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ABSTRACT

Temporal distributional shifts, with underlying dynamics changing over time,
frequently occur in real-world time series, and pose a fundamental challenge for
deep neural networks (DNNs). In this paper, we propose a novel deep sequence
model based on the Koopman theory for time series forecasting: Koopman Neural
Forecaster (KNF) that leverages DNNs to learn the linear Koopman space and the
coefficients of chosen measurement functions. KNF imposes appropriate inductive
biases for improved robustness against distributional shifts, employing both a global
operator to learn shared characteristics, and a local operator to capture changing
dynamics, as well as a specially-designed feedback loop to continuously update
the learnt operators over time for rapidly varying behaviors. We demonstrate
that KNF achieves the superior performance compared to the alternatives, on
multiple time series datasets that are shown to suffer from distribution shifts.
We open-source our code at https://github.com/google-research/
google-research/tree/master/KNF.

1 INTRODUCTION

Temporal distribution shifts frequently occur in real-world time-series applications, from forecasting
stock prices to detecting and monitoring sensory measures, to predicting fashion trend based sales.
Such distribution shifts over time may due to the data being generated in a highly-dynamic and
non-stationary environment, abrupt changes that are difficult to predict, or constantly evolving trends
in the underlying data distribution (Gama et al., 2014).

Temporal distribution shifts pose a fundamental challenge for time-series forecasting (Kuznetsov &
Mohri, 2020). There are two scenarios of distribution shifts. When the distribution shifts only occur
between the training and test domains, meta learning and transfer learning approaches (Jin et al.,
2021; Oreshkin et al., 2021) have been developed. The other scenario is much more challenging:
distribution shifts occurring continuously over time. This scenario is closely related to “concept drift”
(Lu et al., 2018) and non-stationary processes (Dahlhaus, 1997) but has received less attention from
the deep learning community. In this work, we focus on the second scenario.

To tackle temporal distribution shifts, various statistical estimation methods have been studied,
including spectral density analysis (Dahlhaus, 1997), sample reweighting (Bennett & Clarkson, 2022;
McCarthy & Jensen, 2016) and Bayesian state-space models (West & Harrison, 2006). However,
these methods are limited to low capacity auto-regressive models and are typically designed for
short-horizon forecasting. For large-scale complex time series data, deep learning models (Oreshkin
et al., 2021; Woo et al., 2022; Tonekaboni et al., 2022; Zhou et al., 2022) now increasingly outperform
traditional statistical methods. Yet, most deep learning approaches are designed for stationary time-
series data (with i.i.d. assumption), such as electricity usage, sales and air quality, that have clear
seasonal and trend patterns. For distribution shifts, DNNs have been shown to be problematic in
forecasting on data with varying distributions (Kouw & Loog, 2018; Wang et al., 2021).

DNNs are black-box models and often require a large number of samples to learn. For time series
with continuous distribution shifts, the number of samples from a given distribution is small, thus
DNNs would struggle to adapt to the changing distribution. Furthermore, the non-linear dependencies
in a DNN are difficult to interpret or manipulate. Directly modifying the parameters based on the
change in dynamics may lead to undesirable effects (Vlachas et al., 2020). Therefore, if we can
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reduce non-linearity and simplify dynamics modeling, then we would be able to model time series in a
much more interpretable and robust manner. Koopman theory (Koopman, 1931) provides convenient
tools to simplify the dynamics modeling. It states that any nonlinear dynamics can be modeled by a
linear Koopman operator acting on the space of measurement functions (Brunton et al., 2021), thus
the dynamics can be manipulated by simply modifying the Koopman matrix.

In this paper, we propose a novel approach for accurate forecasting for time series with distribution
shifts based on Koopman theory: Koopman Neural Forecaster (KNF). Our model has three main
features: 1) we combine predefined measurement functions with learnable coefficients to introduce
appropriate inductive biases into the model. 2) our model employs both global and local Koopman
operators to approximate the forward dynamics: the global operator learns the shared characteristics;
the local operator captures the local changing dynamics. 3) we also integrate a feedback loop to cope
with distribution shifts and maintain the model’s long-term forecasting accuracy. The feedback loop
continuously updates the learnt operators over time based on the current prediction error.

Leveraging Koopman theory brings multiple benefits to time series forecasting with distribution
shifts: 1) using predefined measurement functions (e.g., exponential, polynomial) provide sufficient
expressivity for the time series without requiring a large number of samples. 2) since the Koopman
operator is linear, it is much easier to analyze and manipulate. For instance, we can perform spectral
analysis and examine its eigenfunctions, reaching a better understanding of the frequency of oscil-
lation. 3) Our feedback loop makes the Koopman operator adaptive to non-stationary environment.
This is fundamentally different from previous works that learns a single and fixed Koopman operator
(Han et al., 2020; Takeishi et al., 2017; Azencot et al., 2020).

In summary, our major contributions include:

• Proposing a novel deep forecasting model based on Koopman theory for time-series data
with temporal distributional shifts.
• The proposed approach allows the Koopman matrix to both capture the global behaviors

and evolve over time to adapt to local changing distributions.
• Demonstrating state-of-the-art performance on highly non-stationary time series datasets,

including M4, cryptocurrency return forecasting and sports player trajectory prediction.
• Generating interpretable insights for the model behavior via eigenvalues and eigenfunctions

of the Koopman operators.

2 RELATED WORK

DNNs for time-series forecasting. DNNs are shown to increasingly outperform traditional statis-
tical methods (such as exponential smoothing (ETS) (Gardner Jr, 1985) and ARIMA (Ariyo et al.,
2014)) for time series forecasting. For example, Tonekaboni et al. (2022); Wang et al. (2019) pro-
posed to use DNNs to learn the local and global representations of time series separately, showing
high accuracy on sales and weather data. Woo et al. (2022) leverages inductive biases in different
architectures and also specially-designed contrastive loss to learn disentangled seasonal and trend
representations. Sen et al. (2019) utilized a global TCN to avoid normalization before training when
there are wide variations in scale. But it focuses mainly on better modeling the relationships between
time series rather than advances in modeling over time as ours. Transformer-based approaches are
particularly effective in time series forecasting, particularly on datasets including electricity and
traffic (Zhou et al., 2022; Wu et al., 2021; Zhou et al., 2021), which are relatively stationary and have
clear seasonality and trend dynamics.

Robustness against temporal distribution shifts. Non-stationarity poses a great challenge for
time series forecasting. To cope with varying distributions, one approach is to stationarize the input
data. Kim et al. (2022) proposes a reversible instance normalization technique applied on data to
alleviate the temporal distribution shift problem. Similarly, Passalis et al. (2019) utilizes a DNN to
adaptively stationarize input time series. But these approaches did not improve the generalizability of
DNNs. Liu et al. (2022) proposes a normalization-denormalization technique to stationarize time
series, but only for transformer-based models. (Arik et al., 2022) proposes test-time adaptation with a
self-supervised objective to better adapt against distribution shifts. Another line of work is to combine
DNNs and statistical approaches, for better accuracy on non-stationary time series data (Makridakis
et al., 2020; Malinin et al., 2021). Smyl (2020) combines ETS with a RNN, where the seasonality and
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Figure 1: Architecture of the proposed KNF model. It encodes every multiple steps of observations
into a measurement vector G(Vt) = [g1(v

(1)
1 ), ..., gn(v

(n)
t )]. G(Vt) is computed based on the set

of predfined measurement functions G and their input values Vt learnt by the encoder. The model
utilizes a global operator Kg and an adaptive local operator Klt learnt by a Transformer encoder to
model the evolution of measurements. On the forecasting window, an additional adjustment operator
Kct is learnt by a MLP module based on the prediction error on the lookback window.

smoothing coefficients, are fitted concurrently with the RNN weights using the same gradient descent
optimization. Oreshkin et al. (2019) proposes a deep residual architecture for univariant time series
data, in which each block used MLP to learn coefficients of basis functions, such as polynomials and
sine functions. Indeed, we show that our model outperforms both Smyl (2020) and Oreshkin et al.
(2019) on the M4 financial time series dataset (Makridakis et al., 2020).

Koopman theory. Koopman theory (Koopman, 1931; Strogatz, 2018) shows that a nonlinear
dynamical system can be represented as an infinite-dimensional linear Koopman operator acting on a
space of measurement functions. The spectral decomposition of the linear Koopman operator can
provide insights on the behaviors of nonlinear systems. Traditionally, dynamic mode decomposition
(DMD) (Brunton et al., 2016) is commonly used for approximating the Koopman Operator. However,
it is highly nontrivial to find appropriate measurement functions as well as the Koopman operator.
Many works at the intersection of machine learning and Koopman theory employ DNNs to learn
measurement functions from data (Han et al., 2020; Li et al., 2020; Morton et al., 2019; Li & Jiang,
2021; Takeishi et al., 2017; Fan et al., 2022). Yeung et al. (2019) and Lusch et al. (2018) propose to
use fully connected DNNs to learn the transformation between the observations and measurement
functions that span a Koopman invariant subspace and the Koopman operator is approximated by
a linear layer. Azencot et al. (2020) also designed an autoencoder architecture based on Koopman
theory to forecast fluid dynamics. Different from these approaches, we allow the Koopman matrix to
evolve over time for each time series to adapt to the changing distribution.

3 METHODOLOGY

3.1 TIME-SERIES FORECASTING WITH KOOPMAN THEORY

Time series data {xt}Tt=1 can be considered as observations of a dynamical system states – consider
following discrete form: xt+1 = F (xt), where x ∈ X ⊆ Rd is the system state, and F is the
underlying governing equation. We focus on multi-step forecasting task of predicting the future states
given a sequence of past observations. Formally, we seek a function map f such that:

f : (xt−q+1, . . . ,xt) −→ (xt+1, . . . ,xt+h), (1)

where q is the lookback window length and h is the forecasting window length.
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Koopman theory (Koopman, 1931) shows that any nonlinear dynamic system can be modeled by
an infinite-dimensional linear Koopman operator acting on the space of all possible measurement
functions. More specifically, there exists a linear infinite-dimensional operator K : G(X ) 7→ G(X )
that acts on a space of real-valued measurement functions G(X ) := {g : X 7→ R}. The Koopman
operator maps between function spaces and advances the observations of the state to the next step:

Kg(xt) = g(F (xt)) = g(xt+1). (2)

We propose Koopman Neural Forecasting (KNF), a deep sequence model based on Koopman theory
to forecast highly non-stationary time series, as shown in Fig. 1. It instantiates an encoder-decoder
architecture for each time series segment. The encoder takes in observations from multiple time
steps as the underlying dynamics may contain higher-order time derivatives. Our model has three
main features: 1) we use predefined measurement functions with learned coefficients to map time
series to the functional space. 2) the model employs both a global Koopman operator to learn the
shared characteristics and a local Koopman operator to capture the local changing dynamics. 3) we
also integrate a feedback loop to update the learnt operators over time based on forecasting error,
maintaining model’s long-term forecasting performance.

3.2 LEVERAGING PREDEFINED MEASUREMENT FUNCTIONS

We define a set of measurement functions G := [g1, · · · , gn] that spans the Koopman space, where
each gi : R 7→ R. For example, g1(x) = sin(x). These functions are canonical nonlinear functions
and are often used to model complex dynamical systems, such as Duffing oscillator and fluid dynamics
(Brunton et al., 2021; Kutz et al., 2016). They also provide a sample-efficient approach to represent
highly nonlinear behavior that may be difficult to learn for DNNs.

We use an encoder to generate the coefficients of the measurement functions Ψ(Xt), such as the
frequencies of sine functions. Let n be the number of measurement functions for each feature, d
be the number of features in a time series and k be the number of steps encoded by the encoder
Ψ : Rd×k 7→ Rn×d×k every time. The lookback window length q is a multiple of k and we denote
xtk:(t+1)k as Xt ∈ Rd×k for simplicity.

As shown in the Eq.3 below, we first obtain a latent matrix Vt = [v
(1)
t ,v

(2)
t , · · · ,v(n)

t ] ∈ Rn×d.
Every vector vi ∈ Rd is a different linear transformation of the observations, where the weights are
learnt by the encoder Ψ:

Vt[i, j] =
∑
l

Ψ(Xt)[i, j, l]Xt[j, l]; 1 ≤ i ≤ n, 1 ≤ j ≤ d, 1 ≤ l ≤ k. (3)

Our measurement functions are defined in the latent space rather than the observational space. We
apply a set of predefined measurement functions G to the latent matrix Vt:

G(Vt) = [g1(v
(1)
t ), g2(v

(2)
t ), ..., gn(v

(n)
t )] ∈ Rn×d (4)

In our implementation, we flatten G(Vt) into a vector and then finite Koopman operator should be a
nd× nd matrix. Finally, we use a decoder Φ : Rn×d 7→ Rk×d to reconstruct the observations from
the measurements:

X̂t = Φ(G(Vt)). (5)

Here, the encoder Ψ and the decoder Φ can be any DNN architecture, for which we use multi-layer
perceptron (MLP). The set of measurement functions G contains polynomials, exponential functions,
trigonometric functions as well as interaction functions. These predefined measurement functions
are useful in imposing inductive biases into the model and help capture the non-linear behaviors
of time series. The encoder model needs to approximate only the parameters of these functions
without the need of directly learning non-stationary characteristics. Ablation studies (in Sec. 4.8)
demonstrate that using predefined measurement functions significantly outperforms the model with
learned measurement functions in the previous works.

3.3 GLOBAL AND LOCAL KOOPMAN OPERATORS

Dynamic mode decomposition (DMD) (Tu et al., 2013) is traditionally used to find the Koopman
operator that best propagates the measurements. But for time series with temporal distribution shift,
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we need to compute spectral decomposition and learn a Koopman matrix for every sample (i.e. slice
of a trajectory), which is computationally expensive. So we utilize DNNs to learn Koopman operators.

In classic Koopman theory, the measurement vector G(Vt) is infinite-dimensional, which is impossible
to learn. We assume that encoder is learning a finite approximation and G(Vt) forms a finite Koopman-
invariant subspace. Thus, the Koopman operator K that we need to find is the finite matrix that best
advances the measurements forward in time.

While the Koopman matrix should vary across samples and time in our case, it should also capture
the global behaviors. Thus, we propose to use both a global operator Kg and a local operator Klt to
model the propagation of dynamics in the Koopman space, defined as below:

KG(Vt) := (Kg +Klt)G(Vt) = G(Vt+1), t ≥ 0. (6)

The global operator Kg is an nd×nd trainable matrix that is shared across all time series. We use the
global operator to learn the shared behavior such as trend. The local Koopman operator Klt, on the
other hand, is based on the measurement functions on the lookback window for each sample, shown
in Fig. 1. The local operator should capture the local dynamics specific to each sample. Since we
generate the forecasts in an autoregressive way, the local operator depends on time t and varies across
autoregressive steps, adapting to the distribution changes along prediction. We use a Transformer
architecture with a single-head as the encoder, to capture the relationships between measurements at
different steps. We use the attention weight matrix in the last layer as the local Koopman operator.

3.4 FEEDBACK LOOP

Suppose an abrupt distributional shift occurs in the middle of the look-back window, the model
would still try to fit two distributions before and after the shift but a single proporgration matrix is
never good enough to model multiple distributions. This will results in the inaccurate operator used
for the forecasting window. To address it, we add an additional feedback closed-loop, in which we
employ an MLP module Γ to learn the adjustment operator Kct based on the prediction errors in the
lookback window. It is directly added to other operators when making predictions on the forecasting
window, as shown in Fig. 1. More specifically, we apply global and local operators recursively to the
measurements at the first step in the lookback window to obtain predictions:

X̂t−q/k+i = Φ((Kg +Klt)iG(Vt−q/k)), 0 < i ≤ q/k. (7)

Then, the feedback module Γ uses the difference between the predictions on the lookback window
and the observed data to generate additional adjustment operator Kct , which is a diagonal matrix:

Kct = Γ(X̂t−q/k:t −Xt−q/k:t) = Γ(x̂t−q:t − xt−q:t) (8)

If the predictions deviate significantly from the ground truth within the lookback window, the operator
Kct would learn the temporal change in the underlying dynamics and correspondingly adjust the other
two operators. Thus, for forecasting, the sum of all three operators is used:

X̂t+i = Φ((Kg +Klt +Kct )iG(Vt)), i > 0. (9)

In a word, the feedback module is designed to detect the distributional shifts in the lookback window
and adapt the global+local operator to the latest distribution in the lookback window.

3.5 LOSS FUNCTIONS

KNF is trained in an end-to-end fashion, using superposition of three loss terms L = Lrec + Lback +
Lforw. Denote l as a distance metric for which we use the L2 loss. The first term is the reconstruction
loss, to ensure the decoder Φ can reconstruct the time series from the measurements:

Lrec = l(Xt,Φ(G(Ψ(Xt)Xt))), t ≥ 0. (10)

The second term is the prediction loss on the lookback window to ensure the sum of global and local
operators is the best-fit propagation matrix on the lookback window.

Lback = l(Xt−q/k+i,Φ((Kg +Klt)iG(Ψ(Xt−q/k)Xt−q/k)), 0 < i ≤ q/k. (11)

The third term is for prediction accuracy in the forecasting window to guide the feedback loop to
learn the correct adjustment placed on the Koopman operator.

Lforw = l(Xt+i,Φ((Kg +Klt +Kct )iG(Vt)), i > 0. (12)
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4 EXPERIMENTS

4.1 DATASETS

We benchmark our method on three time series datasets: M4 (Makridakis et al., 2020), Crypto (Arik
et al., 2022) and Basketball Player Trajectories (Li et al., 2021). These time series are particularly
chosen as they are difficult to forecast due to high nonstationarity and abrupt temporal changes, as
analyzed in Sec. 4.2.

M4. It contains 10000 highly nonstationary univariate time series with different frequencies from
hourly to yearly and different categories from financials to demographics. The forecasting horizon
varies across different frequencies. We directly compare KNF with the M4 competition winner (Smyl,
2020), the second place (Montero-Manso et al., 2020) and the ensemble N-Beats-I+G (Oreshkin
et al., 2019) that has achieved the competitive prediction performance on M4.

Crypto.1 This multivariate dataset contains 8 features on historical trades, such as open and close
prices, for 14 cryptocurrencies. The original challenge is to predict 3-step ahead 15-minute relative
future returns. Since we focus on long-term forecasting, we train all models to make 15-step
predictions of 15-minute relative future returns. We use the original training set from the competition
and do an 80%-10%-10% training-validation-test split.

Player Trajectory.2 This dataset contains basketball player movement trajectories from NBA games
in 2016. We randomly sample 300 player trajectories for training and validation and 50 trajectories
for testing. All models are trained to yield 30-step ahead predictions.

4.2 DISTRIBUTION SHIFTS AND FORECASTABILITY

As a way of motivating for the improvement scenarios of our method, we show that the three datasets
we focus are much more difficult to predict than a commonly-used datasets like Electricity (Harries
& Wales, 1999) with the following three metrics: (1) Forecastability (Goerg, 2013): it is one minus
the entropy of Fourier decomposition of the time series; (2) Lyapunov exponents (LEs) (Dingwell,
2006; Schölzel, 2019): a measure of how sensitive a dynamical system is to initial conditions.(3)
Trend: the slope of the linear regression fitted on the time series scaled by its own magnitude; and (4)
Seasonality: we use ACF test (Witt et al., 1998) to test if there is clear seasonality. We report the
mean forecastability, mean trend and the percentage of the slices that have seasonality in Table 1,
averaged over slices with length 20. We can see that seasonality is dominant for Electricity dataset,
which also has significantly higher forecastability compared to the datasets we experiment with.
Moreover, we show that KNFachieves the state-of-the-art prediction performance on those datasets
that have high Lyapunov exponents, low forecastability, no clear trends and seasonality, including
Crypto, Player Trajectories, M4-monthly, M4-weekly and M4-daily.

Electricity Crypto Player
Traj.

M4-
monthly

M4-
weekly

M4-
daily

M4-
hourly

M4-
yearly

M4-
quarterly

Forecastability 0.77 0.35 0.49 0.44 0.43 0.44 0.46 0.58 0.47
LEs 0.005 0.026 0.052 0.011 0.013 0.020 0.003 0.004 0.003

Trend 0.00 0.02 0.01 0.48 0.13 0.05 0.02 4.32 1.06
Seasonality 100% 0.00% 0.00% 66.34% 0.00% 0.00% 99.76% 0.00% 84.51%

Table 1: The forecastability, Lyapunov exponents, trend and seasonality of the datasets that we used
for our experiments, compared with a commonly-used Electricity benchmark. The boldface datasets
are what we use for experiments in this paper.

4.3 BASELINES

For M4, we compare with the winner solution (Smyl, 2020), the second best (Montero-Manso et al.,
2020) and N-beats (Oreshkin et al., 2019). On the Crypto and Player Trajectory datasets, we compare
KNF with four different types of models.

1https://www.kaggle.com/competitions/g-research-crypto-forecasting/data
2https://github.com/linouk23/NBA-Player-Movements
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• Vector ARIMA (VARIMA) (Stock & Watson, 2001): It is an extension of the classic ARIMA
model for multivariate time series.

• Multi-layer Perceptron (MLP) that maps the historic observations to the future and roll out
autoregressively to yield long-term predictions. It is a commonly-used DL model for time series
forecasting (Arik et al., 2022; Wang et al., 2021; Faloutsos et al., 2018).

• Random Forest (RF) applied autoregressively same as MLP. It is a traditional ML model that
have achieved competitive performance on many time series benchmarks (Godahewa et al., 2021;
Masini et al., 2021; Kane et al., 2014; Hyndman & Athanasopoulos, 2018).

• Long Expressive Memory (LEM) (Rusch et al., 2022) : An SOTA recurrent model for learning
long-term sequential dependencies.

• FedFormer (FedFormer) (Zhou et al., 2022) is a state-of-art transformer-based model, which
has outperformed other transformer-based models, such as Informer (Zhou et al., 2021) and
Autoformer (Wu et al., 2021), on many datasets, including electricity, traffic, weather, etc.

• Variational Beam Search (VBS) (Li et al., 2021) is a Bayesian online learning model proposed
to detect and adapt to temporal distributional shifts. Since VBS is not designed for time series
forecasting, we modify it by feeding its own prediction of next step back to the input (instead of
the ground truth) to yield multi-step predictions.

4.4 TRAINING STRATEGIES

We find that the following two training strategies can improve the prediction accuracy of models by
varying degrees. The first one is the reversible instance normalization ReVIN (Kim et al., 2022),
which normalize the input sequence and de-normalize the predictions at every autoregressive step
for every instance. We use ReVIN for MLP and KNF since it can improve their prediction accuracy.
An ablation study of ReVIN on KNF can be found in Table 4. The second one is, temporal bundling
TB (Brandstetter et al., 2022) that asks autoregressive models to generate multiple-step predictions
instead of just one on every call, to reduce number of model calls and therefore error propagation
speed. We observe this strategy can improve prediction accuracy of both MLP and RF.

4.5 SETUP
sMAPE Monthly(18) Weekly(13) Daily(14)

Montero et.al 12.639 7.625 3.097
Smyl 12.126 7.817 3.170

Nbeats-I+G 12.024 - -
KNF 11.930 7.254 2.990

Table 2: sMAPE for KNF and baselines on M4 datasets.
The numbers in parentheses are the number of predic-
tion steps. KNF achieves the state-of-the-art prediction
performance at Weekly, Daily and Monthly frequencies.

For all datasets, we use a sliding win-
dow approach to generate training sam-
ples. On Crypto and Player Trajectory
datasets, we perform a grid search of hy-
perparameters, including learning rate,
input length, hidden dimension, number
of predictions made in each autoregres-
sive step, etc. for all models. The hyper-
parameter tuning ranges can be found in
the Appendix A.3 Table 6. The default
set of measurement functions used in KNF includes polynomials up to the order of four, one exponen-
tial function and trigonometric functions with the same number of input steps for each feature, as
well as pairwise product interaction functions between features if the time series data is multivariate.

We report the mean and standard deviation averaged across five runs. We follow the literature and use
RMSE for evaluation on Player Trajectories and the weighted RMSE on Crypto, where the weight
corresponds to the importance of each cryptocurrency same as in the competition. Since VBS is
deterministic once its inverse temperature parameter is fixed, we do not report its standard deviation.
On M4, we evaluate models with the sMAPE metric (Makridakis et al., 2020)1 used in the original
competition. Ensembling is used by most models in the M4-competition and N-Beats (Oreshkin et al.,
2019), so we ensemble five KNF with best hyperparameters but trained with random seeds. Since the
evaluation in M4 competition is only based on a single submission, we also report the sMAPE of a
single ensembled prediction without standard deviation.

1sMAPE is the mean absolute error scaled by the magnitude of the predictions and target.
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Figure 2: Left: Example forecasts on Crypto dataset. Right: Example forecasts on NBA player
trajectory dataset. We observe that KNF can be superior in capturing complex non-stationary patterns.

4.6 RESULTS ON M4

Table 2 reports the prediction sMAPE of KNF and three baselines, including the M4 winner (Smyl,
2020), the second place (Montero-Manso et al., 2020) and the ensembled N-beats-I+G (Oreshkin
et al., 2019), on six datasets with different frequency in M4. Oreshkin et al. (2019) does not report
the breakdown sMAPE of N-beats on weekly, daily and hourly, so we did not include them in the
table. The number behind each frequency in the table is the number of prediction steps required
in the competition. We can see that KNF achieve the state-of-the-art accuracy on Weekly, Daily
and Monthly data that have longer forecasting horizons, and no clear trends and seasonality. This
highlights the value proposition of KNF for accurate long-term forecasting accuracy especially for
time-series with nonstationary characteristics and low forecastability. KNF also achieve competitive
performance on Yearly, Quarterly and Hourly and the full results on M4 are in Appendix A.4.

4.7 RESULTS ON CRYPTO AND PLAYER TRAJECTORIES

Table 3 shows the Prediction RMSE on Crypto and Player Trajectories datasets. KNF consistently
achieves the best performance on both, across different forecasting horizons. Fig. 2 exemplifies the
predictions of KNFand best-performing baselines. We observe that KNF can capture both overall
trends and small fluctuations in a superior way, yielding much higher accuracy. Fig. 2 right
visualizes the predictions on a trajectory with changing direction. KNF correctly predicts the change
of moving direction while FedFormer fails. Regarding baseline performances, RevIN and TB
greatly improves MLP, and MLP+RevIN+TB is the best performing one on Crypto, and FedFormer
performs better on Player Trajectory, that are less chaotic and irregular. Though VBS was shown to
perform well on the online change point detection task, it does not appear to be as successful for
time series forecasting based on its performance on these two datasets. We also include additional
experimental results on the Traffic and Exchange Datasets (Zeng et al., 2023) in Appendix A.5.

4.8 ABLATION STUDY ON M4

We performed an ablation study of KNF on the M4-Weekly data to understand the contribution of each
component in our model. Table 4 shows the sMAPE of ensembled predictions from five funs of each
variant. We denote KNF-base as the basic backbone of our model that only has an encoder-decoder
architecture and a local Koopman operator. KNF-base-G uses purely data-driven measurements,

Model Crypto (Weighted RMSE 10−3) Basketball Player Trajectory (RMSE)
(1∼5) (6∼10) (11∼15) Total (1∼10) (11∼20) (21∼30) Total

VARIMA 6.09±0.00 8.83±0.00 10.74±0.00 8.76±0.00 0.22±0.00 0.90±0.00 1.98±0.00 1.26±0.00
MLP 6.68±1.53 7.95±0.33 8.64±0.55 7.85±0.35 0.73±0.20 1.64±0.31 2.77±0.42 1.91±0.32

MLP+RevIN+TB 5.03±0.08 7.16±0.13 8.41±0.06 7.01±0.08 0.37±0.02 1.16±0.03 2.25±0.04 1.48±0.25
RF+TB 6.62±1.30 7.99±0.24 8.51±1.19 7.84±0.04 0.86±0.01 2.10±0.01 3.48±0.02 2.40±0.01

FedFormer 5.61±0.05 7.50±0.03 8.89±0.03 7.46±0.04 0.43±0.02 0.92±0.03 1.97±0.04 1.29±0.03
LEM 5.27±0.02 7.23±0.06 8.23±0.05 7.02±0.04 0.33±0.01 1.08±0.04 2.18±0.02 1.42±0.02
VBS 15.23±0.00 14.46±0.00 26.49±0.00 19.52±0.00 0.90±0.00 2.84±0.00 9.24±0.00 5.60±0.00
KNF 5.24±0.00 7.03±0.01 7.63±0.01 6.91±0.01 0.26±0.01 0.84±0.01 1.81±0.01 1.16±0.01

Table 3: Prediction RMSE on Cryptos and Player Trajectories datasets.
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M4-Weekly sMAPE

KNF-base-G 14.175
KNF-base-I 9.122

+RevIN 8.435
+RevIN+Kg 7.500

+RevIN+Kg+feedback 7.254

Table 4: Ablation study of KNF
on M4-weekly data. It shows the
importance of every component in
the model architecture.

Figure 3: Predictions on M4-weekly data from original KNF
and with its version without the feedback loop. We observe
that the feedback loop can help providing robustness against
temporal distributional shifts and maintain the long-term
prediction accuracy.

which is similar to the Koopman autoencoders proposed in (Yeung et al., 2019; Azencot et al., 2020).
This can be considered a baseline for our model. KNF-base-I uses predefined measurement functions,
which significantly outperforms KNF-base-G. This demonstrates the benefits of leveraging hard-coded
functions. Moreover, adding any of ReVIN, the global Koopman operator and the feedback loop also
brings great improvement based on the results shown in Table 4 .

To further demonstrate the effectiveness of the feedback loop, we visualize the predictions on M4-
weekly data from KNF and KNF with the feedback module removed after training. We can observe
that the predictions from the model with the feedback loop removed start to deviate from the ground
truth after a few steps. That means the feedback loop can cope with the temporal distributional shifts
and thus improve the long-horizon forecasting accuracy. We perform additional ablation studies on
measurement functions on M4-yearly data shown in Appendix A.1, demonstrating the necessity of
each type of measurement functions.

4.9 INTERPRETABILITY RESULTS

Figure 4: Reconstructions from KNF on the
lookback window with only one of eigen-
functions of Kg +Klt on a M4 time series.

KNF can offer unique interpretability capabilities via
spectral analysis of the Koopman operators. We per-
form eigen-decomposition on Kg +Klt for KNF trained
on M4-weekly data to investigate what individual eigen-
functions have learnt. Fig. 4 shows the predictions
in the lookback window with different eigenfunctions.
From the top to the bottom, the plot shows the target,
the reconstruction from KNF with only the first eigen-
function in the lookback window and the reconstruction
only using the second eigenfunction. We observe that
the some eigenfunctions captures the trend while some other functions focus on the seasonality.

To show that our model can also correctly learn the time series governed by known equations. We
run experiments with our model on a simple oscillator system, given in Appendix A.2. We try our
models with different sets of polynomial functions and train/test them on different initial conditions.
Fig. 5 shows that our model can make accurate predictions on the test set with different dictionaries.

5 CONCLUSION

In this paper, we propose a novel model based on the Koopman theory, Koopman Neural Forecaster
(KNF), designed for accurate long-term forecasting for non-stationary time series with temporal
distribution shifts. KNF leverages predefined measurement functions to capture the nonlinear and
nonstationary characteristics that may pose a great difficulty for neural nets to learn. It employs both a
global operator to learn shared characteristics, and a local operator to capture changing dynamics. We
also use a judiciously-designed feedback loop to continuously update the learnt operators over time
for rapidly varying behaviors. We demonstrate that KNF achieves the state-of-the-art performance
on wide range of time series datasets that are particularly known to suffer from distribution shifts.
KNF achieves SOTA prediction performance on M4, Cryptos and NBA player trajectory datasets and
provides interpretable results. Future work includes forecasting higher-dimensional dynamics and
investigating distributional shifts between training and test domains.
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A APPENDIX

A.1 ABLATION STUDIES ON PREDEFINED MEASUREMENT FUNCTIONS

Table 5 shows the results from the ablation study of measurement function on M4-Yearly data. G
represents generic, purely data-driven. P is polynomial function, E is the exponential function, S is
the sine function. The integers in the first row are the number of each type of function. Basically,
we gradually add more and different types of predefined measurement functions to purely data-drive
model and observe improvements brought by the polynomial, exponential function, sine functions.

KNF G P1 P2 P3 P2+E1 P2+E2 P2+E3 P2+E1+S1 P2+E1+S2 P2+E1+S3 P2+E1+S4

sMAPE 14.66 14.65 14.56 14.79 14.48 14.63 14.66 14.35 14.16 14.01 14.15

Table 5: Ablation study of measurement function on M4-Yearly data. G represents generic, purely
data-driven. P is polynomial function, E is the exponential function, S is the sine function. The
integers in the first row are the number of each type of function.

A.2 SIMPLE NONLINEAR SYSTEM WITH FINITE KOOPMAN SPACE

We consider the following simple nonlinear system with discrete spectrum.

ẋ1 = µx1

ẋ2 = λ(x2 − x21)

This system has a minimal Koopman invariant subspace spanned by {x1, x2, x21}:

d

dt

x1x2
x21

 =

[
µ 0 0
0 λ −λ
0 0 2µ

]x1x2
x21


It can also be spanned by three eigenfunctions [φ1, φ2, φ3] = [x1, x

2
1, x2 − λ

λ−2µx
2
1]

d

dt

[
φ1
φ2
φ3

]
=

[
µ 0 0
0 2µ 0
0 0 λ

][
φ1
φ2
φ3

]
Any multiplication of [φ1, φ2, φ3] is still an eigenfunction.

We want to show our model with only trainable global operator can correctly identify the Koopman
invariant subspace from the synthetic data generated based on this system. We generate 36 time
series with µ = −0.1 and λ = −1 and the initial values are uniformly sampled from [−1, 1]2.
We tried four different basis dictionaries, including D1 = {x1, x2, x21}, D2 = {x1, x2, x21, x22},
D3 = {x1, x2, x21, x22, x31, x32}, D4 = {x1, x2, x21, x22, x31, x32, x41, x42} and we trained and tested
the models on different initial conditions. The left figure in Fig. 5 shows eigenvalues learnt by
KNF and some true eigenvalues. Since the learned Koopman matrix may not be unique given the
flexibility in the coefficients of measurement functions, and the compositions of eigenfunctions are
also eigenfunctions, there are many possible eigenvalues. But we can still see that most of the learned
eigenvalues match the true eigenvalues. The right three figures in Fig. 5 shows that KNF can make
accurate predictions with different dictionaries.

A.3 ADDITIONAL EXPERIMENTAL DETAILS

Table 6 shows the hyperparameter tuning ranges, including the learning rate, the hidden dimension
and number of layers of deep neural network modules in both baselines and our model, number
of predictions made at each autoregressive step, the length of input observations, the forecasting
window size during training, and whether to use ReVIN. For different modules in a model, we
tune hyperparameters, such as the number of layers/hidden dimensions separately. For instance, in
FedFormer, the encoder and decoder may have different numbers of layers. As for the nonlinearity,
we use ReLU for all layers.
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Figure 5: Left: Learnt eigenfunctions by KNF with different dictionaries. Right: Predictions from
KNF with on the simple nonlinear system.

Learning
rate

Hidden
dim

#Layers #forecasting
window size

during
training

#Predictions
made at each

autoregressive
step

Input
length

Whether to
use ReVIN

1e-1∼1e-5 64∼1024 3∼7 1∼15 1∼10 5∼50 True/False

Table 6: Hyperparamter Tuning Ranges.

A.4 ADDITIONAL RESULTS

sMAPE Monthly(18) Weekly(13) Daily(14) Hourly(48) Yearly(6) Quarterly(8)

Montero et.al 12.639 7.625 3.097 11.506 13.528 9.733
Smyl 12.126 7.817 3.170 9.328 13.176 9.679

Nbeats-I+G 12.024 - - - 12.924 9.212
KNF 11.930 7.254 2.990 11.294 13.800 10.008

Table 7: sMAPE for KNF and baselines on six M4 datasets for different sampling frequencies.
The numbers in parentheses are the number of prediction steps. KNF achieves the state-of-the-art
prediction performance at Weekly, Daily and Monthly frequencies.

A.5 EXPERIMENTS ON THE TRAFFIC AND EXCHANGE BENCHMARK DATASETS

We also experiment with KNF on the the Traffic and Exchange Benchmark Datasets. Our results in
Table 8 demonstrate that KNF achieves MAE scores comparable to the state-of-the-art model (Zeng
et al., 2023). Additionally, KNF outperforms the SOTA model in terms of MSE on the traffic dataset,
indicating that KNF generates relatively stable predictions across the forecasting horizon.

Models NLinear / DLinear KNF
Metrics MAE MSE MAE MSE

Traffic

96 0.279 0.410 0.254 0.158
192 0.284 0.423 0.276 0.176
336 0.290 0.435 0.301 0.197
720 0.307 0.464 0.344 0.247

Exchange

96 0.203 0.081 0.234 0.095
192 0.293 0.157 0.331 0.175
336 0.414 0.305 0.456 0.327
720 0.601 0.643 0.589 0.517

Table 8: Prediction MAE and MSE on the Traffic and Exchange Benchmark Datasets. KNF achieve
MAE scores comparable to the SOTA scores and significantly better MSEs on the traffic dataset.
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