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ABSTRACT

In the areas of machine learning and computer vision, text-to-image synthesis
aims at producing image outputs given the input text. In particular, the task of
layout generation requires one to describe the spatial information for each object
component, with the ability to model their relationships. In this paper, we present
a LayoutTransformer Network (LT-Net), which is a generative model for text-
conditioned layout generation. By extracting semantics-aware yet object discrim-
inative contextual features from the input, we utilize Gaussian mixture models to
describe the layouts for each object with relation consistency enforced. Finally, a
co-attention mechanism across textual and visual features is deployed to produce
the final output. In our experiments, we conduct extensive experiments on both
MS-COCO and Visual Genome (VG) datasets, and confirm the effectiveness and
superiority of our LT-Net over recent text-to-image and layout generation models.

1 INTRODUCTION

Text-to-image generation aims at synthesizing realistic images that semantically match the text de-
scriptions. With a massive number of applications including computer-aided design, art generation
and image editing emerging, it attracts the attention from researchers in computer vision and deep
learning communities. While remarkable progresses have been made by deep learning models in
synthesizing high-quality images Xu et al. (2018); Zhang et al. (2018), generating plausible layout
compositions with relationships preserved across different objects remains a challenging task, which
requires one to bridge the gap between semantic and perceptual spaces .

To address text-to-layout generation. Jyothi et al. (2019) introduce a variational autoencoder (VAE)
to model the latent distributions of spatial relationships between objects. Alternatively, Hong et al.
(2018); Li et al. (2019b) use a LSTM (Hochreiter & Schmidhuber, 1997) to encode textual condi-
tions, and then design an auto-regressive decoder for box coordinates generation. Li et al. (2019b)
propose a similar seq2seq (Sutskever et al., 2014) model with attention mechanism (Bahdanau et al.,
2014) to better capture the correspondence between boxes and words. Recently, Lee et al. (2019) in-
troduce Graph Convolution Network (GCN) (Duvenaud et al., 2015) to iteratively generate bounding
boxes for a set of components and user-specified constraints.

However, existing layout generation methods generally share a common limitation, which only mod-
els the spatial/relation information explicitly defined by textual inputs (e.g., left, right, below, etc.).
In other words, language predicates such as ride, wear, etc. might not be sufficiently modeled. For
example, the description ’A man wears a jacket.’ implies the layout of the man should be overlapped
with the one of the jacket and for the layout corresponding to the description ’A man rides a horse.’,
in no way would the box of the man lies under the box of the horse. Moreover, it is also desirable
to have the layout both plausible and semantically consistent with the textual input, when particular
objects or relation predicates are modified in the textual input.

To overcome the above challenges, we propose a novel LayoutTransformer Network (LT-Net) in
this paper. Our LT-Net models the relations across multiple objects with their stochasticity properly
observed. As illustrated in Fig. 1, our model converts textual inputs into semantics-aware and object
discriminative representations, which extract and preserve both explicit and implicit relationships
between objects. Together with the Gaussian Mixture Models (GMM) (Reynolds, 2009), the above
contextual features allow our LT-Net to predict the diverse layout components in the output. Finally,
a visual-textual co-attention module is deployed, which produces plausible layout outputs.
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Figure 1: Illustration of our LayoutTransformer Network (LT-Net) for layout generation. (a) In-
ferring implicit relation across objects from the textual inputs. (b) Producing layouts from learned
contextual features with diversity observed. (c) Image generation from the predicted layout.

We now highlight the contributions as follows:

• We propose a novel framework of LayoutTransformer Network (LT-Net) for layout gener-
ation, which models implicit object/relation from textual inputs for producing semantics-
consistent yet diverse layout outputs.

• Our LT-Net encodes textual inputs into semantics-aware and object-discriminative repre-
sentations, followed by layout generator which utilizes Gaussian mixture models for pre-
dicting the output layout with relation guarantees.

• A co-attention mechanism is introduced in our LT-Net. With the observed GMM-based lay-
out distribution, it takes the bounding boxes of each object and the summarized contextual
feature for producing the refined and plausible layout output.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE SYNTHESIS

Generating realistic images from text descriptions benefits a wide range of computer vision appli-
cations. Reed et al. (2016) propose an end-to-end trainable network generating image conditioned
on sentence description. Zhang et al. (2017) use a two-stage GAN to progressively generate images
with higher resolution. Following Xu et al. (2018), they design a cross-modality attention module
with an eye to align the content of the generated image and the conditioned text. Hong et al. (2018)
decompose the generating process into multiple stages. They first predict the objects and their layout
in the scene, then construct the segmentation masks conditioned on the predicted layout and image.
Recently, Li et al. (2019b) present a novel object-level attention mechanism to generate semantically
meaningful images. Nevertheless, most existing text-to-image methods only focus on nouns in the
textual descriptions for synthesizing image outputs.

2.2 LAYOUT GENERATION

Layouts can be viewed as intermediate representations in text-conditioned image generation
tasks (Hong et al., 2018; Tan et al., 2019; Li et al., 2019b). Instead of directly mapping from
text to image domains, layout generation typically produces the outputs conditioned on the given
inputs, followed by transforming such outputs into realistic images. Recently, generative models
are applied to graphic design layout generation, which aims to design the document layout (e.g.,
Magazine (Tabata et al., 2019)). For example, Li et al. (2019a); Zheng et al. (2019) utilize GAN
to generate layouts from the given attributes of components. Despite promising results, however,
such GAN-based methods cannot explicitly exploit relationships between components. On the other
hand, Lee et al. (2019) propose neural design networks (NDN) by integrating graph convolution
network (GCN) and conditional VAE to generate design layouts from the given user-specified con-
straints. However, it is only designed to model a limited number of classes and relationships.
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Figure 2: LayoutTransformer Network (LT-Net) with Relation/Object Predictor P , Layout Gen-
erator G, and Layout Refiner (Visual-Textual Co-Attention) Modules. Note that f1:T denote the
contextualized features of each object/relation, and f̄ is that of the entire input. G contains a layout
feature extractor F to incorporate contextual and bounding box features, followed by a prediction
head Hp for modeling the associated feature distribution θ. We have bT and b′T indicate coarse and
refined layout outputs, respectively.

Recently, Jyothi et al. (2019) propose LayoutVAE to tackle scene layout generation, i.e., producing
layouts of natural scenes. LayoutVAE directly applies VAE for generating stochastic scene layouts
from a given label set. Thus, unlike our proposed work, LayoutVAE is not able to synthesize diverse
layouts using textual inputs, and thus lacks the ability in manipulating such outputs.

3 METHODOLOGY

3.1 NOTATIONS AND ALGORITHMIC OVERVIEW

For the sake of completeness, we first define the notations to be used in this paper. Our model takes
textual data S = {s1, s2, ...sT } as the input (T denotes the number of words). More specifically,
each sentence in the textual input (i.e., si−1, si and si+1) consists of three words representing the
subject, relation, and object describing the interaction between the associated objects in the scene.
Given such inputs, the goal of our model is to synthesize plausible yet diverse layouts in terms of
bounding boxes B = {b1, b2, ..., bT }. To achieve this, we propose a LayoutTransformer Network
(LT-Net), as shown in Fig. 2. In LT-Net, we have a unique relation/object predictor P for modeling
the semantic information from the observed sequential input s1:T . More precisely, P extracts the
contextualized representations f1:T describing the semantics of each object in the scene. With the
semantic representation of the input sentence f1:T and its summarized f̄ (via max pooling over f1:T )
obtained, the second module G of our LT-Net serves a generator, which contains a layout feature
extractor F , followed by a prediction head Hp to produce the layouts B = {b1 , b2 , ...bT} from
the learned contextualized representations of each object with sufficient stochasticity. Finally, we
additionally introduce Visual-Textual Co-Attention(VT-CAtt) for layout refinement, which performs
cross-modal attention to optimize the predicted image layout by jointly taking both the spatial and
semantic information into consideration. It is worth noting that, our LT-Net not only generates
diverse layouts conditioned on the given textual input. As discussed later, it further exhibits the
ability of inferring the implicit relations among the objects, which explains why satisfactory layouts
can be expected by our LT-Net.

3.2 LEARNING RELATION-AWARE AND OBJECT-DISCRIMINATIVE EMBEDDING

Given a sequential text input s1:T , our Relation/Object Predictor P in LT-Net aims at deriving con-
textualized representations f1:T = {f1, f2, ..., fT } for each object/relation, describing its semantic
and spacial information. Moreover, as one of our goals of our LT-Net, this introduced predictor
exhibits abilities in inferring implicit relationships between objects.
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Instead of applying standard recurrent models for taking textual input directly, this predictor P em-
beds s1:T into a relation-aware and object-discriminative Embedding ei1:T by decomposing s1:T into
different types of features: word embedding ew1:T , object ID embedding eo1:T , sentence ID embed-
ding es1:T , and part-of-pair (PoP) ID embedding ep1:T . Following (Devlin et al., 2018), the word
embedding ewt describes the features of the tth object/relation. The object ID embedding eot , as de-
picted in Fig. 2, is expressed order numbers which distinguish between different instances of the
same object category (i.e., with the same ewt ). The sentence ID embedding est indicates the number
of subject-relation-object pairs in the input. In order to specify the semantic role (i.e., subject, re-
lation, or object) st in each sentence of the textual input, we uniquely utilize the Part-of-Pair (PoP)
ID ept for each st in a sentence.

With the above four types of features extracted from the textual input, we concatenate them to form
the embedding ei1:T = [ew1:T⊕es1:T⊕e

p
1:T⊕eo1:T ], which serves as the input of our relation predictorP

for learning the contextualized feature vectors f1:T . We pretrain our Relation/Object Predictor P
based on BERT (Devlin et al., 2018), and have the output contextual features f1:T to predict ŝt via a
single linear layer. We note that, in addition to predicting the masked word as BERT does, our model
also recovers both the masked PoP ID and object ID. Thus, to train this relation/object predictor, we
have the objective function Lpred calcualte the cross-entropy losses from matching word, object ID,
and PoP ID between the input st and the predicted ŝt, respectively.

Lpred = CrossEntropy(st, ŝt). (1)

3.3 STOCHASTIC LAYOUT GENERATION

With contextualized representations f1:T and f̄ derived, our Layout Generator G aims to produce
the layout, while the probability distribution of the position/size of the resulting bounding boxes
simultaneously observed. Our G comprises two components: a Layout Feature ExtractorF to extract
the spatial information from contextual inputs, and a prediction head Hp to model the distributions
of the position/size of the bounding boxes. We now detail these two components.

3.3.1 MODELING LAYOUT DISTRIBUTION VIA GAUSSIAN MIXTURE MODEL

For each word st in the textual input (either subject or object), we define the produced bounding
box in terms of its location and size, i.e., bt = (xt, yt, wt, ht), bt ∈ {bsub, bobj}. If st denotes
a relation, we output the box disparity between its associated subject and object pair, i.e., bt =
(∆xt,∆yt), bt ∈ {brel}. In order to introduce the generative ability to our model, we follow Hong
et al. (2018); Li et al. (2019b) and the above layout distribution with Gaussian Mixture Models
(GMM). Each bounding box is sampled from its corresponding posterior distribution pθt(bt | ct),
which is described by K multivariate normal distributions with i indicating the i-th distribution.
Each distribution is parameterized by θt,i and a magnitude factor πi. Mathematically, we have

pθt(bt | ct) =

K∑
i=1

πiN (bt ; θt,i), θt,i = (µxt,i, µ
y
t,i, σ

x
t,i, σ

y
t,i, ρ

xy
t,i),

K∑
i=1

πi = 1, (2)

where N (bt; θt,i) denotes the multivariate normal distribution. Note that for θt, µx and µy are the
means, σx and σy are the standard deviations, and ρxy is the correlation coefficient, describing the
associated multivariate normal distributions.

Inspired by the Variational AutoEncoder (VAE) (Kingma & Welling, 2013), we have the loss func-
tion as the sum of following two terms for learning F andHp: the bounding box reconstruction loss
Lbox and the Kullback-Leibler Divergence Loss, LKL. Note that the aforementioned reconstruction
loss maximizes the log-likelihood of the generated GMM to fit that observed from the training data,
which is calculated using the generated GMM parameters θt and the location of the ground-truth
bounding box b̂t = (x̂t , ŷt , ŵt , ĥt):

Lbox = − 1

K
log(

K∑
i=1

πiN (x̂t , ŷt , ŵt , ĥt ; θt,i)). (3)

Empirically, the maximum likelihood framework might suffer from over-fitting problems (i.e., de-
generation to a Dirac delta function). To alleviate this, the Kullback-Leibler (KL) divergence with
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Figure 3: Architecture of ouf Visual-Textual Co-Attention (VT-CAtt) module. B denotes the coarse
layout synthesized by G, and C represents the contextual vectors produced by F in LT-Net. Mθ in-
dicates the refined attention weights, whileWQ, WK , WV , andWP are to be learned for performing
co-attention. Note that ∆B is the output describing the residual for each bounding box.

respect to multivariate normal distributions serves as a regularization term. With such GMM distri-
butions observed, our model allows one to generate diverse yet plausible layouts. We calculate the
KL Loss term, LKL, by measuring the distance between the generated distribution P controlled by
θt and a multivariate normal distribution Q with its mean same as θt and unit variance.

LKL =

K∑
i=1

DKL(Pi‖Qi) =

K∑
i=1

DKL(N (µx
t,i , µ

y
t,i , σ

x
t,i , σ

y
t,i , ρ

xy
t,i)‖N (µxt,i, µ

y
t,i, 1, 1, 0)). (4)

3.3.2 OBSERVING SELF-SUPERVISED RELATION CONSISTENCY

In addition to the above bounding box recovery and KL divergence losses, we introduce a novel
Relation Consistency Loss Lrel to our layout generator. Served as a self-supervised objective, we
enforce this consistency between the box disparity of the relation word brel and that of the corre-
sponding subject-object pair ∆b = ((bsubx , bsuby ) − (bobjx , bobjy )). Thus, this loss is calculated by the
Mean Square Error (MSE) between box disparity ∆b and brel :

Lrel =
1

N

∑
(∆b − brel)2, (5)

where N is the number of the relation pairs in S = {s1, s2, ...sT }.
With the above objectives, we train our layout generator G by calculating the following loss term:

Lgen = Lbox + Lrel + λKLLKL, (6)

where λKL represents the magnitude of the regularization (we fix λKL = 0.1 in this work).

3.4 VISUAL-TEXTUAL CO-ATTENTION FOR LAYOUT REFINEMENT

Since the coarse layout B1 :T is generated for each individual bounding box in an incremental fash-
ion, the produced layout might not be optimal. Thus, we present an Visual-Textual Co-Attention
(VT-CAtt) mechanism for refining B1 :T into the final output. By leveraging both spatial and se-
mantic information, our VT-CAtt outputs the residual ∆B1 :T updating each bounding box, leading
to more accurate and realistic layouts B ′1 :T . It is worth noting that, when jointly taking the above
contextual and visual features as the refinement inputs, we particularly leverage the visual informa-
tion of the coarse bounding boxes into the contextual features. Realized by our unique co-attention
process, this allows the contextual features to exhibit spatial awareness.

Our VT-CAtt module is depicted in Fig 3, which takes the coarse layout B1 :T as the visual features
(as both query and key) and the contextual vectors C1 :T as the semantic feature (as value). We per-
form matrix multiplication to the projection of queryWQ(B) and keyWK(B) to obtain the attention
matrix M . Moreover, since we generate the coarse bounding box B from the GMM distribution,
the sampled bounding boxes with low probabilities would imply less likely spatial outputs. There-
fore, we derive the box confidence ε from the sampled GMM probability value to penalize the each
bounding box. And, the resulting GMM-aware attention weights Mθ is calculated as:

Mθ
i,j =

εj · exp(Mi,j)∑T
j=1 εj · exp(Mi,j)

, (7)
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Input Sentence Sg2Im LayoutVAE NDN LT-Net

VG-MSDN

Input Sentence Sg2Im LayoutVAE LT-NetGT

1) Sheep[1] below Hill[4]
2) Hill[4] below Tree[6]
3) Tree[6] above Sheep[1]
4) Sheep[2] left of Sheep[7]
5) Sheep[2] inside Grass[3]
6) Sheep[2] below Sky-other[5]
7) Sheep[7] right of Sheep[2]

1) Snow[1] inside Hill[5]
2) Hill[5] above Snowboard[2]
3) Person[3] above Snowboard[2]
4) Snowboard[2] below Kite[4]
5) Kite[4] above Hill[5]
6) Kite[4] inside sky-other[6]

1) Knife[1] inside Dinning table[2]
2) Dinning table[2] below cake[3]
3) Dinning table[2] below wall-wood[4]
4) Cake[3] left of Window-other[5]
5) Cake[3] inside Wall-wood[4]

1) Sky-other[3] above Branch[1]
2) Sky-other[3] above Tree[4]
3) Tree[4] below Sky-other[3]
4) Grass[2] below Zebra[5]

1) Kite[2] In Sky[1]
2) Child[4] On Ground[3]
3) Mountain[6] In Background[5]
4) Sky[1] Have Cloud[9]
5) Mountain[6] Behind Tree[10]
6) Tree[8] Next to Field[7]

1) Arm[2] of Man[1]
2) Tree[6] Behind Man[1]
3) Hand[9] of Man[1]
4) Face[10] of man[1]
5) Man[1] wear Jean[5]
6) Man[1] On Skateboard[4]
7) Skateboard[4] have wheel[3]
8) Cloud[8] in Sky[7]

1) Man[2] rid Horse[1]
2) Man[2] wear Shirt[4]
3) Man[2] wear Helmet[3]
4) Man[2] wear Pant[7]
5) Horse[1] has Head[5]
6) Horse[1] has Leg[6]

1) Man[2] hold Ski[3]
2) Man[2] wear Helmet[4]
3) Man[2] on Hill[1]
4) Helmet[4] on Man[2]
5) Rock[6] in snow[5]

Figure 4: Qualitative evaluation on COCO-Stuff and VG-MSDN. Each row shows the textual
input, ground truth layout and those generated by different approaches. For visualization purposes,
we apply the pretrained layout2im (Zhao et al., 2019) to convert the output layout into images. Note
that bounding boxes in red indicate layout components not matching the input relationships.

where Mθ
i,j denotes the contribution of the jth object to the ith object, and εj is derived from

calculating the probability density of the coarse bounding box bj (i.e. pθj (bj)). We feed the course
B and the feature vectors produced by VT-CAtt to a single linear layer to predict the residual ∆B.
Following (Redmon et al., 2016), the loss Lref for this refinement module is defined below:

Lref =

T∑
t=1

λxy[(x′t − x̂t)2 + (y′t − ŷt)2] + λwh[(
√
w′t −

√
ŵt)

2 + (
√
h′t −

√
ĥt)

2], (8)

where b′t = (x′t, y
′
t, w
′
t, h
′
t) denotes each refined bounding box, and b̂t represents the ground-truth

one. With the objectives defined in equations 1, 6 and 8, our LT-Net can be trained accordingly.

4 EXPERIMENTS

4.1 DATASETS

COCO-stuff. We perform our experiments on the COCO-Stuff dataset (Caesar et al., 2018), which
augments a subset of the COCO dataset (Lin et al., 2014) with additional stuff categories. Thus, a
total of 80 thing categories (car, dog, etc.) and 91 stuff categories (sky, snow, etc.) are available,
with 118K/5K annotated images for training/validation. For the relationship annotations, we refer
to Sg2Im (Johnson et al., 2018), which utilizes coordinates of the objects in images to construct
synthetic scene relationship. Following the definitions of the geometric relationships in Sg2Im, a
total of six relationships are considered: left of, right of, above, below, inside, and surrounding.

Visual Genome. The Visual Genome dataset (Krishna et al., 2017) comprises more than 108K
images annotated with scene graphs. In our experiments, we specifically consider the VG-MSDN
dataset (Li et al., 2017). Please refer to Appendix A.2.1 for the details about this dataset such as the
total number of training data and testing data.

4.2 QUALITATIVE RESULTS

Plausible layout generation. We compare our proposed LT-Net with recent state-of-the-art models,
including sg2im (Johnson et al., 2018), LayoutVAE (Jyothi et al., 2019), and NDN (Lee et al., 2019).
In Fig. 4, we observe that the outputs of Sg2Im, LayoutVAE, and NDN did not necessarily match the
relations between the objects, while our LT-Net was able to generate consistent layout components
with the given textual descriptions, especially on the more challenging dataset of VG-MSDN.

Multi-modal layout generation. Comparing with other state-of-the-art models such as Sg2Im,
NDN, and LayoutVAE, our LT-Net is a generative model, and thus is capable of generating diverse
yet plausible layouts given the same textual input. From top to bottom rows in Fig. 5(a), we see that
we were able to produce diverse layout outputs given simple to more complex textual inputs.
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Input Sentence Generated Layout

1) Skis[1] below Person[2]
2) Person[2] surrounding Tree[3]

1) Tree[4] above Snow[1]
2) Tree[4] surrounding Person[3]
3) Snow[1] surrounding Skis[2]
4) Skis[2] below Person[3]

1) Mountain[5] above Tree[4]

3) Tree[4] surrounding Person[3]
4) Snow[1] surrounding Skis[2]
5) Skis[2] below Person[3]

2) Tree[4] above Snow[1]

Incomplete  
Input Sentence

Complete  
Sentence

1) Tree[4] below Sky-other[3]
2) Tree[4] right of [MASK]
3) Sky-other[3] above Grass[1]
4) Tree[4] above Grass[1]

1) Tree[4] below Sky-other[3]
2) Tree[4] right of [MASK]
3) Sky-other[3] above Grass[1]
4) Tree[4] above Grass[1]

1) Tree[4] below Sky-other[3]
2) Tree[4] [MASK] [MASK]
3) Sky-other[3] above Grass[1]
4) Tree[4] above Grass[1]

1) Tree[4] below Sky-other[3]
2) Tree[4] right of Person[1]
3) Sky-other[3] above Grass[2]
4) Tree[4] above Grass[2]

1) Tree[4] below Sky-other[3]
2) Tree[4] right of Grass[1]
3) Sky-other[3] above Grass[2]
4) Tree[4] above Grass[2]

1) Tree[4] below Sky-other[3]
2) Tree[4] above Person[1]
3) Sky-other[3] above Grass[2]
4) Tree[4] above Grass[2]

Generated Layout

Person[1]

Person[1]

grass[1]

grass[1]

Person[1]

Person[1]

(a) (b)

Figure 5: Examples of (a) diverse layout outputs and (b) layout with implicit relation/object
inferred. Note that all three outputs in (a) are conditioned on the same textual input, while objects
and relations from the incomplete textual inputs are recovered in (b).

Inferring implicit objects and relations. Fig. 5(b) demonstrates the ability of our LT-Net in in-
ferring the implicit objects or relations across existing objects given the textual input. Take the first
row in Fig. 5(b) for example: given four input sentences of (1) Tree below Sky-other, (2) Tree right
of [MASK], (3) Sky-other above Grass, and (4) Tree above Grass, our LT-Net was able to infer the
masked word of “Person”, which is not explicitly presented in the textual input. And, with such
inferred objects/relations, the final layout would still exhibit plausibility.

From the above qualitative evaluation and comparisons, we see that our LT-Net is able to gen-
erate sufficiently plausible layouts, which contain inferred objects/relations with output diversity
preserved. More qualitative results are available in Appendix A.2.

4.3 QUANTITATIVE RESULTS

4.3.1 EVALUATION METRICS

For quantitative evaluation, we consider the following five different metrics: (1) Mean intersection
over union (mIOU). The mIOU score measures how well the generated layout fits the ground truth
data. (2) Relation accuracy. The relation accuracy only considers the relation with explicit spatial
meaning (i.e., left of, right of, above and below). We randomly select 1000 images and calculate the
relation accuracy for each pair of objects by measuring the x, y distance between the boxes. (3) R-
precision. is a common evaluation metric for ranking retrieval results. Following Li et al. (2019b),
we calculate the percentage of successful retrievals as the R-precision score. (4) Fréchet inception
distance (FID) to evaluate the quality of the generated images based on our predicted layouts via
measuring the distance between the generated distribution and the real image input.

4.3.2 QUANTITATIVE COMPARISONS

Table 1 compares our LT-Net with Sg2IM, LayoutVAE, and NDN. Note that, for each experiment,
we randomly sample 3000 images for 5 times and report the associated mean and standard deviation.
As can be seen in Table 1, our LT-Net achieved improved mIOU scores than others by significant
margins, which supports our use of GMM for fitting layout distributions. Moreover, our LT-Net re-
ported satisfactory FID scores, which indicate that high quality synthesized images can be produced
by our predicted layouts. Moreover, we apply R-Precision and Relation Accuracy to estimate the
consistency between the input textual descriptions and the generated layouts. To sum up, our model
performed favorably against state-of-the-art methods in terms of mIOU, R-precision, and Relation
Accuracy, and reported satisfactory FID scores. The above quantitative results support the use of
our model for producing plausible and satisfactory layouts.
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Table 1: Quantitative evaluation. Note that Rel denotes the exploitation of relation information
during training, and Img indicates the requirement of real images (instead of layouts) for training.

Model Rel Img mIOU (↑)
COCO

mIOU (↑)
VG-MSDN

FID (↓)
COCO

FID (↓)
VG-MSDN

R-Pre. (↑)
COCO

Rel. Acc. (↑)
COCO

Sg2Im X X 0.29 ±0.06 0.168 ±0.063 48.8 ±0.3 90.5 ±1.7 0.26 ±0.01 49.12 ±0.29
LayoutVAE 0.19 ± 0.02 0.041 ± 0.028 60.7 ±0.4 113.9 ±7.7 0.23 ±0.03 -

NDN X 0.33 ±0.04 - 79.5 ±1.0 - 0.25 ±0.02 48.89 ±0.67
Ours X 0.49 ±0.03 0.183 ±0.036 55.7 ±0.9 90.5 ±1.7 0.35 ±0.02 51.36 ±0.45

Table 2: Ablation studies of LT-Net on COCO-Stuff. Note that Lrel and ε denote the Relation
Consistency Loss and confidence score weight, respectively. For each added component, we train
the LT-Net for 50 epochs and report the results on the test set.)

Model C. Box
mIOU (↑) R. Box

mIOU (↑) FID (↓) R-pre. (↑)

Baseline 43.12 ±0.04 - 80.89 ±6.53 0.30 ±0.02
+ Lrel 45.33 ±0.03 - 60.65 ±0.54 0.33 ±0.02
+ VT-CAtt 46.45 ±0.05 49.57 ±0.13 56.09 ±0.19 0.34 ±0.02
+ ε 46.42 ±0.06 49.72 ±0.03 55.74 ±0.91 0.35 ±0.02

4.4 ABLATION STUDIES

Finally, we perform ablation studies on our model design. More precisely, we demonstrate the
effectiveness of our model by incrementally adding each component to the baseline model, which
only contains Object/Relation Predictor P and Layout Generator G without relation consistency
Lrel. Additionally, we assess the each component of our relation-aware and object-discriminative
embeddings as described in Sect. 3.2, and the supporting results can be seen in Appendix A.2.3.

Relation consistency. To confirm our introduction and enforcement of relation consistency during
training, we apply this objective to the baseline model and report the results in the second row of
Table 2. We see that not only the mIOU score was raised by 0.3, both FID and R-precision scores
were also improved. These results indicate that the self-supervised relation consistency would be
beneficial to our model design.

Visual-Textual Co-Attention(VT-CAtt). With the deployment of VT-CAtt module for refinement,
the third row of Table 2 confirm that the mIOU, FID, and R-precision scores all made remarkable
improvements. Thus, the joint exploitation of contextual representations and visual layout features
would be a critical component in our LT-Net.

Confidence score (ε) re-weighting. As described in Sect. 3.4, we additionally take the confidence
scores from the GMM probability outputs to weight the bounding box features during attention
refinement. As can be seen from the last row in Table 2, this would finally boost the performances
and thus would be desirable in our co-attention process.

5 CONCLUSION

In this paper, we proposed a generative model of LayoutTransformer Network (LT-Net) for text-
conditioned layout generation. By deriving semantics-aware and object discriminative contextual
features from the textual descriptions. our LT-Net is able to produce layout components which not
only reveal implicit objects/relations, sufficient output diversity can be guaranteed via fitting Gaus-
sian mixture models. Finally, a visual-textual co-attention mechanism exploits cross-modal features
for refining the final layout, which exhibit semantics consistency and plausibility. We conducted
extensive experiments on COCO and VG-MSDN datasets, which qualitatively and quantitatively
demonstrated the effectiveness of our model over state-of-the-art methods.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Our implementations are based on the Transformer (Vaswani et al., 2017) and Pytorch (Paszke et al.,
2019). All the models are trained with one GeForce 1080 Ti GPU, with a batch size of 64. Learning
rates will be detailed in the later paragraph.

Relation/Object Predictor. Our Relation/Object Predictor P is a 4-layer Transformer Encoder,
with 4 attention heads, hidden size of 256, and we use a dropout probability of 0.1 on all layers.
The Encoder is followed by three linear layers to predict the masked word, PoP ID, and object ID,
respectively. We pretrain our Relation/Object Predictor P for 50 epochs, using Adam optimizer with
learning rate of 4e-4, β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01, learning rate warmup over the
first 10 epochs, and linear decay of the learning rate.

Layout Generator. Our Layout Generator G comprises two modules: a Layout Feature Extractor F
and a prediction head Hp. The Layout Feature Extractor F is a single-layer Transformer Decoder
with 4 attention heads, hidden size of 256, and dropout ratio of 0.1. The Layout Feature Extractor
F first extracts the feature of the synthesized layout B1:t−1, denoted as ebt , and concatenates ebt with
contextualized feature vectors ft and f̄ to form the context vector ct = [ft⊕f̄⊕ebt ] for the prediction
headHp. We implement our prediction headHp by decomposing the quadravariate distribution into
two bivariate distributions, i.e.:

pθt(bt | ct) = pθt(xt, yt, wt, ht | ct) = pθt(xt, yt | ct)pθt(wt, ht | ct, xt, yt). (9)
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Table 3: Descriptions of the COCO-stuff and VG-MSDN datasets. Note that, #Img and #Rel repre-
sent the total number of images and that of relation pairs in the dataset, respectively. In the last two
columns, Obj and Pred denote the numbers of unique object classes and predicates, respectively.

Dataset Training Set Testing Set #Obj #Pred#Img #Rel #Img #Rel
COCO-Stuff ∼106K ∼800K 5,000 ∼36K 155 6
VG-MSDN 46,164 ∼507K 10,000 ∼111K 150 50

Figure 6: Distribution visualization of relation priors generated by our LT-Net. Note that x and y
axes represent the differences between the associated bounding boxes of subject and object pair in
horizontal and vertical directions, respectively. Different colors denote each relation of interest. For
example, the circles in green describe subject-object pairs with the relation word “right of”.

In practice, we use two linear layer to model the parameters of the bivariate normal distribution of
(xt, yt) and (wt, ht), respectively.

Visual-Textual Co-Attention. Our Visual-Textual Co-Attention (VT-CAtt) is a 4-layer Trans-
former, with 4 attention heads, hidden size of 256, and we use a dropout probability of 0.1, followed
by a bounding box prediction head WP which is a single linear layer predicting the offset of the
coarse bounding boxes .

After pretraining the Relation Predictor P , we train our LT-Net in an End-to-End fashion with dif-
ferent learning rates for each module. The Relation/Object Predictor P is fine-tuned with learning
rate of 1e-5 and linear decay of the learning rate. We jointly optimize our Layout Generator G and
Visual-Textual Co-Attention (VT-CAtt) using Adam optimizer with learning rate of 1e-4, β1 = 0.9,
β2 = 0.999, L2 weight decay of 0.01, learning rate warmup over the first 5 epochs, and linear decay
of the learning rate.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 DATASETS

We perform our experiments on the COCO-Stuff dataset (Caesar et al., 2018) and VG-MSDN dataset
provided by Li et al. (2017). Since the raw VG (Krishna et al., 2017) dataset may contain a large
number of noisy data, we use a cleansed-version VG-MSDN dataset. The statistics of these datasets
are provided in Table 3.
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Table 4: Ablation studies on our input embedding in terms of the prediction accuracy for the masked
word, object ID and PoP ID. We show that the uses of both object and PoP ID embeddings are
desirable for exploiting the relation/object (as our LT-Net does).

Obj
ID

PoP
ID

Masked
Acc

Obj ID
Acc

PoP ID
Acc

74.45 ±0.52 92.27 ±0.17 83.16 ±0.05
X 85.68 ±0.21 91.87 ±0.19 99.89 ±0.01

X 75.73 ±0.08 96.26 ±0.13 83.19 ±0.06
X X 87.12 ±0.17 96.21 ±0.17 99.99 ±0.01

A.2.2 DISTRIBUTION OF RELATION PRIORS ON COCO-STUFF.

To demonstrate the ability to infer the spatial information implied by the relation constraints, we
visualize the spatial prior of some predefined words: surrounding, inside, left of, right of, above
and below. To achieve this, we randomly select 100 samples of corresponding relation words and
plot the mean of the distribution induced by these relation words. To be more specific, we plot the
means (µx and µy) of the distribution induced by these relation words, which represent the box
disparity between the associated subject and object pairs. The result can be found in Figure 6, which
confirms that our model learns the mapping between semantic words and spatial relations. Take the
distribution in green in Figure 6) (i.e., the relation word “right of”) for example, it can be seen that
the green circles are on the right hand side of the y axis, indicating that the x coordinate values of
the subject boxes were observed to be generally larger than those of the object boxes, matching the
relation of “right of”. Note that both µx and µy are normalized by the width and height of each
image.

A.2.3 ABLATION STUDIES

Input embedding analysis. The input embedding of the baseline model (as first row in Table 4)
contains only word embedding and segment embedding which are default input according to BERT
model (Devlin et al., 2018). In rows 2 to 4 in Table 4, we show the performance of the predictor
with different combination of embeddings. From the results shown in this table, we see that these
input embedding benefit the task of learning contextualized representation for layout generation.
Take PoP ID for example, it significantly improved the masked accuracy by 10% comparing to the
baseline method. Also, Object ID slightly improved the masked accuracy while enabling our model
to discriminate distinct objects in the output scene.

A.2.4 QUALITATIVE RESULTS

In this section, we present additional qualitative results following the same setting as that in Ex-
periments 4.2. We conduct the experiment of plausible layout generation on both COCO and
VG-MSDN datasets, and the results are shown in Figures 7, 8 (COCO), 9, and 10 (VG-MSDN). We
demonstrate that our model is capable of handling complex objects and relations by incrementally
adding more objects in images. For Fig. 7, it presents the results on the COCO dataset with less
than 5 objects in one image and Fig. 8 with more than 5 objects. For the VG-MSDN dataset, Fig. 9
shows images with 6 objects or fewer, and Fig. 10 with 6 objects or more. The qualitative results of
multi-modal layout generation and inferring implicit objects and relations on COCO are shown
in Figures 11 and 12 respectively.
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scene graph GT LT-Net Sg2Im NDN LayoutVAE

Figure 7: Qualitative comparison on COCO-Stuff (less than 5 objects). For each row we show
the textual input, ground truth layout, synthesized layout, and image converted from the layout by
layout2im (Zhao et al., 2019). Note that, for simplicity, we use the scene graph to represent the
textual input.
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scene graph GT LT-Net Sg2Im NDN LayoutVAE

Figure 8: Qualitative comparison on COCO-Stuff (more than 5 objects). For each row we show
the textual input, ground truth layout, synthesized layout, and image converted from the layout by
layout2im (Zhao et al., 2019). Note that, for simplicity, we use the scene graph to represent the
textual input.
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scene graph GT LT-Net Sg2Im LayoutVAE

Figure 9: Qualitative comparison on VG-MSDN (less than 6 objects). For each row we show
the textual input, ground truth layout, synthesized layout, and image converted from the layout by
layout2im (Zhao et al., 2019). Note that, for simplicity, we use the scene graph to represent the
textual input.
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scene graph GT LT-Net Sg2Im LayoutVAE

Figure 10: Qualitative comparison on VG-MSDN (more than 6 objects). For each row we show
the textual input, ground truth layout, synthesized layout, and image converted from the layout by
layout2im (Zhao et al., 2019). Note that, for simplicity, we use the scene graph to represent the
textual input.
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scene graph GT LT-Net LT-Net LT-Net

Figure 11: More example results of multi-model layout generation on COCO-Stuff. For sim-
plicity, we take the scene graph to represent the textual input in each row, followed by three sampled
layout outputs produced by our LT-Net.
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incomplete 
scene graph

complete 
scene graph GT LT-Net LT-Net

Figure 12: More example results of inferring implicit objects and relations on COCO-Stuff.
For simplicity, we take an incomplete scene graph to represent the textual input with missing
words/relation. Note that we use the word [MASK] in the scene graphs to represent the ob-
ject/relation which is missing in the textual input. For each row, we depict two sampled layout
outputs produced by our LT-Net (shown in the last two columns).
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