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ABSTRACT

Large Vision-Language Models (LVLMs) have become essential for advancing
the integration of visual and linguistic information, facilitating a wide range of
complex applications and tasks. However, the evaluation of LVLMs presents sig-
nificant challenges as the evaluation benchmark always demands lots of human
cost for its construction, and remains static, lacking flexibility once constructed.
Even though automatic evaluation has been explored in textual modality, the visual
modality remains under-explored. As a result, in this work, we address a ques-
tion: “Can LVLMs serve as a path to automatic benchmarking?”. We introduce
AUTOBENCH-V, an automated framework for serving evaluation on demand, i.e.,
benchmarking LVLMs based on specific aspects of model capability. Upon re-
ceiving an evaluation capability, AUTOBENCH-V leverages text-to-image models
to generate relevant image samples and then utilizes LVLMs to orchestrate visual
question-answering (VQA) tasks, completing the evaluation process efficiently
and flexibly. Through an extensive evaluation of seven popular LVLMs across
five demanded user inputs (i.e., evaluation capabilities), the framework shows ef-
fectiveness and reliability. We observe the following: (1) Our constructed bench-
mark accurately reflects varying task difficulties; (2) As task difficulty rises, the
performance gap between models widens; (3) While models exhibit strong per-
formance in abstract level understanding, they underperform in detailed reasoning
tasks; and (4) Constructing a dataset with varying levels of difficulties is criti-
cal for a comprehensive and exhaustive evaluation. Overall, AUTOBENCH-V not
only successfully utilizes LVLMs for automated benchmarking but also reveals
that LVLMs as judges have significant potential in various domains.

1 INTRODUCTION

The flourishing of Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023;
Liu et al., 2024a; Anthropic, 2024) has paved the way for significant advancements in the field of
natural language processing (NLP) (Brown et al., 2020; Vaswani et al., 2023). As the capabilities
of LLMs grew, researchers began to explore the integration of visual information understanding
capabilities into LLMs, giving rise to the development of Large Vision-Language models (LVLMs)
(Achiam et al., 2023). These models are trained on extensive paired image-text datasets, enabling
them to perform sophisticated multimodal reasoning by effectively integrating visual and textual
information (Zou et al., 2023; Ghandi et al., 2023; Karras et al., 2019; Agrawal et al., 2016).

With the widespread adoption of LVLMs, evaluating these models has become increasingly im-
portant, for understanding their limitations and reliability better. Recent research (Xu et al., 2023;
Liu et al., 2023; Ying et al., 2024; Li et al., 2023b;a; Yin et al., 2023) emphasize the urgent need
for comprehensive and sophisticated evaluation standards that accurately assess LVLMs’ abilities
across various modalities. Various benchmarks are aiming to evaluate a range of capabilities of
LVLMs including 3D understanding (Yin et al., 2023), perception and cognition capacity (Liu et al.,
2023; Fu et al., 2024), multi-discipline understanding and reasoning (Yue et al., 2024). Even though
these works have solidly evaluated certain aspects of LVLMs’ capabilities, they lack the flexibility
to support on-demand evaluation across various capability aspects. Recent studies have explored
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Q: Which object is the 
main focus in the image?

Q: Which activity is the 
child engaged in near the 
woman reading a book?

Q:What is the position of 
the armchair relative to 
the window in the well-
lit room?

Q: where is the cat 
positioned relative 
to the dog lying on 
the couch?

Q: What is the elderly 
man doing in the 
garden?

Q: Where is the 
bookshelf located in 
the classroom scene?

Q: In the hospital scene, 
which visual cue primarily 
indicates the senior 
surgeon's higher status?

Q: What emotion is 
primarily depicted on 
the parents' faces in the 
living room scene?

Q: What is prominently 
displayed in the 
foreground of the 
image?

Q: Which element 
is centrally placed 
and serves as the 
main focus?

Q: Which object is 
positioned closest to the 
couch where the dog 
and cat are sitting?

Q: Which hot air 
balloon appears 
larger in the 
image?

Q: What is the woman's 
body posture indicating 
about her emotional state?

Q: What effect do the late 
afternoon sunlight rays 
have on the appearance of 
the wooden floor in the 
kitchen?

Q: How does the fog 
influence the visibility of 
the fishing boats in the 
harbor?

Q: What is the girl doing 
while the boy hands her 
the balloon?

Q: What is the most 
likely outcome if the 
child successfully kicks 
the soccer ball with force?

Q: which item in the 
image is most indicative 
of the 1940s era?

Q: Which element in the 
image indicates the 
progression of time and 
the duration of the 
sapling's growth?

Q: What is the young 
artist's main motivation 
as depicted in the image?

Figure 1: Five key evaluation dimensions supported by AUTOBENCH-V, along with their fine-
grained sub-aspects, accompanied by questions and images to assist in understanding.

the usage of generative AI in automating evaluation, which offers flexibility in varying evaluation
dimensions and reduces the human cost of benchmark dataset construction (Wu et al., 2024; Zhu
et al., 2024a; Li et al., 2024). While these studies focus on the automatic evaluation of LLMs, we
aim to extend this to visual modality by answering addressing this question: “Can LVLMs serve as
a path to automatic benchmarking?”

Automating the evaluation of LVLMs presents several key challenges. First, the targeted capabilities
to be evaluated must be clearly identified based on the input demand. This is the foundation that rel-
evant images and appropriate visual question-answering (VQA) tasks can be generated to accurately
assess the LVLMs’ performance in those specific aspects. Second, the generated images and VQA
tasks should be relevant and accurately reflect the evaluation target. Third, the risk of answer leakage
from Examiner LVLM during question generation should be mitigated. This issue arises when the
model responsible for generating questions exhibits self-enhancement bias (Ye et al., 2024; Zheng
et al., 2023), wherein the model being evaluated is also employed to generate the evaluation cases.

To address the above challenges, we propose AUTOBENCH-V, which supports automated evalua-
tion of LVLMs based on a user demand regarding specific aspects of model capability (e.g., Spatial
Understanding). Initially, the input demand is processed by an examiner LVLM, which categorizes
it into several overarching aspects. Each aspect is further divided into several fine-grained compo-
nents, for which image descriptions of varying difficulty levels are generated. To ensure that the
descriptions align with their corresponding images, a self-validation mechanism is applied using
VQA (Agrawal et al., 2016). Furthermore, an error control mechanism is implemented to prevent a
negative impact on the generation of questions and reference answers. The generated questions and
images are then presented to the evaluated LVLM to generate responses, which are assessed against
reference answers (Liu et al., 2024b). The pipeline of AUTOBENCH-V is shown in Figure 2.

By leveraging AUTOBENCH-V, we conduct extensive evaluation of seven popular LVLMs across
five demanded evaluation capabilities (see Figure 1). The results show that LVLMs exhibit declin-
ing performance as task difficulty rises, with varied performances over distinctive LVLMs. While
excelling in high-level understanding, they struggle with detailed reasoning, revealing a key area for
improvement in future research. We also carried out several human evaluation experiments on the
generated cases, which yielded positive results, demonstrating the reliability of our approach. To
summarize, our key contributions are three-fold:
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Figure 2: An overview of the AUTOBENCH-V pipeline, illustrating the automated evaluation pro-
cess. It starts from user input intake, then aspect generation, followed by the generation of corre-
sponding images and questions, and finally outputs the evaluation score of LVLMs.

▷ An automated LVLM evaluation framework. This proposed AUTOBENCH-V is the first au-
tomated framework for benchmarking LVLMs’ capability. The framework leverages text-to-image
models to generate images for evaluation and employs GPT-4o as an examiner to conduct VQA
evaluations. This automation significantly reduces human involvement, enhancing the efficiency
and objectivity of the evaluation process.

▷ Extensive experiments validating the framework’s effectiveness. We conducted comprehen-
sive experiments, including main evaluations on multiple models, examiner superiority tests, option
position bias analysis, and human assessments. The results confirm the framework’s robustness and
effectiveness in evaluating LVLMs.

▷ In-depth analysis of LVLMs’ performance across diverse visual tasks. Through systematic
evaluation with varied user inputs, we find that LVLMs demonstrate strong proficiency in abstract
conceptual understanding while exhibiting comparatively lower performance in concrete visual rea-
soning tasks. These insights offer a perspective on the current state of LVLM technology, highlight-
ing areas with potential for future development and exploration.

2 RELATED WORKS

Benchmark for LVLMs. The emergence of the LVLMs greatly promoted the development of the
multimodal model, demonstrating exceptional progress in their multimodal perception and reason-
ing capabilities. This makes the past, focused on isolated task performance benchmarks (Karpathy
& Fei-Fei, 2015; Agrawal et al., 2016) insufficient to provide a comprehensive evaluation. Subse-
quent studies have introduced benchmarks for assessing LVLMs across a range of multimodal tasks
(Goyal et al., 2017; Lin et al., 2015; Russakovsky et al., 2015). However, these benchmarks often
fall short in providing fine-grained assessments of abilities and robust evaluation metrics.

Hence, recent works (Xu et al., 2023; Liu et al., 2023; Ying et al., 2024; Fu et al., 2024; Yin et al.,
2023; Chen et al., 2024; Yu et al., 2023; 2024) highlight the critical need for developing advanced,
comprehensive benchmarks to more accurately assess LVLMs’ multimodal understanding and rea-
soning capabilities. However, these benchmarks still have different kinds of limitations. For ex-
ample, LVLM-eHub (Xu et al., 2023) and LAMM (Yin et al., 2023) have utilized several classical
datasets that are widely recognized but not sufficiently novel for current advancements, overlooking
the possibility of data leakage during LVLM training. Hence, MMStar (Chen et al., 2024) aims to
solve the unnecessity of visual content and unintentional data leakage that exists in LVLM training
via constructing an elite vision-indispensable dataset.

Compared to previous work, AUTOBENCH-V not only automates the entire benchmarking process
for LVLMs—significantly reducing human workload and minimizing subjective biases—but also
scales up and customizes the evaluation process to address fine-grained user needs.

Automatic benchmarks. The significant early advancements in LLMs have driven the develop-
ment of various benchmarks designed to automate evaluation processes. For example, LMExamQA
(Bai et al., 2023b) employs the concept of a Language-Model-as-an-Examiner to create a compre-
hensive and scalable evaluation framework. In addition, DYVAL (Zhu et al., 2024a) and DYVAL2
(Zhu et al., 2024b) both highlight the importance of dynamic assessment, with DYVAL focusing on
reasoning tasks and DYVAL2 adopting a broader psychometric approach. AutoBencher (Li et al.,
2024) automates the generation of novel, challenging, and salient datasets for evaluating LLMs, fur-
ther expanding the scope of automated benchmarking. Other efforts, such as UNIGEN (Wu et al.,
2024) and Task Me Anything (Zhang et al., 2024a), focus on developing more tailored and relevant
benchmarks for assessing LLM/LVLMs performance across diverse tasks.
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Figure 3: A comprehensive overview of the AUTOBENCH-V framework.

3 AUTOBENCH-V

In this section, we introduce AUTOBENCH-V, a framework designed for automating the process of
benchmarking LVLMs, empowered by a LVLM Mv and a text-to-image model Md. As shown
in Figure 3, AUTOBENCH-V consists of four modules: user-oriented aspect generation, guided
description generation, image generation by self-validation, and test case generation & evaluation.

3.1 USER-ORIENTED ASPECT GENERATION

User input. The user input can specify an evaluation target focused on certain aspects of LVLMs’
capability. AUTOBENCH-V covers the following key evaluation aspects, which are the most crucial
for assessing the capabilities of LVLMs: Basic Understanding, Spatial Understanding (Li et al.,
2023b), Semantic Understanding (Meng et al., 2024), Reasoning Capacity (Liu et al., 2023), and
Atmospheric Understanding (Geetha et al., 2024). Notably, the user input is not limited to the above
kinds, and can be customized as needed.

Hierarchical aspect generation. For each user input, we derive a set of aspects representing spe-
cific capability items. For example, as shown in Figure 1, contextual comprehension is an aspect
under Basic Understanding. However, directly generating aspects from user input can lead to ex-
cessive repetition, reducing both diversity and reliability by overlapping in semantics and repeatedly
evaluating the same capability. To mitigate this, we propose hierarchical aspect generation inspired
by the previous study (Qin et al., 2023) to constrain the aspect generation process. Formally, given
the user input q, we first generate n general aspects {A(g)

1 , A
(g)
2 , . . . , A

(g)
n } by Mv , which can be

formulated as: {A(g)
1 , A

(g)
2 , . . . , A

(g)
n } = Mv(q). These general aspects represent high-level evalua-

tion dimensions based on q. Next, for each general aspect A(g)
i , we further generate m fine-grained

aspects {A(f)
i1 , A

(f)
i2 , . . . , A

(f)
im}, where each fine-grained aspect provides more specific criteria related

to the general aspect. The fine-grained aspects are also generated by Mv and depend on both the
user input q and the corresponding general aspect A(g)

i . The fine-grained aspect of generation can be
represented as {A(f)

i1 , A
(f)
i2 , . . . , A

(f)
im} = Mv(q,A

(g)
i ). Thus, the hierarchical aspect generation yields

a structured set of evaluation aspects (i.e., fine-frained aspect) A =
⋃n

i=1

(
{A(g)

i } ∪
⋃m

j=1{A
(f)
ij }

)
,

where |A| = mn.
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Figure 4: Images examples corresponding to different user inputs at varying difficulty levels.

3.2 GUIDED DESCRIPTION GENERATION

Guidelines formulation. To avoid the generation of irrelevant, abstract, or vague details that could
lead to discrepancies in image descriptions, we introduce a guideline generation step. Before gen-
erating image descriptions, the LVLM model Mv formulates a guideline Dij (e.g., in Background
vs Foreground aspect, it is essential to distinguish between the elements present in the background
and those in the foreground) for each fine-grained aspect A(f)

ij . This guideline acts as a guideline for
Mv , ensuring that the generated descriptions are coherent, clear, and specific to the fine-grained as-
pects under evaluation. The process can be expressed as Dij = Mv(A

(f)
ij ). The generated guideline

Dij is then utilized to guide the subsequent image description Tij .

Image description with difficulty grading. To enable a more comprehensive evaluation, we in-
troduce a difficulty-grading mechanism for the image descriptions, which includes the evaluation
cases from different difficulties. This is achieved by classifying the generated image descrip-
tions into three difficulty levels: easy, medium, and hard. We show the examples across dif-
ferent difficulties in Figure 4. The difficulty level d is determined by key factors such as back-
ground complexity, element relationships, and the intricacy of textures. The generation of ω im-
age descriptions {T d

ij1, T d
ij2, . . . , T d

ijω} for A(f)
ij at a specific difficulty level d can be defined as:⋃ω

k=1{T d
ijk} = Mv(q, A

(f)
ij ,Dij , d), where d ∈ {easy,medium, hard}. This grading strategy al-

lows for a nuanced understanding of the model’s capabilities across a range of challenges with
details provided in Appendix C.

Diverse description generation strategy. A key challenge when generating image descriptions
at the same difficulty level is minimizing repetitive elements and backgrounds, which can reduce
the diversity and generalization of the evaluation. For example, given a user input q related to
spatial understanding, the model Mv might tend to produce descriptions centered around urban
landscapes, potentially compromising the variety of test cases. To address this, we introduce a
description optimization strategy using a semantic graph (Quillian, 1966) to enhance the diversity
of image prompts generated by Mv , with significant results referred to in Appendix Figure 10. For
a visualization of specific words, see Appendix Figure 11 and Figure 12. The process is iterative,
and during the e′th iteration of prompt generation, a topic word te and a set of |c| related keywords
Ke = {ke1, ke2, . . . , kec} are selected. These keywords are added as nodes to the semantic graph
G, where nodes are connected by edges representing semantic relationships between them.

Formally, let Ge = (Ve, Ee) be the semantic graph generated at iteration e, and let Se =
(Ve−1 ∪ {te} ∪Ke). Then Ve = Se \ f(Se) represents the node set of topic words and key-
words, and Ee is the set of edges capturing the relationships between them. After each round
of prompt generation, we apply a degree-based exclusion mechanism, where the number of ex-
cluded nodes is determined by a function f(Se). This function defines the number of top-
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degree nodes to be excluded, allowing flexibility in adjusting how many frequently used words
are removed as the iterations progress. The function f(Se) could be a simple function such as
f(Se) = arg max

V ′⊆Se,|V ′|=e

∑
v∈V ′ deg(v), where deg(v) represents the degree of node v ∈ Vi, or it

could take a more complex form based on specific conditions. We mitigate redundancy and promote
diversity in the generated prompts by excluding these high-degree nodes, which correspond to the
most commonly used words. The function f(Se) offers the flexibility to control how aggressively
the exclusion process operates based on the round number e.

Overall, the generation of an image description T e
ij can be formalized as follows:

ω⋃
k=1

{T de
ijk} = Mv(q, A

(f)
ij ,Dij , Ve, d),

where Ve represents the refined and diverse set of topic words and keywords after the exclusion
mechanism has been applied. We show the detailed procedure in Algorithm 1.

Algorithm 1 Diverse Description Generation Strategy
Input: User input q, model Mv , initial set of topic words and keywords V0, exclusion function f(Se), number

of iterations N
Output: Set of diverse image descriptions {T (1), T (2), . . . , T (N)}
1: Initialize iteration counter e := 1
2: Initialize the set of topic words and keywords V1 := V0

3: while e ≤ N do
4: Select a topic word te and a set of related keywords Ke = {ke1, ke2, . . . , kec}
5: Form the node set Se = Ve−1 ∪ {te} ∪Ke

6: Formulate Ee, where edge represent semantic relationship.
7: Identify exclusion set f(Se) = arg max

V ′⊆Se,|V ′|=e

∑
v∈V ′ deg(v)

8: Update the node set as Ve = Se \ f(Se)
9: Set superparameter d and ω

10: Set T (e) =
⋃ω

k=1{T
de
ijk} = Mv(q,A

(f)
ij ,Dij , Ve, d)

11: Increment the iteration counter: i := i+ 1
12: end while
13: return Set of diverse image descriptions {T (1), T (2), . . . , T (N)}

3.3 IMAGE GENERATION BY SELF-VALIDATION

Self-validation. The image descriptions T d
ij and their corresponding aspects A(f)

ij are subsequently
provided to the text-to-image model for image generation. At this stage, a potential issue is the
possibility of generated images Id

ij not aligning with the descriptions, due to hallucinations inherent
in the text-to-image model (Lee et al., 2023). To tackle this issue, drawing inspiration from TIFA
(Hu et al., 2023), we employed a self-validation process to evaluate the consistency of images with
their descriptions via VQA.

In the self-validation process F , for each image Id
ij , based on its image description, Mv is prompted

to generate a set of simple questions Φd
ij = {ϕd

ij1, ϕ
d
ij2, . . . , ϕ

d
ijp} (e.g.,“Is there a wooden chair in

the image?”), where p denotes the question number to evaluate the alignment. The function F takes
the image Id

ij , its description T d
ij , and the set of questions Φd

ij as inputs and outputs an alignment
score Sd

ij , which is calculated as the ratio of correctly answered questions to the total number of
questions:

Sd
ij = F(Id

ij , T d
ij ,Φ

d
ij)

We set a threshold ζ, where: (i) If Sd
ij < ζ, the image Iij will be reworked in line with the description

until it meets the required standard; (ii) If ζ ≤ Sd
ij < 1, the image meets the basic criteria but

contains an error Ed
ij , which will be documented; and (iii) If Sd

ij = 1, the image is considered to
fully align with the description and is deemed acceptable.

3.4 TEST CASE GENERATION & EVALUATION

Q&A generation with error control. To enhance the accuracy of question generation, particu-
larly when addressing potential flaws in images, we propose error control. Despite thorough self-
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Table 1: Effectiveness of hierarchical aspect generation under various hyperparameter settings.
m=3, n=5 m=3, n=6 m=3, n=7 m=4, n=5 m=4, n=6 m=4, n=7

Raw +Hierarchy Raw +Hierarchy Raw +Hierarchy Raw +Hierarchy Raw +Hierarchy Raw +Hierarchy

0.767 0.778 (1.4% ↑) 0.773 0.780 (1.0% ↑) 0.779 0.825 (5.9% ↑) 0.780 0.790 (1.3% ↑) 0.786 0.849 (10.2% ↑) 0.798 0.842 (5.5% ↑)

validation, it’s not guaranteed that every image will be flawless. Furthermore, when generating
problems, we aim to avoid introducing biases stemming from the visual capabilities of examiner
LVLM (Zhang et al., 2024b). Therefore, when generating questions, we will only include the image
description T d

ij and any identified defects Ed
ij in the input to the examiner Mv . The function Mv

generates the question Qd
ij based on the image description and errors:

Qd
ij = Mv(T d

ij , Ed
ij).

This will enable the creation of a diverse set of questions, along with reference answers, that specif-
ically target the defective elements. For each image, we will provide a related question Qd

ij (e.g.,
multiple-choice or true/false). These questions, along with the accompanying images, will be pre-
sented to the LVLMs under evaluation for their response.

Evaluation. The response Pd
ij from the tested LVLMs was compared to the reference answer Ad

ij

to determine accuracy. If Pd
ij matched Ad

ij , it was marked correct (Accdij = 1); otherwise, it was
marked incorrect (Accdij = 0). The overall accuracy Accdtotal was calculated as the average accuracy
over all N questions.

4 EXPERIMENT

In this section, we evaluate seven of the latest models using AUTOBENCH-V and perform human
evaluations to validate our experimental findings. First, we demonstrate how AUTOBENCH-V sig-
nificantly reduces potential answer leakage and self-enhancement bias, as evidenced by the experi-
mental results in Figure 5. Next, based on Figure 6, Table 1, Table 2, and Table 3, we analyze the
impact of various evaluation factors (e.g., user input) and question difficulty on model performance,
which reveals several insightful findings. We then present the model rankings across five user input
categories with varying difficulty levels in Figure 8, followed by a discussion on human evaluations
regarding alignment during AUTOBENCH-V’s generation process. Lastly, we investigate position
bias in the evaluation process, as illustrated in Figure 9.

4.1 EXPERIMENTAL SETUP

Selected models. In evaluating LVLMs, we selected seven representative models: GPT-4o,
GPT-4o mini (Achiam et al., 2023), Claude-3.5-Sonnet, Claude-3-Haiku (Anthropic,
2024), Gemini-1.5-Flash (DeepMind, 2024), GLM-4v (GLM et al., 2024), and the open-
source Qwen2-VL (Bai et al., 2023a), detailed in Table 7. These advanced models exhibit ex-
ceptional image understanding. Some well-known open-source models, such as Llava-1.6 (Liu
et al., 2024a) and MiniGPT-4 (Zhu et al., 2023), were tested and found to perform poorly. Ad-
ditionally, their capabilities differ significantly from other models, so they are not discussed in our
evaluation. We chose GPT-4o as the examiner model for generating image descriptions, questions,
and answers due to its strong overall performance. The descriptions were then passed to Flux-pro
(blackforestlabs, 2024), a text-to-image model known for outstanding image generation. We also ex-
perimented with other text-to-image models (Rombach et al., 2022; Podell et al., 2023; Betker et al.,
2023). However, their performance was suboptimal.This combination enables effective automated
generation of image-based questions, crucial for the evaluation process (Ying et al., 2024; Fu et al.,
2024; Xu et al., 2023).

Experimental setting. We set n = 4 for the number of general aspects and m = 6 for the number
of fine-grained aspects, as this configuration yields the highest diversity in the generated aspects as
illustrated in Table 1, allowing for a broader range of scenes and elements. We set ω = 10, namely
10 pictures for each fine-grained aspect. Therefore, we evaluate 720 images for each user input
(with each user input having three difficulty levels). For easy difficulty, we set the self-validation
threshold ζe = 1 since the scenes are simpler and contain fewer elements, which justifies a higher
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threshold. For the medium and hard difficulty levels, the images contain more elements, so we lower
the thresholds to ζm = ζh = 0.8 to avoid compromising efficiency. The error control mechanism
that follows ensures the appropriateness of this threshold.

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Easy Difficulty Medium Difficulty Hard Difficulty

GPT-4o GPT-4o mini Gemini-Flash Claude-3-5 Claude-3 GLM-4v Qwen2-VL

Figure 5: Performance of various LVLMs across three difficulty levels when provided only with
image descriptions, without the corresponding images.

4.2 EXAMINER PRIORITY

Table 2: Average performance (Accuracy) of all
models at different difficulty levels.

Model Easy Medium Hard

GPT-4o 90.43% 79.81% 75.02%
GPT-4o mini 88.01% 76.98% 70.70%
Gemini-1.5-Flash 88.07% 74.64% 70.85%
Claude-3.5-Sonnet 89.28% 75.49% 63.67%
Claude-3-Haiku 86.82% 73.40% 67.42%
GLM-4v 90.43% 77.29% 64.93%
Qwen2-VL 89.57% 79.03% 71.89%

To mitigate the potential for answer leakage as-
sociated with self-enhancement bias (e.g., when
the model being evaluated is also utilized for
generating the evaluation cases) in the examiner
LLM, we enhance the fairness of the assess-
ment by having AUTOBENCH-V generate ques-
tions from image descriptions rather than di-
rectly from images. This approach separates the
visual information from the generation process,
reduceing the risk of self-enhancement bias (Ye
et al., 2024) that could occur if questions were derived from the examiner model’s (GPT-4o) vi-
sual capabilities, which might cause unfair comparison. By employing only textual descriptions
for generation, we eliminate the influence of GPT-4o’s specific visual processing abilities, thereby
ensuring a more equitable evaluation.

To validate the fairness of this method, we conducted an experiment in which models were presented
with image descriptions alongside corresponding questions while avoiding direct access to the im-
ages. As demonstrated in Figure 5, the results revealed consistent performance across all models,
with minimal variance (0.4% for easy questions and 2.4% for hard questions). This consistency
suggests that, in the absence of visual input, models’ textual understanding ability is almost equal,
which means the benchmark effectively assesses visual comprehension and does not show obvious
bias towards the examiner LVLM (i.e., GPT-4o).

4.3 MAIN RESULTS

As shown in Figure 6, through the evaluation of various models on AUTOBENCH-V, we can observe
several findings that can bring insights for future work. More detailed results are in Table 6.

Table 3: Average accuracy for various
user inputs at different difficulty levels.

User Input Easy Medium Hard

BASIC. 90.59% 75.90% 63.33%
SPATIAL. 82.46% 69.14% 63.00%
SEMAN. 91.28% 79.84% 74.52%
REASON. 86.50% 74.67% 68.97%
ATMOS. 94.76% 83.33% 75.66%

Model performance decreases as task difficulty in-
creases, with GPT-4o showing the strongest aver-
age performance across tasks. This trend is consistent
across all models, with scores steadily declining as the
difficulty increases from easy to hard, as shown in Fig-
ure 13. For example, GPT-4o’s average score drops from
90.43% at the easy level to 75.02% at the hard level. De-
spite the overall decline, GPT-4o maintains its leading
position across all difficulty levels. Additionally, the re-
sult highlights that the most notable shift occurs between easy and medium. Although a few samples
show improved scores with increased difficulty mildly, the majority trend still experiences a decline,
reinforcing the validity of our difficulty grading mechanism.

As task difficulty increases, the performance disparity between models becomes more pro-
nounced. As illustrated in Figure 7, the performance decline across models varies with increasing
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Figure 6: Overall performance of different models at easy, medium, and hard levels.
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Figure 7: Score variation of models from easy to hard across different user inputs. As task difficulty
increases, the performance disparity between models becomes more pronounced.

task difficulty. Models like Claude-3.5-Sonnet and GLM-4v experience more pronounced
drops. In difficult semantic tasks, GPT-4o maintains a strong score of 79.36%, compared to
Claude-3.5-Sonnet and GLM-4v, which achieve 66.97% and 66.82%, respectively, highlight-
ing GPT-4o’s superior ability to handle complex abstractions. The standard deviations across mod-
els at the three difficulty levels are 1.26%, 2.14%, and 3.74%, indicating increased disparity as task
difficulty rises. Notably, models like GPT-4o and GLM-4v show more consistent performance
with smaller score variations, suggesting stability across difficulty levels. In contrast, models like
Claude-3.5 and Qwen2-VL exhibit greater score fluctuations, indicating higher sensitivity to
difficulty changes.

Models demonstrate superior performance in semantic and atmospheric understanding while
lagging in spatial and reasoning tasks. As illustrated in Table 3, our results reveal a consistent
pattern across difficulty levels. Models excel in semantic and atmospheric understanding, maintain-
ing high accuracy even at the hard level of 74.52% and 75.66% respectively. In contrast, spatial
and reasoning prove more challenging, with accuracy dropping to 63.00% at the hard level. These
findings indicate that while LVLMs have developed strong capabilities in comprehending seman-
tic content and scene atmosphere, they still struggle with tasks involving spatial relationships and
complex visual reasoning. To address these limitations, we suggest future research could explore
training strategies that emphasize enhancing spatial reasoning and complex visual problem-solving
capabilities in LVLMs.

4.4 MODEL RANK OVERVIEW

E M H

GPT-4oGPT-4o mini
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Figure 8: The model performance ranking given
five user inputs under different difficulty levels.

Figure 8 reveals distinct performance patterns
among different models under various diffi-
culty. Notably, models like GPT-4o, while not
exhibiting a significant advantage in simpler
tasks, demonstrate outstanding performance in
more challenging scenarios (e.g.,hard ques-
tions). Conversely, models such as GLM-4v
perform well on easier tasks but show dimin-
ished capabilities as task difficulty increases.
This indicates an imbalance in the model’s ca-
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pabilities across different difficulty levels, highlighting the importance of cross-difficulty evaluation.
It also demonstrates that AUTOBENCH-V is effective in revealing such imbalances.

4.5 HUMAN EVALUATION

We conducted human evaluations in two aspects: the effectiveness of guided description generation
and the alignment between questions and reference answers. See the Appendix D for details on
the human evaluation. We ultimately represented the results of the human evaluation using the
alignment rate (the proportion of aligned samples out of the total).

Table 4: Alignment rate of guided de-
scription generation.

Task Easy Medium Hard

Before Guide 94.32% 82.30% 77.14%
After Guide 95.20% 88.13% 84.55%
∆↑ 0.88% 5.83% 7.41%

Guided description generation. We developed descrip-
tion generation guidelines for each fine-grained aspect to
reduce vagueness in image descriptions, ensuring better
alignment with themes and preventing discrepancies. A
human evaluation showed that these guidelines signifi-
cantly improved question-answer alignment, especially in
more challenging tasks, as shown in Table 4.

Question-Answer alignment. After implementing the generation guidelines, we conducted a hu-
man evaluation to assess the accuracy of the questions and answers generated by the examiner model.
As shown in Table 4, the evaluation resulted in high scores, confirming the model’s effectiveness in
producing well-aligned question-answer pairs for image-based tasks.

4.6 POSITION BIAS
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Figure 9: Comparison of answer distribution under position bias conditions. Correct answers at A
or D v.s. correct answers are evenly distributed at A,B,C,D.

Since the reference answers generated by LLMs tend to cluster around option A, we manually set the
correct options to be evenly distributed. To investigate the necessity of this approach, we conducted
experiments to examine potential position bias (Zheng et al., 2023). We evaluated scenarios where
all correct answers were placed in either options A and D, comparing the resulting scores with the
evenly distributed case (i.e., 25% for each option), as shown in Figure 9. The deviation rate was
calculated using the following formula: R = SX−SU

SU
, where SX is the model score for condition X

(either A or D), and SU is the score for the scenario when options are evenly distributed.

The position bias becomes more evident with increasing question difficulty. For instance, at the
hard level, GLM-4V showed a significant bias, with deviation rates of RA = −19% and RD = −8%,
suggesting a notable bias when correct answers were concentrated in options A or D, compared to
the uniform distribution scenario. Thus, our approach of manually setting an even distribution of
answers to avoid position bias is justified and necessary.

5 CONCLUSION

In this work, we introduce AUTOBENCH-V, a fully automated framework designed for benchmark-
ing LVLMs. The framework integrates a series of innovative modules that ensure diversity and
reliability in dataset generation, as well as impartiality in model evaluation. Through extensive
experiments, we have demonstrated the robustness and unbiased nature of the evaluation process
facilitated by AUTOBENCH-V. The insights gleaned from our research provide a solid foundation
for future investigations in this field.
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A DETAILS OF EXPERIMENT SETTING

Model Selection. The details of models selected in our experiments are shown in Table 7.

Computing Resource. For our experiments, all open-source vision-language model inferences were
performed locally using NVIDIA GeForce RTX 4090 GPU with 24GB VRAM.

Alignment Evaluation. Inspired by tifa (Hu et al., 2023), we generated consistency tests for images
across 12 aspects:object, human, animal, food, activity, attribute, counting, color, material, spatial,
location, shape, other. For details on the score distribution of the consistency tests without threshold,
please refer to Table 5.

Table 5: Alignment score (Sd
i ) distribution without setting threshold.

Level ≤ 40% 40%∼60% 60%∼80% > 80%

SPATIAL UNDERSTANDING.

Easy 0.51% 2.54% 7.61% 89.34%
Medium 0.53% 3.17% 19.05% 77.25%
Hard 1.03% 5.64% 16.92% 76.40%

BASIC UNDERSTANDING.

Easy 1.94% 2.90% 14.01% 81.16%
Medium 3.38% 5.80% 14.98% 75.85%
Hard 2.86% 8.57% 24.76% 63.81%

SEMANTIC UNDERSTANDING.

Easy 0.99% 3.94% 8.37% 86.70%
Medium 0.49% 4.39% 19.02% 76.10%
Hard 1.93% 4.35% 17.39% 76.33%

REASONING CAPACITY.

Easy 1.93% 3.86% 14.49% 79.71%
Medium 2.53% 6.06% 23.23% 68.18%
Hard 6.22% 11.92% 28.50% 53.37%

ATMOSPHERIC UNDERSTANDING.

Easy 0.48% 2.41% 11.11% 85.99%
Medium 1.38% 2.76% 17.97% 77.88%
Hard 1.79% 6.55% 24.40% 67.26%
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a
b

c
d

Figure 10: Visualization of image topic words. Topic words are converted into vectors using
bge-large-en-v1.5 (Xiao et al., 2024), then perform dimensionality reduction via t-SNE
(Van der Maaten & Hinton, 2008). Topic word distribution without semantic graph (a)(c) and with
semantic graph (b)(d). It can be seen that with the semantic graph the diversity of topic words
increases and the over-reliance on high-degree words is reduced.
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Table 6: Performance (Accuracy) details of all models on five user inputs and three difficulty levels.

Model User Input↑
BASIC. SPATIAL. SEMAN. REASON. ATMOS. AVERAGE

Easy

GPT-4o 90.18% 86.09% 93.81% 88.13% 93.94% 90.43%
GPT-4o mini 90.18% 81.28% 91.24% 81.92% 95.45% 88.01%
Gemini-1.5-Flash 89.29% 81.82% 91.19% 85.31% 92.75% 88.07%
Claude-3.5-Sonnet 91.07% 83.96% 91.75% 85.31% 94.33% 89.28%
Claude-3-Haiku 89.29% 80.21% 90.72% 82.49% 91.41% 86.82%
GLM-4v 91.96% 83.96% 87.01% 92.78% 96.45% 90.43%
Qwen2-VL 90.18% 81.82% 92.27% 87.57% 96.00% 89.57%

Medium

GPT-4o 76.87% 72.25% 83.64% 81.95% 84.35% 79.81%
GPT-4o mini 76.19% 67.26% 79.09% 77.56% 84.78% 76.98%
Gemini-1.5-Flash 73.47% 66.96% 78.18% 70.44% 84.14% 74.64%
Claude-3.5-Sonnet 75.51% 67.84% 77.73% 74.63% 81.74% 75.49%
Claude-3-Haiku 72.11% 64.76% 78.90% 67.31% 83.91% 73.40%
GLM-4v 74.83% 74.89% 79.91% 74.63% 82.17% 77.29%
Qwen2-VL 82.31% 74.01% 80.45% 73.17% 85.21% 79.03%

Hard

GPT-4o 69.12% 68.28% 79.36% 76.50% 81.82% 75.02%
GPT-4o mini 63.43% 61.23% 81.65% 69.94% 77.27% 70.70%
Gemini-1.5-Flash 66.91% 65.20% 77.10% 68.16% 76.88% 70.85%
Claude-3.5-Sonnet 59.56% 64.60% 66.97% 58.47% 68.75% 63.67%
Claude-3-Haiku 59.56% 58.15% 73.39% 71.58% 74.43% 67.42%
GLM-4v 61.03% 60.79% 66.82% 66.12% 69.89% 64.93%
Qwen2-VL 64.71% 64.76% 79.36% 71.03% 79.59% 71.89%

Table 7: Model names, Creators, whether it is open source, and their purpose.

Model Creator Open-Source Purpose

GPT-4o
OpenAI

○ Examiner&Candidate
GPT-4o mini ○ Candidate

Gemini-1.5-Flash Google ○ Candidate
Claude-3.5-sonnet

Anthropic
○ Candidate

Claude-3-haiku ○ Candidate
GLM-4v Zhipu AI Inc. ○ Candidate
Qwen2-VL Alibaba ○ Candidate

Flux-pro Black Forest Labs ○ Image generation
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Figure 13: We randomly sampled 75 question instances for each user input, with 25 questions from
each difficulty level. We then visualized the response patterns of various models to these questions
(the red means). The rows in each user input, from top to bottom, represent the response situations
of Claude-3.5-sonnet, Claude-3-haiku, Gemini-1.5-flash, GLM-4v, GPT-4o,
GPT-4o mini, and Qwen2-VL, respectively.

Figure 14: Visualization of all image descriptions in AUTOBENCH-V.
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B DETAILS OF USER INPUT

In this section, we provide a comprehensive overview of the levels at which we categorize user
inputs based on linguistic aspects. Our goal is to offer a comprehensive and broad representation of
user requirements for LVLMs. However, as it is challenging to exhaustively cover every aspect, we
base our categorization on aspects derived from the literature (Li et al., 2023b; Meng et al., 2024;
Liu et al., 2023). These aspects are considered representative and comprehensive examples of the
capabilities of LVLMs and other aspects like in (Chen et al., 2024; Xu et al., 2023) can be handled
in a similar manner, without requiring additional fine-tuning or adjustments, as our framework is
highly extensible, allowing users to propose their own aspects as needed.

B.1 BASIC UNDERSTANDING

Definition and Goal: Basic Understanding refers to the recognition and identification of individual
objects, characters, and scenes within an image. The goal is to accurately detect and label rele-
vant elements, providing a foundation for more advanced tasks such as object tracking and scene
interpretation (Wu et al., 2013; Xue et al., 2018).

Requirement. This task demands the ability to detect specific objects and differentiate between
various types of objects. Additionally, it involves understanding the broader context of the scene
and identifying real-life settings to enable accurate interpretation of the image’s overall content.

B.2 SPATIAL UNDERSTANDING

Definition and Goal. Spatial Understanding refers to the interpretation of the spatial arrangement
and positioning of objects within an image (Cai et al., 2024; Guo et al., 2024). The goal is to com-
prehend both two-dimensional and three-dimensional relationships, determining which objects are
in the foreground or background, assessing their relative sizes and orientations, and understanding
how they are positioned within the scene.

Requirement. This task demands the ability to perceive depth, estimate distances between objects,
and analyze how objects interact within the physical space of the image, providing a more accurate
understanding of the spatial structure and context.

B.3 SEMANTIC UNDERSTANDING

Definition and Goal. Semantic Understanding involves interpreting the higher-level meaning and
relationships within an image (Meng et al., 2024). The goal is to move beyond simple object identi-
fication to understand the roles and interactions between objects, such as recognizing that a person
is riding a bike or that two people are engaged in conversation. This level of understanding aims
to capture the context and intent behind the scene, identifying how elements relate to each other to
form a coherent narrative or message.

Requirement. This task requires discerning the interactions and relationships between objects,
understanding their roles within the scene, and interpreting the overall context to accurately derive
the narrative or intended message conveyed by the image.

B.4 ATMOSPHERIC UNDERSTANDING

Definition and Goal. Atmospheric Understanding focuses on grasping the mood, tone, and emo-
tional ambiance conveyed by an image. The goal is to interpret not just what is depicted or how
elements are arranged, but also how the scene feels and the emotional resonance it conveys to the
viewer. For instance, an image of children laughing under warm sunlight in a lush park combines
their expressions, bright colors, and soft lighting to create a joyful and carefree atmosphere.

Requirement. This task requires the ability to capture and interpret subtle emotional cues and tonal
qualities of the scene, distinguishing the overall mood and emotional impact of the image from more
analytical aspects like semantic or spatial understanding.
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B.5 REASONING CAPACITY

Definition and Goal. Reasoning Capacity involves interpreting and analyzing the relationships and
logical connections between different elements within an image (Zhou et al., 2024; You et al., 2023).
The goal is to infer potential outcomes, understand causal relationships, and make predictions about
what might happen next based on visual cues. For example, if a person is holding an umbrella and
the sky is dark, reasoning capacity would suggest that it might rain soon. This level also includes un-
derstanding abstract relationships, such as social dynamics or the intent behind actions, and making
judgments about what is likely or possible given the visual information.

Requirement. This task requires the ability to analyze logical connections between elements, infer
outcomes, and understand causal relationships, as well as to interpret abstract concepts and make
predictions based on the visual context.

C DETAILS OF DIFFICULTY GRADING

This section describes in detail the difficulty levels for the pictures and questions used in prompts
respectively. The following is the instruction guiding the examiner model to generate image descrip-
tions and questions of varying difficulty levels.

C.1 IMAGE DESCRIPTION

Easy difficulty. Generate images with very simple elements, focusing on single, easily recognizable
objects placed against a plain or neutral background. The descriptions should be straightforward and
unambiguous, e.g., “a red apple on a white background.” The focus is on clarity and simplicity, with
minimal detail or interaction.

Medium difficulty. Introduce scenes where the required elements interact with their environment
naturally but uncomplicatedly. The setting may include multiple common objects and a familiar
context, but the composition remains clear and not overly complex, e.g., “a cup on a table in a
well-lit kitchen.” The background and context are present but not overwhelming, and there are no
intricate details or unusual perspectives.

Hard difficulty. Craft descriptions that involve multiple elements interacting with each other, set
in a more complex environment. Use varied perspectives, detailed textures, or lighting conditions
that add layers of difficulty, e.g., “a reflection of a cat looking out of a rain-soaked window, with
a cityscape in the background at dusk.” The focus is on creating a rich and intricate scene that
challenges the model’s ability to render interactions, depth, and subtleties in lighting and perspective.

Moreover, we standardized the description of the observer’s perspective in the image description to
prevent directional issues from causing confusion. For instance, ambiguities could arise in inter-
preting relative directions such as left and right, as these can vary significantly depending on the
observer’s viewpoint.

C.2 QUESTION

Easy difficulty. Focus on questions that require identifying simple, prominent, and explicit details
within the image. These questions should be straightforward, relying solely on basic observation
without the need for inference or interpretation. For example, you might ask about the color of a
specific object, the presence of a single item, or the shape of an easily recognizable feature. The
key is to keep the questions direct and simple, ensuring that the answer is obvious and immediately
visible in the image.

Medium difficulty. Design questions that necessitate a moderate level of observation and infer-
ence. These questions should involve understanding relationships between elements, recognizing
interactions, or identifying less prominent features that are still clear but not immediately obvious.
Examples could include questions about the relative position of objects, identifying an action taking
place, or understanding the context of a scene. The goal is to require some level of thought beyond
basic observation, challenging the model to understand the scene’s composition or narrative without
being overly complex.
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Hard difficulty. Create questions that require the model to notice and interpret more detailed as-
pects of the image. These questions should involve recognizing multiple elements working together,
understanding more complex interactions, or identifying details that are present but not immediately
obvious. For example, you might ask about the positioning of objects relative to each other in a
more crowded scene, subtle changes in lighting or color that affect the appearance of objects, or
identifying an element that is not the main focus but is still visible in the background. The aim is to
challenge the model to go beyond surface-level details, but without making the task too abstract or
overly difficult.

D HUMAN EVALUATION

D.1 DETAILS OF HUMAN EVALUATION

The evaluation was carried out by a panel of five evaluators: three undergraduate students and two
PhD students, all possessing professional English skills. Sample annotation screenshots from the
human evaluation process are presented in Figure 20 and Figure 21. To ensure unbiased results,
each evaluator independently assessed all samples. A sample was considered aligned if it received a
majority vote (i.e., more than half of the evaluators agreed on its alignment).

D.2 HUMAN EVALUATION GUIDELINES

In this section, we outline the guidelines followed during human evaluations to ensure reliability and
validity.

For Description Generation Guideline, the evaluators need to consider the following three points:

▷ Alignment with Image: The main criterion is how well the generated description reflects the
visual content. Descriptions must accurately correspond to the image, avoiding vague or abstract
expressions. Each description should provide clear, specific details that align with the image content
and the defined fine-grained aspects.

▷ Specificity and Clarity: Ensure that descriptions are specific, directly related to the image, and
free from ambiguous or overly generalized language.

▷ Relevance to Aspects: Assess whether the description aligns with the corresponding themes and
expected content. Descriptions must clearly communicate the intended visual elements and avoid
any misalignment between the image and the description.

For Question-Answer Alignment, there are two points that the evaluators should consider:

▷ Clarity and Accuracy: Each question must be clear, unambiguous, and directly derived from
the image. The answers should correspond to observable details or logical inferences from the
image, with only one correct answer for each question. There should be no irrelevant or misleading
information in the questions or answers.

▷ Consistency with Image: Verify that both the question and answer are directly based on the im-
age’s content. The evaluation should ensure that there is a logical and clear relationship between the
visual cues and the generated question-answer pair, particularly for tasks involving higher difficulty.
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E ERROR STUDY

Through extensive experimental analysis, we have categorized the common problems encountered
by LVLMs in VQA tasks into two main types: image comprehension errors and image reasoning
errors. Regarding the first category, LVLMs often fail to truly understand the details in an image.
For instance, in Figure 15, the model failed to notice the kite flying in the upper right corner of the
image and incorrectly identified a non-existent action of a squirrel climbing a tree. In Figure 17,
the model mistakenly perceived the firefighter as holding the crowbar with only one hand instead of
two. In Figure 18, the model failed to recognize that the apple’s stem was slightly tilted to the left.
These errors demonstrate the model’s inadequate comprehension of image details.

Image reasoning errors occur when models accurately perceive the image content but falter in their
reasoning process, leading to incorrect answers. For instance, in Figure 16, the model correctly
recognizes that the image does not depict a cheering crowd. However, during subsequent reasoning,
it convinces itself otherwise, ultimately selecting option C while neglecting to analyze other choices
in its explanation. Figure 19 exemplifies a similar issue: the model correctly identifies that the child
is wearing a yellow shirt but after mentioning the red of the kite it erroneously selects B. Red is its
final answer. These examples highlight a disconnect between visual perception and logical reasoning
in LVLMs, where initial accurate observations can be overridden by flawed deductive processes.

Basic Understanding

Aspect: Multiple Object Identification
Difficulty Level: Hard

Question: Which of the following activities is NOT happening in the generated 
image?
Choice: "A": "A squirrel climbing a tree", "B": "A kite flying high in the sky", "C": 
"Children having a picnic on a colorful blanket", "D": "Ducks swimming in a pond"}

Selected Model: Claude-3-Haiku
Answer: "B" 
Explanation:The image does not show a kite flying high in the sky. The other activities, such as children having a picnic 
on a colorful blanket, squirrels climbing a tree, and ducks swimming in a pond, are all visible in the generated image.

Ground Truth: "A"

Image Description:
please generate a picture from the perspective of an observerA vibrant and 
bustling outdoor scene featuring a group of children having a picnic in the 
park. The children are sitting on a large, colorful blanket, surrounded by 
various snacks and toys. Nearby, a family of squirrels is gathering acorns 
under a large oak tree, while a kite flies high in the sky. The sunlight filters 
through the leaves, casting dappled shadows on the grassy ground. Several 
birds are perched on the branches of the oak tree, and a curious dog is 
sniffing around the picnic spread. The background includes a pond with 
ducks swimming and a couple of bicycles leaning against a bench.

Figure 15: Error study of Claude-3-Haiku under basic understanding.
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Spatial Understanding

Aspect: Foreground vs. Background
Difficulty Level: Hard

Question: In the image, what is positioned immediately to the left of the richly 
decorated dragon in the foreground?
Choice: "A": "A dancer in a colorful costume", "B": "An illuminated storefront",
               "C": "A cheering crowd",                        "D": "A firework display"

Selected Model: Claude-3.5-Sonnet
Answer: "C" 
Explanation:In the foreground of the image, to the left of the richly decorated dragon figure, we can see 
silhouettes of people. While not a cheering crowd per se, these figures represent a group of people watching or 
participating in what appears to be a festive parade or celebration. The crowd is positioned immediately to the left of the 
dragon, occupying the foreground space. While there are fireworks in the background and illuminated storefronts visible, 
these are not positioned immediately to the left of the dragon in the foreground.

Ground Truth: "A"

Image Description:
Please generate a picture from the perspective of an observer A vibrant 
carnival parade featuring a richly decorated float with a giant, 
elaborately detailed dragon in the foreground, its scales shimmering in 
multicolored lights and its eyes glowing. The dragon is surrounded by 
dancers dressed in colorful costumes, their movements captured in mid-
dance. In the background, a bustling city street lined with illuminated 
storefronts and cheering crowds, slightly blurred to indicate depth. The 
night sky is filled with fireworks adding an additional layer of festivity.

Figure 16: Error study of Claude-3.5-Sonnet under spatial understanding.

Semantic Understanding

Aspect: Object Manipulation
Difficulty Level:Hard

Question: Which hand is the firefighter using to grip the crowbar while prying 
open the jammed car door?
Choice: "A": "Left hand", "B": "Right hand", "C": "Both hands", "D": "Neither 
hand"

Selected Model: Qwen2-VL
Answer: "B"
Explanation:The firefighter is using the right hand to grip the crowbar while prying open the 
jammed car door, as indicated by the position of the hand and the direction of the crowbar.
Ground Truth: "C"

Image Description:
Please generate a picture from the perspective of an 
observer. A firefighter in full gear using a large 
crowbar to pry open a jammed car door on a rain-
slicked street at night, the scene illuminated by the 
flashing red and blue emergency lights, showing 
intense determination and effort in his stance.

Figure 17: Error study of Qwen2-VL under semantic understanding.
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Reasoning Capacity

Aspect: Social Interactions
Difficulty Level: Easy

Question: What direction is the stem of the apple tilted towards?
Choice: "A": "Upwards", "B": "Right", "C": "Left", "D": "Downwards"

Selected Model: GLM-4v
Answer: "A"
Explanation:  The stem of an apple is typically the part that connects the fruit to the tree. In the image provided, the 
stem appears to be pointing upwards, which means it's oriented towards the top of the image. This orientation suggests that if 
the apple were placed upright on a flat surface, the stem would be the vertical line that points skyward.

Ground Truth: "C"

Image Description:
please generate a picture from the perspective of an observerA 
single green apple resting upright on a polished white marble 
countertop. The apple is centered in the frame, positioned to 
face directly towards the viewer with its stem slightly tilted to 
the left. The background is plain and white, ensuring the 
apple is the clear focal point.

Figure 18: Error study of GLM-4v under reasoning capacity.

Atmospheric Understanding

Aspect: Color Palette Interpretation
Difficulty Level: Medium

Question: Which color stands out the most in the child's clothing against the 
background of the green grass and colorful sky?
Choice: "A": "Blue", "B": "Red", "C": "Yellow", "D": "Green"

Selected Model: Gemini-1.5-Flash
Answer: "B"
Explanation: The child is wearing a yellow shirt, which stands out against the green 
grass and the colorful sky. The red of the kite also stands out, but the yellow of the 
shirt is more prominent since it is closer to the viewer and is a more saturated color.
Ground Truth: "C"

Image Description:
An image of a child flying a red kite in a lush green park during sunset. 
The sky is filled with hues of orange, pink, and purple, casting long 
shadows and creating a warm, nostalgic atmosphere. The child is 
wearing a bright yellow shirt, which stands out against the green grass 
and the colorful sky.

Figure 19: Error study of Gemini-1.5-Flash under atmospheric understanding.
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Figure 20: Screenshot of Human Evaluation (Example 1).

Figure 21: Screenshot of Human Evaluation (Example 2).
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F PROMPT TEMPLATE

Prompt Template: Generate Aspects

[System]
You are an AI assistant specializing in designing prompts to
test Large Vision-Language Models (LVLMs). Your task is to
create meticulously {aspect count} fined-grained aspects that
evaluate LVLMs basic understanding of images.
[Background] Large Vision-Language Models are AI systems
capable of understanding and analyzing images. Testing these
models across various competencies is crucial for assessing
their performance, limitations, and potential biases. The
aspects you create will be used to challenge and evaluate
LVMs.
[Instruction]
1.Basic Understanding: This involves recognizing and
identifying individual objects, characters, and scenes within
an image. It includes tasks like detecting the presence of
specific items (e.g., cars, trees, people), distinguishing
between different types of objects, and understanding the
general context of the scene (e.g., a park, a city street).
The goal is to accurately label all relevant elements in the
image, providing a foundation for more advanced analysis.
2.Come up with 4 general aspects according to the basic
understanding.
3.Then Create 6 fined-grained aspects within the basic
understanding for each general aspect, do not go beyond. You
can consider the definition of the basic understanding above.
4. Please list the aspects without using numbered lists. 5.
Let’s think step by step.
[Output Format]
Please strictly respond in the following format:
General Aspect: [Aspect]
Fined-grained Aspect: [Aspect]
Introduction: [Introduction]

Figure 22: Prompt template for generating aspects. Here we use the task of basic understanding as
an example.
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Prompt Template: Generate Guideline

[System]
You are an advanced AI simulation assistant specializing in
crafting precise prompts for image generation models.
[Instruction] I will provide you with an aspect for image
generation. Your task is to create a detailed instruction
on how to incorporate this aspect into an image generation
prompt. This instruction should guide an AI to produce a
prompt that will result in a image.
Here are two examples to guide you:
...If the aspect is Foreground vs. Background, then the
prompt should have what’s in the foreground and what’s in
the background.
...If the aspect is Relative Size Estimation, then you need
to include the size of one thing compared to another.
The aspect we’ll focus on is: {aspect}, and the introduction
is: {introduction}
When crafting your instruction, consider the following:
1. Be specific about how the aspect should be represented
visually, similar to the examples provided.
2. Provide clear guidelines on how to balance different
elements within the image.
3. Include tips on avoiding common pitfalls or
misinterpretations related to this aspect.
Remember, the goal is to instruct an AI on creating a
prompt that will generate a single, coherent image. Your
instruction should be comprehensive enough to ensure the
final prompt will produce a high-quality, well-integrated
result.
[Output Format]
Aspect: {aspect}
Introduction: {introduction}
Guidance: [Provide your instruction directly, written in a
clear, authoritative tone. Do not include any explanations,
disclaimers, or additional commentary outside of the
instruction itself. Similar to the example given above, do
not divide it into sections.]

Figure 23: Prompt template for generating guideline.
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Prompt Template: Generate Image Description

[System]
You are an AI assistant tasked with converting user inputs and their
descriptions into suitable prompts for a text-to-image model. These
prompts will generate images to test the capabilities of large
vision language models (LVLMs).
[Background] Large Vision Language Models (LVLMs) are AI systems
proficient in interpreting and analyzing images. Evaluating these
models across different competencies is essential to understanding
their performance, limitations, and potential biases. The prompts
you create will be used to generate images through text-to-image
models, which will then be used to challenge and evaluate LVLMs.
[Instruction]
1.Carefully analyze the given aspect: {aspect}, its introduction:
{introduction} and prompt generation guidance: {guidance}
2.Generate a suitable prompt based on the provided aspect and
introduction for the text-to-image model to create an image.
Ensure that the prompt is composed of simple phrases, avoiding
overly complex descriptions, and is clear enough. If you deem
the description irrelevant to the test content, do not generate a
related prompt.
3.Consider including elements that might be particularly challenging
for LVMs, such as unusual combinations, abstract concepts, or subtle
details.
4.We categorize the difficulty of prompts into easy, medium, and
hard: ...
5.Provide one overarching topic word that encapsulates the essence
of your description.
6.List 4-6 key words that are closely related to your description
and crucial for understanding the image.
7.Avoid using the following words in your new description:
{used words str}
8.The required difficulty level is: {level}
9.Please use clear and accurate words, clear logic flow, do not
use too abstract words. Word Choice: Word choice matters. More
specific synonyms work better in many circumstances. Instead of
big, try tiny, huge, gigantic, enormous, or immense. Plural words
and Collective Nouns: Plural words leave a lot to chance. Try
specific numbers. "Three cats" is more specific than "cats."
Collective nouns also work, \flock of birds" instead of "birds."
Focus on What You Want: It is better to describe what you want
instead of what you don’t want. If you ask for a party with \no
cake," your image will probably include a cake. Try to be clear
about any context or details that are important to you. Think
about: Subject: person, animal, character, location, object
Medium: photo, painting, illustration, sculpture, doodle, tapestry
Environment: indoors, outdoors, on the moon, underwater, in the
city Lighting: soft, ambient, overcast, neon, studio lights
Color: vibrant, muted, bright, monochromatic, colorful, black and
white, pastel Mood: sedate, calm, raucous, energetic Composition:
portrait, headshot, closeup, birds-eye view But don’t write it
directly in colon form, but express it normally in a sentence. ]
[Output Format]
Please strictly respond in the following format:
Aspect: {aspect}
Prompt: [Your detailed image description]
Topic word: [One word that captures the essence of the description]
Key word: [Word1, Word2, Word3,...]

Figure 24: Prompt template for generating image descriptions with difficulty grading.
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Prompt Template: Generate Q&A

[System] You are an AI assistant tasked with converting user inputs
and their descriptions into suitable questions to test the Large
Vision-Language Model’s (LVLM) abilities in given aspects.
[Background] Large Vision-Language Models (LVLMs) are AI systems
proficient in interpreting and analyzing images. Evaluating these
models across different competencies is essential to understanding their
performance, limitations, and potential biases. We will provide you with
a prompt to generate an image, which will create a specific image. You
can then formulate questions about this image based on the prompt. The
questions you create will be used to challenge and evaluate LVLMs based on
generated images.
[Instruction]
1.Carefully analyze the given aspect and its Introduction:
Aspect:{aspect}.
2.Generate a suitable question based on the provided image generation
prompt, and aspect to test the LVLM’s ability in the given aspect. Ensure
that the question is related to the prompt of the image and is of moderate
difficulty.
3.We categorize the difficulty of questions into easy, medium, and hard.
For easy difficulty, please formulate questions based solely on very
simple details from the image generation prompt, ensuring they adhere to
the scope of the aspect in question. For medium difficulty, ensure the
question is challenging but not overly complex, involving common scenes
and requiring some level of inference or detailed observation. For hard
difficulty, consider incorporating elements that may be particularly
challenging for LVLMs, such as unusual combinations or subtle details,
while keeping the question clear and relevant, and ensure it is more
demanding than the medium level.
4.Avoid using overly complicated language or details unrelated to the
image in the questions.
5. When generating problems of different difficulty, please combine the
current specific aspect.
6.Due to potential discrepancies in image generation, we have detected
the following errors:{elements}. Please avoid referencing these elements
in your questions. If the prompt for generating the image does not
describe in detail what the specific looks like, please do not ask related
questions.
7.The required difficulty level is:{level}
8.Please generate a multiple-choice question, which can either be a
four-option single-choice question or a true/false question. If it is
a true/false question, the options should be A. True B. False.
Image generation prompt:{prompt}
9. The answers in the options need to be differentiated to a certain
extent. There cannot be a situation where multiple options meet the
requirements of the question. There can only be one answer that meets
the question.
Aspect:{aspect}
[Output Format]
Please directly output the generated question in the following JSON
format:
{
"question": "[your question]",
"options": {
"A": "[Option A]",
"B": "[Option B]",
"C": "[Option C]",
"D": "[Option D]"
},
"reference answer": "A or B or C or D"
}
Without any other information.

Figure 25: Prompt template for generating questions.
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Prompt Template: Answer

[System]
In order to test your ability with pictures, we have a
question about aspect area. Please answerbased on your
knowledge in this area and your understanding of pictures.
Given the image below, answer the questions: question based
on the image.
Please give the final answer strictly follow the format [[A]]
(Srtictly add [[ ]] to the choice, and the content in the
brackets should be the choice such as A, B, C, D) and provide
a brief explanation of your answer. Directly output your
answer in this format and give a brief explanation.

Figure 26: Prompt template for LVLM to answer.
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