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Figure 1. Overview of the HUMOTO dataset. The dataset contains mocap 4D human-object interaction animations with multiple objects.
The unique features of the dataset include its detailed, accurate interaction modeling, specifically the detailed hand pose. The objects are
precisely modeled by artists. We additionally provide different abstract levels of text annotation for the interactions.

Abstract

We present Human Motions with Objects (HUMOTO), a
high-fidelity dataset of human-object interactions for mo-
tion generation, computer vision, and robotics applica-
tions. Featuring 735 sequences (7,875 seconds at 30 fps),
HUMOTO captures interactions with 63 precisely mod-
eled objects and 72 articulated parts. Our innovations
include a scene-driven LLM scripting pipeline creating
complete, purposeful tasks with natural progression, and
a mocap-and-camera recording setup to effectively han-
dle occlusions. Spanning diverse activities from cook-
ing to outdoor picnics, HUMOTO preserves both physical
accuracy and logical task flow. Professional artists rig-
orously clean and verify each sequence, minimizing foot
sliding and object penetrations. We also provide bench-
marks compared to other datasets. HUMOTO'’s compre-
hensive full-body motion and simultaneous multi-object in-
teractions address key data-capturing challenges and pro-
vide opportunities to advance realistic human-object inter-
action modeling across research domains with practical ap-
plications in animation, robotics, and embodied Al systems.
Project: https://anonymous. 4open.science/

w/humoto—-submission/.

1. Introduction

4D Human-Object Interaction (HOI) data are crucial for
understanding human behaviors in our three-dimensional
world and for numerous applications in computer vi-
sion [41, 49, 50, 69, 75, 76, 79], robotics [4, 12, 46, 48,
52, 62], computer graphics [25, 32, 56], and generative
Al [2, 26, 40, 71]. These applications range from HOI
detection and reconstruction to motion generation, robotic
learning through demonstration, and even image/video gen-
eration. All of these fields rely on 4D HOI data to capture
human and object poses, ground-truth geometries, dynam-
ics, forces, and multi-view observations [70, 72]. However,
the lack of realistic 4D data hampers progress, particularly
in scenarios involving multiple objects and detailed manipu-
lations [16, 35]. As both generative and discriminative mod-
els advance [10, 40, 49, 51, 67], the need for high-quality
HOI data has become increasingly critical.

Acquiring high-quality 4D HOI data is expensive due to
the need for sophisticated motion capture setups and ex-
tensive manual data cleaning. Although recent efforts have
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provided various 4D human-object motion datasets [1, 35,
39, 58, 59, 61, 78, 81, 82], most focus on single-object in-
teractions or lack detailed hand movements. Comprehen-
sive datasets that capture interactions with multiple objects,
with full-body and hand motion, remain a gap in the field.

To address this, we introduce Human Motions with
Objects (HUMOTO), a new 4D animation dataset captured
from real performance. HUMOTO includes 735 curated
sequences totaling 7,875 seconds of motion (captured at
30 fps), featuring diverse daily activities and interactions
with 63 objects comprising 72 distinct parts. Many scenes
involve interactions with multiple objects, such as meal
preparation with various utensils, storage organization, and
room arrangement. The objects span a wide range of sizes,
from small household items like utensils and tools to larger
furniture pieces, all modeled based on real-world measure-
ments. All human motions are captured with detailed body
and hand movements, accompanied by text annotations.

The acquisition of HUMOTO is particularly challeng-
ing due to the complexity of recording fine-grained, multi-
object interactions. It requires precise calibration, special-
ized equipment, and extensive post-processing to produce
clean, high-quality sequences. By leveraging state-of-the-
art techniques, including Large Language Model (LLM)-
generated scripts and multi-sensor tracking, we create a
dataset with unprecedented detail and fidelity.

Our dataset’s distinctive quality stems from our com-
plementary capture approach. To generate diverse motion
scripts covering varied daily activities, we use a directorial
mindset to design stories and actions, and we introduce a
Scene-Driven LLM Scripting method to hierarchically gen-
erate these scripts. To capture human motion in the pres-
ence of frequent object occlusions, we utilize motion cap-
ture suits and gloves with electromagnetic field (EMF) tech-
nology to track performers, while dual-Kinect RGB-D sen-
sors record object poses. This multi-modal system ensures
fidelity in both large-scale movements and fine manipula-
tions, even in occlusion-heavy scenarios.

All sequences undergo rigorous cleaning and indepen-
dent verification by professional artists, with particular at-
tention to common issues such as foot sliding and object
penetration, ensuring clean yet natural movement nuances
preserved data for machine learning context. An indepen-
dent group of artists were also invited to assess the complete
dataset’s quality from a professional perspective. Moreover,
we introduce a set of metrics to evaluate our and other HOI
datasets, providing a comprehensive benchmark for human
motion, object motion, and interaction quality.

HUMOTO provides a valuable resource for training
models in motion generation, robotics, computer vision,
and 2D generation. These sequences capture not only physi-
cal dynamics but also the logical progression of tasks, mak-
ing them useful for learning natural action sequences and

task planning [39, 48]. The comprehensiveness of the data

set extends its utility in multiple domains: motion genera-

tion models can learn natural interaction patterns [10, 51],

robotics researchers can study human manipulation strate-

gies [13, 48, 52], and computer vision systems can train
on accurate 3D ground truth for detection, tracking, and re-
construction [41, 50, 69, 79]. Image or video generation
systems can also use verified motion sequences for content
creation and authorization [25, 36, 71].
The contributions of this work include the following.

* A high-fidelity HOI dataset featuring complex, meaning-
ful, and diverse daily interactions with multiple objects at
various scales.

* A multi-modal capture methodology with Scene-Driven
LLM Scripting and multi-sensors setup, preserving subtle
interactions even in challenging occlusion scenarios.

* A set of quality metrics and benchmarks to evaluate HOI
datasets to establish quantitative standards for human mo-
tion, object motion, and interaction quality.

2. Related Work

Human Motion Capturing Technologies. Recent ad-
vances in human pose estimation from cameras, includ-
ing monocular RGB and RGB-D setups, have significantly
broadened the scope of human motion capture. Early re-
search explored markerless systems [5, 7, 14, 15, 34, 57],
while more recent frameworks such as OpenPose [3] and
DensePose [20] provide robust 2D and 3D joint detection.
These camera-based systems are frequently improved using
optimization techniques [23] or pre-trained models [54, 82],
which substantially improve tracking accuracy. In par-
allel, marker-based pose estimation methods have been
successfully applied to human-object interaction scenar-
ios [44, 45, 47], delivering superior precision in specific
contexts. Although these techniques are effective in un-
constrained environments, they often encounter limitations
when dealing with complex poses or occlusions.

Motion capture suits (mocap) have emerged as a widely
adopted tool for capturing high-fidelity human motion
across both research and industry applications. Both optical
mocap systems and electromagnetic field suits have been
employed in dataset collection [9, 17, 24, 37], offering ex-
tensive coverage for more challenging scenarios.

For object pose estimation, RGB-D cameras have be-
come increasingly prevalent in HOI scenarios. Advanced
techniques [42, 60, 66, 68] have demonstrated remarkable
performance in object detection and localization. In the do-
main of neural systems, inertial measurement units (IMUs)
have been attached to objects to track specific parame-
ters [22, 80, 82].

Human-Object Motion Datasets. The field of human-
object interaction has witnessed the development of sev-
eral significant datasets, each addressing different aspects
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Scene Objects Scripts

A person methodically turns off all lights in their bedroom
before settling into bed for sleep.

ke

Bedroom

w

A person reclines in a low chair while reaching for objects
on a nearby table, illuminated by the warm glow of a
lamp.

Livingroom

R

A person picks up the soap dispenser from the tray,
pumps once into their palm, and thoroughly washes their
hands.

Bathroom

A person carefully prepares food on plates, selects a
spoon from the tray to place alongside each dish, and
finally serves the completed meals at the table.

I}

S5 =
i

Kitchen

}

A person loads plates onto a utility cart, wheels it to the
outdoor picnic area, and arranges the items on a blanket
for guests to enjoy.

Outdoor

a

Figure 2. Scene-Driven LLM Scripting. We established target
scenes, prepared relevant interaction objects, and then leveraged
LLMs to generate detailed action scripts.

of HOI capture. GRAB [58] represents one of the first data
sets that addresses the full-body human-object interaction;
however, it focuses primarily on upper-body interactions
and is therefore omitted from our comparison. BEHAVE [1]
and OMOMO [39] present more complex scenarios but lack
detailed hand pose information. IMHD [78] specifically
targets highly dynamic human-object interactions such as
sports activities. Home [35] and TRUMANS [33] inves-
tigate human-object interactions within domestic environ-
ments, though these scenes tend to be more stationary with
limited variance. TACO [44] focused more on capturing
ego-centric interactions. Beyond dedicated data sets on
human-object interaction, MIXAMO [29] provides a com-
prehensive repository of motion capture data used primar-
ily in character animation and game development. HU-
MAN3.6M [83] constitutes a large-scale dataset designed
for human motion capture, focusing on natural daily activi-
ties rather than human-object interactions.

While each of these datasets has significantly advanced
the field, all exhibit limitations in capturing the complex-
ity of real-world multi-object interactions. A critical short-
coming is the frequent inaccuracy of hand-object interac-
tions, where hands either appear completely detached from
objects or penetrate surfaces by significant margins. Addi-
tionally, many existing datasets consist of isolated, purpose-
less movements that, even with textual annotations, make
it difficult to extract meaningful representations of con-
tinuous human daily activities. These limitations impede
the development of models capable of understanding natu-
ral human-object interactions, particularly when involving
multiple objects or requiring fine-grained manipulations.

3. Data Collection

The HUMOTO dataset advances human-object interaction
research through a comprehensive collection methodology
that mirrors cinematic production. Beginning with LLM-
generated scripts describing natural daily activities, we

turing
environment showing two Kinect cameras, stage, lighting, cali-
bration board, and interaction objects. Right: Calibration proce-
dure with the performer in a standardized position, enabling pre-
cise alignment between mocap suit data and camera coordinates.

e — ww = Sg—
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Figure 4. 3D Meshes. Artist-modeled objects used in HUMOTO.

carefully selected and modeled common household objects
before capturing interactions on a custom motion capture
stage equipped with dual Kinect cameras.

3.1. Script Development

To address the limitations of existing datasets, where inter-
actions often appear arbitrary or disconnected, we develop
a systematic approach to create action scripts before cap-
turing a large volume of motion data. Inspired by movie
production workflows of grouping actions into scenes, we
established a Scene-Driven LLM Scripting framework to
automate script generation. First, we created conceptual
“rooms” by logically grouping related objects from our col-
lection. We then provided these groupings to LLMs to
generate cohesive interaction sequences within contextual
spaces, as illustrated in Fig. 2. This resulted in rich narra-
tives where performers executed purposeful tasks, such as
opening a drawer to retrieve an item, arranging objects on
a desk, or preparing a meal, thereby ensuring that each mo-
tion served a clear function. Further details of the Scene-
Driven LLM Scripting process are provided in the supple-
mental materials (Fig. 14).

3.2. Environment and Capturing

Objects and Humans. HUMOTO is built on a carefully
curated collection of 63 standard household objects, encom-
passing 72 distinct functional parts (Fig. 4). Unlike previous
datasets relying on 3D scanning, we recruited professional
artists to create precise digital models capturing crucial de-
tails, including articulated components and graspable sur-
faces. This ensures geometric accuracy while preserving
part-level information essential for realistic interaction.

ICCV
#27

184
185
186

187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205

206
207
208
209
210
211
212
213



ICCV
#27

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

ICCV 2025 Submission #27. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

P
£,

R & & &

The subject stands
behind the table,
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The subject holds  After chopping, they move
vegetables with the knife to the right side of
their left hand on  the cutting board and shift

the cutting board ... their left hand to the left
side....
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Human:Object Interactions with Text Descriptions

Detailed Hand Poses
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Contact Maps on Objects
and Human

Trajectories of Human
Body Parts and Objects

Figure 5. HUMOTO dataset visualization. We depict human-object interactions with text descriptions (left), detailed hand poses, and
contact maps highlighting interaction areas (middle), and trajectories of human body parts and objects during activities (right). These
complementary representations provide comprehensive data for various applications.

Our performer, outfitted with Rokoko smart-suits [53]
and paired gloves, enabled high-fidelity tracking of full-
body movements and finger articulations at 30 frames per
second. The inertial sensor network provided reliable skele-
tal tracking, while the specialized gloves captured the fine-
grained hand movements essential for natural object manip-
ulation. The skeletal motions are transferred to a neutral hu-
man model with the standard Mixamo skeleton rigging [29].
Environment Setup. To minimize magnetic interference
between the Rokoko suit’s inertial sensors and metallic
structures in the vicinity, we built a customized wooden
stage to elevate performers from the floor by 12 inches. Two
Kinect cameras were positioned at two corners, maximizing
capture volume while minimizing occlusions during com-
plex interactions. Spatial alignment between camera and
motion capture systems was achieved using a calibration
board to establish a common coordinate system. The dual-
computer setup, one managing Kinect camera feeds and ob-
ject tracking and the other handling Rokoko motion capture
data, maintained precise temporal synchronization through
UDP commands routed over a dedicated network.
Capturing process. We instructed performers to execute
the scripted interactions with purpose rather than mechani-
cal precision, maintaining the fidelity required for data anal-
ysis while preserving the characteristic fluidity of human
motion. This approach was particularly important in cap-
turing complex sequences with multiple objects, where per-
formers might simultaneously engage with several items,
e.g., opening a drawer and reaching for an object, or repo-
sitioning multiple items on a surface. We captured these
nuanced and complex multi-object interactions, including
unconscious behaviors like fidgeting hands that character-
ize authentic human-environment engagement.

Processing the Raw Data. The technical processing

pipeline addressed two primary challenges: temporal syn-
chronization and spatial alignment between the human mo-
tion capture and object tracking data streams. At the be-
ginning of each capture sequence, performers adopted a
calibration stance at a predetermined position where the
Rokoko system exhibited optimal tracking performance.
This position, mapped to the camera coordinate system us-
ing our calibration board reference, established a transfor-
mation matrix that aligned both coordinate frames.

Object tracking leveraged the dual Kinect camera setup
to minimize occlusions. The FoundationPose [66] algo-
rithm analyzed the visual data to determine 6DoF poses for
each object. To address the limitations of frame-to-frame
consistency assumptions during rapid movements, we im-
plemented a dynamic reset mechanism based on mask pixel
differences, reinitializing tracking when substantial move-
ment was detected. To further improve the tracking re-
sult, we provide object masks by employing SAM2 with
strategic human annotations, ensuring tracking consistency
across frames where objects might be temporarily occluded.

3.3. Data Cleaning and Annotation

Multi-stage Quality Assurance. Our quality assurance
protocol is a two-stage approach combining technical re-
finement and independent verification. During technical re-
finement, professional artists refined capture artifacts like
drift and tracking errors, ensuring logical consistency in the
interactions. During the subsequent verification, an inde-
pendent team verified the sequences for natural and plau-
sible human-object interactions, addressing issues such as
joint jitter and foot sliding. We iterated these two stages till
all quality standards were met, ensuring fidelity to natural
movements and interactions.

Textual Annotation. We invited an independent group to
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Dataset Human Motion Object Motion Contact
Foot Sliding Jerk MSNR  Coherence Diversity Jerk Penetration ~ Contact State
(ecm) | (m/s?) ] (dB) — 4 0 (m/s3) ] (ecm) | Entropy T Consistency 1

BEHAVE [1] 4.556 4.08 5.51 0.533 0.966 10.40 0.0606 2.2915 0.0667
OMOMO [39] 2.130 15.10 12.37 0.619 0.978 27.40 0.0602 1.9468 0.4837
IMHD [82] 1.474 1.14 14.20 0.554 0.951 24.06 0.1172 2.4265 0.2411
ParaHome [35] 3.008 9.19 1.82 0.592 0.980 0.08 0.2167 1.0254 0.6815
HUMOTO 0.958 1.87 9.42 0.653 0.956 1.13 0.0068 1.4587 0.5061
Mixamo 3.184 8.14 10.88 0.616 0.958 - - - -

Table 1. Quantitative evaluation across human-object interaction datasets. Metrics defined in Appendix A.2.1 should be interpreted
holistically, as optimal values depend on specific applications. The table includes two additional statistical indicators that provide context
for understanding dataset characteristics. Bold indicates best, underline indicates second-best. 1: higher values are better, |: lower values

are better, and —: values closer to Mixamo are better.

provide textual descriptions for each sequence based on the
actual performance. These annotations included three ele-
ments: (1) a concise title highlighting the sequence’s main
goal with details on subtle differences, (2) a short script pro-
viding a complete yet brief description of the motion and
interaction in the scene, and (3) a detailed long script elab-
orating on specific motions and interactions throughout the
sequence. These multi-level textual annotations enhance the
dataset’s utility for applications requiring both visual and
semantic understanding of human-object interactions.

This comprehensive approach with script generation,
capture, processing, quality control, and annotation, re-
sulted in a dataset that captures both the mechanics of ob-
ject manipulations and the purposeful sequences in which
these manipulations naturally occur. HUMOTO provides
researchers with data reflecting how humans chain multi-
ple actions together to achieve higher-level goals, enabling
advances in human behavior prediction [27], robotic learn-
ing from demonstration [8, 13], virtual character anima-
tion [30, 38, 52], and augmented reality applications [36].

4. Dataset Analysis

This section elaborates on the quantitative and qualitative
evaluations of the motion quality and compares HUMOTO
against existing datasets: BEHAVE [1], OMOMO [39],
IMHD [82], ParaHome [35] and GRAB [58].

4.1. Quantitative Evaluation

We evaluate human motion, object motion, and human-
object interaction using metrics such as foot sliding, jerk,
penetration, contact entropy, and state consistency. These
metrics offer insights into motion quality, interaction real-
ism, and the diversity of interaction states. Additionally,
we introduce a new metric, Motion Signal-to-Noise Ra-
tio (MSNR), to assess the quality of motion relative to
noise in the dataset. MSNR evaluates motion quality us-
ing the signal-to-noise ratio (SNR) [55] of joint kinemat-
ics. Higher SNR values indicate smoother motion, though
excessive smoothing may result in loss of important de-

tails. We use Mixamo, an industry-standard motion cap-
ture dataset cleaned by artists, as the baseline for human
motion quality. Datasets with MSNR values closer to Mix-
amo’s indicate comparable motion quality. Further details
and metric formulations are provided in Appendix A.2.1.
Comparison on Human and Object Motion. HUMOTO
demonstrates superior performance in several key motion
quality metrics. The data set exhibits the lowest foot sliding
among all datasets compared, significantly outperforming
established datasets like BEHAVE [1] and ParaHome [35].
This improvement can be attributed to our meticulous mo-
tion capture process and rigorous artist-led quality control.
The low jerk values for human motion indicate smooth and
natural movements, second only to IMHD [82], whose fast
movements are more likely to have similar acceleration in
a sequence. While the Mixamo dataset shows higher foot
sliding and jerk, it is important to note that Mixamo con-
tains specialized movements like street dancing, which in-
herently involves more dynamic motions that increase these
metrics compared to typical HOI scenarios.

HUMOTO achieves 9.42 dB in Motion SNR, approach-
ing Mixamo’s reference value. This slightly lower SNR
compared to IMHD and OMOMO stems from HUMOTO’s
complex interactions with detailed hand poses, which in-
troduce higher frequency components often interpreted as
“noise”. Notably, OMOMO’s combination of high SNR
with high jerk values suggests clean signals that still con-
tain abrupt motion changes, a phenomenon meriting future
investigation. HUMOTO’s high coherence demonstrates
consistent, targeted motions while maintaining competitive
diversity, especially compared to Mixamo. The unusually
high diversity scores of other datasets may indicate exces-
sive noise rather than true motion variety, artificially inflat-
ing their entropy measurements.

In object motion, HUMOTO demonstrates a notably low
jerk, indicating realistic object manipulation, unlike the
high values in OMOMO and IMHD. ParaHome’s extremely
low object jerk reflects that the objects in their long se-
quences are mostly static and barely interact with humans.
Comparison on Contact Quality,. HUMOTO excels in
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Dataset # hours # subj. # obj. hand body max. obj. setup
GRAB [58] 3.8 10 51 v v 1 standing
BEHAVE [1] 4.2 8 20 X v 1 portable
InterCap [28] 0.6 10 10 v v 1 portable
OMOMO [39] 10.1 17 15 X v 1 portable
FHPA [18] 0.9 6 26 v X 1 room
HOI4D [43] 22.2 9 800 v X 1 room
Chairs [31] 162 46 70 v v 1 standing
ARCTIC [11] 1.2 10 11 v 4 1 standing
NeuralDome [77] 4.6 10 23 v v 1 standing
TRUMANS [33] 15 7 20 v v - (proxies) room
ParaHome [35] 8.1 38 22 v v 22 room
HUMOTO 2.2 1 63 v 4 15 scene

Table 2. Dataset statistics. We provide details on the total du-
rations, number of subjects, objects, presence of hand and body
data, maximum objects in scene, and data collection setup styles.

contact quality metrics, achieving the lowest penetration
among all datasets despite including detailed hand poses.
This order of magnitude improvement over BEHAVE and
OMOMO demonstrates our exceptional precision in cap-
turing human-object spatial relationships, which is crucial
for physically plausible interaction models. The contact en-
tropy for HUMOTO shows a balanced distribution between
contact states, more diverse than ParaHome but more fo-
cused than the potentially noisy patterns in IMHD and BE-
HAVE, suggesting meaningful interactions without exces-
sive fluctuations. For state consistency, HUMOTO strikes
a balance between the highly consistent but potentially
oversimplified ParaHome and the less consistent BEHAVE,
maintaining realistic transitions while avoiding rapid fluc-
tuations that might indicate tracking errors.

Overall, HUMOTO combines the detailed hand articu-
lation with superior metrics in foot sliding, smoothness of
object motion, and minimal penetration, making it valuable
for applications requiring physically accurate human-object
interactions with natural motion.

4.2. Qualitative Evaluation

The quantitative results are influenced by features of the
datasets that do not necessarily represent quality issues.
Therefore, they should be interpreted holistically rather than
in isolation, as their values are influenced by multiple fac-
tors, including motion and interaction complexity. Thus, we
also provide qualitative evaluations.

4.2.1. Visual Quality

We present a visual quality comparison in Fig. 6. While
BEHAVE and OMOMO use only standard hand templates
without detailed finger poses, IMHD offers finer hand mod-
eling but exhibits significant penetration in several scenes.
ParaHome provides relatively flexible hand motion, though
their capture method (attaching tags on hands) interferes
with natural movement, resulting in frequent clenched hand
poses throughout the dataset. HUMOTO demonstrates su-
perior hand pose quality, particularly during interactions.

&

T

omMoMo IMHD

GRAB BEHAVE

ParaHome HUMOTO

Figure 6. Quality comparison. We compare different datasets on
motion dynamics, hand pose accuracy, and object meshes.

We also compare object mesh quality across datasets. Ob-
jects from prior datasets show noise artifacts due to 3D
scanning limitations, while our object modeling pipeline
produces clean, accurate representations.

4.2.2. Perceptual Study

To complement our quantitative analysis, we conducted a
human perceptual study evaluating HUMOTO against ex-
isting HOI datasets through absolute quality assessment and
direct pairwise comparison. We report the results of an on-
line study taken by 26 participants, comprising students and
researchers specializing in computational human motion.

Absolute Quality Assessment. Participants rated ran-
domly selected videos from HUMOTO, BEHAVE, IMHD,
OMOMO, and ParaHome on a 5-point Likert scale. HU-
MOTO achieved the highest scores in all categories: human
motion (4.79£0.49), with 82% giving maximum scores),
object motion (4.8810.36), interaction quality (4.75+0.57),
and overall quality (4.784+0.43). These scores signifi-
cantly outperformed all comparison datasets, with the most
notable difference in interaction quality, where BEHAVE
scored only 2.48+1.05 and even recent datasets like IMHD
(3.94£1.04) lagged considerably.

Pairwise Comparison. In this study, participants directly
compared HUMOTO against other datasets showing the
same interaction tasks. The results strongly favored HU-
MOTO in all dimensions, with 96% preferring HUMOTO
over BEHAVE for overall quality. Even against newer
datasets, HUMOTO was consistently preferred: 46% ver-
sus IMHD (with 50% rating both equally good), 65% ver-
sus OMOMO (28% ties), and 82% versus ParaHome (15%
ties). For interaction quality specifically, HUMOTO out-
performed BEHAVE (94% preference), OMOMO (65%),
and ParaHome (67%), while against IMHD, HUMOTO was
preferred by 38% and rated equally good by 46%.

These results demonstrate the superior quality of HU-
MOTO in both absolute ratings and direct comparisons,
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The subject scoops ingredients using the spoon with left the hand from the deep plate.

Figure 7. Motion Generation by MotionGPT [30]. Left: Motion
generated from the short scrip. Mid: Motion generated from the
long script. Right: Motion with same text annotation from HU-
MOTO dataset.

particularly for interaction quality and overall performance.
Details are provided in Appendix A.3.

5. Discussions

Building upon the novel script generation pipeline, the
multi-sensors motion capture system, and the rigorous qual-
ity control described in Sec. 3, the HUMOTO dataset pro-
vides not merely the detailed mechanics of object manipu-
lation but the purposeful sequences in which these manipu-
lations naturally occur. HUMOTO offers exceptional value
for a wide range of research and applications, of which we
highlight some below.

Human-Object Interaction and Motion Generation.
Our dataset supports the development of generative mod-
els that can translate textual descriptions (e.g., “pick up the
coffee mug and drink from it”) into realistic interaction se-
quences. The diversity of objects and interactions in HU-
MOTO provides rich supervision for text-conditioned mo-
tion synthesis. Our dataset is challenging as state-of-the-art
human-object interaction models do not have the ability to
generate interaction motion on multiple objects. To show
this, we test MotionGPT [30] with HUMOTO prompts in
Fig. 7. It appears that the model can generate a few rea-
sonable motions based on the more abstract description,
but fails to faithfully generate more fine-grained motions
compared to the captured ground truth HUMOTO motions.
This experiment demonstrates that state-of-the-art motion
generation methods, despite being trained with large-scale
datasets such as AMASS[47] and HumanML3D [21], still
struggle with generating detailed human-object interaction.
HUMOTO is designed to fill this gap.

Robotics and Embodied AI. The precision and diver-
sity of interactions in HUMOTO make it particularly valu-
able for robotics research. To demonstrate the capability
of our data, we use PyBullet [6] to compare HUMOTO
with Parahome [35] in simulation settings. After weight-
ing our objects and assigning similar mass to the Para-
Home dataset, we use CoACD [65] to obtain convex shapes
for simulation. Overlaying the final frame on the first

Displacement=0.011 Displacement=0.283

Figure 8. Data for Robotics. Top: Two simulator visualizations
showing human sitting and holding mug. HUMOTO (/eft) displays
minimal displacement, while ParaHome (right) shows significant
object displacement during identical actions. Bottom: Hand ma-
nipulation comparison between HUMOTO (left) and simulated
robotic grasps from DexGraspNet (right).

(Fig. 8, Top) reveals significantly smaller object displace-
ment in our dataset compared to Parahome, where inter-
acted objects show substantial movement. Grasp synthe-
sis, a popular robotic research topic [46, 62, 63], usually
relies on simulated data that, despite passing simulator val-
idation, often produces unnatural (e.g., blue hand on mug
bottom) or functionally unreasonable grasps (e.g., fingers
inside bowls). Comparing similar object grasps from HU-
MOTO with those from DexGraspNet [63] in Fig. 8 (Bot-
tom) shows that our hand poses are more natural and aligned
with daily usage. Additionally, HUMOTO’s task-oriented
motion data can help robot learning systems develop capa-
bilities directly transferable to real-world household assis-
tance scenarios rather than simple interaction primitives.

Pose Estimation in Challenging Scenarios. State-of-
the-art human pose estimation methods continue to face
challenges in complex interaction scenarios. HUMOTO
provides precise ground truth for these difficult cases with
detailed hand articulation, particularly where objects par-
tially occlude parts of the human body, creating ideal train-
ing data for models that must infer joint positions despite
visual obstruction. Fig. 9 demonstrates how even the lead-
ing motion and pose estimation models, 4D Humans [19]
and TRAM [64] struggle to predict correct poses from the
renderings of our dataset. Additionally, none of these meth-
ods incorporates the hand pose estimation capabilities.

Authorized 2D Generation. Generating realistic images
and videos often requires data that are difficult to cap-
ture, such as different viewpoints, object manipulation,
or lighting changes. HUMOTO provides rich, human-
involved scene data to simulate object addition/removal, re-
veal occluded areas, and capture lighting and shadow effects
(Fig. 10, right). Existing 2D models, like Affordance Dif-
fusion [74], often produce artifacts such as distorted hands
and blurry poses (Fig. 10, left bottom). HUMOTO offers
high-quality, realistic renderings of complex human-object
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4D Humans

Figure 10. Image editing. Left: Hand-object interaction image generation conditioned on a mug. Recent work Affordance Diffusion
(bottom row) produces physically implausible interactions with imprecise hand positioning, while HUMOTO can provide renderings (fop
row) of realistic hand placements at various positions. Right: Our dataset can also be used to provide renderings of object addition and
removal, capturing differences in shadows and reflections, and facilitating authorized human-in-scene generative model training.

interactions, enabling more accurate training for human- troduce a bias toward a particular human body shape and
object interaction models [73, 74]. movement style. Second, the dataset preparation process
required considerable manual cleaning and refinement of
the captured motion data. While such manual interven-

6. Conclusion and Limitations ' : ¢ i e
tion ensures high-quality data, it represents a significant

In this work, we present HUMOTO, a comprehensive resource investment. To mitigate this challenge in future
dataset of human-object interactions with detailed and accu- work, more advanced and robust pose estimation methods
rate hand motion, and a dedicated scene-driven LLM script- are needed. We hope that HUMOTO can serve as a foun-
ing method to hierarchically design interaction scripts. dational training set for developing such automated tech-
Despite HUMOTO’s advancements, it has some limi- niques, ultimately reducing the manual effort required for
tations. First, due to motion capture suit size constraints, high-fidelity human-object interaction data collection.

our dataset includes only a single performer, which may in-
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