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ABSTRACT

We propose a conceptually novel framework for Federated Learning (FL) called
FedFit to mitigate issues of FL. FedFit is a reformulation of the server aggregation
in FL, where the global model is updated by linear regression. This reformulation
naturally enables us to utilize the established linear regression techniques for sev-
eral FL issues. For example, we apply robust regression to alleviate the vulnerabil-
ity issue against attacks on the global model from collapsed clients, and we apply
LASSO regression to introduce sparsity into the model to reduce the communi-
cation cost in FL. Moreover, FedFit enables clients to upload compressed model
parameters to the server, significantly reducing the data traffic. In experiments,
we demonstrate that FedFit successfully improves robustness against attacks on a
global model by robust regression and reduces the global model size by LASSO
regression.

1 INTRODUCTION

On the growing demand for using massive user data for machine learning while ensuring data pri-
vacy, Federated Learning (FL) has been proposed by (McMahan et al., 2017; Mohri et al., 2019).
In FL, a machine learning model is first trained on each distributed data, i.e., each client’s data,
and then a server aggregates a trained model received from each client to make one global model.
Contrary to a traditional machine learning philosophy, the server cannot access each client’s data in
the training pipeline of FL. Instead, the client’s trained models are only accessible from the server.
Users do not need to upload their own data to the server, so FL can protect user privacy.

Recent studies show that FL has several challenges in practical scenarios (Li et al., 2020b). The first
challenge is robustness against attacks from malicious clients (Bagdasaryan et al., 2020; Bhagoji
et al., 2019). In FL, a global model is updated by aggregating clients’ trained models. When ma-
licious clients are connected to the server, such clients can upload an adversarial model to change
the global model’s behavior intentionally. The second challenge is to reduce communication costs
(Konečný et al., 2016; Singhal et al., 2021). Since modern deep neural network models contain
many parameters (Dosovitskiy et al., 2020; Tolstikhin et al., 2021), the server’s and client’s com-
munications consume much energy.

To tackle these problems, we focus on the fact that similar problems have been discussed in the
field of linear regression, such as protecting a model from outliers and making the model sparse.
To take advantage of existing techniques on linear regression, we consider the relationship between
FL and linear regression and reformulate the server aggregation of FL as the linear regression. We
name our method Federated Learning as Fitting problems (FedFit). The reformulation enables us
to utilize the established regression techniques as solutions for the challenges in FL. For example,
robust linear regression can handle outliers, which could be applicable for protecting the global
model from collapsed client attacks. In addition, LASSO regression introduces the sparsity to the
weights, so this technique can reduce the communication costs of the model between the server and
a client. Furthermore, FedFit significantly reduces data traffic since clients upload a compressed
model to the server.

In summary, our contributions are as follows:

• We propose FedFit, which reformulates the model aggregation of FL as the linear regres-
sion. It enables FL to use the benefit of linear regression techniques.
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• In FedFit, a model is compressed when clients send back a model to the server, which
reduces data traffic to upload a model to the server.

• We utilize linear regression techniques as a solution for FL problems. We experimentally
show that the robust regression successfully improves the robustness against attacks from
collapsed clients, and the reduction of global model size is achieved by LASSO regression.

2 RELATED WORK

The recent spread of edge devices and massively distributed data in each device for machine learning
has motivated researchers to propose Federated Learning (FL) (McMahan et al., 2017). As an ap-
plication of FL, some methods are proposed across various research fields, such as computer vision,
natural language processing, and speech processing (Leroy et al., 2019).

One of the challenges in FL is the data distribution shift among clients. In some practical scenarios
of FL, each client’s data has a different distribution, and (Fallah et al., 2020; Zhang et al., 2021)
proposed methods to create a personal model suitable for each own local data, while (Diao et al.,
2021; Mohri et al., 2019) proposed methods to train the global model under heterogeneous data. Al-
though FL is initially proposed to protect clients’ data privacy, this scheme is valunerable to attacks
from malicious clients at the same time (Bagdasaryan et al., 2020; Fung et al., 2018). Therefore,
several studies proposed methods to remove such malicious data (Tuor et al., 2020) or models (Cao
et al., 2021) by focusing on their distributions.

Another challenge of FL is that FL requires frequent communications of models between clients
and a server, leading to other problems such as huge communication costs (Konečný et al., 2016; Li
et al., 2020a). For this challenge, some studies compress a model to decrease the communication
costs of the model between a server and clients (Reisizadeh et al., 2020; Singhal et al., 2021) or
introduce scheduling strategies (Yang et al., 2019) to communicate a model between clients and a
server efficiently.

Position of this paper: FedFit is an aggregation method. Specifically, FedFit reformulates it as linear
regression. Thanks to this, we utilize the established linear regression method to solve FL limitations
through our reformulation.

3 BACKGROUND OF FEDERATED LEARNING

There are two phases in the process of FL: local training and server aggregation. At the first stage of
FL, the server distributes a global model to each connected client. After receiving a global model,
the client initializes a model with the weights of the global model and trains the model with its local
data. Such a trained model is called the local model, and this training is called local training. Then,
each client sends a local model to the server when local training is finished. The server collects these
local models and uses them to update one global model. This update process of the global model is
called server aggregation. There are several aggregation methods (Bonawitz et al., 2016; Ek et al.,
2021), and one standard aggregation method is the Federated Average (FedAvg) (McMahan et al.,
2017). FedAvg updates the global model by simple averaging of collected local models as follows:

wg =
1

n

n∑
i

wl
i. (1)

Here wg is a global model, and n is the number of clients, i indicates i-th client, and wl
i is a local

model trained using i-th client’s data. The consecutive process of the local training and the server
aggregation is called a communication round. FL repeatedly executes this communication round
until the global model is converged.

4 OUR METHOD

The main objective of FedFit is to formulate server aggregation as linear regression. In this section,
we first review linear regression in Sec. 4.1, then present the pipeline of FedFit in Sec. 4.2.
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Table 1: Challenges of FL and corresponded applicable linear regression techniques to such challenges.

Challenges of FL (Li et al., 2020b) Corresponded applicable techniques
Robustness against attacks from collapsed clients Robust regression (see Sec. 5.2)

Reduction of communication cost LASSO regression (see Sec. 5.3)

4.1 RECAP OF LINEAR REGRESSION

Linear regression is the fitting problem to approximate the function that represents the linear rela-
tionships between input and output pairs. Here, let us consider the 1d output linear model. Given
input vector x ∈ Rd and target vector t ∈ R, the linear regression is problem to obtain optimal
function fw(x) by learnable weights w ∈ Rd to satisfy:

t = fw(x), (2)
= w1x1 + ...+ wdxd, (3)
= wTx. (4)

There are several linear regressions with various loss functions for different purposes, and one of
the standard methods is the least-square method. The optimal weights w∗ ∈ Rd are obtained by
minimizing a square loss L between the target vector t and output vector of a linear model fw(x):

L(w; t,x) =
1

2

n∑
i=1

(fw(xi)− ti)
2, (5)

w∗ = argmin
w

L(w; t,x), (6)

where n represents the number of input and target vector pairs, and i indicates i-th data of n.

Although this example is one basic case, some research on linear regression has extended this prob-
lem under different settings and proposed multiple solvers for each different setting. Rethinking
this knowledge, we are motivated to utilize these solvers to solve the challenges of FL. Table 1
summarizes examples of applications of linear regression solvers to FL challenges. As solvers for
those challenges, we consider robust and LASSO regression are promising. In addition to those
techniques, many extensions could be considered. We focus on applying these two techniques in
this paper, and we leave other applications of regression techniques for FL settings to future work.

4.2 FEDFIT

4.2.1 OVERVIEW

FedFit is an aggregation method that consists of two processes: weights compression in clients and
weights reconstruction through linear regression in the server. Figure 1 visualizes the overview of
FedFit. In usual aggregation, such as FedAvg, clients upload the trained local model, and the server
aggregates the collected local model by simply averaging received weights. Instead of averaging
aggregation, FedFit asks clients to upload compressed weights of the trained local model (detailed
in Sec. 4.2.2), where shared key vectors are used for compression. The server then updates the
global model using uploaded compressed weight and shared key vectors through some solvers of
linear regression (detailed in Sec. 4.2.3).

In the rest of this section, let us consider one fully-connected layer without bias for simplicity.
Assume the input dimension is d and the output dimension is o. Here, the weights are denoted as
w ∈ Ro×d. We illustrate each stage of FedFit in detail.

4.2.2 WEIGHT COMPRESSION BY MATRIX PRODUCT IN CLIENT

In order to achieve linear regression on the server, we design a compression-based model upload-
ing process for clients. Local model weights are compressed by matrix product after finishing local
training. To calculate the matrix product, we regard model weights as 2D vectors to calculate the ma-
trix product. Additionally, a client knows some key vector v, which is shared between the server, to
calculate the matrix product. The dimension of the key vector is determined based on the dimensions
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Figure 1: Overview of FedFit. The algorithm of FedFit is constructed as follows: (1) Each client trains a local
model wl by local data. (2) Each client compresses local model wl by using a key vector v, and
uploads compressed local model y. (3) Server reconstructs the global model wg by using linear
regression techniques. Here, the same key vector is shared between the server and each client.

⊗
represents the matrix product.

of model weights, and the key vector v has Ro×k dimensions, where k controls the compression de-
gree. We compress model weights by using key vectors v such as y = wTv ∈ Rd×k. Then, each
client uploads such compressed weights y to the server.

4.2.3 SERVER AGGREGATION AS LINEAR REGRESSION

By carefully collecting compressed weights and shared key vectors, server aggregation can be re-
formulated as linear regression. Let us consider N clients are connected in each communication
round, and for simplicity of explanation, let us consider the dimension of key vector k as 1. The
server can collect N compressed weights y from clients and can know corresponding key vectors
v which were used during model compression. Therefore, the server has Y = [y1, ...,yi, ...,yN ]
for compressed weights and V = [v1, ...,vi, ...,vN ] for key vectors, where i indicates i-th client
of N clients. Here, let us look back at the process of weight compression in each client. If only
one paired data, e.g., yi and vi, is obtained in the server, the server needs to decode weights w̃ that
satisfies yi = w̃Tvi. Note that the server has N client data in practice, and the optimal one global
model should be reconstructed to satisfy this decoding process for all client data as much as possi-
ble. Therefore, in the server aggregation, the global model W̃g ∈ Ro×d should be reconstructed to
satisfy:

Y = W̃T
gV, (7)

where Y ∈ Rd×N and V ∈ Ro×N . Thanks to this reformulation, we can apply solvers of linear
regression to calculate the global model weights W̃g because the objectives of Eq. (7) is the equiv-
alent to the linear regression by considering Y as target vectors and V as input vectors, as shown
in Eq. (4). The strength of this reformulation is that we are able to choose the linear regression
solver depending on the problem of FL. As can be seen in Table 1, robust regression can be applied
when collapsed clients upload an adversarial model yi, and we can obtain a sparse global model by
LASSO regression to reduce communication costs.

To solve Eq. (7), we use gradient descent by setting initial parameters as pre-updated global model
parameters since gradient descent could be applicable to update parameters regardless of chosen loss
functions. This is written as follows.

W0 = Wg, (8)

Wt = GradientDescent(Wt−1, L(W̃ ;Y, V )), (9)
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Algorithm 1 Compression via the matrix product after local training of i-th client. The L layers are
indexed by l. θl represents l-th layer of trained local model weights.

for All layers do
Get a key vector vl

Calculate the matrix product yl = θTl vl for compression
end for
Concatenate compressed weights yi = [y1, ...,yL]
return yi

Algorithm 2 Server aggregation as linear regression. T is the number of gradient descent in the
server. Wg is the global model before updating.

for All layers do
W̃0

l = Wgl
Collect Yl and Vl

for t = 1, 2, ..., T do
W̃t

l = GradientDescent(Wt−1, L(W̃ ;Y, V )) by Eq. (9)
end for
W̃gl = W̃T

l
end for

where L is the loss function depending on the problem settings. For example, L = ||Y−W̃T
gV||22 is

a naive loss function to reconstruct weights, and Eq. (11) can be used for L to ensure the robustness
of a global model against attacks from collapsed clients. Alternatively, Eq. (12) can be used for L
to sparsify the global model to reduce communication costs. For GradientDescent, SGD or Adam
(Kingma & Ba, 2015) can be used to minimize a loss function L such as Wt = Wt−1−γ ∂L(W̃ ;Y,V )

∂W̃
,

where γ is a learning rate. In this section, we demonstrated the reformulation for one fully-connected
layer, and the reformulation can be applied similarly if there are multiple layers.

Although the above example assumes a fully-connected layer, modern deep models include other
layers such as a convolution layer. The convolution layer’s weights Cw ∈ Rno×ni×kh×kw have
more axes of dimensions compared to the fully-connected layer, where no is the output channel, ni

is the input channel, kh and kw are the height and width of the kernel, respectively. We reshape the
dimensions of convolutional weights such as Ĉw ∈ Rno×nikhkw . Then, the convolution layers are
treated similarly as the fully-connected layer.

Finally, we present the overall algorithms regarding weight compression after local training and
server aggregation as linear regression in Algorithm 1 and 2, respectively.

4.3 DISCUSSION OF KEY VECTORS

Sharing. There are multiple options for how sharing key vectors between a client and the server.
One option is to generate key vectors in a client/server, then send them to another. As an efficient
alternative method, if a client and server mutually agree on the generation rule about key vectors in
advance, sharing only a seed to generate key vectors might be possible. Therefore, the additional
communication cost of sharing key vectors is negligible.

Types. We generate key vectors v following gaussian distribution in this paper. This indicates that
model compression is the same as random projection (Dasgupta & Gupta, 2003), which is known
as an effective dimension reduction method (Bingham & Mannila, 2001) and is also known to
be applicable for linear regression (Maillard & Munos, 2012). Although we experimentally show
our proposed strategy using randomly generated key vectors, other key generation methods may be
applicable, so we leave it as a research question in future work.
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5 EXPERIMENTS

5.1 SETUP

In this section, we conduct two experiments to demonstrate that linear regression techniques can
be fit to solve FL challenges through FedFit reformulation by: (i) ensuring the robustness of the
global model against attacks from collapsed clients and (ii) sparsifying the global model to reduce
the communication cost. The experiments are conducted on Fashion-MNIST and CIFAR-10 for
image classification and IMDB and AGNews for text classification tasks. We use CNN and LSTM
for each task, respectively. For the federated scenario, we split the training dataset into 100 subsets
and assign one of them to each client. A local model is trained with CrossEntropyLoss. As an
optimizer, SGD is used in all tasks during local training, and to solve linear regression in server
aggregation (Eq. (9), we use the Adam optimizer. We set iteration times T in the server to 100. As
key vectors v, we sampling vector following gaussian distribution such as v ∼ N(0, 1

k ), where k
controls compression degree as described in Sec. 4.2.2. Unless expressly noted, we compress the
kernels of the convolution layer and output channel of the other layer in experiments. For detailed
dataset information, hyperparameters, and architecture of CNN and LSTM, see Appendix A.

5.2 ROBUSTNESS AGAINST ATTACKS TO THE GLOBAL MODEL

Motivation and implementation details. For the possibility of malicious clients’ participation, we
need to consider situations such that a client uses malicious data during local training and the such
client tries to replace the global model with any local model ŵl by calculating Eq. (10) (Bag-
dasaryan et al., 2020).

ŵl = swl − (s− 1)wg, (10)

where s and s−1 are scale parameters and s is the same as the number of connected clients in an ideal
attack. wg is the global model received from the server. It is assumed that the poisoned models from
collapsed clients greatly differ from the trained local models from non-collapsed clients. In other
words, the parameter distribution of the poisoned model is regarded as outliers from the server’s
viewpoint compared with the local models that are not poisoned. In the field of linear regression,
researchers have discussed how to handle outliers, and as a solution for that, Huber loss is one
standard method. The Huber loss is defined as:

LHuber(x, y) =

 (x− y)2

2
(|x− y| ≤ δ),

δ(|x− y| − δ
2 ) (|x− y| > δ),

(11)

where δ ∈ R is a threshold value to reduce the effect of outliers. We can also apply LHuber to FL
to ensure robustness against attacks from collapsed clients through the reformulation of FedFit. The
server selects 30 out of 100 clients in our experiments in one communication round. For attacking,
we set up two scenarios: (I) one anonymous collapsed client participates FL communication with
a 10% probability. (II) For more challenging settings, ten anonymous collapsed clients always
participate FL communication and collaboratively attempt to degrade the global model performance.
The collapsed client trains a local model with data whose labels are randomly permutated, and a
trained local model is sent back to the server by following Eq. (10) for the attack. When collapsed
clients collaboratively participate, the permutated label pattern is shared among collapsed clients,
and the scale of Eq. (10) is modified accordingly.

In the experiments, we set δ in Eq. (11) to 0.001. We evaluate the performance of the global model
by applying Huber loss in Eq. (9) for updating, and we verify robust regression is an effective
method for defense through the reformulation of FedFit.

Results. Experimental results for robustness against attacks from collapsed clients are presented in
Figure 2. For comparison of the defense method, we use clip norm defense (Sun et al., 2019). If the
attacks by Eq. (10) succeed, the global model’s performance is degraded in setup (I). As can be seen
in Figure 2, FedAvg drops the performance when the collapsed client joins the communication round
(i.e., vertical dot line). On the contrary, robust regression through FedFit and clip norm maintain its
performance against the attack from the collapsed client. The setup (II) is more challenging, and
the global model performance is degraded through communication rounds, yet FedFit still achieves
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(a) CNN on CIFAR-10 in setup (I)

0 20 40 60 80 100
communication rounds

0

20

40

60

80

100

ac
cu

ra
cy

FedAvg
ClipNorm
FedFit/Huber

(b) LSTM on AGNews in setup (I)
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(c) CNN on CIFAR-10 in setup (II)
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(d) LSTM on AGNews in setup (II)

Figure 2: The performance of the global model against attacks from collapsed clients. 30 clients are selected
in one communication round. Black vertical dot lines indicate the rounds when the malicious client
is connected to the server in setup (I). Here, setup (I) is one collapsed client case, and setup (II) is
ten collapsed clients case as described in motivation.

stable updates. Here collapsed clients attempt to replace the global model in every communication
round in setup (II), so if the defense does not properly work, there seems to be some vibration
since successive replacement cancels out the effects of attacking each other. As discussed in the
motivation, robust regression is effectively applicable to FL through the reformulation of FedFit,
and the global model is updated stably against attacks.

5.3 SPARSE MODEL TO REDUCE COMMUNICATION COST

Motivation and implementation details. Although deep models contain many parameters, it is
known that some of them are redundant and do not affect performance. We consider that a sparse
model is a promising approach to reducing model size because the number of model parameters
highly affects communication costs in FL. This issue motivates us to utilize LASSO regression in
FL. By tackling server aggregation as the sparse regression, we can apply LASSO regression to
obtain a sparse global model through FedFit. Formally, we use least-square loss with L1 penalty in
Eq. (9) such as:

L = ||Y − W̃T
gV||22 + λ||W̃g||1. (12)

Although some papers proposed methods for a sparse global model in FL (Parcollet et al., 2022), we
aim to verify whether the LASSO regression approach works for sparsification. We thus evaluate the
number of non-zero parameters of the global model by adding the L1 penalty to only local training,
only server aggregation, or both in experiments for comparison. We regard the weights with smaller
values than 1× 10−6 as sparse weight. As an evaluation, we report the error rate and the number of
the model’s non-zero parameters after 100 communication rounds.

Results. We summarize the global model performance trained with the L1 penalty in Table 2. As
shown in Table 2, FedAvg fails to reduce the number of the global model’s non-zero parameters
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Table 2: The result of the error rate and the number of non-zero parameters of the global model by the L1
penalty on the FashionMNIST (FMNIST) / IMDB dataset with CNN / LSTM, respectively. 30 clients
are selected in each communication round. L1 (local / server) indicates that the L1 penalty is applied
in local training and server aggregation, respectively. We set λ in Eq. (12) as 1 × 10−9 in FMNIST
and 1× 10−8 in IMDB.

method L1 (local / server) error ↓ (FMNIST / IMDB) params [K] ↓ (FMNIST / IMDB)
FedAvg no / no 9.02 / 27.12 4,505 / 572
FedAvg yes / no 9.09 / 27.29 4,482 / 571
FedFit no / no 9.55 / 26.89 4,505 / 572
FedFit yes / no 9.52 / 27.07 4,481 / 571
FedFit no / yes 9.87 / 27.91 1,937 / 452
FedFit yes / yes 9.87 / 27.59 1,937 / 451
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Figure 3: Performance evaluation by varying the compression degree during the local model uploading. We
report the final global model performance after 100 communication rounds. Here client=x means x
clients are selected in one communication round, and the horizontal axis means the remaining output
channels ratio in each layer after model compression (aggressively compressed to the left).

by adding the L1 penalty during local training. We consider that the aggregation step in the server
causes this low reduction. Since the sparse local models are different for each client, the simple
averaging aggregation of FedAvg flattens such sparse weights and does not make a global model
sparse. On the contrary, FedFit makes the global model sparse when adding the L1 penalty during
server aggregation. In FedFit, server aggregation is now handled as linear regression. As shown
in Table 2, FedFit successfully reduces the global model’s non-zero parameters by using LASSO
regression. As the strength of FedFit, we can obtain a sparse global model even if local models are
trained at each client without design for sparsification.

6 ANALYSIS

To address the limitation and capability of FedFit, we conduct two experiments in this section. (i) We
expect that the compression degree when uploading a compressed local model y from a client affects
model performance. Therefore in the first experiments, we investigate the relationship between the
uploaded model’s compression ratio (controlled by key vectors) and model performance. (ii) FedFit
is a new concept in server aggregation, and it is expected to be compatible with other FL techniques
which change local training or other optimizations after aggregation in the server. Therefore in the
second experiment, we combine FedFit with FedProx (Diao et al., 2021) and FedAdam (Reddi
et al., 2021) and check model performance in the heterogeneous distribution case. For a detailed
experimental setup, see Appendix A.4.
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6.1 TRADEOFF BETWEEN MODEL COMPRESSION DURING UPLOADING AND PERFORMANCE

We evaluate the model performance by changing the compression degree during the uploading of a
local model. Figure 3 shows the results of tradeoff experiments. Here, we compress output channels
in all layers during model uploading in CNN. In the image classification task, we use CIFAR-100.
As the figures show, compression degree during model uploading and participation of connected
clients in one communication round affect the global model performance after aggregation. These
results indicate that when the server has many contributed clients during communication rounds,
the server allows high compression for uploading a model from each client to maintain the global
model performance to reduce data traffic. Actual global model performance arose from such hyper-
parameters depending on architecture or task, as the figure shown, so we need to decide on a suitable
compression degree based on a task. It is an interesting research direction to dynamically determine
the degree of compression considering bandwidth or the number of connected clients.

6.2 COMBINATION WITH OTHER FL METHODS IN HETEROGENEOUS DISTRIBUTION
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(a) CNN on CIFAR-10 in non-i.i.d. settings.
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(b) LSTM on Yahoo Answers in non-i.i.d. set-
tings.

Figure 4: Combination with other FL methods in heterogeneous distribution settings.

We verify the applicability of FedFit to other FL methods. The experimental results are shown
in Figure 4, where FedProx adds proxy term loss during local training, and FedAdam conducts
adaptive weight updates after server aggregation. It is known that FedProx and FedAdam are more
efficient methods than FedAvg and improve model performance. FedFit is an aggregation method
to replace averaging aggregation with linear regression (along with model compression). It does not
matter how local training is conducted or what additional computation is run after model aggregation
in the server. Therefore, as the figure shows, FedFit is compatible with other recently proposed FL
methods, and it is possible to use them in combination to improve model performance.

7 CONCLUSION

In this paper, we proposed FedFit, which is the reformulation for server aggregation of Federated
Learning (FL). We considered the connection between linear regression and FL, and FedFit enables
us to utilize the established linear regression techniques in FL. As an example of the applications
of linear regression techniques for FL, we demonstrate the experiments that FedFit with robust
regression can protect the global model against attacks from collapsed clients and FedFit with sparse
regression can reduce the global model size for a reduction of communication cost. In addition, the
reformulation of FedFit naturally reduces the amount of data traffic to upload a model because clients
upload the compressed model parameters to the server. We believe FedFit has much potential for
further research. Although we demonstrated the utilization of the two techniques in the experiments,
other advanced techniques presented in the linear regression are also applicable to the reformulation
of FedFit. In future work, we plan to utilize the benefits of advanced regression methods in other FL
scenarios.
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A APPENDIX

A.1 DATASET

In the experiments and analysis, we used the following dataset.

CIFAR-10/CIFAR-100 have 50,000 training data and 10,000 test data, with 10/100 classes, respec-
tively (Krizhevsky, 2009).

Fashion-MNIST has 60,000 training data and 10,000 test data with 10 classes (Xiao et al., 2017).

IMDB has 25,000 training data and 25,000 test data with 2 classes (Maas et al., 2011).

AGNews has 120,000 training data and 7,600 test data with 4 classes (Zhang et al., 2015).

Yahoo Answers has 1,400,000 training data and 60,000 test data with 10 classes (Zhang et al.,
2015).
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A.2 ARCHITECTURE

We used the following architectures for CNN and LSTM in this paper.

CNN. A CNN comprises six convolution layers with a 3x3 kernel (the output channels are 64, 128,
256, 256, 512, and 512, respectively). The max-pooling with a 2x2 kernel is followed after the
first, second, and fourth convolution layers, and one fully-connected layer with the global average
pooling (Lin et al., 2014) is applied after the final output of the convolution layer. ReLU activation
function is used after the operation of each convolution.

LSTM. An LSTM comprises one layer, where the hidden state has 256 dimensions. For the input
to the LSTM layer, we use a pretrained word embedding model, GloVe (Pennington et al., 2014),
with 300 output dimensions in this paper. For the output layer, we use one fully-connected layer.

A.3 HYPERPARAMETERS

A.3.1 IN EXPERIMENTS

In the experiments (Sec. 5), we used the following hyperparameters. We set a learning rate (SGD
optimizer) as 0.01 with a momentum of 0.9 during local training. During server aggregation (Adam
optimizer), we set a learning rate as 1×10−4, β1 and β2 are set as 0.9 and 0.999. We set local epochs
to 5. These parameters are used in both CNN and LSTM experiments except for collaboratively
attacking scenarios in robust experiments, where collapsed clients set a learning rate as 0.1. For
norm bound B used in the clip norm defense method (Sun et al., 2019) in attacking experiments,
we set B as 10. As compression during model uploading from a client, 90% of dimensions are
compressed by the matrix product in each layer.

A.3.2 IN ANALYSIS

Analysis in the tradeoff setup. In the tradeoff analysis (Sec. 6.1), we set the same hyperparameters
used in the experiments.

Analysis in the heterogeneous setup. The same hyperparameters are used in server aggregation
in the heterogeneous setup (Sec. 6.2). For local training and other parameters used in FedProx and
FedAdam, we set different parameters based on the task. We summarize hyperparameters in Table
3.

Table 3: Summary of hyperparameters in the analysis of heterogeneous settings.

CNN LSTM
local epoch 5 1

local learning rate 0.01 0.1
FedProx proxy term 0.1 0.01

FedAdam τ 1× 10−3 1× 10−3

FedAdam learning rate 0.01 0.005
FedAdam betas (0.9, 0.99) (0.9, 0.99)

A.4 SETUP IN ANALYSIS

A.4.1 TRADEOFF SETTING

In the tradeoff analysis (Sec. 6.1), output channels are compressed in each layer regardless of the
architecture. For the image classification task in CNN, we use CIFAR-100 dataset. We split the
training dataset into 50 subsets and assigned one of them to each client. For the text classification
task in LSTM, we use IMDB. We split the training dataset into 100 subsets and assigned one of them
to each client.

A.4.2 HETEROGENEOUS DISTRIBUTION SETTING

To simulate a heterogeneous distribution setup (Sec. 6.2), we manually create a heterogeneous setup
by splitting the training dataset of CIFAR-10 and Yahoo Answers.
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For CIFAR-10, we split the training dataset into 100 subsets, each containing only two out of ten
classes, and assigned one to each client. The total communication rounds are 500, and the server
randomly chooses 20 clients in one communication round. During model uploading from a client,
clients compressed the kernel weights and bias in the convolutional layer and output channels in the
fully-connected layer. As compression, 50% of dimensions are compressed after the matrix product
in each layer.

For Yahoo Answers, we split the training dataset into 500 subsets, each subset including only two
out of ten classes, and assigned one to each client. We set 300 communication rounds, and the
server randomly chooses 10 out of clients in one communication round. The architecture used in
this analysis is LSTM, so output channels are compressed during model uploading from a client. As
compression, 90% of dimensions are compressed by the matrix product in each layer.
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