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short script: The subject lifts the floor 
lamp with right hand and moves the 
floor lamp with right hand to right side. 
Finally, the subject places the floor lamp 
with right hand on the ground.
long script: The subject stands at the 
back of the floor lamp then it looks 
down at the floor lamp. The subject 
grasps the floor lamp with right hand. 
The subject moves the floor lamp with 
right hand to right side. The subject 
gently puts the floor lamp with right 
hand on the ground and finally rotate its 
body to straight

Detailed and 
accurate hands 
with multiple 
objects.

Objects measured 
and modeled 
precisely from 
artists.

Different abstract 
levels of human 
text annotation.

Figure 1. Overview of the HUMOTO dataset. The dataset contains mocap 4D human-object interaction animations with multiple objects.
The unique features of the dataset include its detailed, accurate interaction modeling, specifically the detailed hand pose. The objects are
precisely modeled by artists. We additionally provide different abstract levels of text annotation for the interactions.

Abstract

We present Human Motions with Objects (HUMOTO), a001
high-fidelity dataset of human-object interactions for mo-002
tion generation, computer vision, and robotics applica-003
tions. Featuring 735 sequences (7,875 seconds at 30 fps),004
HUMOTO captures interactions with 63 precisely mod-005
eled objects and 72 articulated parts. Our innovations006
include a scene-driven LLM scripting pipeline creating007
complete, purposeful tasks with natural progression, and008
a mocap-and-camera recording setup to effectively han-009
dle occlusions. Spanning diverse activities from cook-010
ing to outdoor picnics, HUMOTO preserves both physical011
accuracy and logical task flow. Professional artists rig-012
orously clean and verify each sequence, minimizing foot013
sliding and object penetrations. We also provide bench-014
marks compared to other datasets. HUMOTO’s compre-015
hensive full-body motion and simultaneous multi-object in-016
teractions address key data-capturing challenges and pro-017
vide opportunities to advance realistic human-object inter-018
action modeling across research domains with practical ap-019
plications in animation, robotics, and embodied AI systems.020
Project: https://anonymous.4open.science/021

w/humoto-submission/. 022

1. Introduction 023

4D Human-Object Interaction (HOI) data are crucial for 024
understanding human behaviors in our three-dimensional 025
world and for numerous applications in computer vi- 026
sion [41, 49, 50, 69, 75, 76, 79], robotics [4, 12, 46, 48, 027
52, 62], computer graphics [25, 32, 56], and generative 028
AI [2, 26, 40, 71]. These applications range from HOI 029
detection and reconstruction to motion generation, robotic 030
learning through demonstration, and even image/video gen- 031
eration. All of these fields rely on 4D HOI data to capture 032
human and object poses, ground-truth geometries, dynam- 033
ics, forces, and multi-view observations [70, 72]. However, 034
the lack of realistic 4D data hampers progress, particularly 035
in scenarios involving multiple objects and detailed manipu- 036
lations [16, 35]. As both generative and discriminative mod- 037
els advance [10, 40, 49, 51, 67], the need for high-quality 038
HOI data has become increasingly critical. 039

Acquiring high-quality 4D HOI data is expensive due to 040
the need for sophisticated motion capture setups and ex- 041
tensive manual data cleaning. Although recent efforts have 042
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provided various 4D human-object motion datasets [1, 35,043
39, 58, 59, 61, 78, 81, 82], most focus on single-object in-044
teractions or lack detailed hand movements. Comprehen-045
sive datasets that capture interactions with multiple objects,046
with full-body and hand motion, remain a gap in the field.047

To address this, we introduce Human Motions with048
Objects (HUMOTO), a new 4D animation dataset captured049
from real performance. HUMOTO includes 735 curated050
sequences totaling 7,875 seconds of motion (captured at051
30 fps), featuring diverse daily activities and interactions052
with 63 objects comprising 72 distinct parts. Many scenes053
involve interactions with multiple objects, such as meal054
preparation with various utensils, storage organization, and055
room arrangement. The objects span a wide range of sizes,056
from small household items like utensils and tools to larger057
furniture pieces, all modeled based on real-world measure-058
ments. All human motions are captured with detailed body059
and hand movements, accompanied by text annotations.060

The acquisition of HUMOTO is particularly challeng-061
ing due to the complexity of recording fine-grained, multi-062
object interactions. It requires precise calibration, special-063
ized equipment, and extensive post-processing to produce064
clean, high-quality sequences. By leveraging state-of-the-065
art techniques, including Large Language Model (LLM)-066
generated scripts and multi-sensor tracking, we create a067
dataset with unprecedented detail and fidelity.068

Our dataset’s distinctive quality stems from our com-069
plementary capture approach. To generate diverse motion070
scripts covering varied daily activities, we use a directorial071
mindset to design stories and actions, and we introduce a072
Scene-Driven LLM Scripting method to hierarchically gen-073
erate these scripts. To capture human motion in the pres-074
ence of frequent object occlusions, we utilize motion cap-075
ture suits and gloves with electromagnetic field (EMF) tech-076
nology to track performers, while dual-Kinect RGB-D sen-077
sors record object poses. This multi-modal system ensures078
fidelity in both large-scale movements and fine manipula-079
tions, even in occlusion-heavy scenarios.080

All sequences undergo rigorous cleaning and indepen-081
dent verification by professional artists, with particular at-082
tention to common issues such as foot sliding and object083
penetration, ensuring clean yet natural movement nuances084
preserved data for machine learning context. An indepen-085
dent group of artists were also invited to assess the complete086
dataset’s quality from a professional perspective. Moreover,087
we introduce a set of metrics to evaluate our and other HOI088
datasets, providing a comprehensive benchmark for human089
motion, object motion, and interaction quality.090

HUMOTO provides a valuable resource for training091
models in motion generation, robotics, computer vision,092
and 2D generation. These sequences capture not only physi-093
cal dynamics but also the logical progression of tasks, mak-094
ing them useful for learning natural action sequences and095

task planning [39, 48]. The comprehensiveness of the data 096
set extends its utility in multiple domains: motion genera- 097
tion models can learn natural interaction patterns [10, 51], 098
robotics researchers can study human manipulation strate- 099
gies [13, 48, 52], and computer vision systems can train 100
on accurate 3D ground truth for detection, tracking, and re- 101
construction [41, 50, 69, 79]. Image or video generation 102
systems can also use verified motion sequences for content 103
creation and authorization [25, 36, 71]. 104

The contributions of this work include the following. 105
• A high-fidelity HOI dataset featuring complex, meaning- 106

ful, and diverse daily interactions with multiple objects at 107
various scales. 108

• A multi-modal capture methodology with Scene-Driven 109
LLM Scripting and multi-sensors setup, preserving subtle 110
interactions even in challenging occlusion scenarios. 111

• A set of quality metrics and benchmarks to evaluate HOI 112
datasets to establish quantitative standards for human mo- 113
tion, object motion, and interaction quality. 114

2. Related Work 115

Human Motion Capturing Technologies. Recent ad- 116
vances in human pose estimation from cameras, includ- 117
ing monocular RGB and RGB-D setups, have significantly 118
broadened the scope of human motion capture. Early re- 119
search explored markerless systems [5, 7, 14, 15, 34, 57], 120
while more recent frameworks such as OpenPose [3] and 121
DensePose [20] provide robust 2D and 3D joint detection. 122
These camera-based systems are frequently improved using 123
optimization techniques [23] or pre-trained models [54, 82], 124
which substantially improve tracking accuracy. In par- 125
allel, marker-based pose estimation methods have been 126
successfully applied to human-object interaction scenar- 127
ios [44, 45, 47], delivering superior precision in specific 128
contexts. Although these techniques are effective in un- 129
constrained environments, they often encounter limitations 130
when dealing with complex poses or occlusions. 131

Motion capture suits (mocap) have emerged as a widely 132
adopted tool for capturing high-fidelity human motion 133
across both research and industry applications. Both optical 134
mocap systems and electromagnetic field suits have been 135
employed in dataset collection [9, 17, 24, 37], offering ex- 136
tensive coverage for more challenging scenarios. 137

For object pose estimation, RGB-D cameras have be- 138
come increasingly prevalent in HOI scenarios. Advanced 139
techniques [42, 60, 66, 68] have demonstrated remarkable 140
performance in object detection and localization. In the do- 141
main of neural systems, inertial measurement units (IMUs) 142
have been attached to objects to track specific parame- 143
ters [22, 80, 82]. 144
Human-Object Motion Datasets. The field of human- 145
object interaction has witnessed the development of sev- 146
eral significant datasets, each addressing different aspects 147
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Bedroom

Livingroom

Bathroom

Outdoor

Kitchen

Scene Objects

A person methodically turns off all lights in their bedroom 
before settling into bed for sleep. 

A person reclines in a low chair while reaching for objects 
on a nearby table, illuminated by the warm glow of a 
lamp. 

A person picks up the soap dispenser from the tray, 
pumps once into their palm, and thoroughly washes their 
hands. 

A person carefully prepares food on plates, selects a 
spoon from the tray to place alongside each dish, and 
finally serves the completed meals at the table. 

A person loads plates onto a utility cart, wheels it to the 
outdoor picnic area, and arranges the items on a blanket 
for guests to enjoy.

Scripts

… … …

LLM

Figure 2. Scene-Driven LLM Scripting. We established target
scenes, prepared relevant interaction objects, and then leveraged
LLMs to generate detailed action scripts.

of HOI capture. GRAB [58] represents one of the first data148
sets that addresses the full-body human-object interaction;149
however, it focuses primarily on upper-body interactions150
and is therefore omitted from our comparison. BEHAVE [1]151
and OMOMO [39] present more complex scenarios but lack152
detailed hand pose information. IMHD [78] specifically153
targets highly dynamic human-object interactions such as154
sports activities. Home [35] and TRUMANs [33] inves-155
tigate human-object interactions within domestic environ-156
ments, though these scenes tend to be more stationary with157
limited variance. TACO [44] focused more on capturing158
ego-centric interactions. Beyond dedicated data sets on159
human-object interaction, MIXAMO [29] provides a com-160
prehensive repository of motion capture data used primar-161
ily in character animation and game development. HU-162
MAN3.6M [83] constitutes a large-scale dataset designed163
for human motion capture, focusing on natural daily activi-164
ties rather than human-object interactions.165

While each of these datasets has significantly advanced166
the field, all exhibit limitations in capturing the complex-167
ity of real-world multi-object interactions. A critical short-168
coming is the frequent inaccuracy of hand-object interac-169
tions, where hands either appear completely detached from170
objects or penetrate surfaces by significant margins. Addi-171
tionally, many existing datasets consist of isolated, purpose-172
less movements that, even with textual annotations, make173
it difficult to extract meaningful representations of con-174
tinuous human daily activities. These limitations impede175
the development of models capable of understanding natu-176
ral human-object interactions, particularly when involving177
multiple objects or requiring fine-grained manipulations.178

3. Data Collection179

The HUMOTO dataset advances human-object interaction180
research through a comprehensive collection methodology181
that mirrors cinematic production. Beginning with LLM-182
generated scripts describing natural daily activities, we183

Figure 3. Capture environment. Left: Overview of our capturing
environment showing two Kinect cameras, stage, lighting, cali-
bration board, and interaction objects. Right: Calibration proce-
dure with the performer in a standardized position, enabling pre-
cise alignment between mocap suit data and camera coordinates.

Figure 4. 3D Meshes. Artist-modeled objects used in HUMOTO.

carefully selected and modeled common household objects 184
before capturing interactions on a custom motion capture 185
stage equipped with dual Kinect cameras. 186

3.1. Script Development 187

To address the limitations of existing datasets, where inter- 188
actions often appear arbitrary or disconnected, we develop 189
a systematic approach to create action scripts before cap- 190
turing a large volume of motion data. Inspired by movie 191
production workflows of grouping actions into scenes, we 192
established a Scene-Driven LLM Scripting framework to 193
automate script generation. First, we created conceptual 194
“rooms” by logically grouping related objects from our col- 195
lection. We then provided these groupings to LLMs to 196
generate cohesive interaction sequences within contextual 197
spaces, as illustrated in Fig. 2. This resulted in rich narra- 198
tives where performers executed purposeful tasks, such as 199
opening a drawer to retrieve an item, arranging objects on 200
a desk, or preparing a meal, thereby ensuring that each mo- 201
tion served a clear function. Further details of the Scene- 202
Driven LLM Scripting process are provided in the supple- 203
mental materials (Fig. 14). 204

3.2. Environment and Capturing 205

Objects and Humans. HUMOTO is built on a carefully 206
curated collection of 63 standard household objects, encom- 207
passing 72 distinct functional parts (Fig. 4). Unlike previous 208
datasets relying on 3D scanning, we recruited professional 209
artists to create precise digital models capturing crucial de- 210
tails, including articulated components and graspable sur- 211
faces. This ensures geometric accuracy while preserving 212
part-level information essential for realistic interaction. 213
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The subject stands 
behind the table, 
reaches forward …

The subject holds 
vegetables with 
their left hand on 
the cutting board …

After chopping, they move 
the knife to the right side of 
the cutting board and shift 
their left hand to the left 
side….

The subject sits on the 
low chair and picks up 
the mug …

The subject turns 
toward the side table, 
picks up the notebook 
…

The subject raises the 
notebook to eye 
level…

Human-Object Interactions with Text Descriptions
Contact Maps on Objects 

and Human
Trajectories of Human 
Body Parts and Objects

Head

Right Middle
Right Thumb

Objects

Non-Contact
Contact

Detailed Hand Poses

Figure 5. HUMOTO dataset visualization. We depict human-object interactions with text descriptions (left), detailed hand poses, and
contact maps highlighting interaction areas (middle), and trajectories of human body parts and objects during activities (right). These
complementary representations provide comprehensive data for various applications.

Our performer, outfitted with Rokoko smart-suits [53]214
and paired gloves, enabled high-fidelity tracking of full-215
body movements and finger articulations at 30 frames per216
second. The inertial sensor network provided reliable skele-217
tal tracking, while the specialized gloves captured the fine-218
grained hand movements essential for natural object manip-219
ulation. The skeletal motions are transferred to a neutral hu-220
man model with the standard Mixamo skeleton rigging [29].221
Environment Setup. To minimize magnetic interference222
between the Rokoko suit’s inertial sensors and metallic223
structures in the vicinity, we built a customized wooden224
stage to elevate performers from the floor by 12 inches. Two225
Kinect cameras were positioned at two corners, maximizing226
capture volume while minimizing occlusions during com-227
plex interactions. Spatial alignment between camera and228
motion capture systems was achieved using a calibration229
board to establish a common coordinate system. The dual-230
computer setup, one managing Kinect camera feeds and ob-231
ject tracking and the other handling Rokoko motion capture232
data, maintained precise temporal synchronization through233
UDP commands routed over a dedicated network.234
Capturing process. We instructed performers to execute235
the scripted interactions with purpose rather than mechani-236
cal precision, maintaining the fidelity required for data anal-237
ysis while preserving the characteristic fluidity of human238
motion. This approach was particularly important in cap-239
turing complex sequences with multiple objects, where per-240
formers might simultaneously engage with several items,241
e.g., opening a drawer and reaching for an object, or repo-242
sitioning multiple items on a surface. We captured these243
nuanced and complex multi-object interactions, including244
unconscious behaviors like fidgeting hands that character-245
ize authentic human-environment engagement.246
Processing the Raw Data. The technical processing247

pipeline addressed two primary challenges: temporal syn- 248
chronization and spatial alignment between the human mo- 249
tion capture and object tracking data streams. At the be- 250
ginning of each capture sequence, performers adopted a 251
calibration stance at a predetermined position where the 252
Rokoko system exhibited optimal tracking performance. 253
This position, mapped to the camera coordinate system us- 254
ing our calibration board reference, established a transfor- 255
mation matrix that aligned both coordinate frames. 256

Object tracking leveraged the dual Kinect camera setup 257
to minimize occlusions. The FoundationPose [66] algo- 258
rithm analyzed the visual data to determine 6DoF poses for 259
each object. To address the limitations of frame-to-frame 260
consistency assumptions during rapid movements, we im- 261
plemented a dynamic reset mechanism based on mask pixel 262
differences, reinitializing tracking when substantial move- 263
ment was detected. To further improve the tracking re- 264
sult, we provide object masks by employing SAM2 with 265
strategic human annotations, ensuring tracking consistency 266
across frames where objects might be temporarily occluded. 267

3.3. Data Cleaning and Annotation 268

Multi-stage Quality Assurance. Our quality assurance 269
protocol is a two-stage approach combining technical re- 270
finement and independent verification. During technical re- 271
finement, professional artists refined capture artifacts like 272
drift and tracking errors, ensuring logical consistency in the 273
interactions. During the subsequent verification, an inde- 274
pendent team verified the sequences for natural and plau- 275
sible human-object interactions, addressing issues such as 276
joint jitter and foot sliding. We iterated these two stages till 277
all quality standards were met, ensuring fidelity to natural 278
movements and interactions. 279
Textual Annotation. We invited an independent group to 280
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Dataset Human Motion Object Motion Contact

Foot Sliding Jerk MSNR Coherence Diversity Jerk Penetration Contact State
(cm) ↓ (m/s3) ↓ (dB) → ↑ ↑ (m/s3) ↓ (cm) ↓ Entropy ↑ Consistency ↑

BEHAVE [1] 4.556 4.08 5.51 0.533 0.966 10.40 0.0606 2.2915 0.0667
OMOMO [39] 2.130 15.10 12.37 0.619 0.978 27.40 0.0602 1.9468 0.4837
IMHD [82] 1.474 1.14 14.20 0.554 0.951 24.06 0.1172 2.4265 0.2411
ParaHome [35] 3.008 9.19 1.82 0.592 0.980 0.08 0.2167 1.0254 0.6815

HUMOTO 0.958 1.87 9.42 0.653 0.956 1.13 0.0068 1.4587 0.5061

Mixamo 3.184 8.14 10.88 0.616 0.958 - - - -

Table 1. Quantitative evaluation across human-object interaction datasets. Metrics defined in Appendix A.2.1 should be interpreted
holistically, as optimal values depend on specific applications. The table includes two additional statistical indicators that provide context
for understanding dataset characteristics. Bold indicates best, underline indicates second-best. ↑: higher values are better, ↓: lower values
are better, and →: values closer to Mixamo are better.

provide textual descriptions for each sequence based on the281
actual performance. These annotations included three ele-282
ments: (1) a concise title highlighting the sequence’s main283
goal with details on subtle differences, (2) a short script pro-284
viding a complete yet brief description of the motion and285
interaction in the scene, and (3) a detailed long script elab-286
orating on specific motions and interactions throughout the287
sequence. These multi-level textual annotations enhance the288
dataset’s utility for applications requiring both visual and289
semantic understanding of human-object interactions.290

This comprehensive approach with script generation,291
capture, processing, quality control, and annotation, re-292
sulted in a dataset that captures both the mechanics of ob-293
ject manipulations and the purposeful sequences in which294
these manipulations naturally occur. HUMOTO provides295
researchers with data reflecting how humans chain multi-296
ple actions together to achieve higher-level goals, enabling297
advances in human behavior prediction [27], robotic learn-298
ing from demonstration [8, 13], virtual character anima-299
tion [30, 38, 52], and augmented reality applications [36].300

4. Dataset Analysis301

This section elaborates on the quantitative and qualitative302
evaluations of the motion quality and compares HUMOTO303
against existing datasets: BEHAVE [1], OMOMO [39],304
IMHD [82], ParaHome [35] and GRAB [58].305

4.1. Quantitative Evaluation306

We evaluate human motion, object motion, and human-307
object interaction using metrics such as foot sliding, jerk,308
penetration, contact entropy, and state consistency. These309
metrics offer insights into motion quality, interaction real-310
ism, and the diversity of interaction states. Additionally,311
we introduce a new metric, Motion Signal-to-Noise Ra-312
tio (MSNR), to assess the quality of motion relative to313
noise in the dataset. MSNR evaluates motion quality us-314
ing the signal-to-noise ratio (SNR) [55] of joint kinemat-315
ics. Higher SNR values indicate smoother motion, though316
excessive smoothing may result in loss of important de-317

tails. We use Mixamo, an industry-standard motion cap- 318
ture dataset cleaned by artists, as the baseline for human 319
motion quality. Datasets with MSNR values closer to Mix- 320
amo’s indicate comparable motion quality. Further details 321
and metric formulations are provided in Appendix A.2.1. 322

Comparison on Human and Object Motion. HUMOTO 323
demonstrates superior performance in several key motion 324
quality metrics. The data set exhibits the lowest foot sliding 325
among all datasets compared, significantly outperforming 326
established datasets like BEHAVE [1] and ParaHome [35]. 327
This improvement can be attributed to our meticulous mo- 328
tion capture process and rigorous artist-led quality control. 329
The low jerk values for human motion indicate smooth and 330
natural movements, second only to IMHD [82], whose fast 331
movements are more likely to have similar acceleration in 332
a sequence. While the Mixamo dataset shows higher foot 333
sliding and jerk, it is important to note that Mixamo con- 334
tains specialized movements like street dancing, which in- 335
herently involves more dynamic motions that increase these 336
metrics compared to typical HOI scenarios. 337

HUMOTO achieves 9.42 dB in Motion SNR, approach- 338
ing Mixamo’s reference value. This slightly lower SNR 339
compared to IMHD and OMOMO stems from HUMOTO’s 340
complex interactions with detailed hand poses, which in- 341
troduce higher frequency components often interpreted as 342
“noise”. Notably, OMOMO’s combination of high SNR 343
with high jerk values suggests clean signals that still con- 344
tain abrupt motion changes, a phenomenon meriting future 345
investigation. HUMOTO’s high coherence demonstrates 346
consistent, targeted motions while maintaining competitive 347
diversity, especially compared to Mixamo. The unusually 348
high diversity scores of other datasets may indicate exces- 349
sive noise rather than true motion variety, artificially inflat- 350
ing their entropy measurements. 351

In object motion, HUMOTO demonstrates a notably low 352
jerk, indicating realistic object manipulation, unlike the 353
high values in OMOMO and IMHD. ParaHome’s extremely 354
low object jerk reflects that the objects in their long se- 355
quences are mostly static and barely interact with humans. 356

Comparison on Contact Quality. HUMOTO excels in 357
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Dataset # hours # subj. # obj. hand body max. obj. setup

GRAB [58] 3.8 10 51 ✓ ✓ 1 standing
BEHAVE [1] 4.2 8 20 ✗ ✓ 1 portable
InterCap [28] 0.6 10 10 ✓ ✓ 1 portable
OMOMO [39] 10.1 17 15 ✗ ✓ 1 portable
FHPA [18] 0.9 6 26 ✓ ✗ 1 room
HOI4D [43] 22.2 9 800 ✓ ✗ 1 room
Chairs [31] 16.2 46 70 ✓ ✓ 1 standing
ARCTIC [11] 1.2 10 11 ✓ ✓ 1 standing
NeuralDome [77] 4.6 10 23 ✓ ✓ 1 standing
TRUMANS [33] 15 7 20 ✓ ✓ - (proxies) room
ParaHome [35] 8.1 38 22 ✓ ✓ 22 room

HUMOTO 2.2 1 63 ✓ ✓ 15 scene

Table 2. Dataset statistics. We provide details on the total du-
rations, number of subjects, objects, presence of hand and body
data, maximum objects in scene, and data collection setup styles.

contact quality metrics, achieving the lowest penetration358
among all datasets despite including detailed hand poses.359
This order of magnitude improvement over BEHAVE and360
OMOMO demonstrates our exceptional precision in cap-361
turing human-object spatial relationships, which is crucial362
for physically plausible interaction models. The contact en-363
tropy for HUMOTO shows a balanced distribution between364
contact states, more diverse than ParaHome but more fo-365
cused than the potentially noisy patterns in IMHD and BE-366
HAVE, suggesting meaningful interactions without exces-367
sive fluctuations. For state consistency, HUMOTO strikes368
a balance between the highly consistent but potentially369
oversimplified ParaHome and the less consistent BEHAVE,370
maintaining realistic transitions while avoiding rapid fluc-371
tuations that might indicate tracking errors.372

Overall, HUMOTO combines the detailed hand articu-373
lation with superior metrics in foot sliding, smoothness of374
object motion, and minimal penetration, making it valuable375
for applications requiring physically accurate human-object376
interactions with natural motion.377

4.2. Qualitative Evaluation378

The quantitative results are influenced by features of the379
datasets that do not necessarily represent quality issues.380
Therefore, they should be interpreted holistically rather than381
in isolation, as their values are influenced by multiple fac-382
tors, including motion and interaction complexity. Thus, we383
also provide qualitative evaluations.384

4.2.1. Visual Quality385

We present a visual quality comparison in Fig. 6. While386
BEHAVE and OMOMO use only standard hand templates387
without detailed finger poses, IMHD offers finer hand mod-388
eling but exhibits significant penetration in several scenes.389
ParaHome provides relatively flexible hand motion, though390
their capture method (attaching tags on hands) interferes391
with natural movement, resulting in frequent clenched hand392
poses throughout the dataset. HUMOTO demonstrates su-393
perior hand pose quality, particularly during interactions.394

BEHAVE OMOMO IMHD ParaHome HUMOTOGRAB

Figure 6. Quality comparison. We compare different datasets on
motion dynamics, hand pose accuracy, and object meshes.

We also compare object mesh quality across datasets. Ob- 395
jects from prior datasets show noise artifacts due to 3D 396
scanning limitations, while our object modeling pipeline 397
produces clean, accurate representations. 398

4.2.2. Perceptual Study 399

To complement our quantitative analysis, we conducted a 400
human perceptual study evaluating HUMOTO against ex- 401
isting HOI datasets through absolute quality assessment and 402
direct pairwise comparison. We report the results of an on- 403
line study taken by 26 participants, comprising students and 404
researchers specializing in computational human motion. 405

Absolute Quality Assessment. Participants rated ran- 406
domly selected videos from HUMOTO, BEHAVE, IMHD, 407
OMOMO, and ParaHome on a 5-point Likert scale. HU- 408
MOTO achieved the highest scores in all categories: human 409
motion (4.79±0.49), with 82% giving maximum scores), 410
object motion (4.88±0.36), interaction quality (4.75±0.57), 411
and overall quality (4.78±0.43). These scores signifi- 412
cantly outperformed all comparison datasets, with the most 413
notable difference in interaction quality, where BEHAVE 414
scored only 2.48±1.05 and even recent datasets like IMHD 415
(3.94±1.04) lagged considerably. 416

Pairwise Comparison. In this study, participants directly 417
compared HUMOTO against other datasets showing the 418
same interaction tasks. The results strongly favored HU- 419
MOTO in all dimensions, with 96% preferring HUMOTO 420
over BEHAVE for overall quality. Even against newer 421
datasets, HUMOTO was consistently preferred: 46% ver- 422
sus IMHD (with 50% rating both equally good), 65% ver- 423
sus OMOMO (28% ties), and 82% versus ParaHome (15% 424
ties). For interaction quality specifically, HUMOTO out- 425
performed BEHAVE (94% preference), OMOMO (65%), 426
and ParaHome (67%), while against IMHD, HUMOTO was 427
preferred by 38% and rated equally good by 46%. 428

These results demonstrate the superior quality of HU- 429
MOTO in both absolute ratings and direct comparisons, 430
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The subject scoops ingredients using the spoon with left the hand from the deep plate.

Figure 7. Motion Generation by MotionGPT [30]. Left: Motion
generated from the short scrip. Mid: Motion generated from the
long script. Right: Motion with same text annotation from HU-
MOTO dataset.

particularly for interaction quality and overall performance.431
Details are provided in Appendix A.3.432

5. Discussions433

Building upon the novel script generation pipeline, the434
multi-sensors motion capture system, and the rigorous qual-435
ity control described in Sec. 3, the HUMOTO dataset pro-436
vides not merely the detailed mechanics of object manipu-437
lation but the purposeful sequences in which these manipu-438
lations naturally occur. HUMOTO offers exceptional value439
for a wide range of research and applications, of which we440
highlight some below.441

Human-Object Interaction and Motion Generation.442
Our dataset supports the development of generative mod-443
els that can translate textual descriptions (e.g., “pick up the444
coffee mug and drink from it”) into realistic interaction se-445
quences. The diversity of objects and interactions in HU-446
MOTO provides rich supervision for text-conditioned mo-447
tion synthesis. Our dataset is challenging as state-of-the-art448
human-object interaction models do not have the ability to449
generate interaction motion on multiple objects. To show450
this, we test MotionGPT [30] with HUMOTO prompts in451
Fig. 7. It appears that the model can generate a few rea-452
sonable motions based on the more abstract description,453
but fails to faithfully generate more fine-grained motions454
compared to the captured ground truth HUMOTO motions.455
This experiment demonstrates that state-of-the-art motion456
generation methods, despite being trained with large-scale457
datasets such as AMASS[47] and HumanML3D [21], still458
struggle with generating detailed human-object interaction.459
HUMOTO is designed to fill this gap.460

Robotics and Embodied AI. The precision and diver-461
sity of interactions in HUMOTO make it particularly valu-462
able for robotics research. To demonstrate the capability463
of our data, we use PyBullet [6] to compare HUMOTO464
with Parahome [35] in simulation settings. After weight-465
ing our objects and assigning similar mass to the Para-466
Home dataset, we use CoACD [65] to obtain convex shapes467
for simulation. Overlaying the final frame on the first468

Displacement=0.011 Displacement=0.283

Figure 8. Data for Robotics. Top: Two simulator visualizations
showing human sitting and holding mug. HUMOTO (left) displays
minimal displacement, while ParaHome (right) shows significant
object displacement during identical actions. Bottom: Hand ma-
nipulation comparison between HUMOTO (left) and simulated
robotic grasps from DexGraspNet (right).

(Fig. 8, Top) reveals significantly smaller object displace- 469
ment in our dataset compared to Parahome, where inter- 470
acted objects show substantial movement. Grasp synthe- 471
sis, a popular robotic research topic [46, 62, 63], usually 472
relies on simulated data that, despite passing simulator val- 473
idation, often produces unnatural (e.g., blue hand on mug 474
bottom) or functionally unreasonable grasps (e.g., fingers 475
inside bowls). Comparing similar object grasps from HU- 476
MOTO with those from DexGraspNet [63] in Fig. 8 (Bot- 477
tom) shows that our hand poses are more natural and aligned 478
with daily usage. Additionally, HUMOTO’s task-oriented 479
motion data can help robot learning systems develop capa- 480
bilities directly transferable to real-world household assis- 481
tance scenarios rather than simple interaction primitives. 482

Pose Estimation in Challenging Scenarios. State-of- 483
the-art human pose estimation methods continue to face 484
challenges in complex interaction scenarios. HUMOTO 485
provides precise ground truth for these difficult cases with 486
detailed hand articulation, particularly where objects par- 487
tially occlude parts of the human body, creating ideal train- 488
ing data for models that must infer joint positions despite 489
visual obstruction. Fig. 9 demonstrates how even the lead- 490
ing motion and pose estimation models, 4D Humans [19] 491
and TRAM [64] struggle to predict correct poses from the 492
renderings of our dataset. Additionally, none of these meth- 493
ods incorporates the hand pose estimation capabilities. 494

Authorized 2D Generation. Generating realistic images 495
and videos often requires data that are difficult to cap- 496
ture, such as different viewpoints, object manipulation, 497
or lighting changes. HUMOTO provides rich, human- 498
involved scene data to simulate object addition/removal, re- 499
veal occluded areas, and capture lighting and shadow effects 500
(Fig. 10, right). Existing 2D models, like Affordance Dif- 501
fusion [74], often produce artifacts such as distorted hands 502
and blurry poses (Fig. 10, left bottom). HUMOTO offers 503
high-quality, realistic renderings of complex human-object 504
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Figure 9. Human motion and pose estimation results on HUMOTO. Comparison between 4D Humans [19] (Mid) and TRAM [64]
(Bottom) on rendered images, showing estimated meshes (colored) against ground truth skeleton (white).

Figure 10. Image editing. Left: Hand-object interaction image generation conditioned on a mug. Recent work Affordance Diffusion
(bottom row) produces physically implausible interactions with imprecise hand positioning, while HUMOTO can provide renderings (top
row) of realistic hand placements at various positions. Right: Our dataset can also be used to provide renderings of object addition and
removal, capturing differences in shadows and reflections, and facilitating authorized human-in-scene generative model training.

interactions, enabling more accurate training for human-505
object interaction models [73, 74].506

6. Conclusion and Limitations507

In this work, we present HUMOTO, a comprehensive508
dataset of human-object interactions with detailed and accu-509
rate hand motion, and a dedicated scene-driven LLM script-510
ing method to hierarchically design interaction scripts.511

Despite HUMOTO’s advancements, it has some limi-512
tations. First, due to motion capture suit size constraints,513
our dataset includes only a single performer, which may in-514

troduce a bias toward a particular human body shape and 515
movement style. Second, the dataset preparation process 516
required considerable manual cleaning and refinement of 517
the captured motion data. While such manual interven- 518
tion ensures high-quality data, it represents a significant 519
resource investment. To mitigate this challenge in future 520
work, more advanced and robust pose estimation methods 521
are needed. We hope that HUMOTO can serve as a foun- 522
dational training set for developing such automated tech- 523
niques, ultimately reducing the manual effort required for 524
high-fidelity human-object interaction data collection. 525
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