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Abstract

Aiming at facilitating a real-world, ever-evolving and scalable autonomous driving1

system, we present a large-scale benchmark for standardizing the evaluation of2

different self-supervised and semi-supervised approaches by learning from raw3

data, which is the first and largest benchmark to date. Existing autonomous driving4

systems heavily rely on ‘perfect’ visual perception models (e.g., detection) trained5

using extensive annotated data to ensure the safety. However, it is unrealistic to6

elaborately label instances of all scenarios and circumstances (e.g., night, extreme7

weather, cities) when deploying a robust autonomous driving system. Motivated8

by recent powerful advances of self-supervised and semi-supervised learning, a9

promising direction is to learn a robust detection model by collaboratively exploit-10

ing large-scale unlabeled data and few labeled data. Existing dataset (e.g., KITTI,11

Waymo) either provides only a small amount of data or covers limited domains with12

full annotation, hindering the exploration of large-scale pre-trained models. Here,13

we release a Large-Scale Object Detection benchmark for Autonomous driving,14

named as SODA10M, containing 10 million unlabeled images and 20K images15

labeled with 6 representative object categories. To improve diversity, the images16

are collected every ten seconds per frame within 32 different cities under different17

weather conditions, periods and location scenes. We provide extensive experiments18

and deep analyses of existing supervised state-of-the-art detection models, popular19

self-supervised and semi-supervised approaches, and some insights about how to20

develop future models. We show that SODA10M can serve as a promising pre-21

training dataset for different self-supervised learning methods, which gives superior22

performance when finetuning autonomous driving downstream tasks. This bench-23

mark will be used to hold the ICCV2021 SSLAD challenge. The data and more24

up-to-date information have been released at https://soda-2d.github.io.25

1 Introduction26

Autonomous driving technology has been significantly accelerated in recent years because of its great27

potential in reducing accidents, saving human lives and improving efficiency. As an essential module28

in the visual perception system, object detection in road images plays one of the most critical roles29

for autonomous driving.30

Performances of current object detection approaches, however, may be limited by the currently31

available datasets [7, 64, 49], due to the drawbacks of existing benchmarks. First, the diversity of data32
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Figure 1: Examples of challenging environments in our dataset. The first three columns of images
are from SODA10M labeled set, and the last column is from the unlabeled set. Our dataset includes a
diverse set of 10 million images under different weather conditions, periods and locations.

sources is lacking. For example, the largest self-driving dataset in existence, Waymo Open [49], was33

collected from only three cities, covering only a few scenarios and circumstances. Models trained34

on these datasets may overfit to specific scenarios or characteristics. Second, existing datasets are35

usually fully annotated but limited in scale due to the cost of data annotation. They are not able to36

support the exploration of autonomous driving with huge volumes of unlabeled data.37

Numerous self-supervised techniques [4, 19, 21, 5] have been developed for vision tasks to solve38

this problem, showing competitive or even superior performance compared with supervised learning.39

The main idea is to learn representation from a large set of unlabeled images via pretext tasks40

rather than annotation. Research efforts have also been devoted to semi-supervised learning [44,41

41, 65, 31], such as self training and consistency regularization, which collaboratively exploits both42

labeled data and large-scale unlabeled data to boost performance. Existing self-supervised and semi-43

supervised methods are mainly evaluated on ImageNet[8] and MSCOCO[37], where data labels are44

artificially removed for demonstration. There is no available benchmark for investigating advanced45

self-supervised and semi-supervised techniques for autonomous driving with real large-scale data.46

To boost the development of real-world autonomous driving systems, we develop the first and largest-47

Scale Object Detection benchmark for Autonomous driving (SODA10M) that contains 10 million48

road images. Our SODA10M dataset can be distinguished from existing datasets from three aspects,49

including scale, diversity and generalization.50

Scale. As shown in Table 1, SODA10M is significantly larger than existing autonomous driving51

datasets like BDD100K [64] and Waymo [49]. It contains 10 million images of road scenes, which52

is ten times more than Waymo [49]. Specifically, 20K images with tightly fitting high-quality53

2D bounding boxes while 10M images are unlabeled. All images contain detailed geographical,54

chronological and weather information.55

Diversity. As shown in Fig. 1, SODA10M comprises images covering four seasons in 32 cities under56

different scenarios (e.g., urban, rural) and circumstances (e.g., night, rain, snow), while most present57

self-driving datasets [67, 64, 49] are less diverse. The changing scenarios and circumstances result58

in significant domain gaps in SODA10M. Specifically, the labeled training set contains only one59

domain, while the validation set and the unlabeled set contain 18 and 48 domains, respectively, which60

can serve as a challenging benchmark for unsupervised or semi-supervised domain adaptation.61

Generalization. The largest scale and diversity ensure SODA10M’s superior generalization ability as62

a pre-training dataset over all existing autonomous-driving datasets. Observed from evaluations of63

existing self-supervised algorithms, the representations learned from SODA10M unlabeled set are64

superior to that learned from other driving datasets like Waymo [49], i.e., 38.9% vs. 37.1% in mAP65

for object detection task on SODA10M labeled set and 75.2% vs. 73.8% for semantic segmentation66

task on Cityscapes [7] when using MoCov1 [21] (see Sec. 4.3 for more details).67
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Table 1: Comparison of dataset statistics with existing benchmarks. Night/Rain indicates whether the dataset
has domain information related to night/rainy scenes. Video represents whether the dataset provides video format
or detailed chronological information. Note that only 93K images of nuScenes are labeled with 2D format.
SODA10M, which focuses on self/semi-supervised learning, contains 10M unlabeled and 20K labeled images.

Dataset Images Cities Night/Rain Video Categories Boxes Resolution

Caltech Pedestrian [10] 249K 5 7/7 3 1 347K 640×480
KITTI [14] 15K 1 7/7 7 3 80K 1242×375
Citypersons [67] 5K 27 7/7 7 1 35K 2048×1024
BDD100K [64] 100K 4 3/3 3 10 1.8M 1280×720
nuScenes [1] 1.4M 2 3/3 3 23 0.8M 1600×900
Waymo Open [49] 1M 3 3/3 3 3 9.9M 1920×1280

SODA10M (Ours) 10M 32 3/3 3 6 149K 1920×1080

We provide experiments and in-depth analysis of existing supervised detection models, prevailing68

self-supervised and semi-supervised approaches on SODA10M. Observation can be made that simple69

self-supervised methods (e.g., MoCo-v1 [21]) achieve better results than the dense contrastive ones70

(e.g., DenseCL [56]) on SODA10M unlabeled set and semi-supervised methods work much better71

than self-supervised methods, even with a smaller set of unlabeled data (1-million vs. 5-million).72

This benchmark will be used to hold the ICCV2021 SSLAD challenge, which aims to investigate73

current ways of building next-generation industry-level autonomous driving systems by resorting to74

self-supervised and semi-supervised learning. The SODA10M dataset and more up-to-date related75

information have been released and will be maintained weekly.76

2 Related Work77

Driving datasets have gained enormous attention due to the popularity of autonomous self-driving.78

Several datasets focus on detecting specific objects such as pedestrians [10, 67]. Cityscapes [7]79

provides instance segmentation on sampled frames, while BDD100K [64] is a diverse dataset under80

various weather conditions, time and scene types for multitask learning. For 3D tasks, KITTI81

Dataset [15, 14] was collected with multiple sensors, enabling 3D tasks such as 3D object detection82

and tracking. Waymo Open Dataset [49] provides large-scale annotated data with 2D and 3D83

bounding boxes, and nuScenes Dataset [1] provides rasterized maps of relevant areas.84

Supervised learning methods for object detection can be roughly divided into single-stage and85

two-stage models. One-stage methods [36, 12, 38] directly outputs probabilities and bounding box86

coordinates for each coordinate in feature maps. On the other hand, two-stage methods [22, 45, 35]87

use a Region Proposal Network (RPN) to generate regions of interests, then each proposal is sent to88

obtain classification score and bounding-box regression offsets. By adding a sequence of heads trained89

with increasing IoU thresholds, Cascade RCNN [2] significantly improves detection performance.90

With the popularity of the vision transformer, more and more transformer-based object detectors91

[55, 40] have been proposed.92

Self-supervised learning approaches can be mainly divided into pretext tasks [9, 66, 43, 42] and93

contrastive learning [21, 5, 4, 19]. Pretext tasks often adopt reconstruction-based loss functions [9, 43,94

17] to learn visual representation, while contrastive learning is supposed to pull apart negative pairs95

and minimize distances between positive pairs, achieved by training objectives such as InfoNCE [53].96

MoCo [21, 5] constructs a queue with a large number of negative samples and a moving-averaged97

encoder, while SimCLR [4] explores the composition of augmentations and the effectiveness of98

non-linear MLP heads. SwAV [3] introduces cluster assignment and swapped prediction to be more99

robust about false negatives, and BYOL [19] demonstrates that negative samples are not prerequisite100

to learn meaningful visual representation. For video representation learning, early methods are101

based on input reconstruction [24, 25, 32, 33], while others define different pretext tasks to perform102

self-supervision, such as frame order prediction [34], future prediction [48, 54] and spatial-temporal103

jigsaw [30]. More recently, contrastive learning is integrated to learn temporal changes [18, 63].104

Semi-supervised learning methods mainly consist of self training [61, 59] and consistency reg-105

ularization [46, 65, 20]. Consistency regularization tries to guide models to generate consistent106

predictions between original and augmented inputs. In the field of object detection, previous works fo-107

cus on training detectors with a combination of labeled, weaky-labeled or unlabeled data [26, 50, 13],108

while recent works [28, 47] train detectors with a small set of labeled data and a larger amount109
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of unlabeled images. Specifically, STAC [47] pre-trains the object detector with labeled data and110

generate pseudo labels on unlabeled data, which are used to finetune the pre-trained model. Unbiased111

Teacher [39] further improves the process of generating pseudo labels via teacher-student mutual112

learning.113

3 SODA10M114

We collect and release a large-scale 2D dataset to promote significant progress of self-supervised and115

semi-supervised learning in autonomous driving. Our SODA10M contains 10M unlabeled images116

and 20K labeled images, which is split into training(5K), validation(5K) and testing(10K) sets.117

3.1 Data Collection118

The image collection task is distributed to the tens of thousands of taxi drivers in crowdsourcing.119

They have to use the mobile phone or driving recorder (1080P+) to obtain images every ten seconds120

per frame. Horizon needs to be kept at the center of the image, and the occlusion inside the car should121

not exceed 15% of the whole picture. Images should be obtained in diverse weather conditions,122

periods, locations and cities to achieve more diversity. After receiving each batch of images from the123

suppliers, a random 5% of pictures will be selected for manual verification. Batches of images with a124

pass rate below 95% will be returned for rectification.125

Driving hours. The span of driving time for SODA10M (collected every ten seconds per frame) is126

27833 hrs, which is much higher than the current large-scale datasets (5.5 hrs of nuScenes [1], 6.4127

hrs of Waymo [49] and 1111.1 hrs of BDD100K [64]).128

Data Split. We carefully select 5K training set, 5K validation set, 10K testing set with disjoint129

sequence id (same sequence id denotes the corresponding images are taken by same car on same day).130

Then we remove the images with same sequence id as the labeled set and randomly select 10-million131

images to construct the unlabeled part of SODA10M. Considering the convenience for downloading132

and using, we further divide 10-million unlabeled images into 10 splits by time sequence, with each133

split containing 1-million images.134

Data Protection. The driving scenes are collected in permitted areas. We comply with the local135

regulations and avoid releasing any localization information, including GPS and cartographic in-136

formation. For privacy protection, we actively detect any object on each image that may contain137

personal information, such as human faces and license plates, with a high recall rate. Then, we blur138

those detected objects to ensure that no personal information is disclosed. Detailed licenses, terms of139

use and privacy are listed in Appendix A.140

3.2 Annotation141

Image tags (i.e., weather conditions, location scenes, periods) for all images and 2D bounding boxes142

for labeled parts should be annotated for SODA10M. To ensure high quality and efficiency, the whole143

annotation progress can be divided into the following three different steps.144

Pre-annotation: In order to ensure efficiency, a multi-task detection model, which is based on Faster145

RCNN [45] and searched backbone [29, 62], is trained on millions of Human-Vehicle images with146

bounding-box annotation and generate coarse labels for each image first.147

Annotation: Based on pre-annotated labels, annotators keep the accurate ones and correct the148

inaccurate labels. Each image is distributed to different annotators, and the images with the same149

annotation will be passed to the following process; otherwise, they would be distributed again. All150

annotators must participate in several courses and pass the examination for standard labeling.151

Examination: Senior annotators with rich annotation experience will review the image annotations152

in the second step, and the missing or incorrectly labeled images will be sent back for re-labeling.153

We exhaustively annotated car, truck, pedestrian, tram, cyclist and tricycle with tightly-fitting 2D154

bounding boxes in 20K images. The bounding-box label is encoded as (x, y, w, h), where x and y155

represent the top-left pixel of the box, and w and h represent the width and length of the box.156

3.3 Statistics157

Labeled Set. The labeled set contains 20K images with full annotation. There are 5K images for158

training, 5K images for validation and 10K images for testing. As shown in Fig. 2, the training set159
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Figure 2: Statistics of the labeled set. (a) Number of images in each city. (b) Number of images in
each location. (c) Number of images in each weather condition. (d) Number of images in each period.
(e) Number of instances in each category.

only contains images obtained in city streets of Shanghai with clear weather in the daytime, while the160

validation and testing sets have three weather conditions, locations, cities and two different periods of161

the day. Considering the small gap between domains in different cities, we define 18 fine-grained162

domains through the pairwise combination of the remaining domains. The number of images in each163

fine-grained domain in the validation set and testing set are shown in Appendix D.164

Unlabeled Set. The unlabeled set contains 10M images with diverse attributes. As shown in Fig. 3(a),165

the unlabeled images are collected among 32 cities, covering a large part of eastern China. Compared166

with the labeled set, the unlabeled set contains not only many more cities but also additional scenes167

such as residential, snowy and dawn/dusk, according to the gray part in Fig. 3(b), Fig. 3(c) and Fig.168

3(d). The rich diversity in SODA10M unlabeled set ensures the generalization ability to transfer to169

other downstream autonomous driving tasks as a pre-training or self-training dataset.
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Figure 3: Statistics of the unlabeled set. (a) Geographical distribution of our data sources. SODA10M
is collected from 32 cities, and darker color indicates greater quantity. (b) Number of images in each
location. (c) Number of images in each weather condition. (d) Number of images in each period.

170

Diversity Comparison. We compare the diversity between SODA10M and other large-scale datasets171

(including nuScenes [1], Waymo [49] and BDD100K [64]) in period, weather and location fields.172

As shown in Table 2, our SODA10M is more diverse in all fields compared with nuScenes [1] and173

Waymo [49]. Although BDD100K [64] achieves competitive diversity with SODA10M in above174

three fields, equipped with more data (10M vs. 100K) and more cities where the data is collected175

from (32 vs. 4), SODA10M can better serve as the dataset and benchmark which focuses on solving176

self/semi-supervised learning problems.177
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Table 2: Diversity comparison between SODA10M and other datasets (i.e., nuScenes [1], Waymo [49] and
BDD100K [64]), where ’-’ denotes for not having annotations in this field.

Dataset Period Weather Location

nuScenes [1] Day: 88.3%, Night: 11.7% Sunny: 80.4%, Rain: 19.6% -

Waymo [49] Day: 80.7%, Night: 9.8%,
Dawn/Dusk: 9.5% Sunny: 99.4%, Rain: 0.6% -

BDD100K [64] Daytime: 52.6%, Night: 40.1%,
Dawn/Dusk: 7.3%

Clear: 60.6%, Overcast: 14.2%,
Rainy: 8.1%, Snowy: 8.9%,

Partly cloudy: 8.0%, Foggy: 0.2%

City street: 62.3%, Highway: 25.1%,
Residential: 11.8%, Parking lot: 0.5%,

Gas stations: 0.1%, Tunnel: 0.2%

SODA10M Daytime: 65.4%, Night: 26.9%,
Dawn/Dusk: 7.7%

Clear: 55.7%, Overcast: 33.6%,
Rainy: 8.5%, Snowy: 2.2%

City street: 70.7%, Highway: 12.3%,
Country road: 12.1%, Residential: 4.9%

4 Benchmark178

As SODA10M is regarded as a new autonomous driving benchmark, we provide the fully supervised179

baseline results based on several representative one-stage and two-stage detectors. With the massive180

amount of unlabeled data, we then study the generalization ability of state-of-the-art self-supervised181

and semi-supervised methods based on SODA10M and give insights into developing future models.182

Methods used for building this benchmark are representative samples of Fig. 4. To make the183

experiments easily reproducible, the code of all used methods has been open-sourced, and detailed184

experiment settings and training time comparisons are provided in Appendix B.
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Figure 4: Overview of different methods used for building SODA10M benchmark. Xl and Xu denote
for labeled set and unlabeled set. q, k represent for different data augmentations. For semi-supervised
learning methods, the labeled set is also involved in training progress with supervised loss.

185

4.1 Basic Settings186

We utilize Detectron2 [57] as our codebase for the following experiments. Following the default187

settings in Detectron2, we train detectors with 8 Tesla V100 with a batch size 16. For the 1x schedule,188

the learning rate is set to 0.02, decreased by a factor of 10 at 8th, 11th epoch of total 12 epochs,189

while 2x indicates 24 epochs. Multi-scale training and SyncBN are adopted in the training process190

and precise-BN is used during the testing process. The image size in the testing process is set to191

1920× 1080. Unless specified, the algorithms are tested on the validation set of SODA10M. COCO192

API [37] is adopted to evaluate the detection performance for all categories.193

4.2 Supervised Learning Benchmark194

As shown in Table 3, the detection results of four popular object detectors (RetinaNet [36], Faster195

RCNN [45], Cascade RCNN [2] ) are compared. We observe that in the 1x schedule, Faster RCNN196
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exceeds RetinaNet in mAP by 5.3% with a larger number of parameters, which is consistent with197

the traditional difference of single-stage and two-stage detectors. Equipped with a stronger head,198

Cascaded RCNN can further surpass Faster RCNN by a large margin (3.9%). Observation can also199

be made that training with a longer schedule can further improve the performance.200

Table 3: Detection results(%) of baseline models on SODA10M dataset.

Model Split mAP Pedestrian Cyclist Car Truck Tram Tricycle Params

RetinaNet [36] 1x Val 32.7 23.9 37.3 55.7 40.0 36.6 3.0 36.4M
RetinaNet [36] 2x Val 35.0 26.6 39.4 57.2 41.8 38.2 6.5 36.4M
RetinaNet [36] 2x Test 34.0 24.9 36.9 57.5 44.7 32.1 7.8 36.4M

Faster RCNN [45] 1x Val 37.9 31.0 43.2 58.3 43.2 41.3 10.5 41.4M
Faster RCNN [45] 2x Val 38.7 32.5 43.6 58.9 43.7 40.8 12.6 41.4M
Faster RCNN [45] 2x Test 36.7 29.5 40.1 59.7 47.2 32.3 11.7 41.4M

Cascade RCNN [2] 1x Val 41.9 34.6 46.7 61.9 47.2 45.1 16.0 69.2M
Cascade RCNN [2] 1x Test 39.4 31.9 43.4 62.6 50.0 36.8 11.9 69.2M

Precision recall (PR) curves (from COCO eval API [37]) of each category for Faster RCNN 1x are201

shown in Fig. 5. Observation can be made that for categories with a small number of instances202

(Tricycle, Tram and Pedestrian), the error types are mainly from many false positives (FP) with203

class confusion, which is shown in the green part. On the contrary, for the primary category like204

Car, FP has little impact on the performance. Note that each category in SODA10M is a singleton205

supercategory so its Sim result is identical to Loc. We also illustrate the PR curves of Cascade RCNN206

1x and find that the error type is basically consistent with Faster RCNN while Cascade RCNN shows207

stronger detection performance.208
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Figure 5: Precision recall curves of each category for Faster RCNN 1x and Cascaded RCNN 1x.

4.3 Self-Supervised Learning Benchmark209

Self-supervised learning, especially contrastive learning methods, has raised attraction recently210

as it learns effective transferable representations via pretext tasks without semantic annotations.211

Traditional self-supervised algorithms [11, 42, 16] are usually pre-trained on ImageNet, while recent212

works [6, 51] have shown the consistency between upstream and downstream data distribution has a213

positive impact on the final performance. Therefore, we mainly compare the performance of existing214

mainstream self-supervised methods pre-trained on ImageNet and autonomous driving datasets,215

including SODA10M, BDD100K [64], nuScenes [1] and Waymo [49].216

We follow the default settings in OpenSelfSup1 to train six state-of-the-art standard self-supervised217

learning methods, including MoCo-v1 [21], MoCo-v2 [5], SimCLR [4], SwAV [3], DetCo [58],218

DenseCL [56], and evaluate their performance by fine-tuning the pre-trained models on the SODA10M219

labeled data and other self-driving datasets like BDD100K [64] and Cityscapes [7] to verify the220

1https://github.com/open-mmlab/OpenSelfSup
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Table 4: Detection results(%) of self-supervised models evaluated on SODA10M labeled set, Cityscapes [7]
and BDD100K [64]. mIOU(C), mIOU(B) denotes for semantic segmentation performance on Cityscapes and
BDD100K respectively. † represents for training with additional 5-million data. FCN-16s is a modified FCN
with stride 16 used in MoCo [21]. 1x and 90k denote finetuning 12 epochs and 90k iterations, respectively.

Faster-RCNN 1x RetinaNet 1x FCN-16s 90k

Pre-trained
Dataset

Method mAP AP50 AP75 mAP AP50 AP75 mIOU
(C)

mIOU
(B)

random init 23.0 40.0 23.9 11.8 20.8 12.0 65.3 50.7
super. IN 37.9 61.6 40.4 32.7 53.9 33.9 74.6 58.8

ImageNet [8]

MoCo-v1 [21] 39.0 62.0 41.6 33.8 54.9 35.2 75.3 59.7
MoCo-v2 [5] 39.5 62.7 42.4 35.2 56.4 36.8 75.7 60.0
SimCLR [4] 37.0 60.0 39.4 29.0 49.0 29.3 75.0 59.2
SwAV [3] 35.7 59.9 36.9 26.4 45.7 26.3 73.0 57.1
DetCo [58] 38.7 61.8 41.3 33.3 54.7 34.3 76.5 61.6
DenseCL [56] 39.9 63.2 42.6 35.7 57.3 37.2 75.6 59.3

BDD100K [64] MoCo-v1 [21] 37.1 60.1 39.2 31.1 51.6 32.1 74.5 57.9
MoCo-v2 [5] 37.8 60.2 40.4 31.6 51.8 32.9 74.4 57.5

nuScenes [1] MoCo-v1 [21] 36.2 58.9 38.1 29.3 49.2 29.9 73.6 57.0
MoCo-v2 [5] 36.8 59.6 39.3 30.8 51.2 31.7 73.8 56.8

Waymo [49]
MoCo-v1 [21] 37.1 59.8 39.3 31.2 51.8 32.3 73.8 57.0
MoCo-v2 [5] 37.1 59.7 39.4 31.4 52.0 32.4 73.5 56.6
DetCo [58] 36.3 59.1 38.4 29.4 49.4 29.9 74.6 58.2

SODA10M

MoCo-v1 [21] 38.9 62.1 41.2 33.4 54.4 34.6 75.2 59.3
MoCo-v1† [21] 39.0 62.6 41.9 33.8 55.2 35.2 75.5 59.5
MoCo-v2 [5] 38.7 61.5 41.4 33.3 54.1 34.7 74.2 58.2
MoCo-v2† [5] 38.6 61.3 41.4 33.2 54.6 34.6 74.5 58.9
SimCLR [4] 35.9 59.5 37.4 28.7 48.7 29.1 73.3 57.3
SimCLR† [4] 37.1 60.9 39.8 30.5 51.3 31.2 73.5 58.8
SwAV [3] 33.4 57.1 34.5 24.5 43.2 24.6 68.6 54.2
DetCo [58] 37.7 60.6 40.1 32.4 54.1 33.4 74.1 59.3
DenseCL [56] 38.1 60.8 40.5 33.6 54.8 35.0 75.2 57.4

Video MoCo-v1 [21] 34.9 57.8 36.6 27.9 47.3 28.2 73.6 57.3
Video MoCo-v2 [5] 34.8 57.0 36.5 28.9 48.6 29.5 74.4 56.8
Video VINCE [18] 34.9 57.7 36.9 27.6 47.1 28.0 72.6 57.4
Video VINCE+Jigsaw [18] 35.5 58.1 37.0 28.2 48.1 28.6 74.1 56.9

generalization ability. For video-based self-supervised learning, MoCo-v1 [21], MoCo-v2 [5] and221

VINCE [18] are adopted. To ensure fairness, we apply the same data augmentation with VINCE to222

MoCo-v1 and MoCo-v2 to exploit temporal information and extra jigsaw augmentation to VINCE223

for better results. Due to the limit of hardware resources, we only use a 5-million unlabeled subset in224

each experiment by default, while we also make full use of the other 5-million subset in a sequential225

training manner, following Hu et al. [27]. Specifically, the model pre-trained on the first subset will226

be used as initialization to continue pre-training on the second one. We adopt 3700-epoch, 220-epoch,227

325-epoch and 60-epoch pre-training on BDD100K [64], nuScenes [1] and Waymo [49] and SODA228

unlabeled set for image-based methods respectively, to maintain similar GPU hours with pre-training229

200 epochs on ImageNet for fair comparison. Video-based approaches are trained for 800 epochs by230

considering time limit.231

ResNet-based Methods. We pre-train on three different datasets (ImageNet, Waymo and SODA10M232

unlabeled set), and then report the transfer performance on three downstream tasks (detection on233

SODA10M labeled set, semantic segmentation on Cityscapes and BDD100K) in Table 4. For different234

downstream detection tasks listed in this table, the MoCo methods (MoCo-v1 [21], MoCo-v2 [5])235

and dense contrastive methods (DenseCL [56], DetCo [58]) can achieve better results, while the236

other methods perform even worse than ImageNet fully supervised pre-train. We also observe dense237

contrastive methods show excellent results when pre-trained on ImageNet, but relatively poor on238

SODA10M unlabeled set. Experiments show that the model pre-trained on ImageNet performs239

equivalent or better than the one in SODA10M, which is because the existing self-supervised methods240

are often designed for simple scenes like ImageNet and fail to deal with the complex driving scene.241

By comparing the results of the same self-supervised algorithm on other autonomous driving datasets,242

we verify that the diversity of SODA10M data can bring better generalization ability. Besides, more243

pre-training iterations will bring better performance. The above results inspire us to design suitable244

self-supervised tasks or different pre-training strategies according to complex driving scenarios. At245
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the same time, the diversity of SODA10M unlabeled set can also ensure that SODA10M is a superior246

upstream pre-training dataset. More downstream tasks (e.g., object detection, instance segmentation)247

and comparisons on 2x schedule are illustrated in Appendix C.248

Video-based Methods. Since our unlabeled set has detailed timing information for videos, we also249

transform the unlabeled set into video frames whose interval is 10 seconds and perform contrastive250

learning on these sequential frames. We use the same unlabeled set with 5-million images as ResNet-251

based models. After transformation, we get around 90K videos. We train several popular algorithms252

with ResNet-50 backbone, and results are shown at the bottom of Table 4. Since augmentations in253

MoCo-v1 and MoCo-v2 are the same as VINCE, their performances are close to each other. With the254

stronger augmentation jigsaw, VINCE performs better on Faster RCNN.255

Transformer-based Methods. In addition to pre-training with the traditional ResNet [23] backbone,256

we also provide the self-supervised result of transformer-based backbone on SODA10M dataset. We257

choose PVT-small [55] as the backbone by considering the training efficiency and easy deployment258

on object detection tasks. Experiment results in Table 5 show that simply applying traditional self-259

supervised learning methods results in a small drop (about 1-3%) in performance compared with260

ImageNet supervised pre-training. These results inspire us when pre-training a transformer-based261

model under a self-supervised scheme, we need to develop some specific algorithms based on its262

special structure, such as DeiT [52] and Swin-SSL [60].

Table 5: Detection results(%) of self-supervised models evaluated on SODA10M labeled set, Cityscapes (C)
and BDD100K (B) with Transformer model (PVT). All models are pre-trained on SODA10M unlabeled set.

PVT-small [55] 1x PVT-small [55] 2x PVT-small [55] 1x PVT-small [55] 90k

Model mAP AP50 AP75 mAP AP50 AP75 mAP-C AP50-C mIOU-C mIOU-B

random init 20.6 37.9 20.1 22.5 40.3 22.2 29.8 54.9 52.5 35.4
super. IN 33.8 57.3 35.2 33.0 55.1 33.9 33.8 60.0 60.0 41.8

MoCo-v1 [21] 28.7 50.3 29.1 28.5 49.7 29.1 30.4 56.4 59.2 40.3
MoCo-v2 [5] 26.2 46.8 26.3 26.7 46.5 27.4 28.3 52.5 58.1 39.4
BYOL [19] 27.4 49.2 26.9 26.9 47.4 27.1 28.0 53.1 57.6 40.5
SimCLR [4] 30.2 54.1 29.7 30.4 53.3 30.7 30.8 56.6 58.5 40.9

263

4.4 Semi-Supervised Learning Benchmark264

Semi-supervised learning has also attracted much attention because of its effectiveness in utilizing265

unlabeled data. We compare the naive pseudo labeling method with present state-of-the-art semi-266

supervised methods for object detection (i.e., STAC [47] and Unbiased Teacher [39]) on 1-million267

unlabeled images considering the time limit. Both methods achieve high performance with only268

1-million unlabeled images. For pseudo labeling, we first train a supervised model on the training269

set with the ResNet-50 [23] backbone for 12 epochs. Then we predict results on the unlabeled set,270

a bounding box with a predicted score larger than 0.5 is selected as a predicted label. All semi-271

supervised methods exceed the results of using only labeled data. As for pseudo labeling, adding an272

appropriate amount of unlabeled data (50K to 100K) brings a greater improvement, but continuing to273

add unlabeled data (100K to 500K) results in a 1.4% decrease due to the larger noise. We follow the274

default settings in STAC and Unbiased Teacher, and change the input size to comply with SODA10M.275

Shown in in Table 6, the STAC exceeds pseudo labeling by 2.9%, and Unbiased Teacher continues to276

improve by 3.4% due to the combination of Exponential Moving Average (EMA) and Focal loss [36].277

Table 6: Detection results(%) of semi-supervised models on SODA10M dataset. Pseudo labeling (50K), Pseudo
labeling (100K) and pseudo labeling (500K) means using 50K, 100K and 500K unlabeled images, respectively.

Model mAP AP50 AP75 Pedestrian Cyclist Car Truck Tram Tricycle

Supervised 37.9 61.6 40.4 31.0 43.2 58.3 43.2 41.3 10.5

Pseudo Labeling (50K) 39.3+1.4 61.9 42.4 32.6 44.3 60.4 43.8 42.4 12.1
Pseudo Labeling (100K) 39.9+2.0 62.7 42.6 33.1 45.2 60.7 44.8 43.3 12.1
Pseudo Labeling (500K) 38.5+0.6 61.0 41.3 32.1 43.4 59.6 42.6 42.2 11.0
STAC [47] 42.8+4.9 64.8 46.0 35.7 46.4 63.4 47.5 44.4 19.6
Unbiased Teacher [39] 46.2+8.3 70.1 50.2 33.8 50.2 67.9 53.9 55.2 16.4

278
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Table 7: Detection results(%) in different domains on SODA10M dataset. IN indicates pre-trained on ImageNet,
and SD means pre-trained on SODA10M unlabeled set. ‘-’ means no validation image in this domain.

Model Overall mAP City street (Car) Highway (Car) Country road (Car)

Clear Overcast Rainy Clear Overcast Rainy Clear Overcast Rainy

Daytime

Supervised 43.1 70.0 64.9 56.6 68.3 65.9 65.9 69.4 63.5 -

MoCo-v1 [21] IN 44.2+1.1 71.5 65.8 56.9 69.0 66.8 67.3 72.0 66.0 -
MoCo-v1 [21] SD 43.8+0.7 71.3 66.0 55.8 69.4 67.4 68.0 72.8 65.5 -

STAC [47] 45.3+2.2 74.2 69.6 58.0 71.7 70.3 70.7 75.2 69.8 -
Unbiased Teacher [39] 47.7+4.6 73.0 68.1 55.3 69.1 62.0 71.3 72.6 70.0 -

Night

Supervised 21.1 36.3 37.7 - 37.5 37.3 79.5 38.9 72.8 -

MoCo-v1 [21] IN 22.0+0.9 39.5 43.4 - 41.7 41.5 80.6 42.5 73.2 -
MoCo-v1 [21] SD 22.7+1.6 41.6 46.2 - 42.1 41.8 79.8 45.4 74.1 -

STAC [47] 28.2+7.1 45.5 46.8 - 46.2 45.6 83.7 47.2 75.4 -
Unbiased Teacher [39] 39.7+18.6 65.3 66.2 - 66.2 67.2 83.6 67.5 75.2 -

4.5 Discussion279

We directly compare the performance of state-of-the-art semi/self-supervised object detection methods280

with supervised Faster-RCNN in Table 7. In this table, we illustrate the overall mAP for daytime/night281

domain and car detection results of 18 fine-grained domains consisting of different periods, locations282

and weather conditions.283

Observation can be made that there exists a huge gap between the domain of daytime and night.284

Since the supervised method is only trained on the data during the daytime, the gap between day and285

night is particularly obvious. By adding diverse unlabeled data into training, the self/semi-supervised286

methods show a more significant improvement in the night domain. Specifically for semi-supervised287

learning, Unbiased teacher [39] surpasses STAC [47] by a large margin in the night domain because288

it can address pseudo-labeling bias issues caused by class imbalance existing in ground-truth labels289

and the overfitting issue caused by the scarcity of labeled data. Besides, semi-supervised methods290

work much better than self-supervised methods either from the aspect of overall performance or the291

training time (2.8×8 GPU days vs. 8.4×8 GPU days for Unbiased teacher and MoCov1 respectively292

in Appendix B).293

Inspired by the above results, we summarize some guidance dealing with SODA10M dataset. For294

self-supervised learning, different from ImageNet pre-training, simple methods (e.g., MoCov1 [21])295

achieve better results than the dense contrastive methods (e.g., DenseCL [56]) on SODA10M un-296

labeled set. Concentrating on driving scenes, semi-supervised methods work much better than297

self-supervised methods when finetuning on SODA10M labeled set, even with a smaller set of298

unlabeled data (1-million vs. 5-million). Better performance will be achieved when combining299

self-supervised and semi-supervised methods. For both self and semi-supervised learning, model300

architecture design and efficient training will be promising topics on SODA10M for future research.301

5 Conclusion302

Focusing on self-supervised and semi-supervised learning, we present SODA10M, a large-scale 2D303

autonomous driving dataset that provides a small set of high-quality labeled data and a large amount304

of unlabeled data collected from various cities under diverse weather conditions, periods and location305

scenes. Comparing with the existing self-driving datasets, SODA10M is 10x larger than the largest306

dataset available Waymo and obtained in much more diversity. Furthermore, we build a benchmark307

for supervised, self-supervised and semi-supervised learning in autonomous driving and show that308

SODA10M can serve as a promising dataset for training and evaluating different self/semi-supervised309

learning methods. We hope that SODA10M can promote the exploration and standardized evaluation310

of advanced techniques for robust and real-world autonomous driving systems.311
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