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ABSTRACT

Conformal prediction (CP) provides a comprehensive framework to produce sta-
tistically rigorous uncertainty sets for black-box machine learning models. To
further improve the efficiency of CP, conformal correction is proposed to fine-tune
or wrap the base model with an extra module using a conformal-aware ineffi-
ciency loss. In this work, we empirically and theoretically identify a trade-off
between the CP efficiency and the entropy of model prediction. We then propose
an entropy-constrained conformal correction method, exploring a better Pareto
optimum between efficiency and entropy. Extensive experimental results on both
computer vision and graph datasets demonstrate the efficacy of the proposed
method. For instance, it can significantly improve the efficiency of state-of-the-art
CP methods by up to 34.4%, given an entropy threshold.

1 INTRODUCTION

For a decision-making process driven by machine learning (e.g., loan approval, fraud detection), it is
essential for the predictions to be accompanied by a level of confidence to quantify uncertainty (Vovk
et al., 2005; Smith, 2024). Conformal prediction (CP) is a promising uncertainty quantification
method, providing statistically rigorous uncertainty sets for black-box machine learning models (Bab-
bar et al., 2022; Straitouri et al., 2023; Straitouri & Rodriguez, 2023; Cresswell et al., 2024). In
standard classification, for any test input x, the posterior distribution π̃y(x) = P (Y = y | X = x) on
classes [K] := {1, · · · ,K} is calculated. Conformal prediction leverages an additional calibration
step to guarantee a user-specified (marginal) coverage: by producing a prediction set C(x) ⊆ [K], it
guarantees the true class of x is included in C(x) with a user-chosen probability, when the calibration
samples are exchangeable with the test samples.

The uncertainty typically manifests in two aspects in CP: (1) the efficiency of prediction sets; (2)
the entropy of model predictions. For the former, C(x) with a small size is considered to have high
efficiency, providing more certainty for decision-making processes. For the latter, entropy directly
quantifies the level of prediction uncertainty. Simply consider the two prediction sets for a patient,
{Diabetes, Asthma} with predictive probabilities 0.4 and 0.4, and {Diabetes, Asthma, Stroke} with
predictive probabilities 0.6, 0.1 and 0.1. It would be difficult to compare the goodness of these two
sets in terms of guiding a doctor to make decisions.

Recent progress in CP mainly focuses on the low-efficiency problem via introducing extra training
on the base model, largely neglecting the important role of entropy. For example, Bellotti (2020)
proposes the notion of conformal training and Stutz et al. (2022) simulate the conformal prediction
process during training; this approach is further extended to graph-structure data (Huang et al., 2024b)
by introducing a conformal adapter, which performs an additional conformal-aware training step
based on the fixed base model. In this paper, we adopt the latter setting as the conformal adapter only
needs the output distribution of the base model (as input), which is more akin to traditional CP (in the
sense that it is decoupled from the base model), and thus has broader applications in practice. We
refer to this emerging class of approaches as conformal correction. To be more concrete, given a base
classifier M̃ , we can obtain a conformal adapter M̂ , which takes π̃(x) from M̃ as input and outputs
π̂(x), together with C(x) typically of a smaller size.

Our motivation is to have an in-depth understanding of the potential catch when a smaller C(x) is
in place. We find that while the average size of C(x) may be smaller, the entropy of the prediction
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Figure 1: Fig.(a) plots the Pareto frontier between inefficiency and entropy. For both of them, the
lower, the better; Fig.(b) and (c) are the results of training only with Lclass on CIFAR100 and Cora-
ML, respectively. (b) and (c) depict the efficiency and entropy on the test set during the conformal
correction, and there is a trade-off between them when the accuracy reaches the top.

π̂(x) also increases, indicating that the prediction becomes more uncertain, which is not ideal.
Nevertheless, high efficiency should not sacrifice prediction entropy too much!

Indeed, our experiments show that, when conformal correction is applied on CIFAR100, the average
size of CP sets is increased from 17.3 to 58.6 while the prediction entropy decreases from 6.3 to
1.1 (cf. Fig. 1(b) in Section 3). This indicates that a trade-off exists between the CP efficiency and
the prediction entropy. We further confirm the finding by showing that, for APS (Romano et al.,
2020), the expected size of CP sets can be upper-bounded by the negative entropy (plus some positive
constant; cf. Theorem 3 for a precise account). This gives theoretical evidence that the efficiency of
CP sets produced by APS may be at odds with the prediction entropy.

The trade-off between efficiency and entropy entails a Pareto perspective on CP, where different
Pareto optima form a Pareto frontier as shown in Fig. 1(a). Conformal correction can thus be
viewed as a traversal of the Pareto frontier. Technically, one can reduce the inefficiency significantly,
but at the cost of an increased entropy, rendering such a reduction less meaningful. Instead, we
argue that seeking for a better Pareto frontier is more crucial for conformal correction than simply
adapting the trade-off. To this end, we propose a new method, i.e., entropy-constrained conformal
correction (EC3) to ameliorate the trade-off by controlling the entropy of conformal adapters via
focal loss (Mukhoti et al., 2020) and temperature scaling (Guo et al., 2017).

We conduct extensive experiments on computer vision (CV) and graph datasets to evaluate the
effectiveness of EC3. The results show that our method can outperform the competitors by up to
34.4% in terms of efficiency given an entropy threshold; the qualitative analysis also indicates that our
method can locate better Pareto optimality with strong control over the model entropy. Furthermore,
when EC3 is adapted to provide (stronger) conditional coverage, it can significantly improve, for
instance, the class coverage from 0.77 to 0.83 (for the CV dataset) and from 0.74 to 0.85 (for the
graph dataset), respectively.

To summarize, the main contributions of the paper are: (1) we identify a trade-off between efficiency
and prediction entropy in CP, which has not been fully investigated before; (2) we propose a
new conformal correction method based on entropy control to improve the efficiency of CP, the
effectiveness of which is confirmed by extensive experiments.

2 PRELIMINARY

Notations. We focus on multiclass classification (with K classes). Assume D = {(Xi, Yi)}n+1
i=1 of

i.i.d. (or simply exchangeable) observations sampled from an (unknown) testing distribution PXY .
We denote the (oracle) conditional distribution PY |X by πy(x) = P (Y = y | X = x). Furthermore,
a black-box base classifier undergoes adapting to prescribe prediction π̂y(x). The prediction entropy
is defined as H(π̂(x)) := −

∑K
k=1 π̂k(x) log π̂k(x).

CP Framework. Given Dcal = {(Xi, Yi)}ni=1 as the calibration set and a user-defined miscoverage
rate α ∈ (0, 1), CP typically proceeds in the following three steps:

(1) Non-conformity score definition. CP first heuristically defines a non-conformity score function
V (x, y), which indicates how the class y conforms to the predictive result π̂(x) = [π̂1(x), . . . , π̂K(x)].
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Figure 2: Fig. (a) is an illustration of Proposition 1 when K = 2, which demonstrates that the tight
upper-bound of V̄ (π̂(x)) consists of two pieces; Fig. (b) and (c) are efficiency and entropy curves of
APS (cf. Section 2) on the test set after temperature scaling w.r.t. T when α = 0.1. The efficiency of
APS is at odds with the entropy of model prediction in most cases.

For example, the non-conformity score V (x, y) can be defined as the sum of the probabilities of all
K classes in π̂(x) except class y.

(2) Uncertainty calibration. CP then evaluates the non-conformity score for each data point (Xi, Yi) ∈
Dcal, resulting in the non-conformity score set {V (Xi, Yi)}ni=1. Subsequently, it sets a threshold η̂
as its (1− α)(1 + 1/n)-quantile.

(3) Prediction set construction. For a new sample Xn+1, conformal prediction computes the corre-
sponding prediction set by C(Xn+1) = {y ∈ [K] | V (Xn+1, y) ≤ η̂}.

Traditional CP is model-agnostic, as it only requires prediction from the base model. Moreover,
various non-conformity scores can be used to instantiate the framework (Romano et al., 2020;
Angelopoulos et al., 2020). For instance, the Adaptive Prediction Set (APS) (Romano et al., 2020), the
most classical adaptive conformal prediction approach, first sorts the predicted results in descending
order, i.e., π̂(1)(x) ≥ π̂(2)(x) ≥ · · · ≥ π̂(k)(x). The non-conformity score is then defined by the
cumulative probabilities from the most likely class to the observed class y in the calibration step, i.e.,
V (x, y) =

∑y
i=1 π̂(i)(x).

CP Evaluation. The traditional methods focus on two dimensions for evaluating the quality of
prediction sets, i.e., efficiency and coverage. (In)efficiency captures the average size of the prediction
sets, i.e., E(|C(Xn+1)|); for inefficiency, the smaller, the better. For coverage, CP ensures the
marginal coverage, viz., the true class Yn+1 is in C(Xn+1) with a probability of at least 1− α, i.e.,

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α.

In certain cases, we also expect the conditional coverage to exceed 1− α for each x, i.e., P (Yn+1 ∈
C(x) | Xn+1 = x) ≥ 1− α.

3 EFFICIENCY AND ENTROPY TRADE-OFF

In this section, we explore the trade-off between efficiency and entropy empirically and theoretically.

Existing work (Stutz et al., 2022; Huang et al., 2024b) has demonstrated that conformal correction
can significantly reduce the sizes of CP sets. To this end, various sorting-smooth techniques (Blondel
et al., 2020; Petersen et al., 2021) are employed to encode the size of CP sets in the loss function.
The general optimization objective for conformal correction can be formulated as

minLf := Lclass + β · Lineff, (1)

where Lclass is the standard cross-entropy loss function for classification, Lineff is the inefficiency loss
function aiming to reduce the prediction set size, and β is a hyperparameter.

Empirical Observations. Eq. (1) integrates inefficiency and classification losses by a weighted
sum. However, a critical issue is whether the two losses, Lclass and Lineff, can achieve their minima
simultaneously. To explore this problem, we train a classifier only using Lclass and plot the test curves
of accuracy, efficiency, and entropy in Fig. 1(b) and 1(c). An interesting observation is that the
accuracy and efficiency increase together while the entropy decreases during the initial training stage.
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When the accuracy converges, as the entropy of the models drops—meaning the model becomes
more certain—the efficiency decreases. This phenomenon suggests a trade-off between efficiency
and entropy may exist when the model is fully trained.

Theoretical Explanations. We confirm the empirical observation by analyzing the impact of
prediction entropy on CP efficiency in the context of APS. We first define the average non-conformity
score

V̄ (π̂(x)) =
1

K

K∑
i=1

V (π̂(x), i),

where V (π̂(x), i) refers to the APS non-conformity score of the i-th class. The average non-
conformity score indicates the overall performance of the predictive result π̂(x) conforming to
the class set [K]. Then, we establish a relationship between the average non-conformity score
V̄ (π̂(x)) and the prediction entropy H(π̂(x)).

Proposition 1 For a given sample point x and the corresponding predictive distribution π̂(x), the
average non-conformity score is upper-bounded by the prediction entropy. Namely,

V̄ (π̂(x)) ≤ min(CK + 1−H(π̂(x)), 1 +H(π̂(x))),

with constant CK := log
(∑K

k=1 exp(−
k−1
K )

)
.

The proof is given in Appendix A.1. Additionally, we use binary classification (K = 2) to illustrate
this proposition by plotting the curves of V̄ (π̂(x)) and its two upper bounds in Fig. 2(a). In this
case, the entropy H(π̂(x)) is determined by π̂(1)(x) as π̂(2)(x) = 1 − π̂(1)(x) and π̂(1)(x) ≥
π̂(2)(x). It can be observed that, with the decrease of entropy H(π̂(x)), the tighter bound shifts from
CK + 1−H(π̂(x)) (the orange curve) to 1 +H(π̂(x)) (the blue curve).

Proposition 1 illustrates the relationship between the average non-conformity score and the entropy of
model prediction. Moreover, the derived analysis is consistent with our empirical observation: when
the entropy H(π̂(x)) is sufficiently small, the average non-conformity is bounded by 1 +H(π̂(x)),
allowing them to increase simultaneously. However, as H(π̂(x)) becomes larger, CK +1−H(π̂(x))
becomes the tighter bound, which would prohibit the average non-conformity score from growing,
leading to a trade-off in between.

Next, we extend the upper bound to the (1− α)-quantile η̂.

Proposition 2 Given a sample subset Cη̂ := {(X,Y ) | V (X,Y ) ≥ η̂} in D, the (1− α)-quantile η̂
is upper bounded

η̂ ≤ E[V̄ (X) | Cη̂] + C(π,K) + τ,

with the probability at least 1 − exp(− 2ατ2n
(1−η̂)2 ), where n is the size of the calibration set, τ is a

positive constant, and the constant C(π,K) := E[
√
2(H(π(X)) + log(K)) | Cη̂].

The proof is given in Appendix A.2. Note that as n increases, 1−exp(− 2ατ2n
(1−η̂)2 ) tends to 1. Moreover,

as the second term and third term of the upper bound are both constants, Proposition 2 effectively
bounds η̂ by the average non-conformity score V̄ (X) from a sample subset Cη̂.

By combining Proposition 1 and Proposition 2, we can finally establish the trade-off between the
expected size of conformal prediction sets E[|C(X)|] and the entropy of model prediction.

Theorem 3 Let µ = P
(
H(π̂(X)) ≥ 1

2CK | Cη̂
)
. We have that

E[|C(X)|] ≤ K(1− α)(1− 2µ)E[H(π̂(x)) | Cη̂]︸ ︷︷ ︸
(⋆)

+O(K).

The proof is provided in Appendix A.3.

Remark 4 By Theorem 3, we can see that, when µ ≥ 1
2 (i.e., the entropy of a majority of x in the

subset Cη̂ is greater than 1
2CK ), 1− 2µ < 0 holds and so does term (⋆), which entails that E(|C(X)|)

is at odds with the expected entropy E[H(π̂(x)) | Cη̂]. Otherwise, the term (⋆) is positive, allowing a
potential synergy between efficiency and entropy.
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Intuitively, for APS, the trade-off between efficiency and entropy will be present when the entropy
is sufficiently large (roughly, greater than 1

2CK). It is not hard to see that 1
2CK is a monotonically

increasing function in K. This suggests that, when K is relatively small, the interval [0, 1
2CK ] is

narrow, and thus the trade-off will be largely dominating.

4 CONFORMAL CORRECTION METHODS

In this section, we present a new method, EC3, for conformal correction. In general, EC3 is based on
Section 3, searching for better Pareto optima via controlling the entropy of model predictions. Then,
we directly utilize temperature scaling to explore the Pareto frontier, and extend EC3 to improve the
user-specified conditional coverage.

4.1 ENTROPY-CONSTRAINED CONFORMAL CORRECTION (EC3)

As discussed in Section 3, there is a fundamental trade-off between conformal efficiency and predic-
tion entropy. A natural way to search for the Pareto frontier is to introduce a positive entropy term
into Eq. (1), and balance it with Lineff. However, in our case, the cross-entropy loss Lclass already
implicitly enforces entropy reduction.1 Furthermore, we observe that directly optimizing the original
training loss often results in a rapid decline in efficiency, leading to low-entropy solutions with poor
efficiency (e.g., after the 30-th epoch in Fig. 1(b)). Therefore, we add a negative entropy term into
Eq. (1) to counter the rapid decline in efficiency, which enables a more fine-grained control of entropy
during conformal correction, viz.,

minLf = Lclass + β · Lineff − γ ·H(π̂(x)), (2)

where γ ≥ 0 is a hyperparameter controlling the weight of the entropy term.

There are three competing optimization objectives in Eq. (2), making the optimization challenging.
Fortunately, the following inequality for Lclass and H(π̂(x)) holds (Mukhoti et al., 2020):

Lfocal ≥ KL(π(x)||π̂(x))− γ ·H(π̂(x)),

where Lfocal = −
∑K

k=1(1− π̂k(x))
γπk(x) log π̂k(x) is the form of focal loss (Mukhoti et al., 2020)

and KL(π(x)||π̂(x)) is the KL-divergence between the ground-truth distribution π(x) and the model
prediction π̂(x). Since KL(π(x)||π̂(x)) can be reduced to the cross-entropy, this inequality allows
us to directly optimize the upper bound for Lclass − γ ·H(π̂(x)), i.e., Lfocal. Thus, we rewrite the
objective in Eq. (2) as

minLf = Lfocal + β · Lineff. (3)

Compared with Eq. (1), the above objective enjoys two advantages. From the view of multi-objective
optimization, the proposed minimization objective can flexibly adjust the trade-off between the CP
efficiency and the entropy of prediction by controlling γ. Specifically, if we prefer CP efficiency
over entropy, γ should be augmented to increase the efficiency at the cost of entropy. Otherwise, we
should lower the value of γ. When γ = 0, Eq. (3) degrades into Eq. (1).

Additionally, in contrast to directly penalizing the entropy, focal loss presents a more flexible
approach to balance classification loss and entropy regularization through the coefficient (1− π̂k(x))

γ .
Specifically, the focal loss can effectively control the strength of the classification loss based on the
sharpness of the model prediction π̂(x). This adaptation facilitates locating better solutions in the
trade-off between entropy and conformal efficiency.

Pareto Frontier Exploration via Temperature Scaling. When a better Pareto optimum is achieved
by Eq. (3), we can next traverse the Pareto frontier from this Pareto optimum via temperature
scaling—a common trick used in model calibration (Guo et al., 2017)—to flexibly regulate the
entropy. Specifically, it rephrases the softmax function as

π̂i(x) =
exp(π̂i(x)/T )∑K
j=1 exp(π̂j(x)/T )

,

1Minimizing cross-entropy loss essentially encourages the predicted distribution to approximate a sharp
distribution (e.g., the one-hot label vector), rendering a trained model with low entropy, which is also known as
the over-confident problem (Guo et al., 2017).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: The efficiency results of conformal correction methods on CV datasets when α = 0.1. The
results are the average of five runs of the pre-trained model, each with 100 runs of conformal splits
on CV datasets. The best results are in shadow. The proposed EC3 achieves the best efficiency
performance and maintains the marginal coverage.

DATASET MODEL
CP CONFTR EC3

COVERAGE EFFICIENCY COVERAGE EFFICIENCY COVERAGE EFFICIENCY

CIFAR10
RESNET56 0.90±.00 5.41±.11 0.90±.00 1.31±.15 0.90±.00 1.23±.06

PRERESNET110 0.90±.00 5.54±.07 0.90±.00 1.25±.16 0.90±.00 1.18±.04

DENSENET100 0.90±.00 5.52±.03 0.90±.00 1.30±.15 0.90±.00 1.09±.04

CIFAR100
RESNET56 0.90±.00 23.06±.66 0.90±.00 19.83±1.94 0.90±.00 18.05±2.71

PRERESNET110 0.90±.00 25.93±.37 0.90±.00 17.62±1.98 0.90±.00 15.27±1.27

DENSENET100 0.90±.00 30.00±2.44 0.90±.00 13.29±1.61 0.90±.00 10.87±1.42

where T > 0 is the temperature controlling the uncertainty of models. With T increasing, the
prediction entropy H(π̂(x)) becomes larger. Practically, temperature scaling is based on the grid
search, which is simple and convenient to use.

Note that one can directly use temperature scaling to adapt the trade-off between efficiency and
entropy. Fig. 2 plots the results of APS over temperature T on CIFAR100 and Cora-ML datasets.

Fig. 2(b) depicts the result of the CIFAR100 dataset. We observe an initial concurrent increase in
both efficiency and entropy as T rises. However, as T continues to increase, a trade-off emerges
between these two metrics: efficiency decreases while entropy increases. This observation aligns with
Theorem 3. That is, when entropy is relatively low (corresponding to lower values of T ), efficiency is
upper-bounded by the entropy; conversely, as entropy increases (with higher values of T ), efficiency
is upper-bounded by the negative entropy (plus some positive constant).

Fig. 2(c) depicts the result of the Cora-ML dataset. In contrast, only the trade-off between the
efficiency and entropy can be observed. This is because the number of classes therein is significantly
smaller than that in the CIFAR100 dataset, which is consistent with Remark 4. In addition to the
results on CIFAR100 and Cora-ML datasets, we relegate the rest to Appendix B.5.

Nevertheless, directly using temperature scaling without the objective in Eq. (3) will lead to a
suboptimal Pareto frontier (cf. Fig. 7 in Appendix B.8).

4.2 EXTENSIONS TO CONDITIONAL COVERAGE

Recall from Section 2 that conditional coverage is stronger than marginal coverage. The flexibility of
the EC3 approach allows us to adjust user-specified conditional coverage adaptively. Take the class
conditional coverage (i.e., the coverage of the sample subsets with the same true class (Zargarbashi
et al., 2023)) as an example. We define the following class conditional coverage loss function for
each class k,

Lk := − 1

|Dk
cal|

∑
(x,y)∈Dk

cal

I(y ∈ C(x)),

where Dk
cal := {(x, y) ∈ Dcal | y = k} and I(·) is the indicator function. We then obtain a new

minimization objective to improve the class conditional coverage during conformal correction,

minLf = Lfocal + β · Lineff −
1

K

K∑
k=1

Lk.

We refer to this method as EC3 (Cond) which will be evaluated in Section 5.2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct main experiments on five datasets, including CIFAR10, CIFAR100 (Krizhevsky
et al., 2009), Cora-ML (McCallum et al., 2000), CS (Shchur et al., 2018), and Photos (McAuley et al.,

6
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Table 2: The efficiency results of conformal correction methods on graph datasets when α = 0.1. The
results are the average of five runs of the pre-trained model, each with 100 runs of conformal splits
on graph datasets. The best results are in shadow. The proposed EC3 achieves the best efficiency
performance and maintains the marginal coverage.

DATASET MODEL
CP CF-GNN EC3

COVERAGE EFFICIENCY COVERAGE EFFICIENCY COVERAGE EFFICIENCY

CORA-ML
GCN 0.90±.00 4.00±.19 0.90±.00 1.85±.26 0.90±.00 1.50±.13

GAT 0.90±.00 3.92±.13 0.90±.00 1.94±.39 0.90±.00 1.68±.13

SGC 0.90±.00 4.01±.13 0.90±.00 1.81±.26 0.90±.00 1.58±.09

CS
GCN 0.90±.00 8.37±.22 0.90±.00 4.45±.38 0.90±.00 3.13±.21

GAT 0.90±.00 6.92±.36 0.90±.00 4.47±.50 0.90±.00 3.03±.36

SGC 0.90±.00 8.37±.26 0.90±.00 4.36±.33 0.90±.00 3.13±.25

PHOTOS
GCN 0.90±.00 4.00±.14 0.90±.00 2.07±.38 0.90±.00 1.54±.14

GAT 0.90±.00 2.36±.24 0.90±.00 2.69±.30 0.90±.00 2.13±.08

SGC 0.90±.00 4.00±.06 0.90±.00 2.17±.28 0.90±.00 1.53±.06

2015), as detailed in Appendix B.1. Following Huang et al. (2024b), we randomly split each dataset
into the training set Dtrain, validation set Dvalid, calibration set Dcal and testing set Dtest with the
ratio 2:1:4:3. We perform 100 random splits of calibration/testing sets, and report the average results
and standard deviations to suppress randomness. Additionally, the information of base and adapter
models are introduced in Appendix B.1.

Baselines. We select the state-of-the-art methods, i.e., ConfTr (Stutz et al., 2022) and CF-
GNN (Huang et al., 2024b) from CV and graph domains, respectively. Note that while CF-GNN
strictly follows the conformal correction framework, ConfTr was initially proposed to retrain the
base model. In our experiments, we adapt ConfTr to the conformal correction framework (i.e.,
applying its optimization objective as an adapter after the base model is trained); further performance
improvements are observed.

Evaluation Metrics. For efficiency, we use the standard average size of CP sets as the metric. For
marginal coverage, we can directly compute its value. For conditional coverage, we consider WSC
and SSCV metrics (Romano et al., 2020; Angelopoulos et al., 2020). All these metrics are widely
adopted by existing work.

Implementations.2 To construct the CP sets, we consider both APS (Romano et al., 2020) and
RAPS (Angelopoulos et al., 2020). We report the APS results in the main body of the paper, and the
results on RAPS are included in Appendix B.6.

We set the threshold of the prediction entropy to be (1− ϵ) exp(logK), and use ϵ = 1/4 by default.
We also set the miscoverage rate α = 0.1, hyperparameter β = 0.1 and γ = 4 by default. All the
experiments are carried out on NVIDIA GeForce RTX 3090. More implementation details, such as
the hyperparameters of base models and conformal adapters, are presented in Appendix B.1.

5.2 EXPERIMENTAL RESULTS

Efficiency Comparison. Give an entropy threshold as mentioned in Section 5.1, we first compare the
marginal coverage and efficiency of training-based conformal correction methods when α = 0.1, the
results of which are given in Table 1 and Table 2. We also report the comparison results when α = 0.2
(in Appendix B.2), the entropy results (Appendix B.3) and the accuracy results (in Appendix B.4).

On the CV datasets, the proposed EC3 method performs better than the baseline ConfTr in terms of
efficiency over all three pre-trained models on both datasets, while it keeps the marginal coverage at
the same time (cf. Table 1). For example, EC3 is 18.2% more efficient than ConfTr for the pre-trained
model DenseNet100 on CIFAR100. Similarly, EC3 achieves significant efficiency improvements
from 12.7% to 34.4% on the graph datasets, as shown in Table 2.

2An implementation of our conformal correction approach can be accessed at the following anonymous link:
https://github.com/Anonymity23143/Conformal-Correction.
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Figure 3: Pareto optima of different conformal correction methods. Compared with baselines, the
proposed EC3 obtains the best Pareto frontier via achieving a better balance between efficiency and
entropy on both CIFAR10 and Cora-ML.
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Figure 4: Class conditional coverage results on CIFAR10
(left) and Cora-ML (right). The class coverage below 0.9 is in
shadow. Our method EC3 (Cond) increases most of the class
coverages below 0.9.

MODEL CIFAR10 CORA-ML

L1 L2 L1 L2

EC3 0.25 0.15 0.16 0.16
EC3 (COND) 0.21 0.11 0.04 0.04

IMP. 18% 26% 73% 73%

Table 3: Distances between the class
coverage below 0.9 and the target cov-
erage 0.9 with L1-norm and L2-norm
in the left figures. EC3 (Cond) im-
proves the class conditional coverage
successfully by up to 73%.

The significant efficiency improvement can be attributed to the theoretical analysis of the efficiency-
entropy tradeoff which EC3 is built on. In particular, the explicit modeling of entropy enables EC3 to
achieve a better balance between efficiency and entropy within an acceptable entropy range.

Pareto Frontiers. We explore the Pareto frontier of efficiency and entropy for all conformal correction
methods with temperature scaling. We can directly control entropy by adjusting the temperature T
and select sufficient values of T to cover the entropy range.

The results of the Pareto frontier are shown in Fig. 3. It can be observed that EC3 (the orange curve)
achieves a better Pareto frontier (i.e., lower efficiency given the same entropy) than other conformal
correction methods (the blue curve) in both Fig. 3(a) and Fig. 3(b). The contrast of Pareto frontiers
further confirms the positive impact of the entropy control on the efficiency-entropy trade-off, in
terms of seeking better Pareto optima.

Conditional Coverage. We present the conditional coverage results before and after conformal
correction by the metrics WSC and SSCV in Appendix B.7.

Next, we evaluate the effectiveness of the conditional conformal correction presented in Section 4.2.
In Fig. 4, we plot the histogram of the coverage of different classes, without and with the conditional
conformal correction, i.e., EC3 and EC3 (Cond). As mentioned in Section 2, class conditional
coverage requires that the coverage of each class is greater than 1 − α. Hence, we only need to
examine the classes whose coverage is below 1− α. In Fig. 4, we can observe that the conditional
conformal correction improves most of the class coverages below 0.9. In particular, the lowest class
coverages are increased from 0.77 to 0.83 and from 0.74 to 0.85, respectively. Moreover, we compute
the distance between the class coverage below 0.9 and the target coverage of 0.9 with L1-norm and
L2-norm in Table 3. The results show that EC3 (Cond) significantly reduces such distances by the
ratio from 18% to 73%.

Additional Results. Fig. 7 in Appendix B.8 summarizes additional experimental results about the
sensitivity of temperature T and hyperparameter γ. Moreover, Appendix B.9 showcases the empirical
performance of our EC3 extension for the question answering task on LLMs; see Fig. 6(b) and
Table 11 for more details.
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6 RELATED WORK

Conformal Prediction. Uncertainty Quantification (UQ) (Abdar et al., 2021) aims to provide
calibrated uncertainty estimates for machine learning models, enabling reliable decision-making in
critical applications. UQ has been widely studied in both classification and regression, where typical
methods include Bayesian methods (Gal & Ghahramani, 2016), confidence calibration (Guo et al.,
2017), and model-agnostic frameworks that construct uncertainty intervals (Romano et al., 2019).
However, most of these methods fail to provide rigorous statistical guarantees regarding coverage,
especially in non-i.i.d. settings.

CP, as a UQ method, distinguishes itself in providing guaranteed coverage, regardless of the underly-
ing model or data distribution. It has been applied to diverse domains, including image classifica-
tion (Sadinle et al., 2019), object detection (Teng et al., 2023), and large language models (Kumar
et al., 2023). Most CP methods rely on splitting the dataset into a training set and a held-out cali-
bration set to estimate non-conformity scores, as proposed in split conformal prediction (Lei et al.,
2015). Other extensions, such as jackknife methods (Barber et al., 2021) and cross-validation-based
approaches (Vovk, 2015), can further enhance CP’s flexibility and applicability.

Some work has focused on improving the efficiency and adaptability of CP by refining non-conformity
scores. Adaptive Prediction Sets (APS) (Romano et al., 2020) introduced a score function that accu-
mulates sorted softmax probabilities; Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos
et al., 2020) extended APS by adding penalties to tail classes and Sorted Adaptive Prediction Sets
(SAPS) (Huang et al., 2024a) substituted probability values with sort orders, both resulting in more
efficient prediction sets with minimal computational overhead.

Conformal Correction. These techniques aim to improve the performance of CP by modifying the
model’s output via extra training. Although computationally intensive, model correction represents a
significant advancement in enhancing CP’s performance. For instance, ConfTr (Stutz et al., 2022)
proposes non-conformity loss functions designed to align scores with a uniform distribution. Similar
approaches have also demonstrated effectiveness in graph-structured data. CF-GNN (Huang et al.,
2024b), for example, introduces an additional correction model that utilizes the graph’s topology to
adjust the model’s output.

Our approach also optimizes CP during training by modifying the model’s output. Furthermore, our
work investigates the relationship between the entropy and efficiency of CP. While the experimental
results of ConfTS (Xi et al., 2024) corroborate part of this relationship, we provide a comprehensive
theoretical framework. By introducing a novel loss function, we achieve superior efficiency and
prediction performance compared to existing correction-based optimization methods. Correia et al.
(2024) provide a lower bound of the expected size of the conformal prediction sets (i.e., inefficiency).
In contrast, our work provides an upper bound, which is more important for improving efficiency. We
mention that, in addition to efficiency, some work has also focused on conditional coverage of CP
through model correction (Einbinder et al., 2022; Kiyani et al., 2024) and discussed the stability of
conformal training (Noorani et al., 2025).

7 CONCLUSION

In this paper, we have demonstrated that a decrease in the inefficiency of CP is often accompanied by
an increase in the prediction entropy during conformal correction. We have also provided a theoretical
analysis explaining this phenomenon. Both lead to the conclusion that CP efficiency may be at odds
with the prediction entropy in most cases. The trade-off between them hints at a Pareto optimality
view of conformal correction, for which we have proposed a new method EC3. Experiments on both
CV and graph datasets showcase that it outperforms the existing baselines.

Limitations. In this work, our theoretical analysis and methods mainly target adaptive conformal
prediction, which are the mainstream conformal methods for classification (Smith, 2024). They
involve numerous non-conformity scores, which uniquely take the conditional coverage into ac-
count (Romano et al., 2020; Angelopoulos et al., 2020; Fontana et al., 2023). Additionally, the
proposed method may slightly sacrifice the accuracy of models, similar to current training-based
conformal correction approaches (Stutz et al., 2022; Huang et al., 2024b).
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made the source code publicly available via
an anonymous repository. Appendix B.1 provides a comprehensive description of all experimental
details, including dataset partitions, hyperparameter configurations, and base model specifications.
We are confident that these resources are sufficient to reproduce all findings reported in this paper.

USAGE OF LLMS

We employed Large Language Models (LLMs) solely as writing assistants for polishing the
manuscript’s language, with the goal of improving clarity, grammar, and readability. Their use was
restricted to this editorial role. LLMs were not involved in any core research activities—including idea
generation, experimental design, data analysis, results interpretation, or scientific content creation.
All intellectual contributions, methodologies, findings, and conclusions entirely belong to the authors.
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A TECHNICAL PROOFS FOR THEORETICAL RESULTS

A.1 PROOF OF PROPOSTION 1

Proof Recall that the non-conformity scores of APS are defined by V (x, y) = π̂(1)(x)+· · ·+π̂(y)(x),
where π̂(1)(x) ≥ · · · ≥ π̂(K)(x) are (ordered) probabilities of the model prediction. Hence, we have

V̄ (π̂(x)) =
1

K

K∑
i=1

V (x, i)

=

K∑
k=1

1

K
(π̂(1)(x) + · · ·+ π̂(k)(x))

= π̂(1)(x) +
K − 1

K
π̂(2)(x) + · · ·+ 1

K
π̂(K)(x).

(4)

Consider the function F1(π̂) := V̄ (π̂(x))−H(π̂(x)), we can find that F1(π̂) is a convex function
w.r.t. π̂(x), since the negative entropy is convex and the average non-conformity score is linear of
π̂(x). Therefore, the upper bound of F1(π̂) is achieved at the boundary of constraints {π̂(1)(x) ≥
· · · ≥ π̂(K)(x), π̂(1)(x) + · · · + π̂(K)(x) = 1}. Furthermore, it can be observed that V̄ (π̂(x)))

achieves the maximum value 1 and −H(π̂) =
∑K

k=1 π̂(k) log π̂(k) reaches the maximum value 0
simultaneously when π̂(1)(x) = 1 and π̂(2)(x) = · · · = π̂(K) = 0. Therefore, we have F1(π̂) ≤ 1,
which implies V̄ (π̂(x)) ≤ 1 +H(π̂(x)).

We also define the function F2(π̂) := V̄ (π̂(x)) +H(π̂(x)). Similarly, we can find that F2(π̂(x)) is
concave w.r.t. π̂(x). To analyze the upper bound of F2(π̂), we formulate the following optimization
problem:

max
π

V̄ (π̂(x)) +H(π̂(x))

s.t.
K∑

k=1

π̂(k)(x) = 1,

π̂(k)(x) ≥ π̂(k+1)(x) k = 0, 1, . . . ,K − 1,

We temporarily drop the inequality constraints and compute the Lagrangian as

LF (π̂) = H(π̂(x)) + V̄ (π̂(x))− λ(

K∑
k=1

π̂(k)(x)− 1),

where λ is the Lagrangian multiplier. Vanishing the partial derivatives, we obtain

∂LF (π̂)

∂π̂(k)(x)
= log π̂(k)(x) +

k − 1

K
− λ = 0.

Hence, we have

π̂(k)(x) = exp(λ− k − 1

K
).

Note that π̂(k)(x) ≥ π̂(k+1)(x) also holds for i = 0, 1, . . . , t−1. Using the equation
∑K

k=1 π̂(k)(x) =
1, we can derive that

exp(λ) =
1∑K

k=1 exp(−
k−1
K )

.

In other words, the optimal solution is the output of the Softmax function for logits
[0,− 1

K , . . . ,−K−1
K ]. By substituting the optimal solution, we have the maximum value of F2(π̂(x)):
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F2(π̂(x)) ≤ −
K∑

k=1

(λ− k − 1

K
) exp(λ− k − 1

K
) + (1− k − 1

K
) exp(λ− k − 1

K
)

= (−λ+ 1)

K∑
k=1

exp(λ− k − 1

K
)

= −λ+ 1 = log
( K∑
k=1

exp(−k − 1

K
)
)
+ 1.

(5)

Therefore, we have

V̄ (π̂(x)) ≤ log
( K∑
k=1

exp(−k − 1

K
)
)
+ 1−H(π̂(x)).

Putting the two upper bounds together, we have

V̄ (π̂(x)) ≤ min(CK + 1−H(π̂(x)), 1 +H(π̂(x))),

where CK = log
(∑K

k=1 exp(−
k−1
K )

)
. Furthermore, we can see that the first upper bound strictly

holds only when H(π̂(x)) ≥ 1
2CK . We complete the proof. □

We plot the function image of 1
2CK using Wolfram and find that 1

2CK monotonically increases as K
rising. Thus, CK + 1−H(π̂(x)) is a better upper bound than 1 +H(π̂(x)) in most cases, when K
is relatively small.

A.2 PROOF OF PROPOSITION 2

Proof For a given sample point x and its oracle distribution π(x), we have

E[V (X,Y ) | X = x] =

K∑
k=1

π(k)(x) ·
k∑

j=1

π̂(j)(x) (6)

Next, we bridge V̄ (x) and E[V (X,Y ) | X = x]. We can obtain that

|E[V (X,Y ) | X = x]− V̄ (x)| =
∣∣ K∑
k=1

(
π(k)(x)−

1

K

)
·

k∑
j=1

π̂(j)(x)
∣∣

≤
K∑

k=1

∣∣π(k)(x)−
1

K

∣∣ ·max
{ k∑

j=1

π̂(j)(x), k = 1, . . . ,K
}

= 2δTVD(π(x),U(K)),

where the inequation is derived by the Hölder inequality, and δTVD(·, ·) refers to the total variation
distance.

Using the Pinsker inequality, we have

δTVD(π(x),U(K)) ≤
√

1

2
δKL(π(x)∥U(K)) =

√
1

2

(
H(π(x)) + log(K)

)
Putting together, we obtain

|E[V (X,Y ) | X = x]− V̄ (x)| ≤
√
2
(
H(π(x)) + log(K)

)
.

Next, we define Cη̂ := {(X,Y ) | V (X,Y ) ≥ η̂}, and seek for the upper bound of E(V (X,Y ) | Cη̂)
from the above result:

E[V (X,Y ) | Cη̂] ≤ E[V̄ (X) | Cη̂] + E[
√
2
(
H(π(X)) + log(K)

)
| Cη̂].
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By Hoeffding’s inequality and V (X,Y ) ∈ [η̂, 1], and |Cη̂| = αn, we have

P
( 1

nα

∑
(X,Y )∈Cη̂

V (X,Y )− E[V (X,Y ) | Cη̂] ≥ τ
)
≤ exp

(
− 2ατ2n

(1− η̂)2

)
,

where τ is an arbitrary positive constant. Since we have
∑

(X,Y )∈Cη̂
V (X,Y ) ≥ nαη̂, we can derive

exp(− 2ατ2n

(1− η̂)2
) ≥ P

( 1

nα

∑
(X,Y )∈Cη̂

V (X,Y )− E[V (X,Y ) | Cη̂] ≥ τ
)

≥ P(η̂ − E[V (X,Y ) | Cη̂] > τ)

Substituting the bound of E[V (X,Y ) | Cη̂] in, we have

exp(− 2ατ2n

(1− η̂)2
) ≥ P(η̂ > E[V (X,Y ) | Cη̂] + τ)

≥ P(η̂ > E[V̄ (X) | Cη̂] + E[
√

2
(
H(π(X)) + log(K)

)
| Cη̂] + τ),

which completes the proof. □

A.3 PROOF OF THEOREM 3

Proof According to the definition of C(x) in terms of APS, we first have

|C(x)| = S(π̂(x), η̂) =

K∑
k=1

u(η̂ − V (x, k)),

where u(a) is an unit step function, i.e., if a ≥ 0, u(a) = 1; otherwise, u(a) = 0. Since u(a) ≤ a+1
holds on −1 ≤ a ≤ 1, we have

|C(x)| ≤ Kη̂ +K −
K∑

k=1

V (x, k) = K(η̂ − V̄ (π̂(x)) + 1).

Transform the above equation into the expectation form, we get
E[|C(X)|] ≤ K(η̂ − E[V̄ (π̂(X))] + 1).

Furthermore, for Cη̂ = {(X,Y ) | V (X,Y ) ≥ η̂} and its complementary set C̄η̂ , we have
E[V̄ (π̂(X))] = (1− α)E[V̄ (π̂(X)) | V (X,Y ) ≤ η̂] + αE[V̄ (π̂(X)) | V (X,Y ) > η̂],

and put it and the bound of η̂ into the above equation:
1

K
E(|C(X)|) ≤ E[V̄ (π̂(X)) | Cη̂]− (1− α)E[V̄ (π̂(X)) | C̄η̂]− αE[V̄ (π̂(X)) | Cη̂] + C

= (1− α)
(
E[V̄ (π̂(X)) | Cη̂]− E[V̄ (π̂(X)) | C̄η̂]

)
+ C,

where constant C := E[
√
2
(
H(π(X)) + log(K)

)
| Cη̂] + τ +1. Using the lower bound V̄ (π̂(x)) ≥

K+1
2K , we have

1

K
E(|C(X)|) ≤ (1− α)

(
E[V̄ (π̂(X)) | Cη̂]−

K + 1

2K

)
+ C.

Given the assumption that P(H(π̂(X)) ≥ 1
2CK | Cη̂) ≥ µ (µ ∈ [0, 1]) and D :=

{(X,Y )|H(π̂(X)) ≥ 1
2CK}, we obtain that

1

K
E(|C(X)|) ≤ (1− α)E[V̄ (π̂(X)) | Cη̂]− (1− α)

K + 1

2K
+ C

≤ (1− α)
(
µ(CK − 1− E[H(π̂(x)) | D ∩ Cη̂])

+ (1− µ)(1 + E[H(π̂(x)) | D̄ ∩ Cη̂])
)
− (1− α)

K + 1

2K
+ C

≤ (1− α)(1− 2µ)E[H(π̂(x)) | Cη̂]

+ (1− α)(µCK − K + 1

2K
) + (1− α)(1− 2µ) + C

By combining with the inequality derived in Proposition 1, where the final step uses E[H(π̂(x)) |
D̄ ∩ Cη̂] ≤ E[H(π̂(x)) | Cη̂] ≤ E[H(π̂(x)) | D ∩ Cη̂]. □
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B FURTHER EXPERIMENT DETAILS

B.1 DATASETS, MODELS, AND HYPERPARAMETERS

Table 4: Hyperparameters of adapters in conformal correction methods.

DATASET CIFAR10 CIFAR100 CORA-ML CS PHOTOS TRUTHFULQA

MODEL MLP MLP GAT SGC GAT MLP
NUMBER OF LAYERS 2 2 2 1 4 2
HIDDEN DIMENSION 128 256 64 32 16 128
EPOCH 200 500 5000 5000 5000 200
BATCH SIZE 512 1024 - - - -
LEARNING RATE 0.0001 0.0001 0.0001 0.0001 0.001 0.001
DROPOUT - - 0.5 0.5 0.5 -
WEIGHT DECAY 1E-4 1E-4 5E-4 5E-4 5E-4 1E-4

We evaluate our method and baselines on five datasets across two domains: CIFAR10, CIFAR100,
Cora-ML, CS, and Photos. The former two datasets are from the computer vision (CV) domain
and the latter three are graph-structure datasets. For CV datasets, CIFAR10 and CIFAR100 consist
of 60,000 32 × 32 colour images in 10 and 100 classes, respectively. For graph datasets, there
are 2,995/18,333/7,650 nodes with 2,879/6,805/745 features and 16,346/163,788/238,162 edges in
Cora-ML, CS, and Photos. The number of classes in these graph datasets is 7, 15 and 8, respectively.

For CV tasks, we apply ResNet (He et al., 2016a), PreResNet (He et al., 2016b), and DenseNet (Huang
et al., 2017) as the base models, and use MLP as the conformal adapter model. For graph tasks, we
use GCN (Kipf & Welling, 2016), GAT (Velickovic et al., 2017), and SGC (Wu et al., 2019) as the
base models and use GAT as the conformal adapter model following Huang et al. (2024b). For a
fair comparison, we train each of the base models five times and report the average results to avoid
fluctuations from randomness.

For base models, we strictly follow the settings in pytorch-classification3 and CF-GNN (Smith, 2024)
to pre-train CV models and graph models as base models, respectively. We also use open-source
LLM Llama-2-7b-chat (Touvron et al., 2023) as the base model for the question answering task. The
hyperparameters of adapters used in conformal correction methods on different datasets are listed in
Table 4.

B.2 EFFICIENCY COMPARSION WITH α = 0.2

To study the influence of α on conformal correction, we report the results of marginal coverage and
efficiency when α = 0.2 on CV and graph datasets in Table 5. Generally speaking, the proposed
EC3 still outperforms other baselines on both CV and graph datasets. Specifically, EC3 significantly
improves the efficiency of APS by up to 52.5% on all datasets except CIFAR10. On CIFAR10, since
the accuracy of base models is relatively high (e.g., 0.89 in DenseNet100), conformal correction
methods easily ameliorate the efficiency of both our method EC3 and baseline ConfTr to achieve
good efficiency.

B.3 ENTROPY RESULTS OF CONFORMAL CORRECTION

The entropy thresholds are 3.03, 6.36, 2.52, 3.62, and 2.71 in CIFAR10, CIFAR100, Cora-ML, CS
and Photos, respectively. Table 6 and Table 7 present the entropy result of Table 1, Table 2 and
Table 5. Overall, EC3 obtains a better balance between efficiency and entropy than other baselines
with explicitly modeling the entropy of prediction results.

B.4 ACCURACY RESULTS OF CONFORMAL CORRECTION

We list the average accuracy results of different algorithms on the test data in Table 8. We include
ConfTr and CF-GNN as a reference on CV and graph datasets, respectively. The results illustrate

3The pytorch-classification repository is a popular Github project to implement the classification on CI-
FAR10/100; https://github.com/bearpaw/pytorch-classification.
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Table 5: The efficiency results of conformal correction methods on CV and graph datasets when
α = 0.2. The results are the average of five runs of pre-trained model, each with 100 runs of conformal
splits on datasets. Baselines are ConfTr and CF-GNN on CV and graph datasets, respectively. The
best results are in shadow.

DATASET MODEL
CP BASELINE EC3

COVERAGE EFFICIENCY COVERAGE EFFICIENCY COVERAGE EFFICIENCY

CIFAR10
RESNET56 0.80±.00 4.01±.04 0.80±.00 1.06±.01 0.80±.00 1.04±.01

PRERESNET110 0.80±.00 4.22±.09 0.80±.00 1.01±.02 0.80±.00 1.02±.01

DENSENET100 0.80±.00 4.20±.02 0.80±.00 0.99±.00 0.80±.00 0.98±.00

CIFAR100
RESNET56 0.80±.00 13.38±.36 0.80±.00 6.17±.75 0.80±.00 2.93±.09

PRERESNET110 0.80±.00 14.98±.24 0.80±.00 4.72±.10 0.80±.00 4.25±.17

DENSENET100 0.80±.00 18.13±1.28 0.80±.00 3.20±.09 0.80±.00 2.76±.16

CORA-ML
GCN 0.80±.00 3.10±.23 0.80±.00 1.41±.10 0.80±.00 1.03±.03

GAT 0.80±.00 3.07±.11 0.80±.00 1.47±.15 0.80±.00 1.10±.06

SGC 0.80±.00 3.11±.15 0.80±.00 1.42±.12 0.80±.00 1.03±.04

CS
GCN 0.80±.00 6.12±.23 0.80±.00 2.66±.12 0.80±.00 1.73±.14

GAT 0.80±.00 5.18±.19 0.80±.00 2.53±.23 0.80±.00 1.74±.17

SGC 0.80±.00 6.15±.25 0.80±.00 2.41±.29 0.80±.00 1.84±.15

PHOTOS
GCN 0.80±.00 3.11±.14 0.80±.00 1.58±.31 0.80±.00 1.24±.07

GAT 0.80±.00 1.83±.19 0.80±.00 1.74±.47 0.80±.00 1.61±.12

SGC 0.80±.00 3.13±.05 0.80±.00 1.44±.28 0.80±.00 1.35±.09

Table 6: The entropy results of conformal correction methods on CV and graph datasets when α = 0.1.
The results are the average of five runs of pre-trained model, each with 100 runs of conformal splits
on datasets. Baselines are ConfTr and CF-GNN on CV and graph datasets, respectively.

DATASET MODEL CP BASELINE EC3

CIFAR10
RESNET56 0.19±.01 2.73±.40 2.97±.10

PRERESNET110 0.17±.01 2.79±.40 2.99±.19

DENSENET100 0.16±.00 2.55±.58 2.94±.50

CIFAR100
RESNET56 0.62±.09 2.93±.51 4.26±.61

PRERESNET110 0.67±.03 3.16±1.06 4.52±.48

DENSENET100 0.57±.02 2.49±.40 4.14±.48

CORA-ML
GCN 0.74±.28 2.12±.37 2.32±.01

GAT 0.76±.11 2.29±.30 2.37±.02

SGC 0.76±.14 2.30±.16 2.33±.02

CS
GCN 0.40±.07 3.40±.10 3.00±.22

GAT 0.57±.11 3.39±.11 2.90±.27

SGC 0.49±.07 3.39±.08 2.93±.32

PHOTOS
GCN 0.62±.04 2.28±.76 2.19±.03

GAT 1.32±.18 2.33±.73 2.25±.04

SGC 0.66±.04 2.22±.84 2.13±.03

that: (1) the accuracy decreases for all conformal correction algorithms; (2) our proposed method
EC3 is generally comparable to the conformal correction baselines on both CV and graph domains,
and achieves a better balance between efficiency and entropy.
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Table 7: The entropy results of conformal correction methods on CV and graph datasets when α = 0.2.
The results are the average of five runs of pre-trained model, each with 100 runs of conformal splits
on datasets. Baselines are ConfTr and CF-GNN on CV and graph datasets, respectively.

DATASET MODEL CP BASELINE EC3

CIFAR10
RESNET56 0.19±.01 2.99±.00 2.98±.01

PRERESNET110 0.17±.01 2.94±.03 2.99±.01

DENSENET100 0.16±.00 2.97±.02 2.99±.01

CIFAR100
RESNET56 0.64±.09 1.73±.11 2.93±.09

PRERESNET110 0.65±.03 1.60±.05 2.64±.07

DENSENET100 0.56±.01 1.24±.04 2.56±.19

CORA-ML
GCN 0.74±.28 2.34±.06 2.39±.18

GAT 0.76±.11 2.39±.03 2.38±.13

SGC 0.76±.14 2.35±.05 2.46±.20

CS
GCN 0.40±.07 3.37±.02 3.56±.08

GAT 0.57±.11 3.38±.02 3.56±.14

SGC 0.49±.07 3.39±.01 3.58±.07

PHOTOS
GCN 0.62±.04 2.23±.75 2.20±.02

GAT 1.32±.18 2.70±.46 2.25±.03

SGC 0.66±.04 2.18±.84 2.12±.02

Table 8: The accuracy results of conformal correction methods on CV and graph datasets.

DATASET MODEL CP BASELINE EC3

CIFAR10
RESNET56 84.90 84.72 84.76

PRERESNET110 86.07 85.93 85.82
DENSENET100 88.63 88.41 88.09

CIFAR100
RESNET56 66.45 62.84 62.28

PRERESNET110 69.11 64.58 65.52
DENSENET100 74.10 67.68 67.92

CORA-ML
GCN 88.55 85.74 83.51
GAT 85.57 83.92 81.15
SGC 87.20 86.00 83.28

CS
GCN 94.28 77.05 89.92
GAT 92.74 78.04 89.58
SGC 93.41 78.42 88.62

PHOTOS
GCN 93.26 77.70 82.84
GAT 92.32 67.75 69.17
SGC 92.82 72.96 83.61
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Figure 5: Efficiency and entropy results of APS on the test set after temperature scaling w.r.t. T when
α = 0.1.
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Figure 6: Efficiency and entropy results of RAPS (left) and APS (right) on the test set after temperature
scaling w.r.t. T .

Table 9: The coverage, entropy and efficiency results of conformal correction methods on CIFAR10
and Cora-ML with RAPS when α = 0.1. The results are the average of five runs of pre-trained
model, each with 100 runs of conformal splits on both datasets. Baselines are ConfTr and CF-GNN
on CIFAR10 and Cora-ML, respectively.

METRIC DATASET CP BASELINE EC3

COVERAGE
CIFAR10 0.90±.00 0.90±.00 0.90±.00

CORA-ML 0.90±.00 0.90±.00 0.90±.00

EFFICIENCY
CIFAR10 1.47±.01 1.41±.03 1.29±.02

CORA-ML 1.54±.12 1.44±.04 1.38±.02

ENTROPY
CIFAR10 0.19±.01 2.90±.04 3.02±.05

CORA-ML 1.04±.31 0.60±.01 1.60±.02

B.5 ADDITIONAL RESULTS OF TEMPERATURE SCALING

In this part, we offer the efficiency and entropy results for the remaining three datasets with tempera-
ture T growing, i.e., CIFAR10, CS, and Photos. Similar to Fig. 2(b) and 2(c), as T rises, temperature
scaling improves the efficiency of APS and covers almost the entire value range of entropy, which
demonstrates its strong control over entropy.

B.6 EFFICIENCY COMPARSION WITH REGULARIZED ADAPTIVE PREDICTION SETS

To further demonstrate our methods’ adaptability to various adaptive conformal prediciton approaches,
we conduct experiments using RAPS, which regularizes APS to generate a smaller prediction set
size. The performance results when α = 0.1 are reported in Table 9. We find that the proposed EC3

outperforms the baselines on both CIFAR10 and Cora-ML. In addition, the results of RAPS after
temperature scaling further confirm our Theorem 3, as shown in Fig. 6(a).

B.7 CONDITIONAL COVERAGE OF CONFORMAL CORRECTION

Here, we present the conditional coverage results before and after conformal correction by the metrics
WSC and SSCV in Table 10. It is clear that conformal correction can tacitly improve conditional
coverage to some extent.

B.8 PARAMETER SENSITIVITY

We next perform parameter sensitivity analysis on the two entropy-controlled hyperparameters of our
model, i.e., T , the temperature, and γ, which controls the importance of the entropy term. For T , we
pick sufficient points to cover the entropy range and let γ ∈ {2, 4, 6, 8, 10}. The results are shown in
Fig. 7, where we plot TS, EC3-1, and EC3-2 on CIFAR10 and Cora-ML for brevity. We observe that
there exists a trade-off between efficiency and entropy when the model entropy changes with either T
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Table 10: Conditional coverage results on CIFAR10 and Cora-ML before/after conformal correction.
WSC closer to 0.9 and smaller SSCV indicate better performance. Conformal correction does not
worsen the conditional coverage.

DATASET METHOD WSC SSCV

CIFAR10

CP 0.88±.01 0.45±.01

CONFTR 0.89±.00 0.22±.18

TS 0.88±.01 0.19±.02

EC3 0.89±.00 0.15±.05

CORA-ML

CP 0.90±.00 0.10±.00

CF-GNN 0.90±.00 0.09±.05

TS 0.90±.00 0.09±.01

EC3 0.90±.00 0.09±.05
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Figure 7: Parameter sensitivity analysis. Temperature Scaling (TS) and EC3-2 (with TS) both change
with temperature T , while EC3-1 (without TS) varies with hyperparameter γ.

or γ. Additionally, the Pareto frontier of EC3-2 is significantly better than that of TS in both Fig. 7(a)
and 7(b), which indicates the importance of conformal correction networks in our method.

B.9 EVALUATION ON LLMS

We evaluate our approach on the question answering task using the TruthfulQA dataset (Lin et al.,
2022). The prompt we use is shown as follows.

This is a 4-choice question that you should answer:{question}. Put the final results
within \boxed{{}}, e.g., \boxed{{A}}. The correct answer to this question is:".

For each question, we sample 100 Chain-of-Thought responses from Llama-2-7b-chat (Touvron et al.,
2023) and record the answer distribution (based on self-consistency) to perform conformal prediction.
Table 11 shows the results of APS when α = 0.2, considering the low accuracy 48.2%, and our
method obtains better efficiency than the baseline ConfTr at the same level of entropy. Moreover, the
results after temperature scaling are provided in Fig. 6(b). The experimental results demonstrate that
the efficiency-entropy trade-off of conformal prediction is also present in LLM generation tasks.
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Table 11: The coverage, entropy and efficiency results of conformal correction methods on LLMs for
the question answering task.

METRIC CP CONFTR EC3

COVERAGE 0.81±.00 0.80±.00 0.81±.00

EFFICIENCY 2.92±.01 2.48±.08 2.32±.15

ENTROPY 0.04±.01 1.84±.11 1.89±.07
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