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Abstract—Recently, deep learning-based models have been
widely adopted for electrocardiogram (ECG) classification tasks,
demonstrating greater accuracy and efficiency than manual
diagnosis. Most existing methods use raw ECG or its time-
frequency domain representation as input. These methods are
constrained by their reliance on a single input modality, thereby
limiting the network’s ability to capture discriminative informa-
tion effectively. In our study, we treat the frequency spectrum of
ECG as an independent modality and input it into a multimodal
classification model along with ECG. Our method combines
depthwise separable convolution and Transformer architectures
for unimodal feature extraction. A linear layer aligns the fea-
tures from both modalities, and a Transformer layer facilitates
multimodal feature fusion. We evaluate the performance of our
model in both the multi-label classification task using the Ningbo
dataset and the multi-class classification task using the Real
World dataset. Our model demonstrates superior classification
performance compared to the competitive baseline models.

Index Terms—ecg, frequency spectrum, multimodal fusion

I. INTRODUCTION

Cardiovascular disease stands as one of the primary causes
of mortality worldwide [1]. Early detection of cardiovascular
disease is crucial to initiate effective treatment. ECG reflects
the electrical activity of heart and is widely used to monitor
heart health. Initially, the analysis of ECG relied on human
experts. However, this manual diagnosis proves not only time-
intensive and laborious but also susceptible to subjectivity and
variability in professionalism [2]. To address the limitations
inherent in manual diagnosis, several studies have explored
the application of traditional machine learning techniques,
such as support vector machines (SVM) and random forests
(RF), in classifying manually extracted features from ECG
[3, 4]. While these methods offer good interpretability, they
fail to accurately capture the diverse variations in ECG across
different environments and populations [5].

In recent years, deep learning models have been widely used
in ECG classification tasks. These models leverage data-driven
techniques to dynamically extract discriminative features, re-
sulting in excellent classification performance. For instance,
Xu et al. [6] introduce a model based on a coupled convolu-
tional layer structure for heartbeat classification, achieving an

overall accuracy of 99.43%. Similarly, Sun et al. [7] propose
a recurrent neural network (RNN) comprising stacked long
short-term memory (LSTM) units for atrial fibrillation (AF)
prediction, yielding a F1 score of 92%. Moreover, in [8], an 8-
layer convolutional neural network (CNN) with shortcut con-
nections is combined with a 1-layer long short-term memory
(LSTM) network to enhance the model’s capacity to capture
long-term dependencies. However, these methods focus on
leveraging time domain information and often overlook the
wealth of knowledge embedded in the frequency domain of
ECG.

Prior research has underscored the efficacy of incorporating
frequency domain information into ECG classification tasks
[9–11]. These studies either utilize time-frequency spectro-
gram as input or employ encoders to represent information in
both time and frequency domains. While the former method
remains confined to modeling a single modality, the latter
method, by separately modeling the frequency domain, offers
a more comprehensive exploration of valuable information
inherent in frequency domain.

In this paper, we treat the frequency spectrum of ECG as
an independent modality and propose a multimodal feature ex-
traction and fusion model for ECG classification. Specifically,
the frequency spectrum is generated via fast Fourier trans-
form (FFT) and subsequently fed into an encoder separately
from the ECG. We devise a CNN layer mainly comprising
depthwise separable convolution to initially extract unimodal
features, followed by the utilization of a Transformer layer
to capture long-term dependencies. To facilitate multimodal
fusion more effectively, a linear layer is employed to align
the features of the two modalities. Subsequently, another
Transformer layer is utilized for the final feature fusion. Our
main contributions can be summarized as follows:

• Proposal of a multimodal model encompassing feature
extraction, alignment, and fusion processes tailored for
ECG classification.

• Development of a feature extraction module comprising
depthwise separable convolution.

• Utilization of Transformer architecture to model long-



term dependencies of features and facilitate multimodal
feature fusion.

The subsequent sections of this paper are organized as
follows: Section II describes the related work concerning deep
learning models for ECG classification. Section III describes
the proposed method in detail. Section IV describes the exper-
imental design and presents the analysis of the experimental
results. Section V describes the conclusions drawn from this
study and outlines potential directions for future research.

II. RELATED WORK

A. Deep Learning Models for ECG Classification

Most ECG classification models based on deep learning
leverage CNNs due to their robust feature extraction capabil-
ities. For example, Niu et al. [12] develop a multi-view con-
volutional neural network (MPCNN) that employs symbolic
representations of heartbeats to automatically learn features
and classify heartbeats. Additionally, Wang [13] propose an
automatic AF detection method using an 11-layer neural
network, primarily composed of a CNN and an improved
Elman neural network (MENN). Some researchers also ex-
plore the use of LSTM or bidirectional LSTM for ECG
classification, which mainly considers the temporal properties
of ECG [14, 15]. To construct more powerful models, LSTM
and attention mechanism are introduced and combined with
CNN, further enhancing classification performance [8, 16].
Furthermore, the vision transformer, a popular model in the
field of computer vision, is introduced into ECG classification
tasks, typically involving the transformation of ECG into a
two-dimensional image [10].

III. METHODS

This section provides a detailed description of our method.
As illustrated in Fig. 1 (a), frequency spectrum is generated
from ECG via the FFT and then fed into our model along
with ECG. The extraction of multimodal features involves two
stages: unimodal feature extraction and multimodal feature
fusion. In the first stage, a carefully designed CNN layer
and a Transformer layer are employed for unimodal feature
extraction. In the second stage, a linear layer is used for feature
alignment, and a Transformer layer facilitates multimodal
feature fusion. The final multimodal features are then subjected
to global average pooling before being fed into a linear layer
for classification. The specifics of the network architecture are
detailed in Table I, which represents the Base version. We also
provide a Small version of our model, in which the number
of CNN blocks is reduced to 2, the number of downsampling
layers is reduced to 1, and the dimension of feature channels
is halved. The following sections will introduce the different
components in detail.

A. Frequency Spectrum Generation

Given an ECG st ∈ RN×L, where N is the number of
leads and L is the length of each lead, the frequency spectrum

TABLE I
DETAILED ARCHITECTURE OF OUR MODEL

Module Layer Details

Value Embedding
in channel = lead num; out channel = 32

kernel size = 3; stride = 1; padding = 1

CNN block×3

in channel = 32, 64, 128; out channel = 32, 64, 128

DC : kernel size = 9; stride = 1; padding = 4

PC : kernel size = 1; stride = 1; padding = 0

Downsample ×2
in channel = 32, 64; out channel = 64, 128

kernel size = 2, 2; stride = 2, 2; padding = 0, 0

Transformer block ×2 embed dim = 128, num head = 2

sf ∈ RN×L is obtained using the FFT. The transformation
formula for i th lead is as follows:

sfi(k) = ABS(FFT[sti]) = ABS(
L−1∑
l=0

sti(l)) · e−j 2π
L lk,

l = 0, 1, . . . , L− 1 (1)

where k represents the different frequencies in ECG, and
ABS denotes the operation of taking the absolute value, which
ensures that only the amplitude of frequency spectrum is
retained. The transformed frequency spectrum has the same
length as the corresponding ECG but does not belong to time
series. Instead, it reflects the essential characteristics of ECG
from a different perspective.

B. Unimodal Feature Extraction

This part of the network comprises three components: the
Value Embedding layer, the CNN layer, and the Transformer
layer.

1) The Value Embedding layer: This layer consists of a 1D
convolutional layer followed by a batch normalization (BN)
layer to adjust the channel dimensions and initially capture
the local relationships within the data. The encoding process
for modality m is described by the following formula:

xmVE = BN(Conv1D(sm)) (2)

where m represents ECG or frequency spectrum.
2) The CNN layer: Our design of the CNN layer refers

to ConvNeXt [17]. It comprises stacked CNN blocks with
downsampling layers interspersed between different blocks.
The structure of a single CNN block is depicted in Fig. 1 (b).
Depthwise convolution (DC) is employed to model the feature
of each channel independently, followed by point convolution
(PC) to capture inter-channel interactions. The PC operation is
structured to expand and then contract the channel dimension,
utilizing two different point convolutions. A BN layer or
a GELU activation function is inserted between different
convolution layers, and a residual connection is applied to
the final output. The downsampling layer consists of a BN
layer and a 1D convolutional layer, which doubles the channel
dimension of the features while reducing its length by half.
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Fig. 1. The pipline and various components in our model.

The output of the b th CNN Block can be described by the
following formula:

x̃m
b = BN(DCC→C(xm

b−1)) (3)
x̂mb = PC4C→C(GELU(PCC→4C(x̃m

b−1))) + xmb−1 (4)
xmb = DownSample(x̂mb ) = BN(Conv1D(x̂mb )) (5)

where C represents the channel dimension of the features.
3) The Transformer layer: To capture long-term depen-

dencies within the features, we utilize a Transformer block
as depicted in Fig. 1 (c). The Transformer block consists
of a multi-head self-attention layer (MSA) and a multi-layer
perceptron (MLP) layer. Layer normalization (LN) layers
and residual connections are applied before and after each
component. The output of the CNN layer is represented as
xmB , and the output of the Transformer layer can be described
by the following formula:

x̃mT = MSA(LN(xm
B )) + xm

B (6)
xmT = MLP(LN(x̃mT )) + x̃m

T (7)

where xmT represents the output of the Transformer layer.

C. Multimodal Feature Fusion

After obtaining the features from the ECG and frequency
spectrum xt

T and xf
T, we use a linear layer to align the features

of the two modalities. This method has been effectively applied
to image-text alignment [18, 19]. Specifically, the linear layer
is applied only to the features of the frequency spectrum
to align it with the features of the ECG. Subsequently, the
features from both modalities are concatenated and fed into a
Transformer block for final fusion. The process is described
by the following formula:

x̃fT = Linear(xfT) (8)

xout = Transformer([xtT; x̃f
T]) (9)

where xout represents the output of the Transformer layer, [; ]
represents concatenation operator.

IV. EXPERIMENT

A. Datasets

To verify the effectiveness of our proposed model, we
conduct experiments on two ECG datasets: the Ningbo dataset
[20] from the Computing in Cardiology Challenge (CinC)
2021 database [21] and the Real World dataset which is
collected by ourselves. The Ningbo dataset comprises 34,905
samples with a sampling frequency of 500 Hz and includes
25 classes representing different heart rhythm types. Each
sample is 10 seconds long and contains multiple labels. The
Real World dataset consists of 1,091 samples, with a sampling
frequency of 1,000 Hz and 3 classes (normal, AF, and others).
The duration of each sample in the Real World dataset is
variable, and each sample has a single label. For consistency in
processing, we extract a 10-second segment from each sample
for classification. We utilize stratified sampling to partition
80% of each dataset into a training set and 20% into a test
set.

B. Metrics

The two datasets represent multi-label and multi-class clas-
sification tasks, respectively. For the multi-label classifica-
tion task, we use the following evaluation metrics: accuracy
(Acc), sample F1 score (Sample-F1), area under the receiver
operating characteristic curve (AUROC), and area under the
precision-recall curve (AUPRC). For the multi-class classifica-
tion task, we use accuracy (Acc), macro F1 score (Macro-F1),
precision (Pre), and recall (Rec) as evaluation indicators.

C. Compared Methods

We compare our method with several popular baselines.
1) LSTM [22] : Long short-term memory networks (a

special type of RNN).
2) BiLSTM [23] : Bidirectional LSTM networks can better

capture long-term dependencies in both directions.



TABLE II
COMPARISON AMONG OUR MODEL AND BASELINE METHODS.

Models Ningbo Real World
Acc Sample-F1 AUROC AUPRC Acc Pre Rec Macro-F1

LSTM 53.22 73.08 90.76 40.46 68.85 53.16 57.52 53.08
BiLSTM 51.57 74.80 89.51 43.99 67.14 54.50 53.60 52.23

ViT 47.51 65.65 90.54 41.34 68.21 62.75 52.98 55.19
MobileNetV3 63.63 83.55 94.09 55.87 77.66 61.16 59.57 59.85
Xresnet1d101 60.46 81.04 95.40 55.96 82.53 65.22 69.97 66.30

ISIBrno-AIMT 51.21 75.10 91.33 45.23 84.70 68.86 65.20 63.05
Ours 64.02 83.56 95.62 60.87 88.77 79.81 70.44 70.95

TABLE III
ABLATIONS OF OUR MODEL.

Models Ningbo Real World
Acc Sample-F1 AUROC AUPRC Acc Pre Rec Macro-F1

ECG 58.54 78.76 93.61 56.37 86.32 70.66 70.12 69.53
Frequency Spectrum 56.58 76.84 88.70 39.70 72.31 53.35 58.97 52.73
w/o long dependency 62.57 83.05 93.93 56.99 88.93 66.92 60.08 60.75

w/o alignment 62.40 83.04 95.34 60.03 80.76 68.82 72.70 68.54
Ours 64.02 83.56 95.62 60.87 88.77 79.81 70.44 70.95

3) ViT [24] : The Vision Transformer uses patches as
the smallest processing unit and relies on the Transformer
architecture for modeling.

4) MobileNetV3 [25] : A lightweight CNN architecture
suitable for mobile devices.

5) Xresnet1d101 [26] : A ResNet network for time series.
6) ISIBrno-AIMT [16] : It combines a CNN and a attention

mechanism for heart rhythm classification.

D. Implementation Details

Considering the size of the two datasets, we use the Base
version of the model for the Ningbo dataset and the Small
version for the Real World dataset. For a fair comparison, the
training parameters for all networks are kept consistent in the
experiments: the batch size is set to 128, the learning rate is
set to 0.001, the Adam optimizer is used, and the number of
training epochs is set to 100. All experiments are performed
on an NVIDIA 2080Ti GPU.

E. Experimental Results Analysis

Table II presents the experimental results on the two
datasets. All indicators are expressed as percentages (%),
with the best results highlighted in bold. Overall, our model
demonstrates superior performance on both datasets. On the
Ningbo dataset, the AUPRC is improved by 9% compared to
the suboptimal MobileNetV3. On the Real World dataset, the
macro F1 score is improved by 7% compared to the suboptimal
Xresnet1d101. We attribute this phenomenon to the effective
combination of CNN and Transformer architectures and the in-
troduction of multimodal technology. Additionally, we observe
that CNN-based models (MobileNetV3 and Xresnet1d101)
often outperform LSTM-based and Transformer-based models,
indicating that CNNs can extract more discriminative features

for ECG classification tasks. The combined model, which
leverages both CNN and Transformer architectures, harnesses
the strengths of both architectures and achieves superior clas-
sification performance through their effective integration.

F. Ablation Study

We conduct ablation experiments on the model and explored
it from three perspectives: 1) using only a single modality as
input (ECG or Frequency Spectrum), 2) omitting the use of
the Transformer layer to capture long-term dependencies when
extracting unimodal features (w/o long dependency), and 3)
not using the linear layer for modality feature alignment (w/o
alignment). Table III shows the performance of the model in
these three cases. The results indicate that when only ECG
or frequency spectrum is used as input, the classification
performance of the model is lower than that of the full model,
demonstrating that the introduction of multimodal technology
enhances the model’s discriminative ability. In the scenarios
of w/o long dependency and w/o alignment, the classification
performance of the model decreases, further proving the
effectiveness of these components.

V. CONCLUSION

In this paper, we propose a multimodal model combined
with frequency spectrum for ECG classification. Depthwise
separable convolution is employed to initially extract unimodal
features, and a Transformer layer is used to capture long-
term dependencies. Our method incorporates a linear layer
for modality feature alignment and a Transformer layer for
multimodal feature fusion. Our model outperforms competitive
baselines in both multi-label and multi-class classification
tasks, demonstrating its effectiveness. In the future, we aim
to design classification models using more modalities for



heart disease diagnosis and integrate exogenous data to further
enhance the model’s performance.
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