
Under review as submission to TMLR

Communication-Efficient Sparse Federated Learning on Non-
IID Datasets

Anonymous authors
Paper under double-blind review

Abstract

In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for
sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork
prior to training, leveraging parameter saliency scores computed separately on local client
data in non-IID scenarios, and then aggregated, to determine a global mask. Only the
sparse model weights are trained and communicated each round between the clients and
the server. On standard benchmarks including CIFAR-10, CIFAR-100, and Tiny-ImageNet,
SSFL consistently improves the accuracy–sparsity trade-off, achieving more than 20% relative
error reduction on CIFAR-10 compared to the strongest sparse baseline, while reducing
communication costs by 2× relative to dense FL. Finally, in a real-world federated learning
deployment, SSFL delivers over 2.3× faster communication time, underscoring its practical
efficiency.

1 Introduction

The success of deep learning has been propelled by ever-larger models trained on centralized datasets. Yet,
in critical domains such as healthcare, finance, and mobile computing, data is inherently decentralized,
privacy-sensitive, and distributed across millions of user devices or institutional silos. Federated Learning (FL)
has emerged as a compelling paradigm for such settings, enabling collaborative model training without direct
data sharing (McMahan & Ramage, 2017). By orchestrating learning across clients who retain their local
data, FL promises privacy preservation and data locality. However, practical deployment of FL, especially in
cross-device scenarios, remains fraught with challenges.

FL systems must contend with severe system heterogeneity, where client devices exhibit widely varying
compute, memory, and energy resources. This is compounded by statistical heterogeneity, as data across
clients is typically non-IID and differently balanced, making it difficult to train a single global model that
generalizes well across users (Kairouz et al., 2021). These challenges often manifest as communication
bottlenecks, poor convergence behavior, and brittle hyperparameter tuning (Khodak et al., 2021).

One promising approach to alleviating these bottlenecks is through sparse training, which reduces both the
on-device computation and the communication payload (Lin et al., 2017; Wang et al., 2020; Evci et al., 2020).
Among sparse FL methods, there has been considerable progress in dynamic sparsification strategies that
evolve sparse masks over the course of training (Bibikar et al., 2022; Dai et al., 2022; Guastella et al., 2025).
However, these methods typically rely on iterative coordination, complex heuristics such as prune-and-grow
schedules, and introduce additional hyperparameters that require tuning. Moreover, certain pruning-at-
initialization (PaI) approaches resort to using public proxy datasets to identify subnetworks, which violates
the privacy-preserving ethos of FL (Huang et al., 2022).

In this work, we address a fundamental open problem in sparse and efficient FL: how can one identify a
performant, static sparse subnetwork at initialization using only private, non-IID data across clients with
minimal communication and no auxiliary dataset? To this end, we propose Salient Sparse Federated Learning
(SSFL), a simple yet effective method that discovers a globally shared sparse mask prior to training via a
single step of distributed saliency aggregation at the start of the learning process. Each client computes
local gradient-based parameter importance scores on private data and transmits them once to the server,

1

Under review as submission to TMLR

which averages them in a data-proportional manner to construct a global heatmap of saliency scores. The
Top-k operation on the aggregated saliency heatmap defines a fixed binary mask, establishing a common
sparse subnetwork for all clients that is preserved for the duration of training. This leads to a highly
communication-efficient and privacy-compliant static sparse FL pipeline, with zero overhead beyond the
initial mask discovery.

Extensive experiments across CIFAR-10, CIFAR-100, and Tiny-ImageNet under realistic non-IID settings
demonstrate that SSFL significantly outperforms both dense and sparse FL baselines, including state-of-the-art
dynamic sparsity methods such as DisPFL (Dai et al., 2022), SparsyFed (Guastella et al., 2025) and Flash
(Babakniya et al., 2023). Moreover, we validate the practical efficiency of SSFL in a real-world FL deployment,
achieving over 2.3× wall-clock communication speedups on larger models. To the best our knowledge, SSFL
is the first method to offer a single-shot, fully decentralized, and privacy-preserving sparse FL strategy with
competitive performance across standard benchmarks.

Contributions We summarize our contributions as follows:

• We introduce SSFL, the first single-shot sparse federated learning framework that discovers a globally
shared sparse subnetwork at initialization using only local client data. Our approach avoids the need for
public auxiliary datasets, iterative pruning cycles and additional hyperparameters.

• We develop a communication-efficient mechanism to compute a globally representative importance scores
by aggregating local saliency scores in a single round of coordination. This aggregation respects both
data heterogeneity and client privacy, providing a practical solution for stable sparsity in federated
learning.

• We demonstrate that SSFL consistently outperforms state-of-the-art sparse federated learning baselines,
including recent dynamic methods such as DisPFL and SparsyFed. On CIFAR-10, SSFL achieves over
20% relative error reduction compared to the strongest sparse baseline, and it delivers similarly strong
accuracy–sparsity improvements across CIFAR-100, Tiny-ImageNet, and diverse non-IID partitions.

• We deploy SSFL in a real-world federated learning system and observe over 2× faster wall-clock
communication compared to dense baselines, underscoring the method’s practical impact.

2 Related Work

Our work lies at the intersection of model pruning and communication-efficient federated learning (FL). We
group related efforts based on how they impose sparsity and highlight how SSFL enables one-shot global
sparse training using only private, non-IID data and a single round of communication.

Dynamic sparsity in federated learning. A growing body of work explores dynamic sparsity, where
sparse masks evolve during training. These methods are designed to adapt to changing data distributions but
typically require repeated coordination between clients and the server. For example, SparsyFed (Guastella
et al., 2025) combines activation pruning with adaptive reparameterization, while DisPFL (Dai et al., 2022)
and FedDST (Bibikar et al., 2022) adopt the RigL strategy (Evci et al., 2020), periodically regrowing pruned
weights during training. DSFL (Beitollahi et al., 2022) introduces user-adaptive compression rates, MADS
(Yan et al., 2025) proposes mobility-aware sparsification that adjusts based on contact time and model
staleness, and DSFedCon (Li et al., 2025) integrates dynamic sparse training with federated contrastive
learning.

Although effective, such methods introduce additional hyperparameters and require multiple rounds of
communication for mask updates. Moreover, because clients maintain different and evolving masks, the
server must aggregate updates defined over partially non-overlapping parameter subspaces, complicating
aggregation and often leading to denser effective global models. In contrast, SSFL discovers a single global
mask at initialization, ensuring that all updates are aligned in the same sparse subspace and avoiding iterative
coordination altogether. This also provides a more stable optimization trajectory, as clients remain in a
common subspace throughout training.

2

Under review as submission to TMLR

Structured sparsity and specialization. Some FL methods impose structured sparsity by pruning
filters, blocks, or layers to reduce memory and inference costs on constrained devices. HeteroFL (Diao et al.,
2021) assigns clients submodels based on compute budgets, while AdaptCL (Zhou et al., 2021) employs
adaptive structured pruning to synchronize FL processes across heterogeneous environments. Sub-FedAvg
(Vahidian et al., 2021) combines both structured and unstructured pruning for personalized federated learning
under data heterogeneity. More recent work includes subMFL (Oz et al., 2024), which generates compatible
submodels through server-side structured pruning, and AdaPruneFL (Fan et al., 2024), which proposes
data-free adaptive structured pruning for heterogeneous client capabilities.

While structured sparsity primarily targets computational efficiency, the dominant bottleneck in federated
learning lies in communication. Unstructured sparsity better addresses this by maximizing parameter
reduction without hardware-specific constraints. Importantly, the sparse local models produced by SSFL
can still benefit from unstructured-sparsity-aware accelerators (e.g., SPMM kernels), enabling device-level
speedups(Nakahara et al., 2019; Thangarasa et al., 2023; Gale et al., 2020; NVIDIA, 2021; 2020) . Thus,
whereas structured approaches emphasize client specialization and hardware compatibility, SSFL focuses on
global communication savings while remaining compatible with hardware acceleration.

Static sparsity and pruning-at-initialization in FL. Pruning-at-initialization (PaI) techniques aim to
identify a sparse subnetwork before training begins. Although well-studied in centralized training (Lee et al.,
2018; Wang et al., 2020; Tanaka et al., 2020), their application in federated learning remains limited. Several
methods circumvent the challenge by relying on public proxy datasets to estimate parameter importance, as
in FedTiny (Huang et al., 2022). Others compute masks locally but struggle to generalize across clients under
non-IID distributions (Jiang et al., 2022). FedPaI (Wang et al., 2025) proposes a progressive, multi-round
pruning strategy, but this introduces additional pruning stages and communication costs. SSFL addresses
this gap by introducing a single-shot, privacy-preserving approach to identify a high-quality global mask
using only local client data. To the best of our knowledge, it is the first to demonstrate that gradient-based
saliency scores, when aggregated keeping the data disparity in mind, can enable static sparse training in FL
without auxiliary public datasets or iterative coordination during the training process.

A more detailed survey of related pruning and sparse federated learning approaches, including additional
variants and historical context, is provided in Appendix B.

3 The Salient Sparse Federated Learning (SSFL) Method

Federated learning poses unique challenges for sparsity: decentralized data, non-IID samples, and limited
communication make it difficult to identify globally effective sparse subnetworks. In particular, pruning-at-
initialization (PaI) strategies, while effective in centralized settings, require careful adaptation to function
under these constraints. SSFL addresses this challenge by introducing a single-shot, communication-efficient
method that constructs a shared sparse subnetwork before training begins. The approach requires only a
single round of client–server interaction, using local saliency scores to discover a globally important subset of
parameters. Once the mask is generated, all further training proceeds on the same sparse subnetwork using
standard federated averaging.

Our method consists of two main phases: (i) a one-time sparse mask discovery phase based on distributed
gradient saliency aggregation, and (ii) a sparse training phase where clients perform local updates and global
aggregation restricted to the space of parameters selected through the mask.

3.1 Parameter Saliency at Initialization

We begin by defining the importance criterion used to identify salient parameters prior to training. Saliency-
based pruning methods estimate how much each parameter contributes to the loss at initialization. This idea,
initially proposed in early neural network pruning work (Mozer & Smolensky, 1988) and refined in methods
like SNIP (Lee et al., 2018), is central to SSFL’s mask discovery phase.

3

Under review as submission to TMLR

Figure 1: Illustration of the distributed connection importance in the non-IID setting. The parameter saliency
scores from each site calculated on local minibatches of equal class distribution are aggregated, weighing
them with the proportion of the data available at that site. The common mask generated from that score is
applied to local client models.

Given a randomly initialized model w0 ∈ Rd and a loss function L(w) evaluated on a dataset D, the saliency
score sj for a parameter wj is defined as:

sj =
∣∣∣∣∂L(w0;D)

∂wj
· wj

∣∣∣∣ . (1)

This score captures the first-order sensitivity of the loss to removing parameter wj at initialization. Parameters
with larger magnitudes of sj are considered more important and are prioritized for retention.

In SSFL, each client computes this saliency score locally on a minibatch sampled from its private data.
Because this estimation is done only once, at initialization, the method incurs no additional runtime overhead
during training. The main challenge lies in extending this centralized scoring mechanism to a federated
setting in a way that respects data heterogeneity and avoids repeated communication.

3.2 The SSFL Process: Single-Shot Mask Discovery and Sparse Training

SSFL extends the saliency criterion from centralized training to federated settings through a single-shot
distributed process. This involves computing local importance scores at each client, aggregating them in a
data-weighted manner to produce a global importance vector, and selecting the top-scoring parameters to
define a shared sparse subnetwork. The full procedure consists of four stages:

Local Saliency Estimation

At initialization, all clients synchronize to a common model w0 ∈ Rd. Each client k samples a minibatch
Bk ⊂ Dk of size B from its private data and computes the local empirical loss for the obtained batch

L(w0;Bk) = 1
B

∑
(x,y)∈Bk

ℓ(w0; x, y). (2)

4

Under review as submission to TMLR

Using this loss, client k computes local saliency scores sk ∈ Rd by applying the importance criterion in
Equation (1) to its minibatch:

sk,j =
∣∣∣∣∂L(w0;Bk)

∂w0,j
· w0,j

∣∣∣∣ .

This process is fully local and requires no communication. We use only a single minibatch per client to
minimize computation and preserve privacy. A detailed analysis of the saliency estimation is provided in
Appendix A.1.

Aggregation of Saliency Scores.

Each client transmits its saliency scores sk and local dataset size nk = |Dk| to the server. A global saliency
vector s ∈ Rd is then computed via a weighted average:

s =
K∑

k=1
pksk, where pk = nk∑K

i=1 ni

. (3)

This data-weighted aggregation ensures that clients with more examples exert proportionally greater influence
on the final importance scores, which helps mitigate heterogeneity bias. The class-balanced minibatch
sampling further ensures that the computed saliency scores are representative of all classes available in the
local clients.

Global Mask Selection.

Given a target sparsity level σ ∈ (0, 1), the number of active parameters is k = ⌊(1− σ) · d⌋. A binary mask
m ∈ {0, 1}d is then computed as:

m = TopK(s,k),

where TopK(·,k) returns a binary vector with ones at the indices of the k largest values in s. This mask is
broadcast to all clients and remains fixed throughout training.

Sparse Federated Training.

Training proceeds in standard rounds of local updates and model aggregation, with all operations restricted
to the masked subnetwork. At communication round r, each participating client k receives the global sparse
model wr

g,m and performs T local update steps.

During training, both forward and backward propagation operate exclusively on the sparse subnetwork
defined by the mask m. At local step t, the forward pass computes the loss using only the active (non-zero)
parameters:

L(wt
k,m ⊙m;Bk,t),

where wt
k,m ⊙m ensures that masked-out parameters contribute zero to the network computation. The

corresponding masked gradient update is then applied as:

wt+1
k,m ← wt

k,m − η
(
∇wL(wt

k,m ⊙m;Bk,t)⊙m
)

,

where Bk,t is a local minibatch. This ensures that gradients are computed and applied only for the active
parameters, while masked parameters remain fixed at zero throughout training.

After T steps, each client sends its sparse model back to the server, and aggregation proceeds as in standard
FedAvg. Because the mask is fixed, all communication and computation can be compressed accordingly using
standard sparse encodings (e.g., CSR, COO, or bitmask formats); we discuss the communication accounting
protocol in detail in the Section 4.

5

Under review as submission to TMLR

Algorithm 1 SSFL: One-shot sparse subnetwork discovery and training
Require: Number of clients K, communication rounds R, local update steps T , sparsity level σ
Ensure: Final sparse global model wR

g,m

Phase 1: One-Time Mask Generation
1: Server initializes model w0 and broadcasts it to all clients.
2: for all clients k ∈ {1, . . . , K} in parallel do
3: Sample a minibatch Bk ⊂ Dk

4: Compute local saliency vector sk using equation 1
5: Send sk and local data size nk = |Dk| to the server
6: end for
7: Server computes data proportions pk = nk/

∑K
i=1 ni

8: Server aggregates global saliency: s←
∑K

k=1 pksk

9: Server sets number of active parameters k← ⌊(1− σ) · d⌋
10: Server generates global mask m← TopK(s,k)
11: Server broadcasts mask m to all clients
12: Server initializes sparse global model: w0

g,m ← w0 ⊙m
Phase 2: Sparse Federated Training

13: for r = 0 to R− 1 do
14: Server selects a subset of clients C′ ⊆ {1, . . . , K}
15: Server sends current sparse global model wr

g,m to all clients in C′

16: for all clients k ∈ C′ in parallel do
17: Initialize local model wk ← wr

g,m

18: for t = 0 to T − 1 do
19: Sample minibatch Bk,t ⊂ Dk

20: Compute masked gradient: ∇L(wk;Bk,t)⊙m
21: Update local model: wk ← wk − η∇L⊙m
22: end for
23: Send updated local model wk to server
24: end forServer aggregates client models: wr+1

g,m ←
∑

k∈C′
nk∑

j∈C′ nj
wk

25: end for

3.3 Dataset and non-IID partition

We evaluate SSFL on CIFAR-10, CIFAR-100 Krizhevsky et al. (2009) and the TinyImagenet dataset. For
simulating non-identical data distributions across the federating clients we use two separate data partition
strategies. We next present these non-IID data partition generating strategies and provide a more detailed
treatment in Appendix A.2.

Dirichlet Partition We use the Dirichlet distribution to simulate non-IID distribution of data among
the clients Hsu et al. (2019) and call this the Dirichlet Partition in our experiments. We assume that each
client selects training examples independently, with class labels distributed across N classes according to a
categorical distribution defined by the vector q, where each qi ≥ 0 for i ∈ {1, 2, 3, ..., N} and ∥q∥1 = 1.

To model a diverse set of clients, each with distinct data, we draw q ∼ Dir(αp) from the Dirichlet distribution
to determine the class distribution vector q. Here, the vector p establishes the baseline distribution across the
N classes, while the concentration parameter α > 0, dictates the degree of variation or the property of IID in
class distribution among clients. By adjusting α, we can simulate client populations with varying degrees of
data uniformity. Specifically, as α→∞ , the class distributions of the clients converge to the baseline prior
distribution p; conversely, as α is chosen to be smaller, increasing fewer classes chosen at random dominates
the proportion of data at each class, representing a higher degree of non-IID distribution. As α→ 0, each
client holds data from one particular class chosen at random.

6

Under review as submission to TMLR

Table 1: Comprehensive comparison of SSFL with FL and sparse FL baselines on CIFAR-10 and CIFAR-
100 under a Dirichlet partition using ResNet18 at 50% sparsity. Highlighted values indicate the best
performance.

Method CIFAR-10 CIFAR-100 Comms (MB) Sparse
FedAvg 86.04% 59.30% 446.9 ✗
FedAvg-FT 88.02% 59.42% 446.9 ✗
D-PSGD-FT 83.05% 50.27% 446.9 ✗
Ditto 83.50% 43.50% 446.9 ✗
FOMO 66.21% 32.50% 446.9 ✗

SSFL 88.29% 61.37% 223.4 ✓
DisPFL 85.12% 59.21% 224.0 ✓
SparsyFed 80.94% 50.64% 224.0 ✓
Flash 81.13% 51.81% 224.0 ✓
SubFedAvg 76.50% 47.25% 346.6 ✓
Random 41.61% 48.62% 223.4 ✓

Fed-PM 46.44% 15.88% optimal optimal

In this work, we partition the training data according to a Dirichlet distribution Dir(α) for each client
and generate the corresponding test data for each client following the same distribution. We set the prior
distribution p to be uniform over N classes and specify the α = 0.3 for CIFAR10 and α = 0.2 for the
CIFAR-100 for fair comparison to previous work (Dai et al., 2022; Bibikar et al., 2022). A detailed description
of the Dirichlet partitioning scheme with a figure depicting client data allocation is provided in Appendix A.2.

Pathological Partition Similar to earlier work in federated learning (McMahan et al., 2017; Zhang et al.,
2020), we conduct experiments on Pathological partition of the data where a limited number of classes are
only assigned to each client at random from the total number of classes, usually at most 2 classes per client
for Cifar10. For our experiments, we restricted each client to possess 2 classes for CIFAR-10 and 10 classes
for the CIFAR-100 dataset.

4 Experiments

We evaluate SSFL against a broad range of federated learning methods to demonstrate its effectiveness.
Our experimental design is four-fold: (1) We first compare SSFL with state-of-the-art sparse and dense FL
baselines on non-IID distributions of CIFAR-10, CIFAR-100, and TinyImageNet. (2) We then study the
performance of SSFL under varying sparsity levels up to 95% and compare it to other sparse FL methods.
(3) We deploy our method in a real-world FL framework to report wall-clock time improvements. (4) Finally,
we analyze the structural properties of the discovered sparse mask by studying the effect of intra-layer
permutations and the quality of the generated mask.

4.1 Main Results

Our primary results are organized by the data partitioning strategy to clearly delineate performance under
different non-IID conditions. All experiments in this subsection use a ResNet18 architecture with 50%
sparsity.

4.1.1 Performance on varying dataset and partitioning schemes

Performance on Dirichlet Partition. Table 1 shows the performance of all methods under the Dirichlet
non-IID data partition. On CIFAR-10, SSFL achieves the highest accuracy (88.29%) among all sparse
methods and also outperforms the strongest dense baseline, FedAvg-FT (88.02%). On CIFAR-100, SSFL
reaches 61.37% accuracy, again surpassing all sparse and dense techniques. This corresponds to more than a
20% relative error reduction compared to the strongest sparse baseline (DisPFL), underscoring the substantial

7

Under review as submission to TMLR

Table 2: Performance comparison on CIFAR-10 and CIFAR-100 under a Pathological partition. Highlighted
values indicate the best performance.

Method CIFAR-10 CIFAR-100 Comms (MB) Sparse

FedAvg 92.48% 52.47% 446.9 ✗

FedAvg-FT 92.90% 52.47% 446.9 ✗
D-PSGD-FT 88.74% 27.58% 446.9 ✗
Ditto 83.54% 51.90% 446.9 ✗
FOMO 88.25% 45.25% 446.9 ✗

SSFL 94.61% 52.01% 223.4 ✓
DisPFL 91.25% 44.74% 224.0 ✓
SubFedAvg 91.20% 46.04% 346.6 ✓
Random 55.34% 46.22% 223.4 ✓

margin by which SSFL improves over prior work. These results demonstrate that the global mask discovered
by SSFL effectively captures salient features that generalize well across clients with heterogeneous data
distributions. Results are averaged over five runs.

Performance on Pathological Partition. We further stress-test our method using a pathological non-IID
partition, where each client holds data from a very limited number of classes. The results, shown in Table 2,
highlight SSFL’s robustness. SSFL achieves the highest accuracy on CIFAR-10 with 94.61%. On CIFAR-100,
its performance (52.01%) is highly competitive with the top-performing dense baseline, FedAvg-FT (52.47%),
while significantly exceeding other sparse methods like DisPFL (44.74%). This indicates that SSFL’s saliency
aggregation mechanism can construct a high-quality global subnetwork even when clients have extremely
skewed, non-overlapping data distributions.

Performance on TinyImageNet. To evaluate scalability, we conducted experiments on the more chal-
lenging Tiny-ImageNet dataset. As detailed in Table 3, SSFL again achieves the best performance with
19.4% accuracy, outperforming both dense and sparse counterparts. For this dataset we report results for
the strongest baselines from our CIFAR-10/100 experiments. These result confirm that SSFL’s data-driven
subnetwork discovery is effective not just on smaller datasets but also scales successfully to more complex
image classification tasks.

Experiment Details and Baselines. We use the SGD optimizer for all techniques with a weight decay of
0.0005. All methods use 5 local epochs, except for Ditto, which uses 3 epochs for the local model and 2 for
the global model. The initial learning rate is 0.1, decaying by a factor of 0.998 after each communication
round. We use a batch size of 16 for all experiments. A total of R = 500 global communication rounds are

Table 3: Performance comparison on TinyImageNet under a Dirichlet partition. Highlighted values indicate
the best performance.

Method TinyImageNet Comms (MB) Sparse
FedAvg 16.92% 446.9 ✗
FedAvg-FT 18.21% 446.9 ✗
D-PSGD-FT 11.98% 446.9 ✗
Ditto 17.80% 446.9 ✗
FOMO 4.27% 446.9 ✗

SSFL 19.4% 223.4 ✓
DisPFL 8.27% 224.0 ✓
SubFedAvg 18.76% 346.6 ✓

8

Under review as submission to TMLR

(a) (b)

Figure 2: Performance comparison at varying levels of sparsity for SSFL with similar sparse FL methods on
ResNet18 on the (a) CIFAR-10 and (b) CIFAR-100 non-IID dataset.

executed for CIFAR-10 and CIFAR-100.Following standard practice (Dai et al., 2022; Liu et al., 2025; Lin
et al., 2018), we report communication cost under the values-only encoding assumption, where only non-zero
weights are transmitted each round. This convention is conservative for SSFL, which broadcasts its global
mask only once, while dynamic methods must repeatedly transmit mask indices, thereby incurring additional
communication costs. We nevertheless adopt values-only encoding for all methods to ensure fair and widely
comparable benchmarks, with detailed overhead analysis provided in Appendix A.3.

Our dense baselines include FedAvg (McMahan et al., 2017), FedAvg-FT (Cheng et al., 2021), Ditto (Li et al.,
2021), FOMO(Zhang et al., 2020), and D-PSGD (Lian et al., 2017). Our sparse baselines are Dis-PFL(Dai
et al., 2022), SubFedAvg (Vahidian et al., 2021), SparsyFed (Liu et al., 2025), Flash (Babakniya et al., 2023)
and FedPM (Isik et al., 2022). Among the sparse baselines, FedPM (Isik et al., 2022) is unique in that
it freezes the randomly initialized dense network and instead trains a probability mask over connections.
The final subnetwork and its sparsity emerge from this process rather than being preset, so we report its
communication and sparsity as optimal in Table 1. A detailed explanation of the baselines and experimental
setup is available in Appendix A.4.

4.1.2 Further Empirical Analysis

Effect of varying levels of sparsity on performance We evaluate how SSFL’s performance varies
across sparsity levels from 50% to 95% on CIFAR-10 and CIFAR-100, as shown in Figure 2. We compare
SSFL against sparse FL baselines DisPFL, SubFedAvg, and FedPM, along with a random masking baseline.
SSFL consistently outperforms all sparse baselines across the entire sparsity spectrum. Notably, it maintains
robust performance even at high sparsity levels where other methods degrade significantly, indicating that the
global mask captures informative and transferable structure. Unlike DisPFL, which aggregates heterogeneous
masks into a denser global model, SSFL’s shared mask both simplifies training and preserves a truly sparse
global model that can further benefit from hardware acceleration (e.g., SPMM kernels on GPUs/TPUs and
custom accelerators) (Nakahara et al., 2019; Thangarasa et al., 2023; Gale et al., 2020; NVIDIA, 2021; 2020).

The Case for a Global Mask: Comparison with Local Masks A natural alternative to SSFL is to
allow each client to maintain its own sparse subnetwork based on local saliency scores. In this variant, each
client independently computes a 50% sparse mask on its private data, trains locally within this subnetwork, and
communicates sparse updates for aggregation. The server then averages these updates across non-overlapping
parameter spaces. To evaluate this alternative, we implemented and tested it under the same experimental
setup as SSFL.

On CIFAR-10, this approach achieves only 70.22% accuracy, far below the 88.29% reached by SSFL (see Ta-
ble 1). The same principle, that a shared structure is critical for effective aggregation, is further supported

9

Under review as submission to TMLR

(a) SSFL vs. layer-wise shuffling (b) Communication time comparison

Figure 3: Analysis of SSFL in different scenarios. (a) Effect of random intra-layer shuffling on SSFL masks.
(b) Wall-time communication comparison between baseline dense communication and SSFL on CIFAR-10
across ResNet models of varying complexities.

by Figure 4, where even a non-optimized common global random mask significantly outperforms the baseline
with independent local random masks.

Together, these results highlight a fundamental pitfall: when clients operate in disjoint or misaligned sparse
subspaces, aggregation combines updates from different model structures, producing incoherent and ineffective
global updates. This provides a clear justification for SSFL’s design. By enforcing a shared global mask,
all clients remain aligned in the same sparse subspace throughout training. This coherence ensures that
aggregation is both meaningful and efficient, since the mask is shared only once. This finding indicates
that in sparse federated learning, maintaining structural alignment across clients is as critical to final model
performance as reducing communication costs.

Effect of intra-layer mask permutation. Previous work in centralized training (Frankle et al., 2021)
found that randomly shuffling masks within each layer often preserves model performance, suggesting that
saliency criteria mainly find correct layer-wise sparsity ratios rather than specific important connections.
We tested this in the non-IID FL setting by comparing SSFL to a variant where its discovered mask was
randomly shuffled within each layer. As shown in Figure 3 (a), the shuffled-mask variant still outperforms a
global random mask, confirming that the distributed saliency scores identify good layer-wise sparsity levels.
However, the original, unshuffled SSFL mask consistently performs best, indicating that SSFL captures
meaningful information about individual connection importance beyond just the layer-wise sparsity ratio.

Wall-clock gains under real-world network conditions We deployed experiments on Amazon Web
Services (AWS) across five geographically distributed regions (North Virginia, Ohio, Oregon, London, and
Frankfurt). This setup emulates a realistic FL environment where clients experience substantial network
latencies. We measured the average server aggregation time per round, i.e., the time required to collect all
client model updates. As shown in Figure 3 (b), SSFL consistently reduces communication time relative
to dense communication (FedAvg), with the gap widening as model size increases. At 90% sparsity, SSFL
achieves a speedup of approximately 2.3× on the 1.73M-parameter model, reducing the average aggregation
latency from 1.91 s to 0.82 s per round. This highlights its practical impact in real-world deployments.

Quality of the discovered mask in the non-IID setting. We examine the effect of a shared global
mask on local model performance under uneven client data distributions. Figure 4 shows that, despite large
disparities in client data volumes, SSFL yields competitive accuracy even for clients with very limited data.
This indicates that aggregated saliency scores capture structure that generalizes across heterogeneous clients
rather than overfitting to high-data participants. We further confirm this in Appendix A.6, which reports
local accuracy alongside class distributions for random clients as well as the top and bottom-performing sites.

10

Under review as submission to TMLR

Figure 4: Client-wise performance versus data distribution. The left plot shows final local accuracy (bars)
alongside each client’s aggregation weight pk = nk/

∑
i ni (orange line). The right plot shows the number of

samples per client. The results demonstrate that the global mask generated by SSFL enables high-performing
local models even for clients with small data partitions.

5 Limitations and Future Work
While SSFL demonstrates the effectiveness of static sparse subnetwork discovery, several natural extensions
remain. First, our method assumes a fixed global mask throughout training. In dynamic scenarios where
client data distributions shift over time, such as continual learning, a static mask may become suboptimal.
Periodic or lightweight mask re-computation cycles could address this without incurring the high cost of
fully dynamic methods. Second, SSFL relies on a single gradient-based saliency criterion at initialization.
Although this choice favors simplicity and efficiency, exploring alternative criteria or ensembles of criteria
may yield even stronger subnetworks in distributed non-IID settings.

Beyond these limitations, we identify several promising research directions. Hybrid approaches that combine
static masks with occasional refinements may balance stability and adaptability. Extending SSFL to structured
sparsity patterns could unlock greater speedups on modern accelerators. SSFL naturally complements
differential privacy, since it requires only a single noisy saliency aggregation step, thereby minimizing privacy
breach while preserving communication efficiency. Finally, integrating personalization on top of a shared
global mask may provide more robust performance under extreme heterogeneity across clients.

6 Conclusion

We presented Salient Sparse Federated Learning (SSFL), a streamlined framework that mitigates communica-
tion bottlenecks in federated learning by identifying a high-quality global sparse subnetwork before training.
SSFL requires only a single, privacy-preserving round of communication where local gradient-based saliency
scores are aggregated into a shared mask. This static initialization eliminates the hyperparameter tuning and
iterative coordination typical of dynamic sparsity methods.

SSFL achieves substantial communication savings across CIFAR-10, CIFAR-100, and Tiny-ImageNet, while
matching or exceeding dense baselines, and scaling to even greater reductions at higher sparsity levels.
Real-world deployment on geographically distributed AWS regions further shows up to 2.3× wall-clock
speedups, underscoring practical efficiency. These results challenge the assumption that complex, iterative
mask adjustments are required for strong sparse FL performance. Instead, they demonstrate that a well-chosen
static subnetwork, identified collectively at initialization, enables a simpler, more stable, and highly effective
training trajectory. Looking ahead, SSFL offers a robust foundation for hybrid static–adaptive refinements,
personalized sparse models, and structured sparsity for hardware acceleration.

11

Under review as submission to TMLR

7 Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. Our primary objective is to
study and improve efficiency associated with distributed federated learning.

Broader Impact Statement

This work aims to improve the efficiency of federated learning by reducing communication and computation
costs. More efficient FL can broaden access to collaborative training in settings with limited resources, such as
mobile or healthcare applications, and may help reduce the environmental footprint of large-scale distributed
training. As with any federated approach, care is required to ensure privacy protections (e.g., differential
privacy or secure aggregation) and to prevent efficiency gains from coming at the expense of marginalized
users.

References
Samin Yeasar Arnob, Riyasat Ohib, Sergey Plis, and Doina Precup. Single-shot pruning for offline reinforcement

learning. arXiv preprint arXiv:2112.15579, 2021.

Sara Babakniya, Souvik Kundu, Saurav Prakash, Yue Niu, and Salman Avestimehr. Federated sparse training:
Lottery aware model compression for resource constrained edge. arXiv preprint arXiv:2208.13092, 2022.

Sara Babakniya, Souvik Kundu, Saurav Prakash, Yue Niu, and Salman Avestimehr. Revisiting sparsity
hunting in federated learning: Why does sparsity consensus matter? Transactions on Machine Learning
Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=iHyhdpsnyi.

Leighton Pate Barnes, Huseyin A Inan, Berivan Isik, and Ayfer Özgür. rtop-k: A statistical estimation
approach to distributed sgd. IEEE Journal on Selected Areas in Information Theory, 1(3):897–907, 2020.

Mahdi Beitollahi, Mingrui Liu, and Ning Lu. Dsfl: Dynamic sparsification for federated learning. In
2022 5th International Conference on Communications, Signal Processing, and their Applications (ICC-
SPA), pp. 1–6. IEEE, 2022. doi: 10.1109/ICCSPA55860.2022.10019204. URL https://doi.org/10.1109/
ICCSPA55860.2022.10019204.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signSGD: Compressed
optimisation for non-convex problems. In International Conference on Machine Learning, pp. 560–569,
2018.

Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. Federated dynamic sparse training:
Computing less, communicating less, yet learning better. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 6080–6088, 2022.

Cerebras. Wafer Scale Engine: Why We Need Big Chips for Deep Learning. https://cerebras.net/blog/
cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/, 2019.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural information
processing systems, 33:15834–15846, 2020.

Gary Cheng, Karan Chadha, and John Duchi. Fine-tuning is fine in federated learning. arXiv preprint
arXiv:2108.07313, 2021.

Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. Dispfl: Towards communication-efficient
personalized federated learning via decentralized sparse training. arXiv preprint arXiv:2206.00187, 2022.

Pau De Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory Rogez, and Puneet K Doka-
nia. Progressive skeletonization: Trimming more fat from a network at initialization. arXiv preprint
arXiv:2006.09081, 2020.

12

https://openreview.net/forum?id=iHyhdpsnyi
https://doi.org/10.1109/ICCSPA55860.2022.10019204
https://doi.org/10.1109/ICCSPA55860.2022.10019204
https://cerebras.net/blog/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://cerebras.net/blog/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Under review as submission to TMLR

Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL: Computation and communication efficient federated
learning for heterogeneous clients. In International Conference on Learning Representations, 2021.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast sparse convnets. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 14629–14638, 2020.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning, pp. 2943–2952. PMLR, 2020.

Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wenbin Wei, Lixin Fan, and Qiang Yang. Fate-llm: A
industrial grade federated learning framework for large language models. arXiv preprint arXiv:2310.10049,
2023.

Wenshuo Fan, Kaiping Yang, Yongxin Wang, et al. Data-free adaptive structured pruning for federated
learning. The Journal of Supercomputing, 80:18600–18626, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural networks at
initialization: Why are we missing the mark? In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning. CoRR,
abs/2006.10901, 2020. URL https://arxiv.org/abs/2006.10901.

Adriano Guastella, Lorenzo Sani, Alex Iacob, Alessio Mora, Paolo Bellavista, and Nicholas D. Lane. SparsyFed:
Sparse adaptive federated training. In International Conference on Learning Representations (ICLR), 2025.
URL https://arxiv.org/abs/2504.05153.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Hong Huang, Lan Zhang, Chaoyue Sun, Ruogu Fang, Xiaoyong Yuan, and Dapeng Wu. Fedtiny: Pruned
federated learning towards specialized tiny models. arXiv preprint arXiv:2212.01977, 2022.

Berivan Isik, Francesco Pase, Deniz Gunduz, Tsachy Weissman, and Michele Zorzi. Sparse random networks
for communication-efficient federated learning. arXiv preprint arXiv:2209.15328, 2022.

Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600, 1989.

Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Leung, and Leandros Tassiulas.
Model pruning enables efficient federated learning on edge devices. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet Talwalkar.
Federated hyperparameter tuning: Challenges, baselines, and connections to weight-sharing. Advances in
Neural Information Processing Systems, 34:19184–19197, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. University of
Toronto, 2009.

13

https://arxiv.org/abs/2006.10901
https://arxiv.org/abs/2504.05153

Under review as submission to TMLR

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural information
processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning based on
connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li. Lotteryfl: Personalized
and communication-efficient federated learning with lottery ticket hypothesis on non-iid datasets. arXiv
preprint arXiv:2008.03371, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710, 2016.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR, 2021.

Zhengming Li, Jiahui Chen, Peifeng Zhang, Huiwu Huang, and Guanbin Li. Dsfedcon: Dynamic sparse
federated contrastive learning for data-driven intelligent systems. IEEE Transactions on Neural Networks
and Learning Systems, 36(2):3343–3355, February 2025. doi: 10.1109/TNNLS.2024.3349400. URL https:
//doi.org/10.1109/TNNLS.2024.3349400.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent.
Advances in Neural Information Processing Systems, 2017.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. In International Conference on Learning Representations,
2018.

Yang Liu, Yi Zhao, Guangmeng Zhou, and Ke Xu. Fedprune: personalized and communication-efficient
federated learning on non-iid data. In Neural Information Processing: 28th International Conference,
ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part V 28, pp. 430–437. Springer,
2021.

Yue Liu, Tao Chen, and Li Wang. SparsyFed: A sparsity-aware federated learning framework with periodic
rewiring. In To appear in Proceedings of the 13th International Conference on Learning Representations,
ICLR 2025, 2025.

Rongrong Ma, Jianyu Miao, Lingfeng Niu, and Peng Zhang. Transformed ℓ1 regularization for learning sparse
deep neural networks. Neural Networks, 119:286–298, 2019.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning with-
out centralized training data, 2017. URL https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a network via
relevance assessment. Advances in neural information processing systems, 1, 1988.

Muhammad Tahir Munir, Muhammad Mustansar Saeed, Mahad Ali, Zafar Ayyub Qazi, and Ihsan Ayyub
Qazi. Fedprune: Towards inclusive federated learning. arXiv preprint arXiv:2110.14205, 2021.

14

https://doi.org/10.1109/TNNLS.2024.3349400
https://doi.org/10.1109/TNNLS.2024.3349400
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Under review as submission to TMLR

H. Nakahara et al. Fpga-based training accelerator utilizing sparseness of convolutional neural network. In
2019 29th International Conference on Field Programmable Logic and Applications (FPL), pp. 180–186,
2019. doi: 10.1109/FPL.2019.00036.

NVIDIA. How sparsity adds umph to ai inference. https://blogs.nvidia.com/blog/2020/05/14/sparsity-
ai-inference/, 2020.

NVIDIA. Accelerating matrix multiplication with block sparse format and nvidia tensor
cores. https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-
sparse-format-and-nvidia-tensor-cores/, 2021.

Riyasat Ohib, Nicolas Gillis, Niccolo Dalmasso, Sameena Shah, Vamsi K. Potluru, and Sergey Plis. Explicit
group sparse projection with applications to deep learning and NMF. Transactions on Machine Learning
Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=jIrOeWjdpc.

Zeyneddin Oz, Ceylan Soygul Oz, Abdollah Malekjafarian, Nima Afraz, and Fatemeh Golpayegani. submfl:
Compatiple submodel generation for federated learning in device heterogenous environment, 2024. URL
https://arxiv.org/abs/2405.20014.

Jeff Pool, Abhishek Sawarkar, and Jay Rodge. Accelerating Inference with Sparsity Using the NVIDIA Ampere
Architecture and NVIDIA TensorRT. https://developer.nvidia.com/blog/accelerating-inference-
with-sparsity-using-ampere-and-tensorrt/, 2021.

Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–747, 1993.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural network
pruning. arXiv preprint arXiv:2003.02389, 2020.

Sejin Seo, Seung-Woo Ko, Jihong Park, Seong-Lyun Kim, and Mehdi Bennis. Communication-efficient and
personalized federated lottery ticket learning. In 2021 IEEE 22nd International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), pp. 581–585. IEEE, 2021.

Mehdi Setayesh, Xiaoxiao Li, and Vincent WS Wong. Perfedmask: Personalized federated learning with
optimized masking vectors. In The Eleventh International Conference on Learning Representations, 2022.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone. Dynamic
sparse training for deep reinforcement learning. arXiv preprint arXiv:2106.04217, 2021.

Hidenori Tanaka, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli. Pruning neural networks without
any data by iteratively conserving synaptic flow. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Vithursan Thangarasa, Abhay Gupta, William Marshall, Tianda Li, Kevin Leong, Dennis DeCoste, Sean Lie,
and Shreyas Saxena. Spdf: Sparse pre-training and dense fine-tuning for large language models. arXiv
preprint arXiv:2303.10464, 2023. URL https://arxiv.org/abs/2303.10464. Accepted to UAI 2023.

Saeed Vahidian, Mahdi Morafah, and Bill Lin. Personalized federated learning by structured and unstructured
pruning under data heterogeneity. arXiv preprint arXiv:2105.00562, 2021.

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training by preserving
gradient flow. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, 2020.

Haonan Wang, Zeli Liu, Kajimusugura Hoshino, Tuo Zhang, John Paul Walters, and Stephen Crago.
FedPaI: Achieving extreme sparsity in federated learning via pruning at initialization. arXiv preprint
arXiv:2504.00308, 2025.

15

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
https://openreview.net/forum?id=jIrOeWjdpc
https://arxiv.org/abs/2405.20014
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://arxiv.org/abs/2303.10464

Under review as submission to TMLR

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pp. 3–19, 2018.

Jintao Yan, Tan Chen, Yuxuan Sun, Zhaojun Nan, Sheng Zhou, and Zhisheng Niu. Mobility-aware asyn-
chronous federated learning with dynamic sparsification. arXiv preprint arXiv:2506.07328, 2025. URL
https://arxiv.org/abs/2506.07328.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable
scale-invariant sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

Sixing Yu, Phuong Nguyen, Ali Anwar, and Ali Jannesari. Adaptive dynamic pruning for non-iid federated
learning. arXiv preprint arXiv:2106.06921, 2021.

Sixing Yu, J Pablo Muñoz, and Ali Jannesari. Bridging the gap between foundation models and heterogeneous
federated learning. arXiv preprint arXiv:2310.00247, 2023.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated
learning with first order model optimization. arXiv preprint arXiv:2012.08565, 2020.

Guoheng Zhou, Kun Xu, Qingyuan Li, Yang Liu, and Yi Zhao. Adaptcl: Efficient collaborative learning with
dynamic and adaptive pruning. arXiv preprint arXiv:2106.14126, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for model
compression. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Workshop Track Proceedings, 2018.

16

https://arxiv.org/abs/2506.07328

Under review as submission to TMLR

A Appendix

A.1 Detailed analysis of the Connection Saliency Criterion

This section provides a detailed derivation of the gradient-based connection saliency metric used in SSFL, as
defined in Equation (1). The fundamental goal of pruning at initialization is to identify the most important
parameters in a randomly initialized network, w0, without performing any training. This line of work traces
back to the early idea of skeletonization by Mozer and Smolensky (Mozer & Smolensky, 1988) and was later
refined in single-shot pruning methods such as SNIP (Lee et al., 2018).

The importance of a single parameter, w0,j , can be defined as the change in the total loss, L, that would
occur if that parameter were removed from the network. Formally, this change ∆Lj is:

∆Lj = L(w0;D)− L(w0 − w0,jej ;D), (4)

where ej is the one-hot vector for the j-th parameter. However, computing this value for every parameter is
computationally prohibitive, as it would require d + 1 forward passes over the data D, where d is the number
of parameters.

To create a tractable importance score, we approximate ∆Lj using a first-order Taylor expansion. This
approach reframes the question from "what is the effect of removing a parameter?" to "how sensitive is the
loss to the presence of a parameter at initialization?". To formalize this, we introduce an auxiliary "gating"
vector c ∈ [0, 1]d, which multiplies the model’s weights w0. The loss is now a function of the masked weights:
L(c⊙w0;D).

The sensitivity of the loss to the j-th parameter can be measured by the derivative of L with respect to
cj , evaluated at c = 1 (the initial state where all connections are fully active). This derivative, which we
denote as the saliency gj , approximates the effect of a small perturbation on connection j. We can compute
it directly using the chain rule:

gj(w0;D) = ∂L(c⊙w0;D)
∂cj

∣∣∣∣
c=1

(5)

= ∂L(w0;D)
∂w0,j

· ∂(cjw0,j)
∂cj

∣∣∣∣
c=1

(6)

= ∂L(w0;D)
∂w0,j

· w0,j . (7)

This result, gj , provides a computationally efficient, single-pass estimate of the importance of parameter w0,j .
The final saliency score sj used in SSFL is the magnitude of this term, preserving parameters that have the
largest estimated impact on the loss:

sj = |gj(w0;D)| =
∣∣∣∣∂L(w0;D)

∂w0,j
· w0,j

∣∣∣∣ . (8)

It is important to note that while these scores could be normalized (e.g., by dividing by their sum), this step
is unnecessary for our method, as the Top-k selection procedure only depends on the relative ranking of the
scores.

A.2 Generating non-IID data parition with Dirichlet Distribution

In this section, we provide the necessary background on generating non-identical data distribution in the
client sites using the Dirichlet Distribution, specifically for the context of federated learning.

non-IID data in FL Federated Learning (FL), as introduced by McMahan & Ramage (2017), is a
framework designed for training models on decentralized data while preserving privacy. It utilizes the
Federated Averaging (FedAvg) algorithm where each device, or client, receives a model from a central server,
performs stochastic gradient descent (SGD) on its local data, and sends the models back for aggregation.

17

Under review as submission to TMLR

Unlike data-center training where data batches are often IID (independent and identically distributed), FL
typically deals with non-IID data distributions across different clients. Hence, to evaluate federated learning
it is crucial to not make the IID assumption and instead generate non-IID data among clients for evaluation
Hsu et al. (2019).

Generating non-IID data from Dirichlet Distribution In this study, we assume that each client
independently chooses training samples. These samples are classified into N distinct classes, with the
distribution of class labels governed by a probability vector q, which is non-negative and whose components
sum to 1, that is, qi > 0, i ∈ [1, N] and ∥q∥1 = 1. For generating a group of non-identical clients, q ∼ Dir(αp)
is drawn from the Dirichlet Distribution, with p characterizing a prior distribution over the N classes and α
controls the degree of identicality among the existing clients and is known as the concentration parameter.

In this section, we generate a range of client data partitions from the Dirichlet distribution with a range of
values for the concentration parameter α for exposition. In Figure 5, we generate a group of 10 balanced
clients, each holding equal number of total samples. Similar to Hsu et al. (2019) the prior distribution p is
assumed to be uniform across all classes. For each client, given a concentration parameter α, we sample a
q from Dir(α) and allocate the corresponding fraction of samples from each client to that client. Figure 5
illustrates the effect of the concentration parameter α on the class distribution drawn from the Dirichlet
distribution on different clients, for the CIFAR-10 dataset. When α → ∞, identical class distribution is
assigned to each classes. With decreasing α, more non-identicalness is introduced in the class distribution
among the client population. At the other extreme with α → 0, each class only consists of one particular
class.

Figure 5: Generating non-identical client data partitions using the Dirichlet Distribution for the CIFAR-10
dataset among 10 clients. Distribution among classes is represented using different colors. (a) Dirichlet,
α → ∞ results in identical clients (b–d) Client distributions generated from Dirichlet distributions with
different concentration parameters α (e) Dirichlet, α → 0.0 results in each client being assigned only one
class.

A.3 Communication encoding overheads

In the main body, we adopt the standard values-only encoding assumption, consistent with prior work on
sparsity and federated optimization (Dai et al., 2022; Liu et al., 2025; Lin et al., 2018). This isolates the
savings due to sparsity itself, while recognizing that efficient communication and encoding schemes are an
orthogonal line of work (Wen et al., 2017; Bernstein et al., 2018).

A dense model with d parameters transmitted in fp32 requires

Costdense = 4d bytes.

18

Under review as submission to TMLR

For sparse models, each non-zero must be accompanied by its location. Under coordinate (COO) encoding,
the cost for k = (1− s)d non-zeros at sparsity s is

CostCOO = 4k + 4k = 8k bytes,

which at s = 0.5 equals the dense cost. Bitmask encoding reduces this overhead by sending a binary mask of
length d, yielding

Costbitmask = 4k + d
8 bytes,

or approximately 53% of dense at s = 0.5.

Dynamic sparsity methods such as DisPFL (Dai et al., 2022) and SparsyFed (Liu et al., 2025) require
transmitting such masks (or their equivalents) at every round, incurring these recurring costs. In contrast,
SSFL discovers a global mask once and reuses it for the duration of training. After this one-time broadcast,
only values are communicated each round:

CostSSFL = 4k bytes,

which corresponds exactly to half the dense cost at s = 0.5.

Encoding scheme Formula Cost at s = 0.5
Dense 4d 100%
COO 8k 100%
Bitmask 4k + d/8 53%
SSFL (fixed mask) 4k 50%

Table 4: Communication cost under different encoding schemes. At 50% sparsity, dynamic methods (COO,
bitmask) incur substantial overhead due to recurring mask transmission, while SSFL achieves an exact halving
of communication by fixing the global mask once.

A.4 Experimental settings and further results

The performance of our proposed method is assessed on three image classification datasets: CIFAR-10,
CIFAR-100 Krizhevsky et al. (2009), and Tiny-Imagenet. We examine two distinct scenarios to simulate
non-identical data distributions among federating clients. Following the works of Hsu et al. (2019), we use
Dir Partition, where the training data is divided according to a Dirichlet distribution Dir(α) for each client,
and the corresponding test data for each client is generated following the same distribution. We take an α
value of 0.3 for CIFAR-10, and 0.2 for both CIFAR-100 and Tiny-Imagenet. Additionally, we conduct an
evaluation using a pathological partition setup, as described by Zhang et al. (2020), where each client is
randomly allocated limited classes from the total number of classes. Specifically, each client holds 2 classes
for CIFAR-10, 10 classes for CIFAR-100, and 20 classes for Tiny-Imagenet in our setup, similar to Dai et al.
(2022).

Experiment Details and hyper-parameters As outlined in Algorithm 1, the client models are trained
on their local data and only during a communication round r, the randomly selected clients in C′ share
their weights for aggregation. During the local training, we use the SGD optimizer for SSFL and also for
all baseline techniques, employing a weighted decay parameter of 0.0005. With the exception of the Ditto
method, we maintain a constant of 5 local epochs for all methods. However, for Ditto, in order to ensure
equitable comparison, each client undertakes 3 epochs for training the local model and 2 epochs for training
the global model. Our initial learning rate stands at 0.1 and diminishes by a factor of 0.998 after each round
of communication, similar to Dai et al. (2022). Throughout all experiments, we use a batch size of 16 due to
the usage of group normalization Wu & He (2018). We execute R = 500 global communication rounds for
CIFAR-10, CIFAR-100 and Tiny-ImageNet. For the experiments in Table 1, Table 2 and Table 3, we use
a sparsity level s = 50% similar to Dai et al. (2022) for fair comparison. We however, include experiments

19

Under review as submission to TMLR

with increasing sparsity levels up to s = 95% and compare SSFL with other sparse FL methods, including a
baseline random-masking on non-IID data, in Figure 2.

For FedPM, we use their official implementation Isik et al. (2022) and extend it to support ResNet architectures
and the CIFAR-100 dataset to ensure fair comparisons. For SparsyFed, we likewise rely on the official
implementation Guastella et al. (2025) and re-run their codebase under our general experimental setup,
matching our communication rounds (R = 500) and Dirichlet α parameters. These α values follow the
settings commonly adopted in prior work, including Dai et al. (2022), to provide consistency across baselines.
For all baselines, we used the authors’ official implementations and recommended hyperparameters, without
additional tuning. SSFL likewise required no hyperparameter tuning beyond setting the target sparsity level,
ensuring a fair comparison across methods.

Implementation of Baselines: We describe most of the implementation detail for the baselines in Section 4.
We use the official implementaion of DisPFL by Dai et al. (2022) available on their github page and use
similar hyper-parameters for both DisPFL and SSFL. FedPM trains sparse random masks instead of training
model weights and finds an optimal sparsity by itself Isik et al. (2022). We use the official implementation of
FedPM available in their github page for the paper. For fair comparison, we use the CIFAR-10 non-IID split
that we use in this work with the α values as described in Appendix A.2. For random-k baselines, we follow
a training strategy that is similar to SSFL and in essense to FedAvg McMahan & Ramage (2017) or DisPFL
Dai et al. (2022) in terms of the weight aggregation mechanism. To establish random-k as a random sparse
training, similar to our proposed sparse FL and DisPFL training method we generate a random-k mask at
each local site and train and aggregate the weights corresponding to that mask after every T steps of training.

top-k Top-k is a popular choice for distributed training with gradient sparsification Barnes et al. (2020);
Lin et al. (2017) and also in variation of federated learning where gradient aggregation instead of weight
aggregation takes place. We, however, did not find works that employ top-k sparsification in the weight-
averaging scheme of Federated Averaging. As a result, to test this we implemented a top-k baseline, where
the top-k weights from each local model at the end of T steps are shared among the selected clients in each
communication round and are aggregated. We note that unlike SSFL, DisPFL or random masking, at the
end of training top-k does not result in sparse local models with the benefits of sparse models such as faster
inference.

Convergence under longer training and more communication rounds We report the convergence
plots for SSFL and other methods in Figure 6 (a-b) when trained for a total of R = 500 communication
rounds. As Ditto does not properly converge within 500 rounds, we conduct further experiments for SSFL,
DisPFL and Ditto on a much longer R = 800 communication rounds to analyze the convergence of these
methods. We demonstrate the convergence plots in Figure-6 (c).

(a) (b) (c)

Figure 6: Comparison of convergence rates of SSFL with similar federated and sparse federated learning
methods. (a) CIFAR-10 with R = 500 rounds, (b) CIFAR-100 with R = 500 rounds, (c) longer training
R = 800 rounds.

20

Under review as submission to TMLR

A.5 Quality of the discovered mask across heterogeneous clients

Figure 4 provides an analysis of how the global mask discovered by SSFL transfers across clients with highly
imbalanced data availability. The plot on the left shows the test accuracy of local sparse models trained with
the global mask, along with the weighted score assigned to each client. The right plot shows the corresponding
distribution of training and test samples across clients.

Despite substantial differences in the amount of data available at each site, the global mask enables consistently
strong performance across the federation. Clients with very limited data still achieve reasonable accuracy,
while high-data clients maintain competitive performance. This demonstrates that the aggregated saliency
scores produce a global mask that generalizes across diverse clients, rather than overfitting to any single site.
Importantly, this analysis highlights that even clients contributing relatively little data can benefit from the
shared sparse subnetwork.

A.6 Local Client Accuracy and Class Distribution

We plot the class distribution with Dir(α) on the CIFAR10 dataset with α = 0.3 for 10 random clients and
their final accuracy in Fig 7 (a). In Fig (b) we plot the top-10 clients in terms of their final test accuracy
and in Fig-(c) the bottom 10 clients in terms of final test accuracy. We notice that, SSFL finds masks that
result in consistent local model performance and even in the bottom 10 clients, the performance remains
respectable.

(a) (b) (c)

Figure 7: (a) Class distribution with Dir(0.3) for the CIFAR-10 dataset for 10 random clients and their final
local test accuracy (b) the top-10 clients in terms of their final test accuracy (c) the bottom-10 clients in
terms of their final test accuracy

B Extended Literature Review

For completeness, we provide a broader overview of related work, complementing the focused discussion in
Section 2 of the main text. This section is not required to follow our method or experiments but may provide
useful background for readers seeking a more complete survey of related areas. We group this discussion into:

(i) neural network pruning, (ii) sparsity and efficiency in federated learning, (iii) pruning at initialization, and
(iv) pruning at initialization in federated learning.

Neural Network Pruning Like most areas in deep learning, model pruning has a rich history and
is mostly considered to have been explored first in the 90’s (Janowsky, 1989; LeCun et al., 1990; Reed,
1993). The central aim of model pruning is to find subnetworks within larger architectures by removing
connections. Model pruning is very attractive for a number of reasons, especially for real-time applications
on resource-constraint edge devices which is often the case in FL and collaborative learning. Pruning large
networks can significantly reduce the demands of inference Elsen et al. (2020) or hardware designed to
exploit sparsity Cerebras (2019); Pool et al. (2021). More recently the lottery ticket hypothesis was proposed
which predicts the existence of subnetworks of initializations within dense networks, which when trained in
isolation from scratch can match in accuracy of a fully trained dense network Frankle & Carbin (2019). This

21

Under review as submission to TMLR

rejuvenated the field of sparse deep learning Renda et al. (2020); Chen et al. (2020) and more recently the
interest spilled over into sparse reinforcement learning (RL) as well Arnob et al. (2021); Sokar et al. (2021).
Pruning in deep learning can broadly be classified into three categories: techniques that induce sparsity before
training and at initialization Lee et al. (2018); Wang et al. (2020); Tanaka et al. (2020), during training Zhu
& Gupta (2018); Ma et al. (2019); Yang et al. (2019); Ohib et al. (2022) and post-training Han et al. (2015);
Frankle et al. (2021). In Federated Learning applications, pruning at initialization is especially appealing due
to the potential for communication cost reduction as no further overheads are required during the costly FL
training phase.

Sparsity, pruning and efficiency in FL Federated Learning (FL) has evolved significantly since its
inception, introducing a myriad of techniques to enhance efficiency, communication, and computation. Interest
in efficiency has increased further with the proposal of the Lottery Ticket Hypothesis (LTH) by Frankle &
Carbin (2019). However, identifying these tickets has traditionally been challenging. In the original work,
the strategy employed to extract these subnetworks was to iteratively train and prune the network until the
target sparsity was attained. However, this process is unsustainable in the FL setting and would in contrast
make the training even more expensive due to the significant increase in training duration. Variations of this
idea have been employed in the FL setting, as demonstrated by Li et al. (2020); Jiang et al. (2022); Seo et al.
(2021); Liu et al. (2021) and Babakniya et al. (2022). However, many of them either suffer from the same
issue of iterative pruning and retraining which is extremely costly or decline in performance when this train,
prune and retrain cycle is skipped.

Pruning and sparsity are highly advantageous in federated learning (FL), especially since many applications
involve clients with limited resources. As sparse models can be substantially efficient during inference (Li
et al., 2016), training sparse local models in resource constrained local sites could be an effective approach.
In FL setting, pruning has been explored with mixed success, often employing a range of heuristics. Works,
such as by Munir et al. (2021) focused on pruning resource-constrained clients, Yu et al. (2021) on using
gated dynamic sparsity, Liu et al. (2021) performs a pre-training on the clients to get mask information, and
Jiang et al. (2022) relies on an initial mask selected at a particular client, followed by a FedAvg-like algorithm
that performs mask readjustment every ∆R rounds. However, they either do not leverage sparsity fully for
communication efficiency, suffer from performance degradation or is not designed for the challenging, realistic
non-IID setting.

Works by Dai et al. (2022) and Bibikar et al. (2022) utilize dynamic sparsity similar to Evci et al. (2020) and
extends it to the FL regime, however, they both start with random masks as an initialization. A recent focus
has also been placed on random masking and optimizing the mask Setayesh et al. (2022) or training the mask
itself instead of training the weights at all Isik et al. (2022). Furthermore, in light of the recent surge in the
development of large language models (LLMs), the exploration of federated learning in this domain is taking
place, although relatively recently Fan et al. (2023); Yu et al. (2023). Investigating sparsity and efficiency
within this context presents a fascinating and promising avenue for research.

Pruning at Initialization The work on the lottery ticket hypothesis (LTH), which showed that from early
in training and often at initialization, there exist subnetworks that can be trained in isolation to full accuracy,
opened up the prospect for pruning at initialization (PaI). Several methods have been proposed for pruning
at initialization such as SNIP (Lee et al., 2018), which aims to prune weights that are least important for
the loss, GraSP (Wang et al., 2020), which prunes weights aiming to preserve gradient flow and SynFlow
(Tanaka et al., 2020) aims to iteratively prune weights with the lowest “synaptic strengths”. These methods
have been later studied in depth by Frankle et al. (2021), where they provide interesting insights about the
efficacy of these methods, including the observation that SNIP Lee et al. (2018), which is a variation of the
gradient based connection saliency criterion (Mozer & Smolensky, 1988), consistently performs well. Hence,
we choose gradient based connection saliency as the basis for our method.

Frankle et al. (2021) found that PaI methods tend to prune networks at the layer level rather than the
connection level in single-node deep learning scenarios. In Section 4, we explore the applicability of this
observation to non-IID federated learning settings

22

Under review as submission to TMLR

Pruning at initialization in FL We did not discover any study that directly employs connection
importance at initialization in the Federated Learning (FL) setting. Nevertheless, research such as Jiang et al.
(2022) incorporated gradient-based importance criterion, SNIP Lee et al. (2018); De Jorge et al. (2020), within
their comparative benchmarks, but calculating such scores only on the local data of one particular client
site in the FL setting, resulting in subpar performance. Similarly, Huang et al. (2022) presents connection
saliency in their benchmark but assumes that to calculate meaningful parameter importance scores, the server
has access to a public dataset on which such saliency scores can be calculated. However, that is in general
unlikely to happen and would lead to privacy concerns if such constraints were enforced.

In this work, we demonstrate that it is possible to find sparse masks or sub-networks through gradient based
connection saliency measures at initialization, considering the distribution of training data at local client
sites. Since, to the best of our knowledge we did not find any comparable pruning at initialization methods
in the non-IID FL setting, we compare our method to approaches such as Dai et al. (2022) that results in
sparse local models and similar sparse and dense baselines in Section 4.

23

	Introduction
	Related Work
	The Salient Sparse Federated Learning (SSFL) Method
	Parameter Saliency at Initialization
	The SSFL Process: Single-Shot Mask Discovery and Sparse Training
	Dataset and non-IID partition

	Experiments
	Main Results
	Performance on varying dataset and partitioning schemes
	Further Empirical Analysis

	Limitations and Future Work
	Conclusion
	Broader Impact
	Appendix
	Detailed analysis of the Connection Saliency Criterion
	Generating non-IID data parition with Dirichlet Distribution
	Communication encoding overheads
	Experimental settings and further results
	Quality of the discovered mask across heterogeneous clients
	Local Client Accuracy and Class Distribution

	Extended Literature Review

