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Abstract

For data with intra-class Asymmetric instance
Distribution or Multiple High-density Clusters
(ADMHC), outliers are real and have specific pat-
terns for data classification, where the class body
is necessary and difficult to identify. Previous Fea-
ture Selection (FS) methods score features based
on all training instances or rarely target intra-class
ADMHC. In this paper, we propose a supervised
FS method, Stray Intrusive Outliers-based FS
(SIOFS), for data classification with intra-class
ADMHC. By focusing on Stray Intrusive Out-
liers (SIOs), SIOFS modifies the skewness coeffi-
cient and fuses the threshold in the 3σ principle
to identify the class body, scoring features based
on the intrusion degree of SIOs. In addition, the
refined density-mean center is proposed to repre-
sent the general characteristics of the class body
reasonably. Mathematical formulations, proofs,
and logical exposition ensure the rationality and
universality of the settings in the proposed SIOFS
method. Extensive experiments on 16 diverse
benchmark datasets demonstrate the superiority
of SIOFS over 12 state-of-the-art FS methods in
terms of classification accuracy, normalized mu-
tual information, and confusion matrix. SIOFS
source codes is available at https://github.
com/XXXly/2025-ICML-SIOFS

1. Introduction
With the rapid advancement of data acquisition technolo-
gies, an increasing amount of high-dimensional data is being
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Figure 1. (a) Similar scene images of “Resort” and “School” on
AID. (b) 2D visualization of classes “1” and “3” from CLL via
T-SNE (2012). (c) Similar digits “4” and “9” on GISETTE. (d)
Distance histogram of instances to center for class “3” on CLL. (e)
Distance histogram of instances to center for class “1” on TOX.

generated (Li et al., 2024; Wang et al., 2024). Feature Se-
lection (FS), the selection of a discriminative feature subset,
is an essential part of data processing (Cohen et al., 2023).
FS makes the representations of instances interpretable and
enables fast and compact models to be learned.

High-dimensional data classification with intra-class Asym-
metric instance Distribution or Multiple High-density Clus-
ters (ADMHC) is challenging in machine learning, espe-
cially for small-sized datasets. In such tasks, misclassified
outliers inevitably exist. Moreover, some outliers intrude
into other class bodies. As shown in Fig. 1a, some instances
of “Resort” share very similar structural and textural char-
acteristics with instances of “School”. Similarly, Fig. 1c
shows that some instances of “4” and “9” are very similar.
In Fig. 1b, x(1)

1 ,x
(1)
2 are three different types of outliers

from class “1”, where x
(1)
1 intrudes into the body of class

“3”, and x
(1)
2 is near the body of class “3”. Compared to

x
(1)
2 , the class label of x(1)

1 is easily mispredicted as “3” by
the predictive model. Focusing on x

(1)
1 can reasonably iden-
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tify low-ranked features for classification tasks. We define
such instances like x

(1)
1 as Stray Intrusive Outliers (SIOs),

which are far away from the class body they belong to and
intrude into other class bodies. Most current FS methods
score features based on the characteristics of all training
instances (Roffo et al., 2021).

Another important characteristic of high-dimensional data
classification is intra-class multiple high-density clusters.
As shown in Fig. 1b, class “3” has two high-density clusters.
In such a class, necessarily, multiple distinct peaks exist
in the distance distribution of instances to the class center
(see Fig. 1d and 1e), making it difficult to determine the
class center and body. Existing FS methods rarely aim to
identify the class body in the context of intra-class multiple
high-density clusters.

With few outliers, the mean center can reflect the overall
characteristics of the class body well (Lim & Kim, 2021).
Clustering by Fast search and find of Density Peaks (CFDP)
(Rodriguez & Laio, 2014) acquires a density-based clus-
tering center. However, the CFDP center is sensitive to
local high density formed by a small number of instances
in a class. The threshold in the 3σ principle of the normal
distribution can identify the class body, but it requires the in-
stance distribution to be centrally symmetric. The Skewness
Coefficient (SC) measures the degree of asymmetry in data
distribution (Vapnik, 1995), but it cannot be directly used
to identify the class body. Intuitively, two classes intersect
if an instance of one class intrudes into the body of another
class. A general conclusion is that the sum of the radii of
two hyperspheres is greater than the distance between the
class centers when they intersect, which motivates us to
quantify the intrusion degree of SIOs.

In this paper, our main contributions are as follows. (i) We
propose a Stray Intrusive Outliers-based Feature Selection
(SIOFS) method for the high-dimensional data classification
with ADMHC. (ii) We present a new definition of instance
density. A Refined Density-Mean (RDM) center is proposed
to characterize the class body of different types of instance
distributions. For the distance of intra-class instances to the
center, the modified SC is fused into the threshold in the 3σ
principle, reasonably identifying the class body. The for-
mulations about the intrusion degree of SIOs are provided.
Mathematical proofs or logical expositions of the settings
in SIOFS are complete. (iii) Extensive comparisons on 16
various benchmark datasets show that, for selecting dis-
criminative features, SIOFS outperforms 12 state-of-the-art
methods with higher classification accuracies, normalized
mutual information, and confusion matrices.

Compared with previous FS methods, SIOFS targets intra-
class ADMHC for data classification, focuses on the SIOs,
and scores features based on the intrusion degree of SIOs
caused by features. Theorems and experiments ensure the

rationality and universality of the SIOFS method.

1.1. Brief Related Work

FS methods select a subset of features from high-
dimensional data to improve data compactness and reduce
noisy features, in particular, to alleviate the overfitting, high
computational cost, and low-performance issues (Nie et al.,
2022; Cohen et al., 2023). There are three main FS methods:
filter, wrapper and embedded (Tang et al., 2014). Filter
methods evaluate each feature according to the intrinsic
characteristics of the data. Wrapper and embedded meth-
ods are prone to overfitting because their selection is part
of training. Most FS methods treat each instance equally
during selection, rarely focusing on the outliers that lead to
misclassification, and score features according to the degree
of this misclassification. The FSDOC (Yuan et al., 2022)
method focuses on instances within one class that are out-
liers in the direction of another class. The IOFS (Yuan et al.,
2024) method further explores the outliers close to the other
class. But importantly, both FSDOC and IOFS fail to ad-
dress the FS problem in the context of ADMHC. Additional
related work is shown in Appendix A.

2. Refined Density-Mean (RDM) Center
Notations. Throughout this paper, the boldface capital let-
ters (e.g., X) denote matrices, the boldface lowercase letters
denote vectors (e.g., x), and the italic letters are scalars
(e.g., X,x, α). n, d, c denote the total numbers of training
instances, feature dimensions, and classes in a dataset, re-
spectively. Given a dataset, for class k = 1, 2, . . . , c, the
instance set is X (k) ={x(k)

1 ,x
(k)
2 , . . . ,x

(k)
nk }, where x(k)

i =

(x
(k)
i1 , x

(k)
i2 , . . . , x

(k)
id )T ∈ Rd denotes the ith instance, i =

1, 2, . . . , nk, and nk is the number of training instances.
To assess each feature equally, we use the `1 norm-based
distance (Yuan et al., 2022). For example, the distance be-
tween two instances x(k)

i and x
(k)
j (j=1, 2, . . . , nk) can be

obtained by

‖x(k)
i − x

(k)
j ‖1 =

∑d

f=1
|x(k)if − x

(k)
jf |. (1)

RDM Center. Outliers in a class are defined relative to
the class body, and thus, an appropriate class center to de-
scribe the general characteristics of the class body is crucial.
Commonly, the class body is characterized by high-density
instances and contains more than half of the total instances.
Considering an imaginary hypersphere centered at instance
x
(k)
i , which contains at least half of the instances in class k,

we define the instance density of x(k)
i as the reciprocal of

the radius of this hypersphere. Combining the advantages of
density-based and mean centers, we average the instances
with relatively high density as the proposed RDM center.
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The details of obtaining the RDM center are as follows.

First, for class k and nk≥3, we compute the `1-norm dis-
tance d(k)ij =‖x(k)

i −x
(k)
j ‖1 between x

(k)
i and x

(k)
j (i, j=

1, 2, . . . , nk). The ith row of the matrix (d
(k)
ij )nk×nk

is the

distance from x
(k)
i to each instance of class k.

Second, for i=1, 2, . . . , nk, let ε(k)i =median(d
(k)
i1 , d

(k)
i2 ,

. . . , d
(k)
ink

), where median(X ) acquires the median of ele-

ments in X . Consequently, the hypersphere centered at x(k)
i

with radius ε(k)i contains no less than nk

2 instances (includ-
ing x

(k)
i itself) of class k. The smaller the value of ε(k)i , the

higher the density of x(k)
i .

Third, due to the fact that the ratio of higher density to
all instances in a class is obviously different for different
classes, we introduce a ratio α ∈ (0, 1] to construct the
higher-density instance threshold T (k) as

T (k) =max(mint({ε(k)1 , ε
(k)
2 , . . . , ε(k)nk

}, dα · nke)). (2)

In (2), mint(S, t) finds the t smallest elements of set S , and
d·e is a round up operation. Let H(k) denote the subset of
higher density instances of class k. The instance x

(k)
i can

be selected intoH(k) if it obeys ε(k)i ≤T (k).

Finally, the RDM center u(k)∈Rd of class k is

u(k) = 1
|H(k)|

∑
x
(k)
i ∈H(k)

x
(k)
i , (3)

where |H(k)| is the size ofH(k). In (3), the mean operation
appropriately eliminates random errors and captures the
general characteristics of the class body.

Based on the sparsity of outliers and the definition of in-
stance density, outliers have low instance density and are
not allowed to enter H(k) unless α is large in (0, 1]. Two
special cases are as follows: The RDM center is (i) the
instance itself when nk = 1 and (ii) the average of two
instances when nk = 2. In particular, the RDM center is
dimension-independent and can be calculated for a series
of 1-dimensional numbers. We formulate the procedure
for obtaining the RDM center as RDM(X , α), where X
represents the input dataset, and α is derived from (2).

3. Pattern of Stray Intrusive Outliers and
Feature Selection Method

3.1. Identifying Stray Intrusive Outliers

As shown in Fig. 1b, the SIO intuitively intrudes other class
body and intersects the instances in other class.

Recognizing potential SIO of class k towards class l: For
class l = 1, 2, . . . , c, we calculate the RDM center u(l) =

(a) (b) (c)

Figure 2. Histograms of distances between instances to the center.
The average is denoted by the solid black line and the mode is de-
noted by the red dashed line. (a) Data from Class “2” of GISETTE.
(b) Data from Class “3” of Carcinom. (c) Synthetic data.

RDM(X (l), α) and the distance between x
(l)
i and u(l) via

d
(l)
i =‖x(l)

i −u(l)‖1, i=1, 2, . . . , nl.

To mine the intrusive relationship from class k to class
l, it is necessary to identify the body of class l. Es-
sentially, a segmentation threshold Θ(l) is required for
d
(l)
1 , d

(l)
2 , . . . , d

(l)
nl , satisfying the conditions that (i) the body

of class l can be extracted, and (ii) when x
(k)
i ∈ X (k)

meets ‖x(k)
i −u(l)‖1 < Θ(l), x(k)

i intersects the instances
in class l. Condition (i) is equivalent to more than half of
d
(l)
1 , d

(l)
2 , . . . , d

(l)
nl being less than Θ(l), and thus Θ(l) should

be larger. However, as shown in Fig. 1b, if Θ(3) is large
enough to make ‖x(1)

3 −u(3)‖1 <Θ(3), but x(1)
3 does not

intrude into the body of class “3”. That is, condition (ii)
requires a smaller Θ(l).

The 3σ principle of normal variable that the probability
Pr(ξ>µ+3σ)<0.002 when ξ∼N(µ, σ2) (Vapnik, 1995)
provides a probability-based threshold µ+3σ. However,
this threshold is more suitable when the distribution of
d
(l)
1 , d

(l)
2 , . . . , d

(l)
nl is symmetric. Additionally, the larger

coefficient “3” causes µ+3σ to fail in satisfying the con-
dition (ii) of Θ(l). In high-dimensional data classification
with intra-class ADMHC, consequentially, the distribution
of d(l)1 , d

(l)
2 , . . . , d

(l)
nl is asymmetry or multi-peak.

The common Skewness Coefficient (SC) embodies the
asymmetry degree of data w.r.t its mean, and the SC of
d
(l)
1 , d

(l)
2 , . . . , d

(l)
nl (denoted as s(l)), usually s(l) ∈ (−3, 3)

(Linton, 2017). The larger the value of |s(l)|, the greater
the asymmetry degree of the data distribution. Based
on the statistical theory, we have the conclusion that
“mode1<average” if s(l) > 0, and “average < mode” if
s(l) < 0 (the prototype and properties of SC are shown in
Appendix B).

For the representative ability of the body of d(l)1 , d
(l)
2 , . . . ,

d
(l)
nl , the RDM center is superior to the mean. Let u(l) =

RDM({d(l)1 , d
(l)
2 , . . . , d

(l)
nl }, α), the corresponding standard

1Mode is the value of the highest frequency in the statistical
distribution and also the highest central tendency.
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deviation σ̂(l) =
√

1
nl

∑nl

i=1(d
(l)
i −u(l))2. To avoid many

parameters, we have the same α value for acquiring u(l)

and the class center u(l), because both α values reflect the
dispersion degree of instances within the same class l. Thus,
for d(l)1 , d

(l)
2 , . . . , d

(l)
nl , the modified SC is formulated as

ŝ(l) =
1

nl(σ̂(l))3

∑nl

i=1
(d

(l)
i − u(l))3. (4)

Based on the procedure of obtaining the RDM center, the
RDM center u(l) of d(l)1 , d

(l)
2 , . . . , d

(l)
nl is equal to the mean

when α=1, namely that s(l) is a special case of ŝ(l). Thus,
ŝ(l) has the property of s(l). The mathematical supports
about the final Θ(l) are in Theorem 1 and 2. The proofs of
Theorem 1 and 2 are deferred to Appendix C.

Theorem 1. Let ξ be the distance between the instance and
the center in class l, ξ is a continuous random variable.
d
(l)
1 , d

(l)
2 , . . . , d

(l)
nl is a random sample of ξ. The meanings

of u(l) and σ̂(l) are given in (4). When σ̂(l) > 0, we have
the probability Pr(ξ < u(l) + 2σ̂(l)) > 3

4 .

Theorem 2. For d(l)1 , d
(l)
2 , . . . , d

(l)
nl , u(l), ŝ(l) are the same

as in (4), and mode(l) is the same as the footnote of Section
3.1. When α ∈ (0, 1], mode(l) ≤ u(l) ≤ average(l) holds
with probability 1 if ŝ(l) > 0, and average(l) ≤ u(l) ≤
mode(l) holds with probability 1 if ŝ(l)<0.

In Theorem 1, σ̂(l)>0 holds when class l contains at least
two different instances. Based on Theorem 1, u(l)+2σ̂(l)

is greater than most of d(l)1 , d
(l)
2 , . . . , d

(l)
nl . However, it is

improper to ignore different asymmetric distributions under
ŝ(l) > 0 or ŝ(l) < 0 and employ the same coefficient “2”.
Based on Theorem 2, u(l)+2σ̂(l) is relatively large for ob-
taining the highest density value in d(l)1 , d

(l)
2 , . . . , d

(l)
nl when

ŝ(l)>0. Similarly, if ŝ(l)<0, u(l)+2σ̂(l) is relatively small
for obtaining the highest density value in d(l)1 , d

(l)
2 , . . . , d

(l)
nl

when σ̂(l)< 1
2 (mode(l)−u(l)).

The two contradictory conditions of Θ(l) demand that, we
should employ the high density values in d(l)1 , d

(l)
2 , . . . , d

(l)
nl .

Consequently, we need to reduce u(l)+2σ̂(l) if ŝ(l)>0 and
increase u(l)+2σ̂(l) if ŝ(l)<0. Usually, s(l)∈(−3, 3), s

(l)

3 ∈
(−1, 1), and s(l) is a special case of ŝ(l). For simplicity,
whether ŝ(l) > 0 or ŝ(l) < 0, we normalize ŝ(l) with the
constant “3”, i.e., ŝ

(l)

3 , to slightly regulate the coefficient
“2” and assign the 2− 1

3 ŝ
(l) to σ̂(l). That is, we uniformly

formulate Θ(l) as

Θ(l) = u(l) + (2− ŝ(l)

3 )σ̂(l). (5)

More importantly, when the distribution of d(l)1 , d
(l)
2 , . . . ,

d
(l)
nl is multi-peak, it is particularly valuable to replace the

coefficient “2” with 2−1
3 ŝ

(l). The highest peak is on the left
when ŝ(l)>0, while on the right when ŝ(l)<0 (see Fig. 1d

under ŝ(l) = 1.37> 0 and Fig. 1e under ŝ(l) =−1.30< 0).
In these cases, u(l)+(2− ŝ(l)

3 )σ̂(l) is more appropriate than
u(l)+2σ̂(l) on capturing the values around the highest peak
whether ŝ(l)>0 or ŝ(l)<0.

Here, three statistical indexes (i.e., u(l), σ̂(l), ŝ(l)) that we
introduce into (5) can reflect more statistical properties of
data and ensure the general applicability to different types
of instance distributions.

About recognizing potential SIO of class k towards class l,
for x(k)

i ∈X (k), if there exists class l (l 6= k) that meets

‖x(k)
i − u(l)‖1 < u(l) + (2− ŝ(l)

3 )σ̂(l), (6)

then x
(k)
i is identified as the potential SIO of class k towards

class l. Note that if more than one l (denoted as l1, l2, . . . )
satisfies (6), intuitively, x(k)

i is easily misclassified as the
class whose center is closest to x

(k)
i . Therefore, we identify

x
(k)
i as the potential SIO of class k towards the unique

class l0 =arg minl∈{l1,l2,... }(‖x
(k)
i −u(l)‖1), and all these

potential SIOs form the set X (kl0). In particular, (6) is
independent of the data structures of classes k and l0.

Examining whether x
(k)
i ∈X (kl0) is the SIO from class

k towards class l0 if X (kl0) 6= ∅: When instances intrude
from one class into another, it indicates that the two classes
intersect. Considering the non-spherical data structures of
the classes, we follow the general conclusion in Sec. 1 with
the oriented radius from one class to another.

Let X (l0)k={x(l0)
i :‖x(l0)

i −u(k)‖1<Θ(k), i=1, 2,. . . , nl0}
denote the instance subset where x

(l0)
i ∈ X (l0) but enters

the body of class k. Note that, for same l0 but different k,
X (l0)k may contain the same instances. This makes X (l0)k

different from X (l0k). Thus, if X (l0)k 6=∅, the radius D(l0)k

of class l0 towards class k is calculated by

D(l0)k=
1

|X (l0)k|
∑

x
(l0)
i ∈X (l0)k

‖x(l0)
i −u

(l0)‖1. (7)

The averaging operation in (7) can also properly eliminate
the random errors in the data. If x(k)

i ∈X (kl0) meets

‖x(k)
i − u(k)‖1 +D(l0)k − ‖u(k) − u(l0)‖1 > 0, (8)

we identify x
(k)
i as the SIO of class k towards class l0 (k 6=

l0). All these SIOs form the SIOs set X (kl0)
o . If X (kl0)

o 6=∅,
the classes k, l0 are recognized as a SIO class pair. In
addition, there is no intrusive relation between class k and
l0 if either X (l0)k=∅ or X (kl0)

o =∅.

3.2. Feature Selection on Stray Intrusive Outliers

We further assess SIOs in X (kl0)
o and the SIO class pair k, l0

on feature level. Let x(k)
i =(x

(k)
i1 , x

(k)
i2 , . . . , x

(k)
id )T∈X (kl0)

o
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and class center u(k)=(u
(k)
1 , u

(k)
2 , . . . , u

(k)
d )T. Considering∑

i

∑
jaij=

∑
j

∑
iaij and (1), (7) (8) are rewritten as

D(l0)k=
∑d

f=1

1
|X (l0)k|

∑
x
(l0)
i ∈X (l0)k

|x(l0)if −u
(l0)
f |, (9)∑d

f=1
(|x(k)if −u

(k)
f |+D

(l0)k
f −|u(k)f −u

(l0)
f |)>0. (10)

We denoteD(l0)k
f = 1

|X (l0)k|
∑

x
(l0)
i ∈X (l0)k |x

(l0)
if −u

(l0)
f | and

S
(kl0)
if = |x(k)if −u

(k)
f |+D

(l0)k
f −|u(k)f −u

(l0)
f |. They are the

f th terms of (9) and (10) from feature f , respectively.

At the level of feature f = 1, 2, . . . , d, |x(k)if −u
(k)
f | is the

distance between x
(k)
i and u(k), D(l0)k

f is the average dis-

tance from x
(l0)
i ∈ X (l0)k to u(l0), where x(l0)

i is in class l0
but enter the body of class k. |u(k)f −u

(l0)
f | is the distance

between the two class centers. Inspired by the expectation
of small intra-class diversity and large inter-class scatter
in classification tasks (Xu et al., 2022), |x(k)if −u

(k)
f | and

D
(l0)k
f should be small, and |u(k)f −u

(l0)
f | should be large if

feature f is sufficiently discriminative. Consequently, for
each x

(k)
i ∈X

(kl0)
o , we expect S(kl0)

if <0 with |S(kl0)
if | being

large. Thus, a reasonable FS strategy is to assign a higher
rank to feature f whose S(kl0)

if appears at the top of the
ascending order.

FS on one SIO class pair k, l0: To reflect the overall per-
formance of the feature f on all SIOs in X (kl0)

o , we average
all S(kl0)

if values as S̄(kl0)
f = 1

|X (kl0)
o |

∑
x
(k)
i ∈X

(kl0)
o

S
(kl0)
if . On

the other hand, for the SIO class pair k, l0,
∑d
f=1S̄

(kl0)
f

and S̄(kl0)
f reflect the average intrusion degree on all fea-

tures and one feature, respectively. The larger the values
of S̄(kl0)

1 , S̄
(kl0)
2 , . . . , S̄

(kl0)
d , the greater their contribution

to
∑d
f=1 S̄

(kl0)
f . Therefore, the appropriate evaluation cri-

terion should rank the features from highest to lowest by
sorting S̄(kl0)

1 , S̄
(kl0)
2 , . . . , S̄

(kl0)
d in ascending order. The

theoretical foundation for the rationality of this evaluation
criterion is shown in Appendix D.

FS on all SIO class pairs: Real-world classification tasks
seek to achieve higher overall classification accuracy while
minimizing the intrusion degree between all class pairs. For
the class pair with maximum intrusion degree, although
many features can be discarded to reduce the degree, this
will result in an inadequate representation of the instances
from other classes. Taken together, we consider the half
of all SIO class pairs with the lowest intrusion degree and
score feature f by averaging the S̄(kl0)

f values on this subset
of class pairs. For a dataset, let Nip denote the number of
all SIO class pairs identified in Sec. 3.1.

First, we compute
∑d
f=1 S̄

(kl0)
f for each SIO class pair

k, l0. Second, the d0.5Nipe smallest sums are selected, and

the corresponding vector (S̄
(kl0)
1 , S̄

(kl0)
2 , . . . , S̄

(kl0)
d ) forms

a row of the matrix P = (Pij)d0.5Nip×de. Finally, let sf
(f=1, 2, . . . , d) represent the score of the f th feature. We
can obtain the feature scores by

(s1, . . . , sd)= 1
d0.5Nipe (

d0.5Nipe∑
i=1

Pi1, . . . ,

d0.5Nipe∑
i=1

Pid). (11)

Note that the f th feature has no discriminability between
the two classes if its values are the same across all instances
from both classes. In this case, we assign a score of +∞ to
such a feature. The scores s1, s2, . . . , sd are then ranked in
ascending order, and the top m features are selected.

Algorithms and time complexity. Obtaining the RDM cen-
ter, the SIOs set, and the final FS costO(n2+n),O(nc+c2)
andO(dc) time, respectively. The corresponding algorithms
and time complexity analysis for each step are deferred to
Appendix E.

4. Experiments and Analyses
4.1. Experimental Settings

Baselines: We use 12 state-of-the-art supervised FS meth-
ods as baselines, along with three popular unsupervised FS
methods for extensions. The names, types, and references
of all FS methods are given in Appendix F. For fair com-
parisons, parameter settings and codes for all methods are
directly taken from their original publications.

Datasets: Sixteen multi-type datasets are considered due
to their classification challenges, including intra-class
ADMHC and variations in the number of instances, features,
and classes. Detailed information about the 16 datasets is
given in Appendix F. For Dataset #1∼#12 in Table 6 (see
Appendix F), instances are represented by low-level features.
For Dataset #13∼#15 in Table 6, deep features are extracted
using configurations similar to (Yuan et al., 2024). For #16
Caltech101 dataset, high-level visual feature, i.e., Fisher
vector (FV), is extracted (Zhang et al., 2014; Yuan et al.,
2022).

Experimental protocol: We use 3 widely accepted metrics:
accuracy (ACC), normalized mutual information (NMI)
(Cai et al., 2011), and confusion matrix (CM) to evaluate
the performance of the same features selected by the FS
methods on a dataset. Higher values of ACC, NMI, and
the sum of the principal diagonal of CM indicate better
classification performance of selected features.

For datasets represented by low-level features, the classifi-
cation tasks aim to achieve better performance with fewer
selected features. Thus, for each FS method, the ACC and
NMI results are computed under the top 50, 100, . . . , 300
features, respectively. The mean and standard deviation
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Figure 3. ACC and NMI results of FS methods on some datasets w.r.t the top 50, . . . , 300 features. AllFeat: All features are selected.

Figure 4. CMs on some datasets. The selected methods correspond to the largest four acc results in Table 1 for each dataset. SIOFS has
the same α as in Table 1 for all datasets. 100 or 300 features are employed.

of six ACC results are denoted as acc±std. For datasets
represented by deep features, the classification task focuses
on achieving the highest classification accuracy regardless
of the number of selected features. Hence, for each FS
method, both ACC and NMI results are calculated with
the top 5%, 10%, . . . , 95% of all features, and the best
global ACC and corresponding NMI are reported. When
the RDM center is involved, its parameter α is turned over
0.05, 0.1, . . . , 0.95.

Similar to most related work, we use the linear SVM (Guyon
et al., 2002) as the classifier for ACC and CM. To be re-
peatable, we adopt the same strategy as in the literature
(Yuan et al., 2024) to replace the random functions in NMI
algorithms with deterministic ones. All experiments employ

fivefold cross-validation, except for ModelNet, where we
use its partitioned training and test sets directly. In the fol-
lowing tables, the best results are marked in bold, and the
second-best results are underlined.

4.2. Results and Discussions

Challenge 1: small-sized high-dimensional. The first 11
datasets (see Table 6 in Appendix F) are typical small-sized
high-dimensional scenarios. Due to intra-class ADMHC
and the small sample size, the main difficulty in classify-
ing such data is identifying the true characteristics of class
instances. Figure 3 and 4 show the results of ACC, NMI,
and CM on some datasets, while others are deferred to Ap-
pendix G, Fig. 7. The following conclusions can be drawn:
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Table 1. Mean and standard deviation (acc±std) of ACC (%) w.r.t the top 50, 100, . . . , 300 features on the 12 datasets. “N/A”: ReOLSR
does not converge on GLIOMA and MRMSR code runs very slowly on GISETTE. 〈α〉 shows the parameter α of SIOFS.

Baseline CLL TOX Carcinom Lung Lung dis Lymphoma Nci9 GLIOMA colon ORL Yale GISETTE
Fisher 57.66±2.99 77.58±4.67 89.37±6.92 93.43±1.41 83.79±2.67 83.86±3.54 51.67±6.01 72.00±6.00 77.69±3.01 93.04±2.45 67.98±2.41 56.57±7.42
QMI 64.72±1.98 80.60±4.14 92.05±2.92 94.66±0.77 85.62±1.72 85.59±2.44 47.22±5.66 70.33±2.92 79.30±2.36 91.83±2.39 68.89±4.15 64.53±8.71
ReliefF 69.22±4.04 79.63±6.63 91.48±2.99 93.76±0.37 84.47±3.13 86.46±2.33 51.67±6.31 68.67±4.27 81.18±6.15 92.33±3.31 63.64±9.87 67.35±11.06
TRC 59.31±2.40 82.16±6.05 93.49±2.27 94.17±0.96 82.88±4.39 86.46±2.25 54.17±3.30 73.67±0.75 81.72±1.78 92.13±1.97 64.65±5.40 63.63±11.17
ILFS 55.40±3.20 79.24±6.10 84.29±7.46 90.40±1.23 84.70±2.00 85.25±3.63 32.50±5.51 71.33±3.94 81.18±2.58 91.83±3.22 59.90±7.01 60.92±10.87
FSDOC 65.01±0.96 80.51±8.38 90.13±4.16 91.38±5.62 86.07±0.51 84.20±5.08 53.33±5.61 69.67±5.47 70.97±3.36 93.29±2.80 70.91±1.82 66.42±5.56
FSTU 61.71±2.79 77.97±4.85 80.65±8.71 91.63±4.73 84.47±4.79 89.24±1.67 36.67±6.01 68.33±5.82 82.80±4.02 90.08±4.92 63.33±7.83 61.47±8.83
FSNS 64.41±4.64 79.24±6.01 80.37±8.96 90.72±4.31 85.39±2.33 89.58±1.35 36.67±6.01 68.33±6.26 82.53±4.31 90.58±4.89 60.00±5.20 60.84±8.70
ReOLSR 61.71±3.89 77.39±6.03 79.69±4.64 93.76±0.84 84.02±4.08 85.76±5.33 39.17±6.85 N/A 80.38±2.54 87.63±8.95 59.09±6.80 62.06±16.23
MRMSR 65.32±2.93 74.27±4.63 84.87±5.59 90.64±0.81 86.07±1.84 82.12±7.54 42.22±6.78 75.67±1.80 74.46±4.31 75.58±12.71 53.64±6.35 N/A
S2DFS 63.81±4.89 78.85±3.78 84.77±5.42 93.19±0.34 84.47±1.29 88.20±2.14 41.95±7.54 72.33±4.07 76.08±4.31 94.33±1.99 70.81±4.92 66.40±8.04
IOFS 63.21±6.05 80.21±3.84 93.39±1.78 94.66±2.04 86.30±0.00 88.37±3.03 54.72±3.39 74.00±2.00 79.84±4.34 94.08±2.50 71.31±2.26 68.15±7.66
SIOFS 71.32±3.84 83.24±4.99 93.77±2.72 95.32±1.02 86.99±1.90 89.76±2.20 54.17±2.10 76.00±2.00 83.33±1.20 94.63±1.64 71.21±4.70 73.08±6.70
〈α〉 〈0.30〉 〈0.30〉 〈0.55〉 〈0.50〉 〈0.30〉 〈0.30〉 〈0.10〉 〈0.15〉 〈0.60〉 〈0.10〉 〈0.55〉 〈0.10〉

(i) Across varying numbers of selected features, SIOFS
almost always provides comparable or superior results to
other FS methods. In particular, when the top 50 features are
selected, SIOFS outperforms the second-best by 5.48% on
Lung dis. (ii) SIOFS achieves larger NMI results compared
to the baselines, ranking higher on the line chart. (iii) The
ACC and NMI results of SIOFS fluctuate less than these
of the baselines, indicating that SIOFS is less affected by
the number of selected features and data distributions. (iv)
Based on the CMs in Fig. 4, SIOFS can correctly predict
more instances that are challenging for the baselines, partic-
ularly for classes with notable ADMHC, such as class “3”
on CLL and class “2” on GISETTE (see Fig. 1b and 2a).

To further demonstrate the superiority of SIOFS, Table 1
summarizes the corresponding acc±std results for each
FS method. It can be seen that SIOFS achieves the best or
second-best performance on all datasets.

Note that, due to the imbalanced classes in Lymphoma and
Nci9 datasets, at one of the fivefold cross-validation, we
have only one training instance of one class. When nl=1,
for (5), u(l) = x

(l)
1 , d(l)1 = ‖x(l)

1 −u(l)‖1 = 0, thus u(l) =

RDM({d(l)1 , d
(l)
2 , . . . , d

(l)
nl }, α) = 0, σ̂(l) = 0, and Θ(l) = 0.

At this situation, let Θ(l0) =0 and Θ(1), . . . ,Θ(c0) (c0<c)
be the ones larger than 0 according to (5), we employ the
variable coefficient (denoted as ν) of Θ(1), . . . ,Θ(c0), and
reset Θ(l0) = ν(c−1) · min(Θ(1), . . . ,Θ(c0)), where the
variable coefficient ν of data is the ratio of the standard
deviation to the mean, i.e., ν= σ

µ and reflects the degree of
data dispersion (Vapnik, 1995).

Challenge 2: severe inter-class intrusion. Recently, min-
ing valuable information in the context of severe inter-class
intrusion is necessary in some AI application domains (Deng
et al., 2024; Kumar & Kumar, 2024). Here, we consider a
handwritten digits classification dataset from the NIPS FS
challenge (GISETTE). The corresponding results of ACC,
NMI, and CM on GISETTE are reported in Fig. 3 and Fig.
4, and the acc±stds are shown in Table 1. SIOFS achieves
superior performance in terms of ACC, NMI, and CM. For

Table 2. acc±std of SIOFS with RDM, CFDP and MEAN centers.
And the acc difference of SIOFS and w/o SC. “N/A”: the SIOs
can not be captured by MEAN center.
Dataset RDM

α=0.1
CFDP MEAN w/o SC 〈α〉 SIOFS

-w/o SC
CLL 66.37±3.15 65.02±3.87 58.71±2.41 68.47±1.73 〈0.20〉 2.85
TOX 79.82±2.54 76.51±3.37 74.56±2.54 82.07±3.20 〈0.15〉 1.17
Carcinom 91.48±1.30 90.23±3.02 92.05±2.08 93.01±2.33 〈0.75〉 0.76
Lung 94.50±0.34 93.68±0.87 91.30±1.35 95.40±0.97 〈0.40〉 -0.08
Lung dis 86.99±1.72 85.84±1.29 N/A 87.21±1.29 〈0.15〉 -0.22
Lymphoma 86.81±3.05 86.28±3.15 86.80±2.18 89.41±2.78 〈0.45〉 0.35
Nci9 54.17±2.10 55.28±3.90 49.17±3.57 53.89±0.79 〈0.10〉 0.28
GLIOMA 75.00±1.53 78.00±4.62 69.33±0.94 76.33±2.69 〈0.20〉 -0.33
colon 82.53±2.54 80.38±2.54 81.99±1.45 83.06±1.23 〈0.70〉 0.27
ORL 94.63±1.64 94.38±1.43 91.42±3.08 94.42±1.54 〈0.10〉 0.21
Yale 69.29±5.87 70.10±4.68 66.16±3.76 71.41±3.45 〈0.55〉 -0.20
GISETTE 73.08±6.70 61.67±4.06 69.40±6.75 72.98±2.78 〈0.25〉 0.10

acc±std, SIOFS outperforms the second-best by 4.93% on
the severe inter-class intrusion dataset GISETTE.

4.3. Ablation Study

Influence of different class centers for SIOFS. We only
replace the proposed RDM center in SIOFS with CFDP and
mean centers, respectively. Since CFDP and mean centers
are parameter-free, for a fair discussion, we experimentally
assign α=0.1 to the RDM center.

For Dataset #1∼#12 represented by low-level features, the
corresponding acc±std results for SIOFS with RDM (α=
0.1), CFDP, and mean centers are presented in the left 4
columns of Table 2. It can be seen that when using the
RDM center with α=0.1, the performance of the features
selected by SIOFS achieves the highest acc on eight datasets,
and the second-highest acc on the rest. Notably, on TOX,
the acc result for RDM center (79.82%) is 3.31% higher
than the second-best CFDP center. On GISETTE, the acc
for RDM center (73.08%) exceeds the second-best mean
center by 3.68%. These results demonstrate the importance
and effectiveness of the idea that averaging high-density
instances reflects the overall characteristics of class body.

Effectiveness of skewness coefficient. We further evaluate
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Figure 5. Performance of α for SIOFS on the 5 representative datasets. m: Number of selected features.

the effectiveness of SC by comparing the acc±std results.
Based on (5), the coefficient 2− ŝ(l)

3 is only simply replaced
by “2” (denoted as “w/o SC”). The parameter α for the
RDM center is still turned over 0.05, 0.1, . . . , 0.95.

The highest acc results and corresponding α values on
Dataset #1∼#12 are reported in Table 2, under “w/o SC”
and 〈α〉. The acc differences between SIOFS and w/o SC
are shown in Table 2, under “SIOFS -w/o SC”. We observe
that SIOFS achieves better classification performance on
CLL, TOX, and Carcinom. For the other datasets, the acc
differences are within (−0.5%,+0.5%). In addition, the
standard deviation of the 12 α values for SIOFS in row
“〈α〉” of Table 1 is 0.18, while 0.22 for “w/o SC” in column
“〈α〉” of Table 2. As analyzed in Sec. 1, both CLL and TOX
contain classes with notable multiple high-density clusters
(see Fig. 1d and 1e). To sum up, for datasets with intra-
class ADMHC, SIOFS yields more robust results than w/o
SC, and the SC is beneficial in regulating the threshold for
obtaining the class body.

An extension: comparing parameter-free SIOFS with
IOFS. We freeze α = 0.1 as the parameter-free SIOFS.
Comparing the row “IOFS” of Table 1 and the column
“RDM α= 0.1” of Table 2, we observe that accs increase
on 6 out of 12 datasets and decrease on the rest. The max-
imum increment is 4.93% on GISETTE, while the maxi-
mum loss is 2.02% on Yale. The 6 datasets with reduced
acc share a common characteristic that the distributions of
class instances are relatively scattered. Consequently, as α
changes, the RDM center has a larger drift, causing inappro-
priate representations of intra-class instance characteristics.
On Dataset #1∼#12, the sum of all accs is 954.67 (%) for
SIOFS with α= 0.1 and 948.24 (%) for IOFS, indicating
that the proposed SIOFS generally outperforms IOFS. Im-
portantly, as analyzed in Sec. 1, the CLL dataset has distinct
intra-class multiple high-density clusters, and GISETTE
has severe intra-class asymmetric instance distribution. The
parameter-free SIOFS significantly outperforms IOFS on
both datasets. These imply that SIOFS is more applicable
for high-dimensional data classification with strong intra-
class ADMHC.

4.4. More Experimental Results and Analyses

Challenge 3: FS on deep features. Applying FS on deep
learning-based cues is a trend in data classification (Lee

Table 3. Best global ACC (%) and NMI with corresponding num-
ber of selected features (in (·)) obtained by FS methods on UCM,
AID and ModelNet, under the top 5%, 10%, . . . , 95% of all fea-
tures. AllFeat: All features are selected.
Baseline ACC NMI

UCM AID ModelNet UCM AID ModelNet
AllFeat 94.48(2048) 84.36(2048) 92.71(2048) 0.720(2048) 0.522(2048) 0.797(2048)
Fisher 94.38(1946) 84.92(1434) 92.79(1638) 0.745(1126) 0.552(1434) 0.809(1946)
QMI 94.33(1741) 84.42(1741) 92.91(922) 0.742(1536) 0.550(1229) 0.824(1843)
ReliefF 94.43(1843) 84.80(1434) 92.95(819) 0.729(1741) 0.548(1742) 0.836(614)
TRC 94.48(1741) 85.05(1434) 92.83(1638) 0.755(1638) 0.559(1638) 0.811(1946)
ILFS 94.48(1741) 83.93(1434) 93.03(410) 0.731(1638) 0.560(410) 0.813(614)
FSDOC 94.62(819) 84.51(1434) 92.91(1946) 0.737(1126) 0.552(1126) 0.828(614)
FSTU 94.76(1946) 84.51(1946) 92.67(1843) 0.748(717) 0.557(1536) 0.808(1434)
FSNS 94.67(1946) 84.52(1946) 92.63(1946) 0.749(717) 0.558(1536) 0.806(1434)
ReOLSR 94.81(1536) 84.48(1946) 92.83(512) 0.723(1843) 0.541(1946) 0.808(1946)
MRMSR 94.67(1024) 84.64(410) 93.03(512) 0.730(1434) 0.550(1843) 0.811(1843)
S2DFS 94.81(1741) 84.35(1843) 92.59(1843) 0.735(1126) 0.545(1536) 0.824(717)
IOFS 94.33(1741) 85.83(922) 92.71(1946) 0.778(1331) 0.594(614) 0.807(1946)
SIOFS 94.95(1946) 85.83(1024) 93.03(1843) 0.775(1638) 0.589(512) 0.815(1434)
〈α〉 〈0.60〉 〈0.05〉 〈0.80〉 〈0.60〉 〈0.05〉 〈0.80〉
w/o SC 94.81(1536) 85.80(1126) 92.95(1946) 0.769(1434) 0.583(614) 0.812(1946)
〈α〉 〈0.30〉 〈0.15〉 〈0.80〉 〈0.30〉 〈0.15〉 〈0.80〉

Table 4. Best global ACC (%) on Caltech 101 dataset under the
top 60%, 70%, 80%, and 90% of all features. MRMSR fails to
obtain the results within a limited time.

Fisher QMI ReliefF TRC ILFS FSDOC FSTU FSNS ReOLSR S2DFS IOFS SIOFS
α=0.1

60% 40.79 39.7 38.58 37.76 42.38 43.56 40.63 40.63 40.99 42.38 45.45 45.74
70% 41.68 40.92 40.36 39.11 42.38 43.43 43.47 43.47 41.45 43.43 48.84 48.98
80% 42.61 42.57 41.88 40.63 42.48 43.93 42.77 42.77 42.67 43.56 51.52 51.58
90% 43.43 43.23 42.90 41.19 43.60 43.20 42.44 42.44 42.77 43.66 53.83 54.13

et al., 2022). The challenges in aerial image classification
(UCM, AID) and 3D object recognition (ModelNet) tasks
arise from high inter-class intrusion (Xia et al., 2017).

Following the experimental protocol, Table 3 shows the best
global ACC and NMI results of the same features selected by
FS methods on UCM, AID, and ModelNet datasets. Some
of the CMs are shown in Fig. 4. It can be seen that SIOFS
achieves the best ACC results on these three datasets. Al-
though the best NMI results for all datasets are not achieved
by SIOFS, they are only slightly lower than the best. By
comparing “SIOFS” and “w/o SC” in Table 3, we conclude
that SC is also beneficial for FS on deep features.

Challenge 4: FS on large-class-number dataset. To vali-
date the performance of SIOFS on large-class-number data,
we use the Caltech101 dataset (Fei-Fei et al., 2004). This
dataset is chosen also for its asymmetric intra-class instance
distribution. Following the iterature (Chatfield et al., 2011;
Yuan et al., 2022), Fisher Vector (FV) is employed to de-
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Table 5. Time complexity and runtime (seconds). τ is the number
of iterations of algorithms. m is the number of selected features.
“N/A”: time complexity is not provided by original authors.

Runtime (Seconds)
Baseline Time Complexity CLL GISETTE Yale AID
Fisher O(dn) 0.22 0.74 0.08 0.65
QMI N/A 0.19 1.29 0.08 2.10
ReliefF O(dn) 1.50 1323.96 0.38 1589.22
TRC O(dn2+d2n) 4.63 271.22 0.07 329.09
ILFS O(n2.37+τd+n+c) 67.54 61.66 0.40 93.33
FSDOC O(dn+d2) 5.04 226.21 0.42 207.80
FSTU N/A 3.25 13.07 0.81 100.91
FSNS N/A 1.93 57.36 0.61 159.69
ReOLSR N/A 10422.36 7960.63 67.13 4383.46
S2DFS O(m2d+nd2) 8129.74 1785.38 11.72 973.72
IOFS O(n2+nc+c2+dc) 0.53 982.17 0.10 46.61
SIOFS O(n2+n+nc+c2+dc) 0.92 865.58 0.10 259.60

scribe the images from this dataset. As FV is a high-level
visual feature, and too much runtime should also be avoided,
we conduct a systematic sampling (Harris & Stöcker, 1998)
of the original FV features and select the top 60%, 70%,
80%, 90% of all features, and report the best global ACC
result. α= 0.1 is also frozen for SIOFS. As shown in Ta-
ble 4, SIOFS outperforms the comparative methods in all
cases. The corresponding information of Caltech101 dataset
is given in Appendix F.

Comparison with unsupervised FS methods. The com-
parative methods and results are given in Appendix G, Table
7. SIOFS achieves the best or second-best performance on
15 datasets.

Parameter sensitivity and runtime comparison. Figure
5 illustrates the influence of α for SIOFS w.r.t. different
numbers of selected features on 5 representative datasets,
with the others in Appendix G. For some datasets, SIOFS
is slightly sensitive to α when a few features are selected,
but it is relatively robust in other cases. According to the
definition of RDM center, α is the ratio of higher density to
all instances in a class, thus α is affected by the aggregation
behaviour of class instances. For some datasets, such as
CLL (see Fig. 1b), due to the scattered distribution of class
instances and multiple local high-density clusters, α has a
distinct impact on the selected features.

Table 5 shows the time complexity and average runtime of
5 repeats for the FS methods on 4 representative datasets.
The runtime of MRMSR is not reported due to its exces-
sively long computation time. For larger datasets, such as
GISETTE and AID, SIOFS takes more time. Objectively,
most of the runtime for SIOFS is attributed to the O(n2)
calculation of the RDM center.

5. Conclusion
In this work, we propose the SIOFS method for high-
dimensional data classification with intra-class ADMHC,
where feature ranking is determined by the intrusion degrees

of feature on SIOs. The RDM center is proposed to charac-
terize the class body. By measuring the distances from the
class instances to the center, the modified SC is regulated
and fused into the 3σ principle to define the class body. The
intrusion degree is modeled based on the widely adopted
conclusion of two intersecting spheres. Mathematical proofs
or logical explanations for the key components of SIOFS are
provided. Extensive experiments with 15 state-of-the-art FS
methods are conducted on 16 multi-type datasets. Theoreti-
cal basis and experimental results demonstrate that, for data
classification with intra-class ADMHC, evaluating features
based on the intrusion degrees of features on SIOs is promis-
ing, and defining the class body by fusing the modified SC
is appropriate. Theory and experiments support the superior
performance and broad applicability of our method. Future
work will focus on designing more powerful class centers
and better mining the patterns of SIOs.
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A. Related Work
FS for classification. Most real-world classification problems require supervised learning, where the underling class
probabilities and class-conditional probabilities are unknown, and each instance is associated with a class label (Tang
et al., 2014; Theng & Bhoyar, 2024). In real-world cases, little knowledge about relevant features is available for learning.
Therefore, more candidate features are introduced that are expected to better represent the instances, resulting in redundant
features (Cai et al., 2018). For many classification tasks, it is challenging to learn discriminative classifiers before eliminating
the redundant features. Meanwhile, this learning process is time-consuming. FS for classification aims to select a minimally
sized subset of discriminative features according to certain criteria, improving feature interpretability and reducing the
running time of learning models (Nie et al., 2019; Li et al., 2024).

Review of FS. FS methods can be categorized into three types: filter, wrapper and embedded methods (Wang et al., 2024;
2022). Filter methods rank feature importance based on the intrinsic characteristics of the data, using a predefined criterion,
and are independent of the classifiers. As a result, they are computationally efficient and scalable for high-dimensional data.
A typical filter algorithm consists of two steps (Tang et al., 2014): In the first step, features are ranked according to certain
criteria; And in the second step, the highest-ranked features are selected for use in downstream learning tasks, such as
classifiers. In wrapper methods, classifier performance is critical to FS. The performance of a specific classifier is optimized
by searching for the best subset of features. Examining all possible subsets is an NP-hard problem, so a suboptimal solution
is used, which remains costly for complex data classification tasks (Alelyani et al., 2013). Embedded methods bridge the
gap between filter and wrapper methods by performing selection and classifier learning simultaneously (Jovic et al., 2015;
Zhao et al., 2024). However, both wrapper and embedded method are prone to over-fitting because selection is part of the
training process (Chen et al., 2022). The proposed SIOFS method is a supervised filter method.

B. The Skewness Coefficient (SC)
According to the literature (Linton, 2017), the prototype of SC is

s(l) =
1
nl

∑nl

i=1(d
(l)
i − X̄)3(

1
nl

∑nl

i=1(d
(l)
i − X̄)2

) 3
2

,

where X̄ is the average of d(l)1 , d
(l)
2 , . . . , d

(l)
nl . u(l) = RDM({d(l)1 , d

(l)
2 , . . . , d

(l)
nl }, 1) = X̄ when α = 1, thus, we replace the

X̄ with u(l). That is, the term (d
(l)
i − u(l))3 in Equation (4) is directly derived from the term (d

(l)
i − X̄)3. The SC is a

statistical measure that quantifies the asymmetry of a data distribution. It indicates the degree to which data deviate from a
symmetric, bell-shaped normal distribution.

One property of s(l) is that when nl is large enough and ε > 0, the frequency of mode(l) − ε is less than the frequency of
mode+ ε if s(l) > 0 (see Fig 6a and 6b), and the frequency of mode(l) − ε is greater than the frequency of mode(l) + ε if
s(l) < 0.

C. Proofs
We begin by proving Theorem 1 from Section 3.1. We reiterate the theorems for completeness.

Theorem 1. Let ξ be the distance between the instance and the center in class l, ξ is a continuous random variable.
d
(l)
1 , d

(l)
2 , . . . , d

(l)
nl is a random sample of ξ. The meanings of u(l) and σ̂(l) are given in (4). When σ̂(l) > 0, we have the

probability Pr(ξ < u(l) + 2σ̂(l)) > 3
4 .

Proof. Suppose the probability density function of ξ is f(x), based on the property of probability density function (Harris &
Stöcker, 1998), we have f(x) ≥ 0.

When x ≥ u(l) + 2σ̂(l), i.e., x− u(l) ≥ 2σ̂(l) > 0, we have

f(x) ≤ (x− u(l))2

4(σ̂(l))2
f(x).
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(a) (b)

Figure 6. (a) A probability density function of skewed distribution. (b) Histograms of 100,000 data sampled from the distribution in (a).

Then,

Pr(ξ < u(l) + 2σ̂(l)) = 1−
∫ +∞

u(l)+2σ̂(l)

f(x)dx

≥ 1−
∫ +∞

u(l)+2σ̂(l)

(x− u(l))2

4(σ̂(l))2
f(x)dx

> 1− 1

4(σ̂(l))2

∫ +∞

−∞
(x− u(l))2f(x)dx.

Here,
∫ +∞
−∞ (x− u(l))2f(x)dx is the variance w.r.t u(l) and (σ̂(l))2 is a precise estimation of

∫ +∞
−∞ (x− u(l))2f(x)dx. Thus,

we have Pr(ξ < u(l) + 2σ̂(l)) > 3
4 .

Theorem 2. For d(l)1 , d
(l)
2 , . . . , d

(l)
nl , u(l), ŝ(l) are the same as in (4), and mode(l) is the same as the footnote in Section 3.1.

When α ∈ (0, 1], mode(l) ≤ u(l) ≤ average(l) holds with probability 1 if ŝ(l) > 0 and average(l) ≤ u(l) ≤ mode(l) holds
with probability 1 if ŝ(l) < 0.

Proof. Assume ŝ(l) > 0. According to the definition of RDM center, u(l) is the average of the top dα · nle high density
values in d(l)1 , d

(l)
2 , . . . , d

(l)
nl . When α is smaller in (0, 1] but dα · nle = 1, we have u(l) = mode(l). For d(l)1 , d

(l)
2 , . . . , d

(l)
nl ,

let d1 = mode(l) and d2, d3 denote the 2nd and 3rd highest density values, respectively. ŝ(l) has the same property of s(l).
When α is smaller in (0, 1] but dα · nle = 2, based on the property of s(l) (see Appendix B), and considering that nl is often
not large enough, at least, d2 > d1 holds with probability 1. Then u(l) = d1+d2

2 > d1 with probability 1. When α is smaller
in (0, 1] but dα · nle = 3, if d3 > d1, then u(l) = 1

3 (d1 + d2 + d3) > d1; if d3 < d1 (see Fig. 6b), d3 can only be very close
to d1, namely, d1− d3 ≤ d2− d1, u(l) = 1

3 (d1 + d2 + d3) ≥ d1 holds with probability 1 at least. When dα ·nle = 4, 5, . . . ,
the same conclusion can be obtained.

When ŝ(l) > 0, the smaller values in d(l)1 , d
(l)
2 , . . . , d

(l)
nl are denser. Based on the difinition of RDM center, if ŝ(l) > 0

and α < 1, after the largest d(1− α) · nle values in d(l)1 , d
(l)
2 , . . . , d

(l)
nl are removed, the remainder is averaged as the u(l).

As we know, the average of a set of numbers with large values removed is less than the average of all. Meanwhile, u(l)

is the average of all d(l)1 , d
(l)
2 , . . . , d

(l)
nl when α = 1. Consequently, if ŝ(l) > 0, as α decreases from 1, u(l) gradually

gets smaller from the average of all d(l)1 , d
(l)
2 , . . . , d

(l)
nl . Combined with the conclusion that mode<average if s(l) > 0,

we have mode(l) ≤ u(l) ≤ average(l) when α is the larger value in (0, 1]. In conclusion, when α ∈ (0, 1], we have
mode(l) ≤ u(l) ≤ average(l) holds with probability 1 if ŝ(l) > 0.

Similarly, when α ∈ (0, 1], we have average(l) ≤ u(l) ≤ mode(l) if ŝ(l) < 0.

D. Theoretical Foundation for Rationality of Evaluation Criterion

For every x
(k)
i ∈X

(kl0)
o , we have

∑d
f=1S

(kl0)
if >0 due to (10), and thus

∑d
f=1S̄

(kl0)
f >0. However, for feature f=1, 2, . . . , d,

S̄
(kl0)
f can be positive or negative. There must be at least one f ∈{1, 2, . . . , d} that meets S̄(kl0)

f >0. Based on our evaluation
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Algorithm 1 Obtaining the RDM center of class k (nk ≥ 3).

Input: Data set {x(k)
1 ,x

(k)
2 , . . . ,x

(k)
nk }, parameter α;

Output: The RDM center u(k) ∈ Rd;
1: Initialize the high density instance subsetH(k) = ∅;
2: Compute d(k)ij = ‖x(k)

i − x
(k)
j ‖1 for all pairwise x

(k)
i and x

(k)
j , i, j = 1, 2, . . . , nk;

3: for i = 1, 2, . . . , nk do
4: Compute ε(k)i = median(d

(k)
i1 , d

(k)
i2 , . . . , d

(k)
ink

);
5: end for
6: Compute T (k) via (2);
7: for i = 1, 2, . . . , nk do
8: Assign x

(k)
i → H(k) if ε(k)i ≤ T (k);

9: end for
10: Compute u(k) via (3).

Algorithm 2 Obtaining the SIOs set X (kl0)
o for class k towards l0 (l0 6= k)

Input: {x(k)
1 ,x

(k)
2 , . . . ,x

(k)
nk }, u(k), Θ(k), k = 1, 2, . . . , c;

Output: X (kl0)
o ;

1: for k = 1, 2, . . . , c do
2: Acquire X (kl0) for the class pair k, l0 via (6) and l0 = arg minl∈{l1,l2,... }(‖x

(k)
i − u(l)‖1);

3: Acquire X (l0)k = {x(l0)
i : ‖x(l0)

i − u(k)‖1 < Θ(k), i = 1, 2, . . . , nl0};
4: if X (kl0) 6= ∅ and X (l0)k 6= ∅ then
5: Compute D(l0)k via (7);
6: Acquire X (kl0)

o , where x
(k)
i ∈ X (kl0)

o meets (8).
7: end if
8: end for

Algorithm 3 Final Feature selection of SIOFS method

Input: x
(k)
i ∈ X (kl0)

o , k = 1, 2, . . . , c, the number m of selected features;
Output: The selected m features;

1: while Nip do
2: for f = 1, 2, . . . , d do
3: Compute D(l0)k

f = 1
|X (l0)k|

∑
x
(l0)
i ∈X (l0)k |x

(l0)
if − u

(l0)
f | and S(kl0)

if = |x(k)if − u
(k)
f |+D

(l0)k
f − |u(k)f − u

(l0)
f |;

4: Compute S̄(kl0)
f = 1

|X (kl0)
o |

∑
x
(k)
i ∈X

(kl0)
o

S
(kl0)
if ;

5: end for
6: end while
7: Acquire P = (Pij)d0.5Nip×de whose row is the vector (S̄

(kl0)
1 , S̄

(kl0)
2 , . . . , S̄

(kl0)
d );

8: Compute (s1, s2, . . . , sd) via (11);
9: Sort s1, s2, . . . , sd in ascending order and select the features corresponding to the first m values.

criterion, the first unselected feature f0 must satisfy S̄(kl0)
f0

>0. Thus,
∑
f∈{1,2,...,d}−{f0} S̄

(kl0)
f <

∑d
f=1 S̄

(kl0)
f . That is,

the intrusion degree between class k and l0 is descending in the feature space {1, 2, . . . , d} − {f0} than {1, 2, . . . , d}.

E. Algorithms and Time Complexity Analysis
Obtaining the RDM center. Corresponding procedure is shown in Algorithm 1. For class k (k = 1, 2, . . . , c), the time
complexity of Step 2 is O( 1

2nk
2) due to the symmetry matrix (dij)nk×nk

, and computing Step 4 and Step 6 cost O(nk) and
nk time, respectively. Thus, the total time of Algorithm 1 is O(

∑c
k=1( 1

2nk
2 + 2nk)). Due to

∑c
k=1 nk

2 ≤ (
∑c
k=1 nk)2,

the time complexity of Algorithm 1 limits to O(n2 + n).
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Procedure of obtaining the SIOs set and the final feature selection. The procedure of obtaining the SIOs set X (kl0)
o and

the final feature selection are presented in Algorithm 2 and Algorithm 3, respectively. Let m denote the number of selected
features. The notations n, d, c have the same meanings as them in Section 2.

• Algorithm 2: For k = 1, 2, . . . , c, computing Step 2∼7 cost O(nc) time for ‖x(k)
i − u(k)‖1, and O(c2) time for

‖u(k) − u(l0)‖1. Thus, the total time of Algorithm 2 is O(nc+ c2).

• Algorithm 3: We assume that |X (kl0)
o | � nk and all classes contain the SIOs, i.e., Nip = c. Computing Steps 1∼6

costs O(dc) time. Computing P costs O(dc). Thus, the total time of Algorithm 3 is O(dc).

Combining the time of Algorithm 1, the total time of SIOFS is O(n2 + n+ d) for small-sized high-dimensional datasets
due to c� d, and the upper bound of the time complexity of SIOFS is O(n2 + n+ nc+ c2 + dc) for large-scale datasets.
Objectively, the total time of SIOFS is mainly due to Algorithm 1.

F. Additional Experimental Settings
In this section, we describe the experimental details, including baseline methods, datasets and the extraction for deep features.
All the experiments are performed on windows-7 operating system (Intel Xeon Gold 6128 CPU @ 3.40GHz 16.0GB RAM).

Table 6. Information of the baseline methods and datasets. The types of baselines are f =filter, e=embedded and s=supervised,
u=unsupervised.

Baseline Ref. Type Dataset Type #Instances #d #c
Fisher (Duda et al., 2001) s f #1 CLL Biology 111 11340 3
QMI (Zhang et al., 2016) s f #2 TOX Biology 171 5748 4
ReliefF (Robnik-Sikonja & Kononenko, 2003) s f #3 Carcinom Biology 174 9182 11
TRC (Nie et al., 2008) s f #4 Lung Biology 203 3312 5
ILFS (Roffo et al., 2017) s f #5 Lung dis Biology 73 325 7
FSDOC (Yuan et al., 2022) s f #6 Lymphoma Biology 96 4026 9
FSTU (Lohrmann & Luukka, 2022) s f #7 Nci9 Biology 60 9712 9
FSNS (Lohrmann & Luukka, 2022) s f #8 GLIOMA Biology 50 4434 4
ReOLSR (Zhao et al., 2018) s f #9 colon Biology 62 2000 2
MRMSR (Wang et al., 2023) s f #10 ORL Face Images 400 1024 40
S2DFS (Nie et al., 2022) s e #11 Yale Face Images 165 1024 15
IOFS (Yuan et al., 2024) s f #12 GISETTE NIPS FS 7000 5000 2
InfFSU (Roffo et al., 2021) u f #13 UCM (2010) Aerial Images 2100 2048 21
EGCFS (Zhang et al., 2022) u e #14 AID (2017) Aerial Images 10000 2048 30
FSDK (Nie et al., 2024) u e #15 ModelNet (2015) 3D CAD Models 12308 2048 40

#16 Caltech101 (2004) Objects 3030 5243 101

Descriptions of baselines. As shown in Table 6, twelve supervised methods and three unsupervised methods are considered
for comparison. As a classical filter FS method, Fisher (Duda et al., 2001) method scores features as the ratio of inter-class
variance and intra-class separation of data. QMI (Zhang et al., 2016) method uses the quantized discrete variables of data
entropy for FS. ReliefF (Robnik-Sikonja & Kononenko, 2003; Kononenko, 1994) relies on instances and their neighbors
to estimate feature quality, which is greedy to minimize the redundancy among the selected features. TRC (Nie et al.,
2008) method proposes a trace ratio criterion to evaluate features. ILFS (Roffo et al., 2017) is an infinite latent FS method,
which performs the ranking step by considering all the possible feature subsets. In FSDOC (Yuan et al., 2022) method, the
characteristics of directional outliers are mined and employed for feature scoring. Supervised FSTU and FSNS (Lohrmann
& Luukka, 2022) methods score features from a total uncertainty and non-specificity perspective of possibility theory,
respectively, in the context of classification. ReOLSR (Zhao et al., 2018) method adopts the orthogonal constraint on the
transformation matrix in least squares regression model to preserve more data structure information, and uses an iterative
algorithm to transform the unbalanced orthogonal Procrustes problem into balanced one. In MRMSR (Wang et al., 2023)
method, a criterion of max-relevance and min-supervised-redundancy is introduced using the normalized feature relevance
metric and supervised similarity measure. S2DFS (Wang et al., 2020; Nie et al., 2022) method uses the trace ratio formulated
objective functions to ensure the discriminability of selected features. IOFS (Yuan et al., 2024) scores features based on
the characteristics of a few outliers that are within the body of the class to which they do not belong. InfFSU (Roffo et al.,
2021) is an unsupervised filter method, where features are identified as nodes in a graph and the selection is a path through
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these features. EGCFS (Zhang et al., 2022) method directly embeds graph learning into the optimization process. FSDK
(Nie et al., 2024) is a fast sparse discriminative K-means method, where the weighted pseudo-label matrix with discrete trait
is introduced to avoid trivial solution from unsupervised least-squares regression.

Descriptions about datasets and difficulties for data classification. Table 6 shows the dataset types, total numbers of all
instances, feature dimensions and classes, respectively. Descriptions and difficulties for data classification are as follows.

• The first 11 datasets are in small-sized high-dimensional scenario, where the instances are difficult to collect and the
number of measurements made on each instance can easily reach the order of thousands (e.g., set of DNA sequences).
They bring challenges such as the curse of dimensionality for FS. These datasets are chosen for their variability in
terms of the number of features (from 325 to 11340), characterizing 50 to 400 instances. Datasets are downloaded from
https://jundongl.github.io/scikit-feature/datasets.html.

• GISETTE dataset is from the NIPS 2003 FS challenge, which has two severely confusable handwritten digits 4 and 9
extracted from MNIST data (LeCun et al., 1998) (see Fig. 1c). It is also downloaded from https://jundongl.
github.io/scikit-feature/datasets.html.

• UCM (Yang & Newsam, 2010) dataset is publicly available on http://vision.ucmerced.edu/datasets/
landuse.html. It consists of 21 classes of land-use images selected from aerial orthoimagery with the pixel
resolution of 1 ft. The original images were downloaded from the United States Geological Survey National Map of
the following U.S. regions.

• AID (Xia et al., 2017) is a large-scale dataset for aerial scene classification (see Fig. 1a). It has a number of 10,000
images within 30 classes. The numbers of sample images vary a lot with different aerial scene types from 230 up to
420. A main difference between AID and UCM datasets is that AID has multiresolutions that the pixel resolution
changes from about 8 m to about half a meter, and thus, the size of each aerial image is fixed to be 600×600 pixels to
cover a scene with various resolutions. AID has higher intra-class variations, smaller inter-class dissimilarity and a
relatively large scale. The AID is downloaded from https://captain-whu.github.io/AID/.

• ModelNet (Wu et al., 2015) consists of 13,211 3D synthetic models for general objects, with 9843 training samples
and 2468 testing samples ranged within 40 classes. We only use its training and test sets, which are downloaded from
https://modelnet.cs.princeton.edu/.

• Caltech101 (Fei-Fei et al., 2004) is designed to advance research in multi-class object recognition and image classifica-
tion. This dataset contains 101 object classes, including animals, vehicles, everyday objects. It also has high inter-class
similarity, intra-class variability in pose, lighting, and scale, and the cluttered backgrounds in some classes. Caltech101
dataset is downloaded from https://data.caltech.edu/records/mzrjq-6wc02.

Deep feature extraction. To extract the deep features, we use a residual network with depth of 152 (He et al., 2016)
pre-trained on ImageNet (Russakovsky et al., 2015) as the backbone for UCM and AID datasets. For ModelNet dataset, we
use CurveNet (Xiang et al., 2021) as the backbone and use the input of the classification layer as the feature values of the
instances. The dimensions of all these deep features are 2048. All implementation details are same as in literature (Yuan
et al., 2024).

Systematic sampling of FV features. Following the settings in (Chatfield et al., 2011; Yuan et al., 2022), the dimension of
the original FV feature is 262144. We conduct the systematic sampling (Harris & Stöcker, 1998) of FV feature, where the
1st, 51st, 101st, . . . , features are sampled. The final dimension of the sampled FV is 5243.

G. Additional Results and Analyses
Additional ACC and NMI results. The ACC and NMI results of the remaining datasets (CLL, Lung, Lymphoma, Nci9,
GLIOMA, colon and Yale) are shown in Fig. 7.

Comparisons with unsupervised FS methods. Unsupervised FS methods select features by seeking the intrinsic structures
of data without label information. We follow the same implementations as in Challenge 1 and 3 for 15 dataset. Table 7
shows the results of SIOFS in comparison with three unsupervised FS methods (InfFSU , EGCFS and FSDK). As shown in
Table 7 that SIOFS achieves the best classification results on 13 out of 15 datasets and the second best on the rest. This also
shows the superiority of SIOFS.
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Figure 7. ACC and NMI results of FS methods on the remaining datasets w.r.t the top 50, 100, . . . , 300 features. AllFeat: All features are
selected.
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Table 7. Comparison of ACC (%) for unsupervised FS methods and SIOFS. The values enclosed in 〈·〉 show the corresponding number of
selected features.

Dataset InfFSU EGCFS FSDK SIOFS
CLL 62.76±5.12 65.32±5.09 59.46±2.70 71.32±3.84

TOX 90.45±4.13 78.85±6.36 85.28±6.68 83.24±4.99

Carcinom 93.49±3.28 83.34±6.34 90.13±2.74 93.77±2.72

Lung 93.76±1.09 92.29±1.35 94.75±1.01 95.32±1.02

Lung dis 85.39±1.29 84.93±1.12 84.70±2.43 86.99±1.90

Lymphoma 87.68±3.26 88.37±2.65 87.85±1.43 89.76±2.20

Nci9 54.45±5.42 47.78±5.75 43.06±5.22 54.17±2.10

GLIOMA 62.33±6.57 72.00±3.83 74.67±1.89 76.00±2.00

colon 79.30±3.89 80.83±6.99 77.42±5.51 83.33±1.20

ORL 80.88±9.45 95.13±1.18 93.92±2.62 94.63±1.64

Yale 47.88±10.24 70.91±4.30 64.04±8.21 71.21±4.70

GISETTE 67.89±5.54 61.56±9.89 68.14±6.11 73.08±6.70

UCM 94.62(1946) 94.71(1843) 94.48(1741) 94.95(1946)

AID 83.94(1946) 84.40(1731) 84.27(1946) 85.83(1024)

ModelNet 92.67(1946) 92.75(512) 92.71(614) 93.03(1843)

Figure 8. Performance of α for SIOFS on the rest 5 datasets. Since the SIOs can not be obtained with larger α, results on Lung dis and
Lymphoma datasets are not reported.
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