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Abstract
In-context learning (ICL) enables Large Lan-001
guage Models (LLMs) to perform tasks using002
few demonstrations, facilitating task adapta-003
tion when labeled examples are hard to come004
by. However, ICL is sensitive to the choice of005
demonstrations, and it remains unclear which006
demonstration attributes enable in-context gen-007
eralization. In this work, we conduct a pertur-008
bation study of in-context demonstrations for009
low-resource Named Entity Detection (NED).010
Our surprising finding is that in-context demon-011
strations with partially-correct annotated entity012
mentions can be as effective for task transfer as013
fully correct demonstrations.014

Based off our findings, we propose Pseudo-015
annotated In-Context Learning (PICLe), a016
framework for in-context learning with noisy,017
pseudo-annotated demonstrations. PICLe lever-018
ages LLMs to annotate large quantities of019
demonstrations in a zero-shot first pass. We020
then cluster these synthetic demonstrations,021
sample specific sets of in-context demonstra-022
tions from each cluster, and predict entity men-023
tions using each set independently. Finally, we024
use self-verification to select the final set of025
entity mentions. We extensively evaluate PI-026
CLe on five biomedical NED datasets and show027
that, with zero human annotation, PICLe out-028
performs ICL in low-resource settings where029
few gold examples can be used as in-context030
demonstrations.031

1 Introduction032

With in-context learning (ICL), Large Language033

Models (LLMs) can be adapted to perform many034

tasks using few demonstrations (Brown et al., 2020;035

Dong et al., 2022; Srivastava et al., 2023; Ye et al.,036

2023). This emergent property of LLMs is particu-037

larly beneficial in tasks where limited supervision038

data is available for fine-tuning models, such as in039

specialized domains where only expensive expert040

annotations can be relied upon to produce qual-041

ity data (e.g., biomedical, clinical, legal domains,042

among many others), and in situations where in- 043

house proprietary datasets must be compiled with 044

few available experts to perform the annotation. 045

Despite its promise in these settings, ICL is 046

highly sensitive to the choice of the demonstrations 047

(Wang et al., 2024; Li and Qiu, 2023; Liu et al., 048

2021), and it remains unclear which characteris- 049

tics of demonstrations are critical for successful 050

task adaptation. Consequently, prior work has ex- 051

plored which demonstration characteristics lead to 052

successful task adaptation in ICL (Min et al., 2022; 053

Yoo et al., 2022; Wei et al., 2023), but these stud- 054

ies have focused on tasks with a focus on scalar 055

outputs such as classification tasks, with a limited 056

and pre-defined label space. As a result, demon- 057

stration characteristics that maximize performance 058

are still unclear for tasks that require structured, 059

open-ended prediction such as Named Entity De- 060

tection (NED), where the label space is effectively 061

bounded only by the number of domain entities. 062

In this work, we focus on NED given its high 063

number of use cases, particularly in specialized 064

domains where effective annotation is challenging, 065

as (1) it requires considerable domain expertise, 066

and (2) entities can change over time, introducing 067

distribution shifts in supervised datasets over time. 068

We conduct a thorough analysis of demonstra- 069

tion properties that impact in-context adaptation 070

in NED. First, we analyze the importance of the 071

context-label correspondence of in-context demon- 072

strations, corrupting the demonstrations to add 073

noise to the context-label mapping, with different 074

perturbations retaining different dimensions of in- 075

formation about this mapping. Second, we inves- 076

tigate the degree of partial correctness of demon- 077

strations. Indeed, contrary to single-label classifica- 078

tion tasks, answers to open-ended token-level tasks 079

such as NED can be partially correct. We experi- 080

ment with various perturbation schemes to produce 081

demonstrations with differing levels of correctness. 082

We find that ICL is much less sensitive to corrup- 083
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tions that retain even a weak semantic mapping084

between the input context and the label set. More-085

over, our analysis reveals that in-context learning is086

surprisingly resilient to partially-incorrect annota-087

tions so long as a high number of entity annotations088

remain in the demonstration labels.089

Following this analysis, we introduce Pseudo-090

annotated In-Context Learning (PICLe), a frame-091

work for in-context NED with pseudo-annotated092

demonstrations that requires no human labeling ef-093

fort. First, we exploit a pool of unlabeled samples094

to obtain pseudo-annotations through zero-shot pre-095

diction from LLMs, followed by a self-verification096

step in which the model is prompted to verify the097

type of individual entities. Then, the noisy pseudo-098

annotated samples are clustered, and demonstration099

sets are sampled from each cluster individually.100

These cluster-specific demonstrations are used to101

predict the entities mentioned in the test query. Pre-102

dictions from all clusters are consolidated to obtain103

the final set of entity mentions. In our evaluations104

with multiple LLMs across five biomedical entity105

detection datasets (Taboureau et al., 2010; Li et al.,106

2016; Smith et al., 2008), we show that PICLe is as107

effective as, and on average outperforms, standard108

ICL that uses gold-labeled demonstrations.109

In summary:110

1. We conduct a perturbation study to identify111

the demonstration attributes that make in-112

context learning work in low-resource NED.113

We find that above a surprisingly low correct-114

ness threshold, partially-correct entity men-115

tion annotations can be as effective for in-116

context learning as demonstrations with fully117

correct gold annotations, particularly in scarce118

annotation settings.119

2. We propose PICLe, a novel framework for in-120

context learning that uses pseudo-annotated121

demonstrations as in-context examples. We122

show that with no human-annotation effort,123

PICLe competes and even outperforms ICL124

with gold-labeled demonstrations in resource-125

scarce settings.126

2 Related works127

What matters in in-context learning? In-context128

learning is remarkably effective for performing var-129

ious NLP tasks with only a few task demonstra-130

tions appended to the prompt (Brown et al., 2020).131

However, despite a large body of work on design-132

ing novel in-context learning methods (e.g., Gao133

et al., 2021; Sorensen et al., 2022; Mishra et al., 134

2022), it is not yet fully understood what makes 135

in-context learning effective, with multiple works 136

demonstrating surprising variables, such as the im- 137

pact of the demonstration order (Lu et al., 2022), 138

the term frequencies of test examples in pretraining 139

data (Razeghi et al., 2022), and basic output calibra- 140

tion (Zhao et al., 2021; Fei et al., 2023; Jiang et al., 141

2023b). Consequently, recent works explore how 142

demonstration components might be separately re- 143

sponsible for in-context transfer. Min et al. (2022) 144

show that in-context demonstrations serve to show 145

the label space of demonstrations, the distribution 146

of their input text, and their overall format. How- 147

ever, Yoo et al. (2022) perform quantifiable anal- 148

ysis on the impact of ground-truth label demon- 149

strations on multiple tasks and datasets and find 150

that ground-truth labels have substantial impacts 151

on ICL performance. Wei et al. (2023) continue 152

this line of work and show that the degree to which 153

the label mapping influences task transfer depends 154

on the scale of the model, and that smaller models 155

are more capable of ignoring misaligned label map- 156

pings. Wang et al. (2023a) show similar results for 157

CoT reasoning, finding that CoT is also possible 158

without valid demonstrations, and that demonstra- 159

tions that are relevant to the query and have the 160

correct order of reasoning steps are more important 161

for effective transfer. 162

However, these works focus on classification 163

tasks, which have no notion of “partial correctness”: 164

a label is either correct or not. In token-level tasks 165

such as NED, the list of gold-annotated entities can 166

be partially correct. For NED, we show that par- 167

tially correct demonstrations can be as effective as 168

fully correct ones, which these works do not show. 169

Furthermore, in contrast with Min et al. (2022)’s 170

findings for classification, we actually show that 171

ICL demonstrations with fully incorrect labels are 172

not effective in NED. 173

Pseudo-annotation. Pseudo-annotation is a pop- 174

ular semi-supervised learning method in many do- 175

mains (Yang et al., 2022). It has recently been 176

used for various NLP tasks to generate demonstra- 177

tions for ICL (Wan et al., 2023a,b) and fine-tuning 178

LLMs (Huang et al., 2023; Honovich et al., 2023; 179

Wang et al., 2023b). Demonstrations are either 180

random (e.g. Z-ICL, Lyu et al., 2023, for clas- 181

sification tasks) or partially correct. In particu- 182

lar, COSP (Wan et al., 2023a) selects and builds a 183

demonstration pool from an LLM’s zero-shot out- 184

puts via multiple rounds of prediction with high 185
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temperature and exceeds few-shot baselines for a186

range of reasoning tasks. Most similar to our work187

is Self-ICL (Chen et al., 2023b), which uses zero-188

shot models to generate in-context demonstrations189

for text classification. In our work, we construct a190

pipeline for leveraging zero-shot predicted labels191

for real test examples in named entity detection, but192

ground our pseudo-annotation method in analysis193

of how demonstration noise influences downstream194

in-context learning performance.195

Information extraction with in-context learn-196

ing. Although LLMs have achieved SOTA perfor-197

mance in many NLP tasks, their performance in ex-198

traction tasks is still significantly below supervised199

baselines (Ma et al., 2023). Recent works have200

designed dedicated prompting techniques to im-201

prove in-context NER for LLMs (Lee et al., 2022;202

Shen et al., 2023; Chen et al., 2023a). Prompt-203

NER (Shen et al., 2023) provides the entity defini-204

tion to the model, and prompts it to output a list of205

potential entities with an explanation justifying the206

compatibility of each entity with the provided defi-207

nition, achieving considerable improvement com-208

pared to vanilla prompting, but requiring further209

human effort to annotate examples that may not be210

available in many settings. In our work, we adopt211

a similar task formulation as Prompt-NER, but do212

not require labeled examples or explanations, as213

we use pseudo-annotation to produce in-context214

learning examples.215

3 Experimental setup216

The task of Named Entity Detection (NED) re-217

quires detecting all mentions of entities in a text.218

We formulate the task such that the language219

model is given a passage of text as part of a prompt220

and must predict the list of entities that are men-221

tioned in the passage. Optionally, in few-shot set-222

tings (i.e., in-context learning), the prompt also223

contains several demonstrations, which each in-224

clude an example passage and a corresponding list225

of mentioned entities in the passage.226

Datasets. We consider five biomedical227

NED datasets with rich and comprehensive228

collections of diverse specialized entity types.229

ChemProt (Taboureau et al., 2010) contains anno-230

tations for extracting chemical compounds (drugs)231

and gene and protein-related objects (GPRO). Orig-232

inally, each sample of this dataset is a paragraph,233

but we split these paragraphs into sentences. We234

construct two datasets from ChemProt: ChemProt-235

Chem and ChemProt-Gene, for detecting chemicals 236

and genes, respectively. BC5CDR (Li et al., 2016) 237

contains biomedical abstracts annotated for chemi- 238

cal and disease extraction. Similar to ChemProt, we 239

conduct our experiments on two sub-portions, BC5- 240

Chem and BC5-Disease. Finally, BC2GM (Smith 241

et al., 2008) contains biomedical abstracts anno- 242

tated for the extraction of genes, proteins, and re- 243

lated entities. We summarize statistics for these 244

datasets in Table 1. 245

Models. We use three LLMs in our experiments: 246

the proprietary GPT-3.5-Turbo, and the open- 247

source Mistral-7b-instruct (Jiang et al., 2023a) and 248

Llama-2-7b-Chat (Touvron et al., 2023). In the 249

remainder of the paper, we refer to them as Mistral 250

and Llama2, respectively. 251

Metrics. Using each dataset’s original IOB2 an- 252

notation scheme, we compute the micro-averaged 253

Precision, Recall, and F1 to measure entity mention 254

detection performance.2 We strictly evaluate using 255

exact spans: longer or shorter predicted spans than 256

the gold span are marked as incorrect. 257

4 Do we need gold demonstrations? 258

We conduct an exploratory analysis of which com- 259

ponents of in-context demonstrations are critical 260

for task transfer by studying the effect of fully in- 261

correct and partially incorrect demonstrations in the 262

in-context prompt. Our analysis demonstrates that 263

while random annotations considerably underper- 264

form compared to zero-shot performance, partially 265

correct annotations can be as effective as gold anno- 266

tations (Figure 2) for in-context transfer for named 267

entity detection. 268

4.1 Investigating the input-output 269

correspondence of in-context 270

demonstrations 271

Prior research demonstrates that correct demonstra- 272

tions are not imperative for priming models in clas- 273

sification tasks (Lyu et al., 2023); incorrect demon- 274

strations are sufficient to show desired in-context 275

transfer behavior, including domain relevance and 276

annotation format. 277

In this analysis, we investigate essential demon- 278

stration attributes for successful in-context task 279

transfer by designing various demonstration cor- 280

ruption schemes, each targeting specific demon- 281

1https://huggingface.co/bigbio
2We use sequeval (https://github.com/

chakki-works/seqeval/) a widely-used Python library for
sequence labeling evaluation.
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Source Name Entity type #Train #Test Avg # words
per entity

Ratio null
samples (%)

ChemProt
(Taboureau et al., 2010)

ChemProt-Chem chemical
10 732 8 431

1.39 41.3
ChemProt-Gene gene/protein 1.62 45.0

BC5CDR
(Li et al., 2016)

BC5-Chem chemical
4 560 4 797

1.36 35.3
BC5-Disease disease/illness 1.70 41.7

BC2GM (Smith et al., 2008) gene/protein 12 575 5 039 2.45 48.9

Table 1: Datasets description and statistic: number of samples (sentences) in train and test splits, average number
of words per entity and null samples ratio (ratio of samples with no labeled entities) in train split. We use the
versions available in the HuggingFace library.1

stration aspects (see Table 2 for examples). We282

then compare performance under these corruptions283

to zero-shot prediction (No Demo) and standard in-284

context learning (Gold Label). For each setting,285

the prediction example remains unchanged and the286

model receives the same instruction prepended to287

the prompt.288

Random ID Label: We replace ground-truth en-289

tity labels with random in-domain entities. For each290

input sentence, every entity in the ground-truth an-291

notation is replaced by an in-distribution (ID) entity292

randomly sampled from all labels in training exam-293

ples of the dataset.294

Random OOD Label: We replace entity labels295

in the ground-truth demonstrations with a random296

out-of-distribution (OOD) English word.3297

Corrupted OOD Text: We replace the en-298

tity mentions in the text with random out-299

of-distribution (OOD) English words.4 For300

Corrupted OOD Text and Label, we replace301

ground-truth labels as well, such that the entities in302

the text and label match.303

Corrupted and Shuffled OOD Text,304

Corrupted and Shuffled OOD Text and Label:305

Same as their non-shuffled counterpart, but with306

randomly shuffling the words of the sentence.307

Results Figure 1 shows Mistral’s performance308

averaged over all datasets. For more corruption309

schemes, detailed results per dataset, and the per-310

formance of GPT-3.5-Turbo (similar to Mistral),311

see Appendix, Section B. As expected, demonstra-312

tions with gold annotations consistently improve313

the performance over no demonstrations. How-314

ever, corrupting demonstrations downgrades the315

performance, particularly in cases like Random ID316

3OOD words are randomly sampled from the English vo-
cabulary in the NLTK library (Bird et al., 2009).

4OOD words are randomly sampled from the English vo-
cabulary in the NLTK library (Bird et al., 2009)
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M
icr
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No Demo
Gold Label
Random ID Label
Random OOD Label

Corrupted OOD Text
Corrupted OOD Text and Label
Corrupted and Shuffled OOD Text
Corrupted and Shuffled OOD Text and Label

Figure 1: 10-shot ICL performance using various
demonstration corruption schemes, with Mistral and
kNN demonstration retrieval. We compare to zero-shot
and gold demonstrations, averaging over all datasets.

Label and Random OOD Label, which are notably 317

worse than zero-shot prediction. This observation 318

differs from the findings of Min et al. (2022) for 319

in-context text classification and multiple choice 320

question answering tasks, as well as Wang et al. 321

(2023a)’s observations for question answering with 322

chain-of-thought reasoning, likely due to the more 323

open nature of the prediction task (i.e., predicting 324

multiple labels from a broad label space). In both 325

of these corruption schemes, the contextual and se- 326

mantic correspondence between the input sentence 327

and the gold entities is lost. Indeed, the labels 328

are either not in the gold label domain (Random 329

OOD Labels), or present in the gold label domain 330

but decorrelated from the target entities (Random 331

ID Label). The model learns spurious text-label 332

correspondence through these demonstrations and 333

under-performs compared to zero-shot prediction. 334

Interestingly, both shuffled and unshuffled text 335

schemes (Corrupted (and Shuffled) OOD Text) 336

exhibit no significant performance drops, maintain- 337

ing an edge over zero-shot prompting. This is in- 338

triguing, especially since the input prompt is the 339

same for all corruptions in Table 2. We hypothe- 340

size that the model relies less on word order in the 341
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Text This pretreatment had no effect on the inhibition of GABA-T or the
elevation of brain GABA levels produced by VIG .

Gold Labels [GABA, GABA, VIG]

Random ID Labels [dacarbazine, DTIC]
Random OOD Labels (from nltk) [unmeliorated, suddy, vista]

Corrupted OOD Text This pretreatment had no effect on the inhibition of unmeliorated or
the elevation of brain suddy levels produced by vista .

Corrupted and Shuffled OOD Text of had by produced on elevation no . levels or effect the vista of the
This unmeliorated pretreatment brain inhibition suddy

Table 2: Examples of different text and labels corruption schemes. Source: ChemProt-Chem.

demonstrations to adapt to NED. Similar to how342

previous work showed that models no longer repre-343

sent local word order in long contexts (Sun et al.,344

2021), we infer that the model does not need to rep-345

resent explicit word order in exemplars to use them346

for transfer for a non-shuffled test sample. More-347

over, despite label corruption in (Corrupted (and348

Shuffled) OOD Text and Labels) cases, per-349

formance slightly decreases compared to schemes350

with intact labels, yet still outperforms the zero-351

shot setting. This finding suggests the model po-352

tentially can induce label presence from the global353

context as ICL with these demonstrations still out-354

performs zero-shot predictions by up to 10%.355

Based on these findings, we conclude that for ef-356

fective in-context task transfer in NED, the demon-357

strations must retain a degree of semantic corre-358

spondence between the input text and the extracted359

entities, but that the model’s ability to adapt in-360

context is robust to noise in the demonstrations.361

4.2 Partially correct in-context362

demonstrations363

Our first analysis showed that in-context task adap-364

tation was robust to noise in the demonstrations, so365

long as there remained a context-label correspon-366

dence that could be exploited by the model. To in-367

vestigate this finding further, we perform a second368

study where we perturb demonstrations by mod-369

ifying the context-label correspondence in a con-370

trolled manner. Specifically, we vary the correct-371

ness of the gold labels by applying different heuris-372

tic perturbations to the gold entity labels according373

to a perturbation factor p ∈ {0.1,0.2, ...0.9}:374

Deletion: each entity in the ground-truth anno-375

tation is deleted with probability p.376

Substitution: each entity in the ground-truth377

annotation is substituted with a random entity cho-378

sen from the dataset’s label space with probability379

p.380

Addition and Substitution: for each en- 381

tity in the ground-truth, an entity chosen randomly 382

from the dataset’s label space is added with prob- 383

ability p; additionally, each ground-truth entity is 384

substituted with a random entity from the same 385

label space with probability p. 386

Deletion and Substitution: each entity in 387

the ground-truth is removed with probability p. 388

The remaining entities are substituted with a ran- 389

dom entity from the dataset with probability p. 390

Following these perturbations, we report the 391

precision, recall, and F1 score of the perturbed 392

demonstrations (evaluated based off the initial gold 393

demonstration labels) against the F1 score of down- 394

stream predictions for test samples that contain at 395

least one entity in their gold annotations.5 396

Results Demonstrations subject to different per- 397

turbations may exhibit similar demonstration F1 398

scores, but result in considerably different predic- 399

tion F1 scores (Figure 2). Specifically, we note that 400

for a fixed demonstration F1 score, the perturbed 401

demonstrations that retain a higher number of en- 402

tities in the demonstration achieve much greater 403

performance (i.e., Substitution and Addition 404

and Substitution). In fact, even with heavily 405

perturbed demonstration labels, the prediction F1 406

stays above zero-shot performance so long as some 407

of the gold entities remain in the demonstration la- 408

bels, and even remains close to the performance of 409

10-shot in-context learning with gold labels. Based 410

off our findings, we hypothesize that noisily la- 411

beled demonstrations (such as those predicted by a 412

zero-shot model) could provide in-context learning 413

benefits for named entity detection. 414

5Further results about the number of entities in the demon-
stration and perturbation factor, along with a comparison of
the precision and recall of demonstrations against predictions,
can be found in Appendix Figures 6 and 7.
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Figure 2: 10-shot ICL performance with perturbed demonstrations using different perturbation schemes and
kNN demonstration retrieval. We report the prediction F1 as a function of the precision, recall, and F1 of the
perturbed demonstration label sets (relative to the gold demonstrations) averaged over all datasets. The size of the
points shows the average number of entities in the label sets of the perturbed demonstrations.

Unlabeled 
samples

PSEUDO ANNOTATION

. . .

k-Means

Final
predictions

SPECIALIZED K-MEANS

Random
samplingZero-shot

NED
Self-verification

Pseudo-annotated
samples

Self-verification

ICL
NED

ICL
NED

ICL
NED

Test queries

Figure 3: PICLe pipeline: Unlabeled samples are pseudo-annotated through a zero-shot prediction and self-
verification. Subsequently, they are clustered and cluster-specific sets of in-context demonstrations are chosen at
random from each group. Each set is independently used to find entity mentions in the query, and the final set of
entity mentions is obtained by aggregating these independent sets and asking the model to verify each predicted
entity.

5 In-context NED with pseudo-annotated415

demonstrations416

In this section, we propose PICLe, a framework417

for pseudo-annotating unlabeled samples that can418

be leveraged for in-context learning. PICLe, de-419

picted in Figure 3, consists of two stages. In the420

first stage, we start with a set of unlabeled samples421

and prompt the model in a zero-shot pass to extract422

the mentions of entities in each sample. Then we423

further improve the quality of pseudo-annotations424

by prompting the model to verify each predicted425

entity (a process referred to as self-verification;426

Weng et al., 2023), and filter entities that are not of427

the correct entity type. We use k-means clustering428

to group the remaining pseudo-annotated samples429

into K clusters based on the embedding of their text430

and pseudo-annotations.6. Each cluster is used as431

an individual pool of demonstrations for the down-432

stream NED task. In the second stage, we prompt433

6We embed the text and entities of samples using
a Sentence-BERT (Reimers and Gurevych, 2019) model
trained on PubMed corpus (https://huggingface.co/
pritamdeka/S-PubMedBert-MS-MARCO)

the model K times, each time choosing the demon- 434

strations from one cluster of pseudo-annotated sam- 435

ples (a sampling method we refer to as Sp-k-means, 436

i.e., Specialized k-means). Then, for each entity 437

in the K lists of predictions, we perform a self- 438

verification step to verify if the entity has the cor- 439

rect type or not, and retain the extracted entities 440

that have the correct entity type. In all of our exper- 441

iments, we pseudo-annotate 1000 samples from the 442

training set of the datasets using greedy decoding. 443

PICLe performance We evaluate PICLe on the 444

same five biomedical NED datasets used for our 445

analysis in Section 4 and compare PICLe’s perfor- 446

mance with standard ICL using gold demonstra- 447

tions sampled from different demonstration pool 448

sizes, representing various degrees of annotation 449

scarcity. For baselines that use gold annotations as 450

in-context examples, we initially sample demon- 451

stration pools of size of N from the full training set 452

of each dataset, which range in size from 4.5K to 453

12.5K examples (see Table 1). In scarce annota- 454

tion settings, we then sample demonstrations from 455

these pools for gold in-context learning using kNN 456
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Figure 4: Performance of PICLe, zero-shot, and ICL with gold demonstrations selected from 10,50,100 gold
examples using Mistral. The error bars show the variance across five seeds for sampling subsets of gold examples.
All methods are followed by self-verification unless otherwise specified.

(following ablation study in Figure 8 in Appendix).457

We experiment with N ∈ [10,50,100], reporting re-458

sults for a diverse set of annotation budgets. We459

repeat all experiments with 5 seeds and report the460

average performance across these runs along with461

standard deviations.462

Our results in Figure 4 show that across most463

datasets (with the exception of ChemProt-Chem),464

PICLe significantly outperforms the zero-shot base-465

line by an average of 10.7% (57.1% compared466

to 46.4%). Furthermore, PICLe also matches or467

outperforms in-context learning with gold demon-468

strations in resource-scarce settings, even beating469

an in-context learning baseline that has access to470

100 human-annotated demonstrations (57.1% vs.471

52.8%). We note that the dataset with the highest472

performance, BC5chem (77.7% average F1 score473

for PICLe), contains entity annotations whose sur-474

face forms generally contain fewer tokens (see Ta-475

ble 1). On the contrary, the dataset with the lowest476

performance, BC2GM (50% F1 for PICLe), has en-477

tity annotations that contain longer surface forms,478

making it more difficult to match the exact span in479

a generative manner.480

We also compare PICLe with a supervised base-481

line, fine-tuning a domain-specific language en-482

coder, BiomedNLP-BiomedBERT-large, on vari-483

ous numbers of gold annotations (see Table 9 in484

Appendix). While the performance of fine-tuning485

on 10 gold samples is low and shows high variance486

between datasets, the performance with 50 gold487

samples already outperforms all LLM baselines.488

However, we note that the sequence labeling for-489

mulation of the task for the supervised baseline490

differs from the generative formulation for LLMs,491

providing the supervised baseline with a simpler492

format for predicting entity spans, more adapted to493

our strict exact match evaluation.494

Ablation study In Table 3, we ablate each step 495

of the PICLe pipeline to evaluate the importance 496

of each component (see Appendix Table 5 for a de- 497

tailed version including precision and recall). For 498

pseudo-annotation, similarly to Wan et al. (2023a), 499

we experiment with running zero-shot prediction 500

10 times with high temperature (T = 0.7) and fil- 501

tering the 10 sets of extracted entities using self- 502

verification or merging (i.e., prompting the LLM 503

to aggregate the entities lists). Both lead to slightly 504

lower F1, while being much more computationally 505

expensive than a single round of zero-shot predic- 506

tion. We also find that self-verification helps with 507

validating pseudo-annotations (row #3 vs. row #8). 508

For demonstration retrieval, we compare ran- 509

dom, kNN, vanilla k-means, and specialized k- 510

means (Sp-k-means) as in-context example sam- 511

pling methods. kNN (k = 10), known for being 512

sensitive to noisy demonstrations (Zhang et al., 513

2022), scores the lowest (row #4). For random 514

retrieval, we sample demonstrations using 5 dif- 515

ferent seeds; the predicted entity lists are merged 516

and post-processed using self-verification (row #5). 517

Similarly, for k-means (row #6), we randomly sam- 518

ple one demonstration per cluster, increasing the 519

intra-run diversity. Conversely, in Sp-k-means, 520

demonstrations in each round are all sampled from 521

the same cluster, maximizing inter-run diversity. 522

We sample demonstrations using 5 different seeds, 523

leading to 5 inference runs. The predicted entity 524

lists are merged and self-verified again. The di- 525

versity of demonstrations for k-means leads to a 526

higher recall than random (48.6 vs. 40%), but 527

not as high as the one from Sp-k-means (53.5%), 528

which benefits greatly from having separate “ex- 529

pert” clusters that lead to more varied predictions. 530

Self-verification improves performance during in- 531

ference (rows #7 vs. #8), especially in terms of 532

precision (+20%). 533
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Pseudo-annotation Inference F1
Runs Post-

processing
Demo

retrieval
SV

1 10 merging ✓ 55.7
2 10 SV Sp-k-means ✓ 55.1
3 1 none ✓ 51.8

4 1 kNN ✓ 42.7
5 1 SV random ✓ 47.9
6 1 k-means ✓ 55.1

7 1
SV Sp-k-means

× 49.2
8 1 ✓ 57.1

9
NA NA

Zero-shot × 44.6
10 Zero-shot ✓ 46.4
11 10 Zero-shot ✓ 50.6

Table 3: Ablation of each component of PICLe, aver-
aged over all 5 datasets, using Mistral. SV refers to the
use of self-verification.

Demonstration retrieval Inference F1

Llama2 + PICLe

Llama2

51.9
Zero-shot 48.3
10 gold samples 45.5
100 gold samples + kNN 53.6

Mistral + PICLe

Mistral

57.1
Zero-shot 46.4
10 gold samples 42.6
100 gold samples + kNN 52.8
Full train set + kNN (oracle) 63.2

GPT-3.5-Turbo + PICLe Mistral 56.5

Table 4: Performance of PICLe using different LLMs
for pseudo-annotation and prediction, compared with
zero-shot and ICL with gold annotations.

6 Conclusion534

In this work, we study the demonstration attributes535

that enable in-context generalization for named en-536

tity detection. We find that the context-label se-537

mantic correspondence is crucial for effective in-538

context NED, and without this correspondence, in-539

context examples hurt performance, pushing it be-540

low zero-shot NED. However, our analysis demon-541

strates that partially-correct demonstration label542

sets are just as effective as gold label sets, pro-543

vided a sufficient number of correct label mappings544

are found in the demonstration. Based on these545

findings, we design an ICL framework, PICLe, for546

named entity detection that leverages LLMs to pro-547

duce pseudo-annotated examples that can be used548

for in-context transfer. Our results on five biomedi-549

cal NED datasets demonstrate that PICLe is more550

effective than zero-shot prediction and outperforms551

gold in-context learning in simulated real-world552

settings where gold demonstrations are scarce due553

to the effort and expertise required for annotation.554

7 Limitations555

Single Task. This work introduces a method to al-556

leviate annotation effort for the NED task while557

achieving comparable performance to few-shot558

NED with human-labeled annotations. While this559

pipeline can be generalized to other tasks with an560

open-ended nature similar to NED, the experiments561

presented in this paper are limited to the NED task. 562

However, we demonstrate its effectiveness over a 563

broad set of entity types. Similarly, further work 564

is needed to generalize our conclusions on the par- 565

tial correctness of demonstrations to all structured 566

output tasks. 567

Sensitive applications. We apply our system 568

to documents from the biomedical domain. The 569

evaluation sets are drawn from abstracts from pub- 570

lished articles. However, the tools we develop can 571

be used to extract the same type of entities in more 572

sensitive documents, such as extracting diseases 573

from patient records. Our tools were not tested 574

for these applications, and practitioners should be 575

aware that performance on such different types of 576

documents is not guaranteed to transfer. 577

Annotation bias. Annotated data can contain 578

various forms of annotation bias, which lead trained 579

models to make biased predictions when labeling 580

entities based on the knowledge and beliefs of the 581

annotators. This bias is usually alleviated following 582

common annotation practices such as computing 583

inter-rater agreement and having detailed annota- 584

tion guidelines discussed with the annotators. How- 585

ever PICLe only uses models’ pseudo-annotations, 586

since we focus on domains for which expert an- 587

notation is challenging to obtain. Consequently, 588

given the lack of interpretability and training data 589

openness of the used LLMs, we cannot assess the 590

reliability and fairness of the demonstrations. 591
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A Reproducibility statement888

Code. We provide all the prompts used in our study889

in the Appendix D.1, and the full code will be re-890

leased upon publication. Note that small portions891

of the code were developed with the assistance of892

GitHub Copilot. We also provide the random seeds893

used for random sampling of demonstration in the894

Appendix C.1. For our experiment, we use default895

parameters, unless specified (e.g. temperature for896

pseudo-annotation and inference). All models were897

used for inference only, on a single NVIDIA A100898

GPU with 32 GB Memory, each inference run tak-899

ing between 5 and 20 minutes depending on the900

dataset.901

Data. The datasets we use are publicly available902

on the Huggingface platform.7903

Models. As described in Section 3, we use two904

open-source models for our studies whose check-905

points can be found in Huggingface: Mistral-7b-906

instruct8 and Llama-2-7b-Chat.9 We also con-907

duct experiments using a proprietary LLM from908

OpenAI, gpt-3.5-turbo-0125,10 which unfortu-909

nately is subject to be updated (or removed from910

the API entirely) at any moment, limiting the long-911

term reproducibility of the results obtained with912

this tool. For supervised fine-tuning, we use the913

text encoder BiomedNLP-BiomedBERT-large.11914

B Additional analysis for ICL915

demonstration916

B.1 Corrupted random demonstrations917

On top of the perturbation schemes defined in the918

main body of the paper, we define two additional919

methods:920

Random OOD Label from Text: We replace921

ground-truth entity labels with words randomly922

selected from the sample’s text that are not included923

in the ground-truth annotation (i.e., not a target924

entity).925

Swapped ID Labels: We swap entity labels926

in the ground-truth demonstrations with the entity927

labels of a randomly chosen sample in the train-928

ing split. Contrary to Random ID Label where929

7https://huggingface.co/datasets/bigbio/
8https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.1
9https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
10https://platform.openai.com/docs/models/

gpt-3-5-turbo
11https://huggingface.co/microsoft/

BiomedNLP-BiomedBERT-large-uncased-abstract

the number of entities is preserved, the number of 930

entities in each ground-truth annotation changes 931

compared to the original ground-truth. 932

Figure 5 shows results per dataset for all cor- 933

ruption schemes, with GPT-3.5-Turbo and Mistral 934

models. 935

B.2 Partially correct demonstrations 936

Figure 6 shows the evolution of the downstream F1 937

depending on the number of entities in the demon- 938

strations and the perturbation factor. As expected, 939

an increased perturbation factor leads to a lower 940

demonstration F1 and a lower downstream F1 (right 941

side of the figure). Similarly, adding or removing 942

entities in the demonstration labels leads to a lower 943

downstream F1. However, with the same pertur- 944

bation factor, perturbations that do not decrease 945

the number of entities in the demonstration (ad- 946

dition&substitution, substitution) lead to a much 947

softer rate of performance loss. Similarly, to reach 948

the same downstream performance as zero-shot 949

(around 0.5 on average), removing one entity is 950

enough, while at least two entities need to be added. 951

This result supports the hypothesis that a way to 952

increase downstream performance is to give pref- 953

erence to a higher recall and number of entities in 954

the demonstration set. 955

Figure 7 compares the precision and recall of 956

demonstrations against the precision and recall of 957

predictions. 958

C Experimental setup details 959

C.1 Random Experiment Seeds 960

We repeat all of our experiments that involve ran- 961

domization with 5 times with the following seeds: 962

[12345,24690,37035,49380,61725] 963

D Additional results for PICLe 964

D.1 Prompts 965

In this section, we provide examples of prompts 966

used in our experiments. 967
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Figure 5: 10-shots ICL performance using various demonstration corruption schemes, compared with zero-shot
and ICL with gold annotations, for each dataset. We use Mistral (top) and GPT-3.5-Turbo (bottom).
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Figure 6: 10-shot ICL performance with partially correct demonstrations using different perturbation
schemes and kNN demonstration retrieval. We observe the impact on Prediction F1 of the perturbation factor and
the number of entities in the demonstrations for different perturbation types, averaged over all datasets. The size of
the points shows the demonstrations’ F1 score.
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Figure 7: 10-shot ICL performance with partially correct demonstrations using different perturbation
schemes and kNN demonstration retrieval. We observe the impact of the demonstration precision and recall on the
downstream prediction precision and recall, respectively, averaged over all datasets. The size of the points shows
the demonstrations’ number of entities in the annotations.

14



Examples of prompt used for self-verification with the BC5-Chem dataset.

user: Given the context and definition of chemical entity, answer the following question. Please reason about your answer
and include YES or NO in your response. YES if the given phrase is a chemical entity, and NO if it is not. If you are not
sure, you can say I don’t know.
assistant: Understood.
user: Context: p75NTR expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide - induced
cystitis.
chemical definition: Chemical refers to any substance having a distinct molecular composition that is produced by or used
in a chemical process. Chemicals can be elements or compounds, and they can exist in various forms—solid, liquid, or gas.
Based on this context and definition, does cyclophosphamide correspond to the name of a chemical entity?

Example of prompt used for NED with the BC5-Chem dataset.

user: Your task is to extract all of the chemicals mentioned in a given abstract published in PubMed. Chemical refers to
any substance having a distinct molecular composition that is produced by or used in a chemical process. Chemicals can be
elements or compounds, and they can exist in various forms—solid, liquid, or gas.
Please extract all of the entities corresponding to chemicals from the following paragraph, the same way as they are marked
in the examples. Make sure to include all and only the chemicals mentioned in the text, but not the genes and proteins, and
diseases. If there are no chemical entities in the text output ’None’. You will be penalized if you include an entity more or
less than the number of times it appears in the text.
assistant: understood! let’s get started!

user: ## Here are some examples: input: cTnT found in rats after 12 mg / kg were significantly greater than
that found after 7 . 5 mg / kg DOX . chemical entities:
assistant: DOX | yes | because it is a chemical

user: input: MMP - 2 , MMP - 9 , ADAM - 10 and ADAM - 17 mRNA levels were increased in CaCl ( 2 ) -
treated segments ( all p < 0 . 01 ) , with trends of elevation in CaCl ( 2 ) - untreated segments , as compared with NaCl -
treated segments . chemical entities:
assistant:
CaCl ( 2 ) | yes | because it is a chemical
CaCl ( 2 ) | yes | because it is a chemical
NaCl | yes | because it is a chemical

user: input: The risk of bladder cancer doubled for every 10 g increment in cyclophosphamide ( OR = 2 . 0 ,
95 chemical entities:
assistant: cyclophosphamide | yes | because it is a chemical

user: input: Capsaicin - induced muscle pain alters the excitability of the human jaw - stretch reflex . chemi-
cal entities:
assistant:
Capsaicin | yes | because it is a chemical

user: input: The normalized reflex amplitude was significantly higher during pain , but only at faster stretches
in the painful muscle . chemical entities:
assistant:

user: input: No statistically significant changes in behavior or receptor binding were found in PD males with
the exception of increased ( 3 ) H - MK - 801 binding in cortex . chemical entities:
assistant:
H | yes | because it is a chemical
MK - 801 | yes | because it is a chemical

user: input: NRA0160 has negligible affinity for the human cloned dopamine D3 receptor ( Ki = 39 nM ) , rat
serotonin ( 5 - HT ) 2A receptors ( Ki = 180 nM ) and rat alpha1 adrenoceptor ( Ki = 237 nM ) . chemical entities:
assistant:
NRA0160 | yes | because it is a chemical
dopamine | yes | because it is a chemical
serotonin | yes | because it is a chemical
5 - HT | yes | because it is a chemical

user: input: p75NTR expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide - induced
cystitis . chemical entities:
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D.2 Ablation study968

D.3 Results with different models969

D.4 Inference with gold demonstrations970

Here, we compare random, k-means, and kNN971

demonstration retrieval methods for gold demon-972

strations with and without the self-verification step.973

(Figure 8).974

D.5 PICLe Pseudo-annotation Ablation975

D.6 Fine-tuning results976

We report the performance of fine-tuned PubMed-977

BERT in Table 9.978
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Pseudo-annotation Inference Precision Recall F1
Runs Post-processing Demo retrieval Self-verif

1 10 LLM-merging Sp-k-means ✓ 56.7 55.1 55.7
2 10 self-verif Sp-k-means ✓ 56.3 54.2 55.1
3 1 none Sp-k-means ✓ 55.2 49.4 51.8

4 1 self-verif kNN ✓ 72.5 32.8 42.7
5 1 self-verif random ✓ 68.1 39.8 47.9
6 1 self-verif k-means ✓ 64.8 48.6 55.1

7 1 self-verif Sp-k-means × 41.8 60.7 49.2
8 1 self-verif Sp-k-means ✓ 61.8 53.5 57.1

Table 5: Ablation of each component of PICLe, averaged over all datasets, using Mistral for pseudo-annotation and
inference.

Demonstration pool Demo retrieval Inference model Precision Recall F1

Llama2 PICLe Sp-k-means

Llama2

47.0 59.9 51.9
zero-shot 59.5 40.8 48.3

10 gold samples 59.2 38.6 45.5
100 gold samples kNN 60.0 48.7 53.6

Mistral PICLe Sp-k-means

Mistral

61.8 53.5 57.1
zero-shot 68.7 37.7 46.4

10 gold samples 65.7 34.9 42.6
100 gold samples kNN 73.6 42.5 52.8

GPT-3.5-Turbo PICLe Sp-k-means Mistral 65.2 50.1 56.5

Table 6: Performance of PICLe compared with using 10 and 100 annotated gold samples, with different models
used for pseudo-annotation and prediction.

Dataset SV Precision Recall Micro F1

BC2GM
× 51.9 27.7 36.1
✓ 58.4 22.2 32.2

BC5-Chem
× 60.2 71.7 65.4
✓ 81.5 65.6 72.7

BC5-Disease
× 57.1 33.3 42.1
✓ 69.9 31.3 43.2

ChemProt-Chem
× 34.6 54.7 42.4
✓ 53.1 49.9 51.5

ChemProt-Gene
× 69.1 20.7 31.9
✓ 77.6 18.3 29.6

Average × 54.6 41.6 43.6
✓ 68.1 37.5 45.8

Table 7: Evaluation of pseudo-annotated samples
with and without self verification. The pseudo-
annotations obtained via zero-shot with zero temper-
ature. SV refers to the use of self-verification.

Dataset SV Precision Recall Micro F1

BC2GM
× 53.0 29.2 37.6
✓ 59.7 23.6 33.9

BC5-Chem
× 60.4 71.2 65.3
✓ 82.3 65.2 72.8

BC5-Disease
× 53.9 34.9 42.4
✓ 67.3 31.9 43.3

ChemProt-Chem
× 39.4 56.1 46.3
✓ 56.7 49.7 53.0

ChemProt-Gene
× 68.8 20.4 31.4
✓ 77.4 18.0 29.2

Average × 55.1 42.4 44.6
✓ 68.7 37.7 46.4

Table 8: Evaluation of zero-shot inference with and
without self verification. The temperature is set to zero.
SV refers to the use of self-verification.
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Figure 8: Ablation study of baselines with gold annotations.

Train set size BC2GM BC5-Chem BC5-Disease ChemProt-Chem ChemProt-Gene Average

10 9.8 59.0 15.1 64.3 50.1 39.7
50 55.7 79.1 53.0 79.6 72.4 67.9
100 63.9 83.4 65.6 83.4 77.6 74.8
Full 87.0 94.3 85.4 90.8 89.8 89.5

Table 9: Micro-F1 score of PubMedBERT-large fine-tuned on various numbers of gold annotations. For 10, 50
and 100 gold annotations, random sets are sampled with 5 different seeds, and the fine-tuning performances are
averaged.

18


	Introduction
	Related works
	Experimental setup
	Do we need gold demonstrations?
	Investigating the input-output correspondence of in-context demonstrations
	Partially correct in-context demonstrations

	In-context NED with pseudo-annotated demonstrations
	Conclusion
	Limitations
	Reproducibility statement
	Additional analysis for ICL demonstration
	Corrupted random demonstrations
	Partially correct demonstrations

	Experimental setup details
	Random Experiment Seeds

	Additional results for PICLe
	Prompts
	Ablation study
	Results with different models
	Inference with gold demonstrations
	PICLe Pseudo-annotation Ablation
	Fine-tuning results


