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Abstract
Resulting from non-random sample selection
caused by both the treatment and outcome, col-
lider bias poses a unique challenge to treatment
effect estimation using observational data whose
distribution differs from that of the target pop-
ulation. In this paper, we rethink collider bias
from an out-of-distribution (OOD) perspective,
considering that the entire data space of the target
population consists of two different environments:
The observational data selected from the target
population belongs to a seen environment labeled
with S = 1 and the missing unselected data be-
longs to another unseen environment labeled with
S = 0. Based on this OOD formulation, we
utilize small-scale representative data from the en-
tire data space with no environmental labels and
propose a novel method, i.e., Coupled Counter-
factual Generative Adversarial Model (C2GAM),
to simultaneously generate the missing S = 0
samples in observational data and the missing
S labels in the small-scale representative data.
With the help of C2GAM, collider bias can be ad-
dressed by combining the generated S = 0 sam-
ples and the observational data to estimate treat-
ment effects. Extensive experiments on synthetic
and real-world data demonstrate that plugging
C2GAM into existing treatment effect estimators
achieves significant performance improvements.

1. Introduction
Estimating treatment effects from observational data is cru-
cial for explanatory analysis and decision-making processes
(Robins et al., 2000; Angrist & Pischke, 2009; Imbens &
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Wooldridge, 2009; Emdin et al., 2017). For example, ac-
curately assessing the treatment effect of specific drugs on
each patient can help doctors decide how to administer drugs
to specific individuals, which is a counterfactual problem
since we cannot simultaneously observe the outcomes of
an individual taking or not taking the drugs. The critical
challenge of estimating treatment effects is eliminating the
presence of biases in the observational data (Pearl, 2009).

There are two primary sources for biases: confounding
bias and selection bias (Greenland, 2003; Hernán & Robins,
2020). Let T denote the treatment variable, X denote the
pre-treatment variables, Y denote the outcome variable, and
S denote the selection indicator. The confounding bias
results from common causes of treatments and outcomes
(T ← X → Y ), and the selection bias results from non-
random sample selection caused by some certain variables
(T 99K S L99 Y ). Most of the previous works focused on
addressing confounding bias (Bang & Robins, 2005; Shalit
et al., 2017; Louizos et al., 2017; Wager & Athey, 2018)
and selection bias caused by only T and X (Bareinboim &
Tian, 2015; Correa et al., 2018), while ignoring collider bias
which is a particular form of selection bias (T → S ← Y ).
These methods cannot address collider bias because both
T and Y cause S, which introduces spurious correlations
between T and Y , resulting in biased estimation of treatment
effects not only on S = 0 data but also on S = 1 data.

Collider bias can be defined as non-random sample selection
conditioning on both treatments and outcomes, as shown
in Figure 1(b). The observational data is non-randomly
sampled from the target data distribution by the sample
selection mechanism in Figure 1(b), indicated as S = 1,
and the unobserved non-selected data is indicated as S = 0.
In other words, only S = 1 samples can be observed, and for
S = 0 data, the values of X, T and Y are all missing. Due to
collider bias, the observed data distribution will differ from
the target data distribution. For example, when studying
whether vaccination will protect against contracting COVID-
19, where T is whether an individual is vaccinated, Y is
whether an individual contracts COVID-19 and X is an
individual’s covariates like gender, age, etc., we cannot
force everyone to test for COVID-19. As a result, we can
only observe the data of a specific population who test for
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COVID-19. However, whether testing for COVID-19 is
not random, people who are vaccinated and who contract
COVID-19 are more willing to test, which means the sample
selection is conditional on the values of T and Y , leading
to collider bias. In fact, without further assumptions about
the observational data, treatment effects are unidentifiable
with collider bias (Correa & Bareinboim, 2017; Hernán &
Robins, 2020), and thus it is necessary to introduce external
unbiased data to solve collider bias.

Fortunately, we can collect small-scale representative data
in real-world applications. The representative data consists
of samples randomly selected from the target population.
Different from the observational data, these representative
samples are collected by interventions such as incentives
(Askalidis et al., 2017) and multiple follow-ups (Blank &
Schmidt, 2003; Tay et al., 2014) on the randomly selected
units to ensure nearly complete responses (Kellerman &
Herold, 2001).1 Through the above way, collider bias is mit-
igated in the representative data, which means that it can be
regarded that it has the same data distribution as that of the
target population. However, since collecting representative
data requires considerable human and material resources, it
is usually carried out on a small scale to ensure quality. As
a result, when estimating heterogeneous treatment effects,
using only the representative data is insufficient because of
the severe overfitting problem. Nevertheless, combining a
small-scale representative dataset with a large-scale biased
observational dataset to address collider bias is feasible.

In this paper, we present a novel formulation of collider
bias as an out-of-distribution (OOD) problem, as illustrated
in Figure 1. Specifically, we treat the selection indicator
S as the environmental label, such that the observational
data and the unselected data, respectively, come from a seen
environment labeled with S = 1 and an unseen environment
labeled with S = 0, and the representative data is derived
from the entire data space, but with unknown environmental
labels. We propose using both datasets to (1) generate the
missing S = 0 samples in the observational dataset, (2)
generate the missing S labels in the representative dataset,
and (3) align the distribution of the combined generated
S = 0 samples with the observational dataset to match that
of the entire data space.

To achieve the above objectives, we propose a novel method
named Coupled Counterfactual Generative Adversarial
Model, called C2GAM, which consists of two generators
that respectively generate the missing S = 0 samples and
the missing S labels, as well as two discriminators that dis-
tinguish between the observational data and data with gen-
erated S = 1 labels, and between the generated unselected

1Note that such intervention differs from that in RCTs, as
interventions in RCTs means randomly assigning treatments within
selective populations.

samples and data with generated S = 0 labels. By optimiz-
ing the generators using the discriminators, C2GAM can
effectively generate missing data while preserving the origi-
nal data distribution. Combining the observational data with
the unselected samples generated by C2GAM, we can flexi-
bly use any treatment effect estimation methods to achieve
an accurate estimate. Extensive experiments on synthetic
and real-world datasets have demonstrated the effectiveness
of C2GAM. By plugging C2GAM into various treatment ef-
fect estimators, we have achieved significant improvement,
outperforming existing state-of-the-art methods.

2. Related Works
2.1. Methods for Addressing Confounding Bias

Previous works on confounding bias in observational studies
include propensity-score-based, confounder balancing, tree-
based, representation-learning-based, and generative-model-
based methods. The propensity score defined as P(T | X)
(Rosenbaum & Rubin, 1983) is widely used for matching
(Dehejia & Wahba, 2002), reweighting (Hirano et al., 2003),
and doubly robust estimation (Bang & Robins, 2005). Con-
founder balancing is to learn sample weights that make the
confounder distributions of control and treated units similar
through sample re-weighting (Hainmueller, 2012; Athey
et al., 2018). Tree-based methods like Causal Forest (Wager
& Athey, 2018) build a large number of causal trees and es-
timate heterogeneous treatment effects by taking an average
of the outcomes from these causal trees. Methods based on
deep representation learning learn a balanced representation
of covariates, such as Treatment-Agnostic Representation
Network, Balancing Neural Network (BNN) (Johansson
et al., 2016), CounterFactual Regression (CFR) (Shalit et al.,
2017), Disentangled Representations for CounterFactual
Regression (DRCFR) (Hassanpour & Greiner, 2020), and
Entire Space CounterFactual Regression (ES-CFR) (Wang
et al., 2023). Generative methods include CEVAE (Louizos
et al., 2017) that applies variational autoencoders to address
hidden confounders, TEDVAE (Zhang et al., 2021) that
simultaneously infer latent hidden variables and disentan-
gle them, and GANITE (Yoon et al., 2018) that generates
counterfactual outcomes and ITEs. Detailed discussion on
the difference between our proposed method and previous
generative-model-based methods is in Appendix D.

2.2. Methods for Addressing Selection Bias

The above methods cannot deal with selection bias because
the distribution of the observational data differs from that
of the target population. Previous works on selection bias
mainly focus on sample selection caused by only X and T .
Suppose there are variables in the causal graph that satisfy
the selection-backdoor criterion. In that case, selection
bias can be addressed by selection-backdoor adjustment
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(a) Representative data without collider bias (b) Observational data with collider bias
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Figure 1. The data form and causal graphs of observation data and representative data where ✓ denotes the data is observable and ✗

denotes the data cannot be observed.

(Bareinboim & Tian, 2015; Correa & Bareinboim, 2017;
Correa et al., 2018; Bareinboim et al., 2022). However,
these methods cannot solve collider bias because no valid
adjustment can block the non-causal path T → S ← Y . In
fact, without further assumptions about the observational
data, treatment effects are unidentifiable with collider bias
(Correa & Bareinboim, 2017; Hernán & Robins, 2020). To
the best of our knowledge, there are currently no methods
to solve collider bias without making further assumptions
about the observational data.

When a representative dataset is also available, as in the
scenario under study in this paper, data fusion methods can
be applied to combine the observational and representative
datasets to estimate the treatment effects of the target pop-
ulation. These methods aim to make the distribution of
the observational dataset match the representative dataset
through reweighting (Cole & Stuart, 2010; Lesko et al.,
2017; Buchanan et al., 2018; Lee et al., 2023), stratifica-
tion (Stuart et al., 2011; Tipton, 2013; O’Muircheartaigh &
Hedges, 2014), and doubly robust estimation (Dahabreh &
Hernán, 2019). Their performance relies on correct model
specifications, limiting their applicability in complex real-
world scenarios. Our approach, however, addresses this
issue by directly learning the distribution from existing data
and generating samples without collider bias.

3. Problem and Algorithm
3.1. Problem Formulation

Let D = {xi, ti, yi, si}ni=1 be a sample population with n
units independently drawn from the true target data distri-
bution P. For a unit i, ti ∈ {0, 1} is the binary treatment,
yi is the outcome, xi ∈ Rd is the observed pre-treatment
variables with d dimensions, and si ∈ {0, 1} is a binary
selection indicator. We have a large-scale dataset of obser-
vational samples non-randomly drawn from P, denoted as
Dobs, and a small-scale representative dataset Drep contain-
ing units randomly sampled from P. The selection indicator
S in D indicates whether a unit i is selected into Dobs, i.e.,
si = 1 if {xi, ti, yi} ∈ Dobs.

Under the potential outcome framework (Imbens & Rubin,
2015), we define the potential outcomes under treatment as
Y (1) and under control as Y (0). Our goal is to estimate the
Conditional Average Treatment effect (CATE) on the target
population D, which is defined as

τ(x) = E[Y (1)− Y (0) | X = x].

For a unit i with ti in D, only the factual outcome Y (ti) is
available. Therefore, to make CATE identifiable, we make
the following assumptions (Imbens & Rubin, 2015):

Stable Unit Treatment Value Assumption. The distribu-
tion of the potential outcome of one unit is assumed to be
independent of the treatment assignment of another unit.

Overlap Assumption. A unit has a nonzero probability of
being treated and being selected, 0 < P(T = 1 | X = x) <
1 and 0 < P(S = 1 | X = x) < 1.

Unconfoundedness Assumption. The treatments are inde-
pendent of the potential outcomes given the pre-treatment
variables, i.e., Y (1), Y (0) ⊥⊥ T | X.

Based on the above assumptions, CATE is estimated by

τ(x) = E[Y | X = x, T = 1]− E[Y | X = x, T = 0].

However, because the sample selection mechanism of
Dobs is not random but is jointly determined by T , X
and Y , P{x,t,y}∼Dobs

(x, t, y) ̸= P{x,t,y}∼D(x, t, y), i.e.
P(X, T, Y | S = 1) ̸= P(X, T, Y ), resulting in collider
bias. Therefore, estimating the CATE on D using only Dobs

brings the following problems:

• Distribution shift. Because E[Y | X = x, T =
t, S = 1] ̸= E[Y | X = x, T = t], the performance of
CATE estimation models trained on Dobs degrades on
the target data D.

• Biased estimation. T → S ← Y causes a spurious
correlation between T and Y , leading to a biased esti-
mate of CATE using only Dobs.

Using only Drep to estimate the CATE on D is not appli-
cable either because the sample size of Drep is too small,
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which makes estimators suffer from the severe overfitting
problem. Therefore, we need to leverage both Dobs and
Drep to help solve collider bias.

3.2. Motivation

To address collider bias, we formulate it as an OOD problem
(Zhang et al., 2023; 2024). As shown in Figure 1, in Dobs,
the non-random sample selection caused by collider bias
mainly results in missing S = 0 data, i.e., the unselected
sub-population of the target population is not available; In
Drep, the selection indicators S are unknown, i.e., we cannot
tell the probability that a unit in Drep would be selected into
Dobs in observational studies. Therefore, we consider S
as the environmental labels. In this way, the observational
data can be regarded as samples from a seen environment
labeled with S = 1, the missing unselected data can be
regarded as samples from an unseen environment labeled
with S = 0, and the representative data can be regarded as
samples from the entire data space but the environmental
labels are unknown. From an OOD perspective, we wish to
recover the distribution of D from Dobs and Drep as much
as possible, which means we need to recover the missing
parts of Dobs and Drep by two generators respectively:

• Unselected samples generator Gd. It generates the
missing S = 0 data in Dobs from random noises Z.
The generated samples are denoted as Dgen

• Selection indicator generator Gs. It generates the
missing S labels of data in Drep from the correspond-
ing X, T and Y .

To optimize the above generators, we need (1) a discrim-
inator to align the distribution of the data with generated
S = 1 labels and that of the ground truth S = 1 data and
(2) a discriminator to align the distribution of the generated
S = 0 data and that of the ground truth S = 0 data. Since
the latter involves ground truth S = 0 data, which is not
available in Dobs, we use data in Drep with S = 0 labels
generated by Gs as an approximation. As a result, the two
discriminators perform the following tasks respectively:

• Selected data discriminator Do. It makes the distri-
bution of Dobs the same as that of data in Drep with
S = 1 labels generated by Gs.

• Unselected data discriminator Du. It makes the dis-
tribution of the S = 0 samples generated by Gd the
same as that of data in Drep with S = 0 labels gener-
ated by Gs.

To further ensure that the distribution of the combination
of the generated S = 0 samples and Dobs is the same
as that of D, we need an additional constraint to make
P{s}∼D(s) = P{x,t,y}∼Drep

(Gs(x, t, y)). To accomplish
this, we make the ratio of the generated samples to the
observational data the same as that of the representative

data with generated S = 0 labels to the representative data
with generated S = 1 labels. We also constrain Gd to
minimize the distance between P{x,t,y}∼Drep

(x, t, y) and
P{x,t,y}∼Dobs∪Dgen

(x, t, y) during optimization.

Such coupled design is reasonable for the following reasons:
the distribution of the ground truth S = 1 data is known,
i.e., the observational data is available, hence Do can assist
Gs in generating correct S = 1 labels for data in Drep. Ad-
ditionally, with the constraint on the ratio of S = 0 data to
S = 1 data, Du can make Gd generate S = 0 samples with
the same distribution as the representative dataset labeled
with S = 0 by Gs. Consequently, the combination of Gd

generated S = 0 samples with the original S = 1 observa-
tional data results in a distribution consistent with that of
the representative dataset.

By jointly optimizing the two generators and the two dis-
criminators with the above constraints, we can achieve the
objective of recovering the distribution of D by combining
the generated S = 0 samples with the original observational
data, which can be used as the training data for any treat-
ment effect estimation methods to achieve a better CATE
estimate. Naturally, a Generative Adversarial Nets (GAN)
(Goodfellow et al., 2014) framework is suitable for this task.

3.3. C2GAM: Coupled Counterfactual Generative
Adversarial Model

Based on the above motivation, we propose a novel method
named Coupled Counterfactual Generative Adversarial
Model (C2GAM), as shown in Figure 2. C2GAM consists
of two generators Gd and Gs and two discriminators Do

and Du, as mentioned earlier. The details are as follows:

Selection indicator generator Gs. This generator
aims to generate selection indicators S for data in
Drep. It takes (x, t, y) ∼ Drep ∪ Dgen as inputs
to generate the corresponding S labels, denoted as
Gs(x, t, y). The objective is to optimize Gs to max-
imize the probability of correctly labeling the data
with S ,i.e., to make P{x,t,y}∼Drep

(x, t, y,Gs(x, t, y)) =
P{x,t,y,s}∼D(x, t, y, s).

Unselected samples generator Gd. This generator aims
to generate samples whose distribution is the same as that
of S = 0 data in D. It takes random noises Z = {zi ∼
N (0, 1)}ngen

i=1 as inputs to generate Dgen = {xi, ti, yi}
ngen

i=1 ,
denoted as {Gd(zi)}

ngen

i=1 , where ngen is the size of the gen-
erated samples. The objective is to optimize Gd to make
P{x,t,y}∼Dgen∪Dobs

(x, t, y) = P{x,t,y}∼D(x, t, y), i.e., to
minimize the distance between Pz∼N (0,1)ngen (Gd(z)) and
P{x,t,y,s}∼D(x, t, y | s = 0).

Selected data discriminator Do. This discriminator aims
to discriminate between data with generated S = 1 labels in
Drep and the observed S = 1 data in Dobs. We regard Dobs
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Figure 2. Overview of the architecture of C2GAM.

as the original dataset, and data in Drep and Dgen labeled
with S = 1 by Gs as the generated dataset. Therefore, Do

takes (x, t, y) ∼ Dobs ∪ ((Drep ∪ Dgen) | Gs(x, t, y) = 1)
as inputs and returns the probability that (x, t, y) is from
Dobs, denoted as Do(x, t, y). The objective is to optimize
Do to maximize the probability of correctly determining
whether a sample comes from Dobs or (Drep ∪ Dgen) |
Gs(x, t, y) = 1. The objective function is

min
Gs,Gd

max
Do

E{x,t,y}∼Dobs
[log(Do(x, t, y))]

+ E{x,t,y}∼Drep
[Gs(x, t, y) · log(1−Do(x, t, y))]

+ Ez∼N (0,1)ngen [Gs(Gd(z)) · log(1−Do(Gd(z)))].

Unselected data discriminator Du. This discriminator
aims to discriminate between the generated S = 0 samples
and the S = 0 data in D. However, since S = 0 data in
D is not available, we can only use data with generated
S = 0 labels as approximations. We regard data from Dgen

and Drep labeled with S = 0 by Gs as the original dataset
and all data from Dgen as the generated dataset. There-
fore, Du takes (x, t, y) ∼ Dgen ∪ (Drep | Gs(x, t, y) = 0)
as inputs and returns the probability that (x, t, y) is from
(Dgen ∪ Drep) | Gs(x, t, y) = 0, denoted as Du(x, t, y).
The objective is to optimize Du to maximize the probabil-
ity of correctly determining whether a sample comes from
(Dgen ∪ Drep) | Gs(x, t, y) = 0 or Dgen. The objective
function is

min
Gs,Gd

max
Du

Ez∼N (0,1)ngen [log(1−Du(Gd(z))]

+ Ez∼N (0,1)ngen [(1−Gs(Gd(z))) · log(Du(Gd(z)))]

+ E{x,t,y}∼Drep
[(1−Gs(x, t, y)) · log(Du(x, t, y))].

Following (Goodfellow et al., 2014), with the above ob-
jective functions, the discriminators Do and Du and the
generators Gs and Gd can be iteratively optimized using
mini-batch gradient descent. In each batch, we first fix the
parameters of both generators to optimize both discrimina-
tors simultaneously, then fix the parameters of both discrim-
inators to optimize both generators simultaneously.

Specifically, when fixing the parameters of the generators,
the discriminators are optimized using the loss function
being LDo + LDu , where

LDo
= −(E{x,t,y}∼Dobs

[log(Do(x, t, y))]

+ E{x,t,y}∼Drep
[Gs(x, t, y) · log(1−Do(x, t, y))]

+ Ez∼N (0,1)ngen [Gs(Gd(z)) · log(1−Do(Gd(z)))]),

LDu = −(Ez∼N (0,1)ngen [log(1−Du(Gd(z))]

+ Ez∼N (0,1)ngen [(1−Gs(Gd(z))) · log(Du(Gd(z)))]

+ E{x,t,y}∼Drep
[(1−Gs(x, t, y)) · log(Du(x, t, y))]).

Given the parameters of the discriminators, the two genera-
tors are optimized using the loss function being LGs

+LGd
,

where

LGs
= Ez∼N (0,1)ngen [(1−Gs(Gd(z))) · log(Du(Gd(z)))]

+ E{x,t,y}∼Drep
[Gs(x, t, y) · log(1−Do(x, t, y))]

+ E{x,t,y}∼Drep
[(1−Gs(x, t, y)) · log(Du(x, t, y))]

+ Ez∼N (0,1)ngen [Gs(Gd(z)) · log(1−Do(Gd(z)))],

LGd
= Ez∼N (0,1)ngen [Gs(Gd(z)) · log(1−Do(Gd(z)))]

+ Ez∼N (0,1)ngen [log(1−Du(Gd(z))]

+ Ez∼N (0,1)ngen [(1−Gs(Gd(z))) · log(Du(Gd(z)))].

We iteratively optimize the discriminators and the gener-
ators and update ngen with nobs · n0/n1, where nobs is
the sample size of Dobs, n0 and n1 is the count of units
in Drep with Gs(x, t, y) = 0 and Gs(x, t, y) = 1, respec-
tively. Note that ngen is initialized as Dobs. At the end of
each iteration, we compute the Wasserstein distance (Cu-
turi & Doucet, 2014) between P{x,t,y}∼Drep

(x, t, y) and
P{x,t,y}∼Dobs∪Dgen

(x, t, y) and optimize Gd to minimize
this distance. Iterations terminate when this distance falls
below a predefined threshold, or the maximum number of
iterations reaches. Combining the generated samples Dgen

and the observational data Dobs, we then fit any CATE es-
timator to achieve CATE estimation. The pseudo-code of
C2GAM is in Appendix A, and the source code is available
at https://github.com/ZJUBaohongLi/C2GAM.
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Figure 3. The scatter plot showing the joint distribution of T,X,
and Y across Drep, Dobs, and Dgen.

4. Experiments
4.1. Baselines

To evaluate the effectiveness of the proposed method, we
first utilized C2GAM to generate S = 0 samples, then em-
ployed the combination of the observational data and the
generated samples to fit CATE estimators, including BNN
(Johansson et al., 2016), CFR (Shalit et al., 2017), and DR-
CFR (Hassanpour & Greiner, 2020). We compare their
estimation results against those of the following baselines
without using samples generated by C2GAM: (1) Statisti-
cal methods, including Doubly Robust (Bang & Robins,
2005) and Causal Forest (Wager & Athey, 2018); (2) Gen-
erative methods, including Causal Effect Variational Au-
toencoder (CEVAE) (Louizos et al., 2017), Generative Ad-
versarial Nets for inference of Individualized Treatment Ef-
fects (GANITE) (Yoon et al., 2018), and TEDVAE (Zhang
et al., 2021). (3) Representation learning methods, in-
cluding BNN, TARNet, CFR, DRCFR, and Entire Space
CounterFactual Regression (ES-CFR) (Wang et al., 2023).
We also compare C2GAM with several commonly used
data fusion methods, including Inverse Probability of Sam-
pling Weighting (IPSW) (Cole & Stuart, 2010), Augmented
IPSW (AIPSW) (Dahabreh & Hernán, 2019), and Calibra-
tion Weighting (CW) (Lee et al., 2023).

Based on the estimated CATE, we use the Precision in Esti-
mation of Heterogeneous Effect (PEHE) (Shalit et al., 2017;
Louizos et al., 2017) to evaluate the performance of the
above methods, where PEHE = 1

N

∑N
i=1((ŷi(1)−ŷi(0))−

(yi(1)− yi(0))
2. Since the data fusion baselines, i.e., IPSW,

AIPSW, and CW, merely adjust the distributions of the two

Table 1. The results (mean ± std of
√
PEHE) of CATE estimation

on synthetic data. The best results are in bold, and the second-best
ones are underlined.

METHOD S = 1 SAMPLES S = 0 SAMPLES

DOUBLY ROBUST 7.410±4.602 8.496±2.995
CAUSAL FOREST 4.929±0.073 6.153±0.074

CEVAE 4.051±0.047 5.296±0.026
GANITE 4.139±0.071 4.997±0.148
TEDVAE 4.003±0.040 5.318±0.049

BNN 2.893±0.427 3.196±0.360
TARNET 2.023±0.223 2.830±0.261
CFR 2.035±0.054 2.923±0.077
DRCFR 2.107±0.307 2.850±0.428
ES-CFR 4.993±0.085 5.707±0.124

IPSW 2.055±0.242 2.840±0.378
AIPSW 1.939±0.296 2.669±0.422
CW 1.867±0.067 2.581±0.109

C2GAM+BNN 0.977±0.078 1.201±0.111
C2GAM+CFR 0.984±0.074 1.083±0.086
C2GAM+DRCFR 1.175±0.072 1.285±0.120

datasets without directly estimating the CATE, we report the
results of fitting DRCFR using the combined data adjusted
by these methods to evaluate their CATE estimation perfor-
mance. We used the Wasserstein distance as the Integral
Probability Metric (IPM) to implement BNN, CFR, DR-
CFR, and ES-CFR. We implemented the estimators in the
PyTorch environment with Python 3.9, with the CPU being
13th Gen Intel(R) Core(TM) i7-13700K and the GPU being
NVIDIA GeForce RTX 3080 with CUDA 12.1. We split
each dataset into 60/20/20 train/validation/test datasets. In
each experimental setting, we performed 20 replications and
recorded the mean and standard deviation (std) of

√
PEHE

on S = 1 and S = 0 data.

4.2. Experiments on Synthetic Data

4.2.1. DATASETS

In order to evaluate the effectiveness of our method against
collider bias, in each experiment, we generated a large-
scale collider-biased observational dataset and a small-
scale representative dataset without collider bias using the
same outcome model. Specifically, we first generated
continuous pre-treatment variables X ∈ Rn×d with inde-
pendent Gaussian distributions as X ∼ N (0,1), where
d = 20. Subsequently, We generated binary treatments
T ∈ Rn from a logistic function as T ∼ Bernoulli(1/(1 +
e−t(X))), where Bernoulli(·) denotes the Bernoulli distri-
bution, t(X) =

∑d
i=1(1(mod(i, 2) ≡ 1)− 1(mod(i, 2) ̸=

1)) · (mod(i, 2) + 1) · Xi/d) + ϵt, 1(·) is the indica-
tor function, function mod(a, b) returns the modulus af-
ter division of a by b and ϵt ∼ N (0, 1). Next, we gen-
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Table 2. The results (mean ± std of
√
PEHE) under different nrep. The best results in each group are in bold.

nobs : nrep = 10000 : 500 nobs : nrep = 10000 : 200 nobs : nrep = 10000 : 100

DATA+ESTIMATOR S = 1 SAMPLES S = 0 SAMPLES S = 1 SAMPLES S = 0 SAMPLES S = 1 SAMPLES S = 0 SAMPLES

Drep+BNN 1.776±0.165 1.753±0.152 3.458±0.232 3.129±0.189 4.696±0.704 3.779±0.259
Dobs+BNN 2.893±0.427 3.196±0.360 2.889±0.488 3.167±0.201 2.934±0.926 3.448±0.664
Dobs&Drep+BNN 2.705±0.302 3.250±0.200 2.958±0.531 3.217±0.163 2.993±0.736 3.398±0.417
C2GAM+BNN 0.977±0.078 1.201±0.111 1.367±0.079 1.800±0.113 1.404±0.227 1.770±0.297

Drep+CFR 1.551±0.079 1.584±0.068 2.422±0.170 2.265±0.174 4.022±0.182 3.618±0.256
Dobs+CFR 2.023±0.223 2.830±0.261 1.903±0.237 2.751±0.382 1.813±0.221 2.580±0.397
Dobs&Drep+CFR 2.110±0.266 2.962±0.434 2.785±0.586 3.334±0.456 2.169±0.250 3.045±0.473
C2GAM+CFR 0.984±0.074 1.083±0.086 1.090±0.101 1.263±0.119 1.444±0.184 1.794±0.377

Drep+DRCFR 1.448±0.099 1.434±0.136 2.224±0.313 2.130±0.338 3.752±0.338 3.437±0.360
Dobs+DRCFR 2.107±0.307 2.850±0.428 2.290±0.294 3.144±0.462 2.315±0.398 3.090±0.480
Dobs&Drep+DRCFR 2.090±0.536 2.685±0.864 2.095±0.378 2.793±0.698 2.185±0.464 2.823±0.730
C2GAM+DRCFR 1.175±0.072 1.285±0.120 1.339±0.108 1.602±0.187 1.464±0.139 1.740±0.174

erated continuous outcomes Y ∈ Rn from a non-linear
function as Y = T +

∑d
i=1(T · Xi + (1(mod(i, 2) ̸=

1)−1(mod(i, 2) ≡ 1))·(mod(i, 2)+1)·(Xi+X2
i )/d)+ϵy,

where ϵy ∼ N (0, 1). Following the above data generation
process, we generated a target dataset. The representative
dataset was then created by randomly selecting nrep sam-
ples from the target dataset, where nrep ∈ {100, 200, 500}.
To further introduce collider bias for generating the obser-
vational data, we non-randomly sampled the target dataset
by a binary selection variable S ∈ Rn, which came from
a logistic function as S ∼ Bernoulli(1/(1 + e−s(X,T ))),
where s(X, T ) = Y − 3 · T +

∑d
i=1(1(mod(i, 2) ≡

1)−1(mod(i, 2) ̸= 1))·Xi/d)+ϵs, ϵs ∼ N (0, 1) and a unit
was selected into the sample only when S = 1. The final
observational dataset comprised nobs = 10000 samples.

4.2.2. RESULTS

First, we aim to investigate the performance of the baselines
facing collider bias and evaluate whether our proposed ap-
proach can work well against collider bias. We compare
the CATE estimation results of the proposed method against
those of the baselines as shown in Table 1. In this table, we
only report the results under the setting of nrep = 500 for
clarity, and more results are shown in Table 2.

From the results, we have the following observations: (1)
For all the estimators, the overall performance on S = 0
samples is worse than that on S = 1 samples because of
the distribution shift problem caused by collider bias. (2)
Doubly Robust and Causal Forest show the worst perfor-
mance among all estimators because they employ multiple
models susceptible to collider bias, resulting in poor cumu-
lative performance of the final results. (3) The performance
of generative methods, including CEVAE, GANITE, and
TEDVAE, is poor because their generated results are based
on the collider-biased dataset, which reduces the confound-
ing bias but amplifies the collider bias. (4) Representation

learning methods, including BNN, TARNet, CFR, and DR-
CFR, perform better than the above baselines since they
neither accumulate nor amplify the collider bias. However,
the estimation errors are still significant because they can
only address confounding bias. (5) The data fusion methods
outperformed all baselines, as they address selection bias
directly. However, their performance still falls short com-
pared to our approach. It demonstrates that introducing a
generative model to learn the target population’s distribu-
tion and generate unbiased data is important and helpful.
(6) Applying C2GAM to the estimators achieves noticeable
performance improvement compared to all the baselines.
It demonstrates that our approach can practically address
collider bias and achieve more accurate CATE estimation.

Second, we aim to further evaluate the effectiveness of our
method under different nrep. Meanwhile, we are also inter-
ested in comparing the performance of the CATE estimators
across four scenarios: (1) using only Drep for fitting, (2)
using onlyDobs for fitting, (3) combiningDrep andDobs for
fitting, and (4) combining Dobs and samples generated by
C2GAM for fitting. We report the CATE estimation results
of BNN, CFR, and DRCFR under the above scenarios with
nrep ∈ {100, 200, 500} in Table 2.

From the results, we have the following observations: (1)
The performance of training solely on Dobs is the poorest.
The reason is that while using collider-biased observational
data alone may exhibit superior performance in predicting
factual outcomes due to overfitting, our evaluation focuses
on estimating the CATE, which necessitates accurate predic-
tions of both factual and counterfactual outcomes. Thus, be-
cause of the spurious correlation introduced by collider bias,
relying solely on biased observational data for CATE esti-
mation would result in inaccurate counterfactual outcome
predictions and consequently harm the CATE estimation.
(2) Using only Drep achieve better performance than other
scenarios except for using C2GAM when nrep = 500 be-
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Table 3. The results (mean ± std of
√
PEHE) of treatment effect estimation on real-world datasets. The best results are in bold and the

second best ones are underlined.

IHDP TWINS ACIC

METHOD S = 1 SAMPLES S = 0 SAMPLES S = 1 SAMPLES S = 0 SAMPLES S = 1 SAMPLES S = 0 SAMPLES

USING Drep 2.035±0.478 2.120±0.720 0.327±0.030 0.330±0.022 3.933±0.407 3.655±0.232

DOUBLY ROBUST 1.391±0.288 1.630±0.342 0.485±0.052 0.529±0.031 2.540±0.141 2.931±0.359
CAUSAL FOREST 1.305±0.095 1.490±0.114 0.378±0.021 0.421±0.010 4.178±0.141 4.388±0.121

CEVAE 3.078±0.129 4.397±0.140 0.512±0.031 0.537±0.043 4.328±0.261 5.442±0.202
GANITE 3.063±0.158 3.160±0.382 0.329±0.022 0.331±0.061 3.782±0.072 4.908±0.079
TEDVAE 4.143±0.022 4.154±0.037 0.435±0.038 0.438±0.031 5.004±0.166 6.130±0.186

BNN 1.970±0.465 2.086±0.441 0.332±0.014 0.384±0.054 2.320±0.724 2.773±0.556
TARNET 2.124±0.260 2.147±0.225 0.532±0.074 0.534±0.086 2.127±0.201 2.938±0.526
CFR 2.278±0.306 2.405±0.345 0.435±0.038 0.438±0.031 2.324±0.525 2.754±0.325
DRCFR 2.267±0.339 2.413±0.370 0.388±0.028 0.396±0.033 2.146±0.203 2.567±0.268
ES-CFR 4.058±0.025 4.248±0.035 0.391±0.027 0.660±0.100 3.826±0.169 4.627±0.062

IPSW 1.563±0.195 1.703±0.217 0.456±0.123 0.452±0.129 3.332±0.382 3.508±0.246
AIPSW 1.501± 0.195 1.714±0.354 0.413±0.043 0.441±0.106 3.343±0.236 3.345±0.347
CW 1.427±0.109 1.496±0.115 0.370±0.039 0.381±0.069 1.958±0.155 2.376±0.175

C2GAM+BNN 1.042±0.113 1.276±0.184 0.303±0.014 0.310±0.022 1.938±0.322 2.441±0.209
C2GAM+CFR 1.203±0.148 1.235±0.165 0.311±0.050 0.328±0.022 2.015±0.550 1.917±0.583
C2GAM+DRCFR 1.064±0.120 0.979±0.282 0.296±0.021 0.301±0.030 1.675±0.299 1.876±0.410

causeDrep has no collider bias. However, as nrep decreases,
the performance gets worse due to severe overfitting. (3)
Combining Drep and Dobs does not show performance im-
provement and even hurts the performance of CFR com-
pared to simply using Dobs, mainly for two reasons. The
first reason is that nrep is much smaller than nobs, so the
contribution of nrep is minimal. The second reason is that
though Drep is the same as the target population, the com-
bination of Drep and Dobs, on the contrary, is no longer
the target population. Therefore, such a combination only
brings a few S = 0 samples for fitting but cannot address
collider bias. (4) The performance of employing C2GAM
achieves the best performance under all settings. Moreover,
the performance improvement is still significant even under
nrep = 100. It proves the robustness of our method in sce-
narios where the representative data is hard to obtain. We
provide more ablation studies that demonstrate the necessity
of each module in C2GAM in Appendix C.

Finally, we want to verify whether C2GAM achieves its
objective, i.e., to generate S = 0 samples Dgen such that
combining with the observational dataDobs, the distribution
of which is the same as that of D. Therefore, we visualize
the distribution of Dgen, Dobs, and Drep, as shown in Fig-
ure 3. Since X is high-dimensional, we employed t-SNE
(Van der Maaten & Hinton, 2008) to reduce the dimension
of X. From the visualization result, we have the following
observations: (1) The T = 1 data in the three datasets is
concentrated around Y = 0, with no significant differences.
It is reasonable since the coefficient of T in the sample se-
lection function is −3, which means that T = 1 units are

less affected by the collider bias. (2) the T = 0 data in
Drep is scattered across the entire X and Y space. On the
contrary, the majority of T = 0 data in Dobs is distributed
above Y = 0. It shows that the collider bias causes a severe
distribution shift problem. (3) The T = 0 data in Dgen

compensates for the lack of data below Y = 0 in Dobs,
resulting in the distribution of the combined dataset similar
to that of Drep. It demonstrates that C2GAM can achieve
the objective of recovering the target distribution.

4.3. Experiments on Real-World Data

4.3.1. DATASETS

We conducted experiments on three benchmark datasets
obtained from real-world applications, i.e., IHDP2 (Shalit
et al., 2017), Twins3 (Louizos et al., 2017), and ACIC4

(Dorie et al., 2019) datasets. The ground truth CATE is
known in the IHDP and ACIC datasets because the outcomes
in these datasets are simulated. In the Twins dataset, we can
also obtain the ground truth CATE because the treatment in
this dataset is being the heavier twin, and the outcome of
the one twin can be regarded as the counterfactual outcome
of the other twin. All three datasets are only confounding
biased. Therefore, we manually introduce collider bias into
each dataset. The detailed information on the three datasets
and how the collider bias is introduced are in Appendix B.

2http://www.fredjo.com/
3https://github.com/vdorie/aciccomp/tree/master/2016
4https://users.nber.org/˜rdehejia/nswdata2.html.
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4.3.2. RESULTS

We compare the results of the proposed method against those
of the baselines and those of using only Drep as shown in
Table 3. For clarity, we only report the best results of using
Drep to fit different estimators. The results show that using
a combination of the observational data and samples gener-
ated by C2GAM for training achieves better performance
than the baselines on both S = 0 and S = 1 data. Note
that C2GAM achieves performance improvement regardless
of specific estimators. It demonstrates that the proposed
method can address collider bias in real-world scenarios and
achieve a more precise treatment effect estimation.

5. Conclusion
In this paper, we focus on the collider bias problem in treat-
ment effect estimation, which previous works failed to ad-
dress. We rethink collider bias from an out-of-distribution
perspective and propose a novel Coupled Counterfactual
Generative Adversarial Model (C2GAM) that leverages
small-scale representative data without collider bias to ad-
dress the collider bias problem in large-scale observation
data. C2GAM generates unselected samples using two gen-
erators and two discriminators, which can be jointly op-
timized. Combining the samples generated by C2GAM
with the observational data, we can fit any CATE estima-
tors to improve performance. One main limitation is that
C2GAM relies on generative models to generate unselected
samples in observations. Training generative models can
be challenging, especially when dealing with complex and
high-dimensional data with limited samples.
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A. Pseudo-Code
As stated in Section 3, we propose a novel C2GAM method, which consists of two generators that respectively generate the
missing S = 0 samples and the missing S labels, as well as two discriminators that align the distribution of the combined
generated S = 0 samples with the observational dataset to match that of the entire data space. By jointly optimizing the
generators and discriminators, C2GAM can effectively generate missing data following the original distribution. Specifically,
the pseudo-code of C2GAM is detailed in Algorithm 1, where Wass(·, ·). denotes the Wasserstein distance.

Algorithm 1 Coupled Counterfactual Generative Adversarial Model
Input: the observational dataset Dobs, the representative dataset Drep, distance threshold α.
Output: generated samples Dgen.
nobs ← the sample size of Dobs.
ngen ← nobs.
d← +∞.
initialization of parameters in Gs, Gd, Do, Du.
while d ≥ α and training losses of Gs, Gd, Do, Du do not converge do

use mini-batch gradient descent to optimize Gs, Gd, Do, Du by

min
Do,Du

− E{x,t,y}∼Dobs
[log(Do(x, t, y))]− E{x,t,y}∼Drep

[Gs(x, t, y) · log(1−Do(x, t, y))]

− Ez∼N (0,1)ngen [Gs(Gd(z)) · log(1−Do(Gd(z)))]− Ez∼N (0,1)ngen [log(1−Du(Gd(z))]

− Ez∼N (0,1)ngen [(1−Gs(Gd(z))) · log(Du(Gd(z)))]− E{x,t,y}∼Drep
[(1−Gs(x, t, y)) · log(Du(x, t, y))]

min
Gs,Gd

Ez∼N (0,1)ngen [(1−Gs(Gd(z))) · log(Du(Gd(z)))] + E{x,t,y}∼Drep
[Gs(x, t, y) · log(1−Do(x, t, y))]

+ E{x,t,y}∼Drep
[(1−Gs(x, t, y)) · log(Du(x, t, y))] + Ez∼N (0,1)ngen [Gs(Gd(z)) · log(1−Do(Gd(z)))]

+ Ez∼N (0,1)ngen [Gs(Gd(z)) · log(1−Do(Gd(z)))] + Ez∼N (0,1)ngen [log(1−Du(Gd(z))]

+ Ez∼N (0,1)ngen [(1−Gs(Gd(z))) · log(Du(Gd(z)))].

n0 ← the count of units in Drep with Gs(x, t, y) = 0.
n1 ← the count of units in Drep with Gs(x, t, y) = 1.
ngen ← nobs·n0

n1
.

Dgen ← {Gd(zi ∼ N (0, 1))}ngen

i=1 .
d←Wass(P{x,t,y}∼Drep

(x, t, y),P{x,t,y}∼Dobs∪Dgen
(x, t, y)).

min
Gd

d.

end while
n0 ← the count of units in Drep with Gs(x, t, y) = 0.
n1 ← the count of units in Drep with Gs(x, t, y) = 1.
ngen ← nobs·n0

n1
.

Dgen ← {Gd(zi ∼ N (0, 1))}ngen

i=1 .
return Dgen

B. Introduction to the Real-World Datasets
IHDP dataset: The original representative data of the Infant Health and Development Program (IHDP) aims to evaluate the
effect of specialist home visits on the future cognitive test scores of premature infants (Brooksgunn et al., 1992). Following
previous studies (Hill, 2011; Shalit et al., 2017), we removed a non-random subset of the treated group and used simulated
outcomes to introduce confounding bias. To obtain the representative data, we randomly selected 60 samples from the
dataset. To introduce collider bias into the IHDP dataset, we set S = 0 for T = 0 units that the mother boozes and the
infant’s score is lower than the mean value. We sampled 557 units from the S = 1 data as the observational dataset.
Intuitively, unlike the treated group, which can carefully design and regularly follow up to ensure the collection of effective
test results, the control group is more likely to have sample selection bias. For those mothers with boozing problems and
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Table 4. The results (mean ± std of
√
PEHE) of different generative approaches. The best results are in bold.

METHOD S = 1 SAMPLES S = 0 SAMPLES

C2GAM 0.984±0.074 1.083±0.086
W/O Gs 1.453±0.649 1.449±0.789
W/O Gd 1.649±0.369 1.638±0.384
W/O Do 1.205±0.434 1.506±0.680
W/O Du 1.595±0.410 1.569±0.565

whose children have weaker cognitive abilities, it is more likely that they will not take their children to participate in the
cognitive test, resulting in collider bias. The final observational dataset comprises 557 units (139 treated, 418 control), and
the representative dataset comprises 60 units (8 treated, 52 control) with 25 pre-treatment variables related to the infants and
their families.

Twins dataset: The original data of twins birth in the USA between 1989-1991 aims at evaluating the effect of low birth
weight on the mortality of infants in their first year of life (Almond et al., 2005). Following Louizos et al. (2017), we selected
the twins whose gender is the same and weight is less than 2000kg into records. The treatment is being the heavier one in
the twins, and the outcome is the one-year mortality. Because both treated (the heavier one in the twin) and control (the
lighter one in the twin) outcomes are observed, the ground truth CATE is available in the Twins dataset. We used the same
simulation as previous works to introduce confounding bias (Louizos et al., 2017), and we randomly selected 180 samples
as our representative data. To introduce collider bias into the dataset, we set S = 0 for T = 1 units that both the mother uses
tobacco and the twin is alive. We sampled 3000 units from the S = 1 data as our observational dataset. Intuitively, parents
seldom take relatively healthy infants to the hospital, so it is more difficult to record the data of these infants, resulting
in collider bias. The final observational dataset comprises 3000 units (1348 treated, 1652 control), and the representative
dataset comprises 180 units (94 treated, 86 control) with 48 pre-treatment variables related to the twins and their families.

ACIC datasets: The 2016 Atlantic Causal Inference Challenge (ACIC) (Dorie et al., 2019) contains a series of causal
benchmark datasets with diverse data generation processes. We randomly selected 20 settings from all the data generation
processes and conducted experiments on them. These datasets are confounding biased but have no collider bias. Therefore,
we used the same way as stated in Section 4.2.1 to introduce collider bias into them where nrep = 500 and nobs = 10000.

C. Ablation Studies of Each Module in C2GAM
To further demonstrate the necessity of each module in the dual framework of C2GAM, we compare our C2GAM with the
following ablation version of C2GAM:

• C2GAM w/o Gd, uses only Gd to generate samples from Drep to estimate CATE,
• C2GAM w/o Gd, uses only Gs to generate missing S labels for IPSW (Cole & Stuart, 2010),
• C2GAM w/o Do, uses only Du to optimize the generators,
• C2GAM w/o Do, uses only Do to optimize the generators,

Note that we use the generated S labels by C2GAM w/o Gd to estimate sample selection probability for estimating CATE
using IPSW (Cole & Stuart, 2010), which reweights each observational sample with its inverse probability of sample
selection. Then, we conduct the experiments on the synthetic datasets as stated in Section 4.2.1 and compare the performance
among the above different generative approaches. For simplicity, we only report the results of plugging the above approaches
into CFR under nrep = 500. The experimental results shown in Table 4 show that each module is essential for achieving
high performance in C2GAM. Removing any of the modules leads to a noticeable decrease in performance. The observations
and detailed analysis of each module are presented below.

Representative data is limited, and observational data can provide more information. Compared the results of C2GAM
with C2GAM without Gs, we can find that using only Gs to generate samples from Drep suffers from limited information
and cannot provide significant performance improvement compared to using the original data in Drep as shown in Table 2.
Thus, we must use observational data to supplement more observations for generating unselected samples.

Both generators are necessary, and the absence of either generator will result in the other generator not working.
C2GAM without Gd and C2GAM without Gs both result in a performance decrease. The reason that Gd is necessary for Gs
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is that since we only have the information of S = 1 data, we need S = 0 data generated by Gd to help recover P(S) of the
target population. The reason that Gs is necessary for Gd is that because the ground truth S = 0 data is unavailable, we
need Gs to generate S = 0 labels such that we can use the labeled S = 0 samples in Drep as approximations. Therefore, the
results prove the necessity of using both generators.

Both discriminators are necessary for matching the distributions of D and Dobs ∪ Dgen. The performance of C2GAM
without either discriminator decreases for the following reasons. If we only use Du to match the distribution of the generated
samples and that of data from Drep with generated S = 0 labels, since the two distributions are both from the generators but
not already known in Drep and Dobs, the performance of Du depends entirely on the performance of the generators, which
itself depends on the performance of Du. Therefore, neither the generators nor Du can be well-optimized. If we only use Do

to match the distribution of Dobs and that of data from Drep with generated S = 1 labels, there are not any constraints on
samples generated by Gd, resulting in the performance of Gd becoming unpredictable. What is worse, since Gd highly
possibly generate incorrect S = 0 samples, Gs also cannot work well because it needs the generated samples to recover
P(S). Therefore, the results prove the necessity of using both discriminators.

The above observations and analysis demonstrate that the design of C2GAM is reasonable, and each module in C2GAM is
practical and necessary.

D. Discussion on the Differences between C2GAM and Previous Generative Model Based Causal
Inference Methods

Our method is different from previous generative-model-based causal methods (Louizos et al., 2017; Yoon et al., 2018;
Zhang et al., 2021) in the following aspects:

1) The solved problems are different. Previous methods use generative models to solve confounding bias, while our
work focuses on collider bias, which was overlooked in previous works.

2) The targets generated by the generated models are different. Previous methods use generative models to generate
counterfactual outcomes (Y (1 − t)) to address confounding bias, while our work aims to use generative models to
generate the S = 0 data (X, T, Y ) that were not selected into the observational samples. To achieve this goal, we
introduce an additional representative dataset and use generative models to generate missing S labels in representative
data to generate S = 0 samples better.

3) The termination conditions are different. Previous methods only use a single generative model to generate
counterfactual samples, and their termination conditions mainly are the same as those of the based generative models,
such as GAN. However, our proposed model consists of two coupled generators and discriminators. Therefore, in
addition to meeting the primary constraints of GAN, our model also needs to ensure that the distribution of the final
generated S = 0 samples plus the original observational samples is the same as the target population distribution.
Therefore, the termination condition also involves constraints of the distance between the above distributions.

To the best of our knowledge, we are the first to introduce GANs to solve collider bias, which is entirely different from the
previous works using GANs to solve confounding bias.
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