristic curve values, while for the remaining datasets, we
provided accuracy metrics.

CIFAR-10 CIFAR-100 BloodMNIST ImageNette
# of features (d): 64 64 196 196

:::
Top

:::
10

:::::::
features

::::::
36.54%

: ::::::
48.71%

::::::
42.17%

::::::
11.08%

:

:::
Top

:::
15

:::::::
features

::::::
46.08%

: ::::::
58.30%

::::::
49.09%

::::::
15.99%

:

:::
Top

:::
20

:::::::
features

::::::
52.46%

: ::::::
64.78%

::::::
53.58%

::::::
20.61%

:

:::
Top

:::
25

:::::::
features

::::::
57.41%

: ::::::
68.71%

::::::
56.52%

::::::
24.92%

:

:::
Top

:::
30

:::::::
features

::::::
62.00%

: ::::::
71.32%

::::::
58.63%

::::::
29.01%

:

Table 4:
:::::::::
Alignment

:::::::
between

::::::::
model’s

::::::
feature

::::::::::
acquisition

::::::
order

::::
and

:::
the

::::::::::::
SHAP-based

::::::
feature

::::::::::
importance

::::::::
rankings.

:::
This

:::::
table

:::::::
presents

:::
the

:::::::::
percentage

::::::
overlap

:::::::
between

:::
the

:::
top

::
N

:::::::
features

:::::
ranked

::
by

::::::
SHAP

:::::
values

::::
and

:::::::
features

:::::::
acquired

:::
by

:::
our

::::::
model

:::
for

::
N

:
=
::::

10,
:::
15,

:::
20,

:::
25,

:::
and

::::
30.

::::
The

::::::
datasets

::::::
include

:::::::::
CIFAR-10

:::
and

::::::::::
CIFAR-100

:::::
(each

::::
with

::
64

::::::::
features),

:::
and

::::::::::::
BloodMNIST

:::
and

::::::::::
ImageNette

::::
(each

::::
with

:::
196

::::::::
features).

5 RESULTS
::::
AND

:::::::::::::
DISCUSSION

We utilized several datasets in our experiments (Table 2), including ImageNette, CIFAR-10,
CIFAR-100, BloodMNIST, and Spambase. ImageNette Howard (2019)

:::::::::::::
(Howard, 2019) is a 10-

class subset of the ImageNet dataset Deng et al. (2009)
:::::::::::::::
(Deng et al., 2009). CIFAR-10 and CIFAR-

100 Krizhevsky (2009)
::::::::::::::::
(Krizhevsky, 2009) are subsets of the 80 Million Tiny Images dataset

Torralba et al. (2008)
:::::::::::::::::
(Torralba et al., 2008), containing 10 and 100 classes respectively. BloodM-

NIST (Acevedo et al., 2020), derived from the MedMNIST dataset (Yang et al., 2021; 2023),
comprises images of individual normal cells collected from individuals without infection, hemato-
logic or oncologic diseases, and free of any pharmacologic treatment at the time of blood collection.
The patch sizes are 16 × 16 for ImageNette (makes total of 196 patches, d = 196), 4 × 4 for the
CIFAR-10 and CIFAR-100 datasets (d = 64), and 2 × 2 for the BloodMNIST dataset (d = 196).
Spambase (Hopkins & Suermondt, 1999) is a well-known tabular dataset for classifying spam
emails, consisting of 57 features derived from textual data.

:::::::::::
Additionally,

::
to

:::::
assess

:::
the

::::::::::
applicability

::
of

:::
our

::::::
method

::
in

:::::::::
real-world

:::::::::
scenarios,

::::
such

::
as

:::::::::
healthcare,

:::
we

:::::::::
conducted

::::::::::
experiments

:::
on

::::
four

::::::
medical

::::::
tabular

:::::::
datasets.

:::
As

::::
part

:::
of

:::
the

::::::::::::
preprocessing,

:::
we

::::::::
removed

:::
ID

:::::::
columns

::::
and

:::::::::
categorical

:::::::
columns

:::
that

:::::
were

:::
not

::::::::::::
ranking-based

::
or

:::::::
binary.

::::::::
Columns

:::::
with

::::
more

:::::
than

::::
10%

:::::::
missing

::::::
values

:::::
were

:::
also

::::::::
excluded,

:::::
while

:::
the

:::::::::
remaining

:::::::
missing

:::::
values

:::::
were

:::::::
imputed

::::
with

:::
the

::::::
mean.

::
In
::::

the
::::::::
following

:::
and

::
in

:::::
Table

::
2,

:::
the

:::::::
number

::
of

:::::::
features

::::::
refers

::
to

:::
the

:::::
count

:::::
after

::::::::::::
preprocessing.

::::
The

::::::::
Metabric

::::::
dataset

::::::::::::::::::::::::::::::::
(Curtis et al., 2012; Pereira et al., 2016)

:::::::
contains

:::::::
targeted

::::
gene

::::::::::
sequencing

::::
data

:::::
from

:::::
1,898

:::::
breast

:::::
cancer

::::::::
samples,

:::::
where

:::
we

:::::::
utilized

:::::::::::
mRNA-level

::::::::
Z-scores,

::::::
which

:::::::
contains

::::
489

:::::::
features,

::
to

::::::
predict

::
the

:::::::
Pam50

::::
gene

:::::
status

:::
that

::
is
::
a
:::::::::
multi-class

:::::::::::
classification

::::
task.

::::
The

::::::::
Cirrhosis

::::::
Patient

:::::::
Survival

::::::
(CPS)

::::::
dataset

::::::::::::::::::::::::::
(Dickson & Langworthy, 1989)

:::::::
includes

::::::
records

:::::
from

:::
418

:::::::
patients,

:::::::::
primarily

::::
with

:::::::
primary

:::::
biliary

::::::::
cirrhosis,

::::::
along

::::
with

:
8
:::::::

clinical
::::::::
features,

::::
with

:::
the

::::
task

::
of

:::::::::
predicting

::::::
patient

:::::::
survival

:::::
states

:::::::::
categorized

::
as

::::::
Death,

::::::::
Censored,

::
or

::::::::
Censored

::::
Due

::
to

:::::
Liver

:::::::::::::
Transplantation.

::::
The

:::::
AIDS

:::::::
Clinical

::::
Trials

:::::
Group

:::::
Study

::::
175

::::::
(CTGS)

::::::
dataset

:::::::::::::::::::
(Hammer et al., 1996)

:::::::
contains

::::
2139

::::::
records

::
of

:::::::
patients

::::::::
diagnosed

::::
with

::::::
AIDS,

::
23

::::::::
features,

:::::
with

:
a
::::::

binary
::::::::::::

classification
::::
task

::
to

::::::
predict

::::::::
whether

:
a
:::::::

patient
:::
has

::::
died

:::::
within

:
a
::::::::
specified

::::
time

::::::
period.

::::::
Lastly,

:::
the

:::::::
Chronic

::::::
Kidney

:::::::
Disease

::::::
(CKD)

::::::
dataset

::::::::::::::
(Kharoua, 2024)

::::::::
comprises

:::::
1659

::::::
patient

::::::
records

::::
with

::
50

:::::::
clinical

:::::::
features,

::::
and

:::
the

:::
task

::
is

::
to

::::::
predict

:::::::
whether

::
a

:::::
patient

:
is
:::::::::
diagnosed

::::
with

::::::
chronic

::::::
kidney

:::::::
disease

::
in

:
a
::::::
binary

:::::::::::
classification

::::::
setting.

:
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Metabric CPS CTGS CKD
# of classes: 6 3 2 2

:::::::::
TreeSHAP

::::::
69.90%

: ::::::
67.12%

: ::::::
0.9167

::::::
0.8473

:::::
LIME

: ::::::
69.04%

: ::::::
66.21%

: ::::::
0.9125

::::::
0.8122

:::::::::::
KernelSHAP

::::::
70.01%

: ::::::
66.06%

: ::::::
0.9146

::::::
0.8353

:::::::::::::
Sampling(IME)

::::::
69.72%

::::::
65.91%

: ::::::
0.9160

::::::
0.8152

Table 5:
:::::
Model

::::::::::::
performance

::::::
using

:::::::
various

:::::::
feature

::::::::
ranking

:::::::::::
approaches.

::::::::::
Comparison

::
of

::::::::::
classification

:::::::::::
performance

::::::
across

:::
four

:::::::
medical

:::::::
datasets

:::::
using

::::::
feature

:::::::
rankings

:::::::
derived

::::
from

::::::
various

::::
local

::::::::::
explanation

:::::::
methods:

::::::::::
TreeSHAP,

::::::
LIME,

:::::::::::
KernelSHAP,

:::
and

::::::::
Sampling

::::::
(IME).

::::
The

::::::::::
performance

::::::
metrics

:::
are

:::
the

::::
area

:::::
under

::::
the

:::::::
receiver

::::::::
operating

:::::::::::
characteristic

:::::
curve

:::
for

::::
the

::::::::::::::::
binary-classification

::::::
datasets

::::
and

:::::::
accuracy

:::
for

:::
the

:::::::::
multi-class

::::::::
datasets.

To test the robustness of our method across different architectures, we also varied predictor ar-
chitectures. We employed ResNet50 He et al. (2016)

::::::::::::::
(He et al., 2016) for ImageNette, ResNet18

He et al. (2016)
::::::::::::::
(He et al., 2016) for the CIFAR-10 and CIFAR-100 datasets, and a custom CNN for

the BloodMNIST dataset. The custom CNN architecture has four convolution layers with output
channels 16, 32, 64, and 64, each followed by a ReLU activation and a max pooling layer. The
convolution layers are followed by flattening and linear layers for classification. For the Spambase
dataset, we used a multi-layer perception

:::::
(MLP)

:
architecture consisting of 2 hidden layers with

128 neurons, each followed by a ReLU and a dropout layer.
::
On

:::
the

:::::::
medical

::::::
tabular

::::::::
datasets,

::
we

::::::
utilized

:::
the

:::::
same

::::
MLP

::::::::::
architecture

::::
with

:::::
1024

::::::
hidden

::::
layer

:::::::
neurons

:::
on

::::::::
Metabric,

:::
512

:::
on

:::::
CKD,

:::
512

::
on

::::::
CTGS

:::
and

::::
128

::
on

:::::
CPS. For the image datasets, we employed FastSHAP (Jethani et al., 2022) to

generate the feature SHAP ranking order φi for each instance xi due to its speed. During training,
we applied random augmentations that can affect feature importance. The speed of FastSHAP
allows us to efficiently handle these changes in feature importance during the training process.
For the Spambase dataset

:::::
tabular

:::::::
datasets, we did not apply any data augmentation during training.

We obtained the
::::::::
Tree-based

:::::::
models,

::::::::::
specifically

::::::::
CatBoost

:::::::::::::::::::::::
(Prokhorenkova et al., 2018)

:
,
::::
were

::::
used

::
as

:::
the

:::::
initial

::::::
model

::
to

:::::::::
determine

::::::
feature

:::::::
ranking

::::::
orders,

::::::
owing

::
to

:::::
their

:::::::
superior

:::::::::::
performance

::
on

::::::
tabular

:::
data

::::::::::::::::::::
(Grinsztajn et al., 2022)

:
.
:
SHAP ranking orders

::::
were

::::::::
obtained using the SHAP pack-

age4. ,
:::::::::
leveraging

::::::::::
TreeSHAP

:::::::::::::::::::
(Lundberg et al., 2020),

::
a
:::::::
method

::::::::::
specifically

::::::::
designed

:::
for

:::::
SHAP

::::
value

::::::::::
calculations

::
in
:::::::::
tree-based

::::::
models

:

We evaluated our method against several existing approaches for feature selection: Discriminative
Mutual Information Estimation (DIME), Greedy Dynamic Feature Selection (GDFS), Concrete
Autoencoder (CAE), and two simple baselines—

:
:
:
center-cropping and random selection. DIME

(Gadgil et al., 2024) takes an information-theoretic approach by prioritizing features based on their
mutual information with the response variable, estimating this mutual information in a discriminative
rather than a generative manner. GDFS (Covert et al., 2023b) employs a simpler, greedy strategy
for selecting features based on their conditional mutual information, utilizing a learning approach
grounded in amortized optimization; the policy network is shown to recover the greedy policy when
trained to optimality. CAE (Balın et al., 2019) is an unsupervised, end-to-end differentiable method
for global feature selection that uses a standard neural network as the decoder for reconstruction and
incorporates a concrete selector layer as the encoder. The temperature in CAE is gradually decreased
to slowly discretize the selections. The center-cropping and random selection methods (Covert et al.,
2023b) serve as simple baselines: center-cropping selects center patches of varying sizes, while
random selection chooses patches randomly.

Figure 2 demonstrates that our method shows superior, or comparable performance on all the datasets.
For example, on the ImageNette dataset, with the few number of patches, our method performs well,
achieving 64.2% and 74.8% average accuracy with two and five available patches among 196 patches,
respectively.

::::::::::
Additionally,

:::
our

::::::
model

:::::::
achieved

:::
an

:::::::
AUROC

:::::
score

::
of

::::::
0.8761

:::
on

:::
the

::::
CKD

:::::::
dataset. To

demonstrate the relative potential of our approach, we also provided the oracle setting performances,
where during inference the features are perfectly acquired based on the SHAP ranking. On the
oracle setting, we also initialized the instances with the feature having the highest SHAP value on
average, as in our method. Therefore, while it is theoretically possible to achieve these performance

4https://pypi.org/project/shap/
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levels, empirically we could not attain them with our current method. We discovered that instead of
initializing the inputs with only one feature, it is more effective for stable training to begin with three
features. Based on this finding, we fixed first three feature acquisition order and we obtained the
results as shown in Figure 2. For the initial features, we selected the second and third features based
on their average importance. Note that fixing the acquisition order for all d features is equivalent
to using static global feature selection methods like CAE, which is suboptimal, as our empirical
results demonstrate. Therefore, initializing with more than one feature can negatively impact the
achievable upper bound in performance. However, we found that fixing the acquisition order for
a few initial features helps stabilize training. Additionally, since our method relies on the feature
ranking order, having a better ranking can lead to improved performance. Our approach can work
with any ranking order, including those provided by humans, but we have shown that local model
explanation algorithms, particularly SHAP, are effective in providing this order.

The average performance after both stages is shown for all the datasets (Table 3), highlighting the
benefit of the second stage. The second stage provides significant improvement on almost all datasets,
except on the Spambase that is a relatively simpler dataset compared to others, at least in terms
of number of classes and features. Specifically, the second stage provides classification accuracy
increase from 2.57% (on CIFAR-100) to 7.81% (on ImageNette).

Lastly, in Table
:::
We

::::
also

:::::::::
performed

:::::
some

::::::::
ablation

::::::::::
experiments

:::
to

:::::::
evaluate

:::
the

::::::::::
robustness

:::
and

::::::::::
effectiveness

:::
of

::::
our

:::::::
method.

::::::::
Firstly,

:::
we

::::::
tested

::::
our

:::::::
method

::::
with

::::::::::
alternative

::::::
feature

:::::::
ranking

:::::::::
approaches,

:::::::::
including

::::::
another

:::::::::::
explainability

:::::::
method,

::::::
LIME

:::::::::::::::::
(Ribeiro et al., 2016),

::::
and

:::
two

:::::::
different

:::::
SHAP

:::::
value

::::::::::
calculation

::::::::::
techniques:

::::::::::::
KernelSHAP

:::::::::::::::::::::
(Lundberg & Lee, 2017)

:::
and

::::
IME

::::::::::
(sampling)

::::::::::::::::::::::::::
(Štrumbelj & Kononenko, 2010)

:
.
:::::
These

::::::
results

:::::
(Table

::
5)

:::::::
indicate

::::
that

:::::
while

:::
our

::::::
method

::
is

:::::
robust

::
to

:::::::
different

:::::::
ranking

::::::
orders,

::
its

:::::::::::
performance

::
is

::::
also

:::::::::
dependent

::
on

:::
the

:::
the

:::::::
quality

::
of

:::
the

:::::::
ranking

:::::
order

::::::::
generated

::
by

:::
the

::::::::::::
explainability

:::::::
methods.

:::
To

::::::
further

:::::
verify

:::
the

::::::
second

:::::
point

:::
and

::::
test

:::
the

::::::::::
dependency

::
of

:::
the

::::::
SHAP

:::::::
ranking

::::::
orders’

:::::::
quality

:::
on

:::
the

::::::::::
pre-trained

:::::
model

::::::::
capacity,

::::
we

:::::::::
conducted

:::::::
another

::::::
ablation

::::::::::
experiment

:::
on

:::
the

:::::::::
CIFAR-10

:::::::
dataset.

:::::::::::
Specifically,

:::
we

::::
used

::::::::::
ResNet-10,

:
a
:::::::
smaller

:::::
model

::::::::
compared

::
to

::::::::::
ResNet-18,

::
as

:::
the

::::::::::
pre-trained

:::::
model

:::
for

:::::::::::
determining

:::
the

:::::
SHAP

:::::::
ranking

:::::
order,

:::::
while

:::::::
retaining

:::::::::
ResNet-18

::
as

:::
the

:::::::::::
classification

::::::::
network.

:::
We

::::::::
observed

:::
that

:::
the

:::::::::::
performance

::
of

:::
our

::::::
method

::::::::
decreased

::::
from

:::::::
78.61%

::
to

:::::::
78.22%

::
on

:::
the

:::
test

::::
set,

:::
and

::::
from

:::::::
79.12%

::
to

:::::::
78.42%

::
on

:::
the

:::::::::
validation

:::
set.

:::::
These

::::::
results

::::::
confirm

::::
that

:::
the

:::::::::
pre-trained

:::::::
model’s

:::::::
capacity

:::::::
impacts

:::
the

:::::::::::
SHAP-based

:::::::
ranking

:::::
order

:::
and,

::::::::::::
consequently,

:::
the

:::::::::::
performance

::
of

::::
our

:::::::
method.

:::
In

::::::::::
addition,we

::::::::
evaluated

:::
the

:::::::::::
effectiveness

::
of

::::
using

:::
the

:::::::
decision

::::::::::
transformer

:::
by

:::::::::
comparing

:::
our

::::::::
method’s

::::::::::
performance

::::
with

::::::::
different

:::::::::::
architectures.

:::::
When

:::
the

:::::::
decision

::::::::::
transformer

::::
was

:::::::
replaced

::::
with

::
a

::::::
ResNet

:::::
block,

:::
the

:::::::
model’s

::::::::
accuracy

::::::::
decreased

::::
from

:::::::
78.61%

::
to

:::::::
76.83%

::
on

:::
the

:::::::::
CIFAR-10

::::::
dataset

::::
and

::::
from

:::::::
47.06%

::
to

:::::::
46.70%

:::
on

:::
the

:::::::::
CIFAR-100

::::::
dataset.

:::::::::
Similarly,

::::::::::
substituting

::::
the

:::::::
decision

::::::::::
transformer

::::
with

::
a
:::::
CNN

:::::
block

:::::::
reduced

:::
the

:::::::
model’s

:::::::
accuracy

:::::
from

:::::::
84.38%

::
to

:::::::
78.23%

:::
on

:::
the

::::::::::::
BloodMNIST

:::::::
dataset.

:::::::
These

::::::
results

::::::::::
demonstrate

:::
the

::::::::
advantage

::
of

:::::
using

::
a
:::::::
decision

::::::::::
transformer

:::
as

:::
the

::::::
policy

:::::::
network

:::::
while

::::
also

::::::::::
highlighting

::::
that

::::
our

::::::
method

:::::::::
performs

:::::::::
reasonably

::::
well

::::
with

::::
other

:::::::::::
architectures

::
as

:::
the

::::::
policy

:::::::
network.

:

(Lastly, i)
:
I
:
n

:::::
Table

:
4, we present the overlap ratios between our model’s acquired feature order

and the SHAP-based feature importance rankings across different datasets. As the number of
top features (N) increases from 10 to 30, the percentage overlap generally rises for CIFAR-10,
CIFAR-100, BloodMNIST, and ImageNette. This trend indicates that our model’s feature acquisition
order increasingly aligns with the SHAP rankings as more features are considered. While the
oracle performances in Figure 2 demonstrate the practical benefits of using SHAP values in the
AFA problem, Table 4 highlights the degree to which our model’s acquisition strategy predicts
the SHAP-based feature importance ranking.

::::::::::
Additionally,

:::
we

::::::
would

:::
like

:::
to

::::
note

:::
that

:::
we

:::
did

:::
not

::::::
perform

:::::::
detailed

:::::::::
parameter

::::::
search

::
on

:::
the

:::::::::::
experiments.

:::
We

::::::::
selected

:::
the

::::::
context

::::::
length

:
ℓ
:::::::::
parameter

::
by

:::::::::
comparing

:::
the

::::::::
validation

::::::
scores

::
on

:::
the

:::::::::
CIFAR-10

::::::
dataset

:::
and

:::
the

:::::
other

:::::::::
parameters

:::::
were

::::::
selected

::::::::::
heuristically

::
by

:::::
hand.

::::::::::::
Subsequently,

:::
all

::::
these

::::::::::
parameters

::::
were

:::::
fixed

::
for

:::
all

:::
the

:::::::::::
experiments.

:::::
About

::
the

::
ℓ
::::::::
parameter

::::::::
selection,

:::
we

:::::
found

:::
that

::::
our

:::::
model

:::::::
achieved

:::::::::
accuracies

::
of

:::::::
78.41%,

::::::::
78.76%,

:::::::
79.12%,

:::
and

:::::::
78.12%

::
on

:::
the

:::::::::
CIFAR-10

:::::::::
validation

::::::
dataset

::::
with

::::::
ℓ = 1,

::::::
ℓ = 2,

:::::
ℓ = 4,

::::
and

:::::
ℓ = 8,

:::::::::::
respectively.

:::::
When

:::
we

::::::::
increased

:::
or

::::::::
decreased

:::
the

:::::::
context

::::::
length

::
ℓ,

:::
we

::::::::::::::
correspondingly

:::::
varied

::::
the

:::::
batch

:::
size

::
Nb:::

by
:::
the

:::::
same

:::::
factor

:::
to

:::::::
maintain

::::
the

::::
same

::::::::
effective

::::
size

::
at

::::
each

::::::::
iteration

::::
(see

::::::::
Equations

::
2
:::
and

::
3).

::::::
Based

:::
on

:::::
these

:::::::::::
observations,

::::
we

:::::::
assigned

::::::
ℓ = 4.

::::::::
Finally,

:::
we

:::::
would

::::
like

:::
to

:::::::::
emphasize

:::
that

:::
our

::::::::
proposed

::::::
method

:::
is

::::::
flexible

::::
and

:::
can

:::::::
operate

::::
with

::::
any

:::::
given

::::::
feature

::::::
order.

:::::::::
However,

:::
due

::
to

::
the

::::::::
absence

::
of

::
a

::::::::
reference

:::::::
standard

:::
(or

:::::::
ground

:::::
truth)

:::
for

::::::
feature

::::::::::
importance

::::::::
rankings,

:::
we

:::::
relied

::
on

::::::::::::
explainability

:::::::
methods

::
to

::::::::
generate

:::
the

::::::
feature

::::::
orders.

::::::
While

:::::
these

:::::::::
approaches

:::
are

::::::
useful,

:::::
they

9
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:::
may

::::
not

::::::
always

::::::
provide

:::::
good

:::::::
rankings

::
in
:::

all
::::::::
scenarios

::::::::::::::::::::::::::::::::
(Kumar et al., 2020; Catav et al., 2021).

:::
As

:::::::
different

::::
local

::::::::::
explanation

:::::::
methods

::::
that

::::::
provide

:::::
better

::::::::
rankings

:::
are

:::::::::
developed,

:::
our

::::::::
approach

:::
can

::
be

::::::
readily

::::::::
integrated

::
to

::::::
deliver

::::::::
enhanced

::::::
results.

:

Top 10 features 36.54% 48.71% 42.17% 11.08% Top 15 features 46.08% 58.30% 49.09% 15.99%
Top 20 features 52.46% 64.78% 53.58% 20.61% Top 25 features 57.41% 68.71% 56.52% 24.92%
Top 30 features 62.00% 71.32% 58.63% 29.01% Alignment between model’s feature acquisition
order and the SHAP-based feature importance rankings. This table presents the percentage
overlap between the top N features ranked by SHAP values and features acquired by our model for
N = 10, 15, 20, 25, and 30. The datasets include CIFAR-10 and CIFAR-100 (each with 64 features),
and BloodMNIST and ImageNette (each with 196 features).

6 CONCLUSION

Our work proposes a novel
::::::::
introduces

:::
an

:::::::::::::::::
explainability-based active feature acquisition strategy by

reframing it as a feature prediction task,
:
where the model learns to acquire features based on instance-

specific SHAP value rankings. Stage-wise results show
::::::::::
demonstrate that our two stage training

approach enhances
:::::::
improves

:
feature selection and classification performance on both tabular and

image datasets. The findings also indicate
::::::
further

::::::
suggest

:
that our method is robust across varying

::::::
various models, datasets and settings. Future work could apply our method to more practical datasets
, such as those in medical diagnosis, to evaluate its usability in

:::::::::::
Additionally,

:::
our

:::::::::::
experimental

:::::
results

::
on

:::::::
medical

::::::
tabular

::::::
datasets

::::::::
highlight

:::
the

:::::::
practical

:::::::::::
applicability

::
of

:::
our

::::::
method

::
in

:
real-world scenarios

.
:::
like

::::::::::
healthcare.

::::::
Future

:::::
work

:::::
could

::::::
explore

::::::::
dynamic

::::::::::::
recalculations

::
of

::::::
feature

::::::::::
attributions

:::::
during

::::::
training

::::
after

:::::
each

::::::
feature

:::::::::
acquisition

::::
step,

::::::::
replacing

:::
the

::::::
current

:::
use

::
of
:::::
fixed

::::::::
ordering.
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A
:::::::::::
APPENDIX

:::::
Below

:::
we

:::::::
provide

::::::::::
pseudocodes

:::
for

:::
our

::::
first

:::
and

::::::
second

:::::::
training

::::::
stages.

:

Algorithm 1
:::::::::
Pseudocode

:::
for

::::
first

::::
stage

:::::::
training

::
of

:::
qπ :::

and
:::
fθ

Require:
:::::::
Training

:::
set

::::::::::::::
{(xi, yi, φi)}Ni=1,

:::::
batch

::::
size

:::
Nb,

::::::
context

::::::
length

::
ℓ,

:::::::
learning

:::
rate

::
γ

1:
:::::::
Pre-train

::
fθ:::

on
:::::::::::
{(xi, yi)}Ni=1:::::

using
:::::::
random

::::::
feature

:::::::
selection

:

2:
:::::::
Initialize

:::
qπ

3: for
::::
each

:::::
epoch do

4: for 1 to ⌈N/Nb⌉ do
5:

::::::
Sample

:::::::::
minibatch

:::::::::::::::
{(xi, yi, φi)}Nb

i=1::::
(if

:::::::
random

::::::::::::
augmentation

:::
is

::::::::
applied,

:::
φi

:::
is

::::::::::
recalculated

::
for

:::::
each

:::::::
iteration

::::
after

::::::::
sampling)

:

6:
::::::
Sample

::::::::
random

::::::
integer

::
ti ::

for
:::::
each

:
i

7:
:::::::
Initialize

:::::::
Lq = 0

:::
and

:::::::
Lf = 0

8: for tx = 0 to ℓ− 1 do
9:

:::::
Define

:::::::::
temporary

:::::::::
parameter

:
t′i:::

for
::::
each

::
i,
::::::::::
t′i = ti + tx:

10:
:::::::
Generate

:::::::
masked

::::
input

::::::
xi
Mt′

i

,
::::::::::::::::::::::
Mt′i

= {φi(1), . . . , φi(t′i)}
11:

:::::::
Compute

::::::::
predictor

::::::
output:

::::::::::::::
ŷi
t′i
= fθ(x

i
Mt′

i

)

12:
:::::::
Compute

::::::
policy

:::::::
network

::::::
output:

:::::::::::::::::::::::
q̂i
t′i
= qπ(x

i
Mt:t′

i

, ait:t′i
, rit:t′i

)
:

13:
::::::
Update

::::::
losses:

:::::::::::::::::::::::::::::
Lf ← − 1

Nb

∑Nb

i=1 log(ŷ
i
t′i,y

i) + Lf

14:
:::::::::::::::::::::::::::::::::
Lq ← − 1

Nb

∑Nb

i=1 log(q̂
i
t′i,φ

i(t′i+1)) + Lq

15:
::::::
Update

:::::::::
parameters

:::::::::::::::::::::::::::::::
θ ← θ − γ∇θLf , π ← π − γ∇πLq:

Algorithm 2
:::::::::
Pseudocode

:::
for

::::::
second

:::::
stage

:::::::
training

::
of

::
qπ::::

and
::
fθ

Require:
:::::::
Training

:::
set

::::::::::::::
{(xi, yi, φi)}Ni=1,

:::::
batch

::::
size

:::
Nb,

:::::::
context

:::::
length

::
ℓ,

:::::::
learning

::::
rate

::
γ,

::
fθ::::

and
::
qπ

::::
from

:::
the

:::
first

:::::
stage

:

1: for
::::
each

:::::
epoch do

2: for 1 to ⌈N/Nb⌉ do
3:

::::::
Sample

:::::::::
minibatch

:::::::::::::::
{(xi, yi, φi)}Nb

i=1::::
(if

:::::::
random

::::::::::::
augmentation

:::
is

::::::::
applied,

:::
φi

:::
is

::::::::::
recalculated

::
for

:::::
each

:::::::
iteration

::::
after

::::::::
sampling)

:

4:
:::::::
Generate

:::
φ̂i

:::
for

::::
each

:
i

5:
::::::
Sample

::::::::
random

::::::
integer

::
ti ::

for
:::::
each

:
i

6:
:::::::
Initialize

:::::::
Lq = 0

:::
and

:::::::
Lf = 0

7: for tx = 0 to ℓ− 1 do
8:

:::::
Define

:::::::::
temporary

:::::::::
parameter

:
t′i:::

for
::::
each

::
i,
::::::::::
t′i = ti + tx:

9:
:::::::
Generate

:::::::
masked

::::
input

::::::
xi
M̂t′

i

,
::::::::::::::::::::::
M̂t′i

= {φ̂i(1), . . . , φ̂i(t′i)}

10:
:::::::
Compute

::::::::
predictor

::::::
output:

::::::::::::::
ŷi
t′i
= fθ(x

i
M̂t′

i

)

11:
:::::::
Compute

::::::
policy

:::::::
network

::::::
output:

:::::::::::::::::::::::
q̂i
t′i
= qπ(x

i
M̂t:t′

i

, ait:t′i
, rit:t′i

)
:

12:
::::::
Update

::::::
losses:

:::::::::::::::::::::::::::::
Lf ← − 1

Nb

∑Nb

i=1 log(ŷ
i
t′i,y

i) + Lf

13:
::::::::
Determine

:::
the

::::
true

::::
label

:::
for

:::
the

:::
qπ :::::::

network
::::::
(denote

::::
this

:::
true

:::::
label

::
as

:::::
yiqt′

i

).
:::
The

::::
true

::::
label

::
is

:::
the

:::::
index

::
of

:::
the

:::::::
feature,

:::::
which

::
is

:::
not

::::::::
acquired

:::
yet

:::
and

::::::
having

:::
the

:::::::
highest

:::::
SHAP

:::::
value

:::::
among

:::
the

:::::::
features

::::
that

:::
are

:::
not

:::::::
acquired

:

14:
::::::::::::::::::::::::::::::
Lq ← − 1

Nb

∑Nb

i=1 log(q̂
i
t′i,y

i
q
t′
i

) + Lq

15:
::::::
Update

:::::::::
parameters

:::::::::::::::::::::::::::::::
θ ← θ − γ∇θLf , π ← π − γ∇πLq:
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