
Adaptive Passive-Aggressive Framework for Online
Regression with Side Information

Runhao Shi, Jiaxi Ying, Daniel P. Palomar
The Hong Kong University of Science and Technology

{rshiaf, jx.ying}@connect.ust.hk, palomar@ust.hk

Abstract

The Passive-Aggressive (PA) method is widely used in online regression problems
for handling large-scale streaming data, typically updating model parameters in
a passive-aggressive manner based on whether the error exceeds a predefined
threshold. However, this approach struggles with determining optimal thresholds
and adapting to complex scenarios with side information, where tracking accu-
racy is not the sole metric in the regression model. To address these challenges,
we introduce a novel adaptive framework that allows finer adjustments to the
weight vector in PA using side information. This framework adaptively selects
the threshold parameter in PA, theoretically ensuring convergence to the optimal
setting. Additionally, we present an efficient implementation of our algorithm that
significantly reduces computational complexity. Numerical experiments show that
our model achieves outstanding performance associated with the side information
while maintaining low tracking error, demonstrating marked improvements over
traditional PA methods across various scenarios.

1 Introduction

Online learning techniques, initially introduced by Zinkevich (2003), have gained significant popular-
ity due to their robustness in adversarial environments and efficiency in processing large streaming
data (Shalev-Shwartz et al., 2012; Orabona, 2019; Hazan, 2022). In the online learning framework,
an online player continuously makes decisions and receives corresponding losses, aiming to minimize
regret. Regret, in this context, refers to the worst-case discrepancy in performance compared to the
best-fixed decision in hindsight, measuring the overhead of identifying the best-fixed decision.

These techniques have found widespread application in modeling regression problems for streaming
data, enabling practical applications across various fields (Herbster, 2001; Crammer et al., 2006;
Shalev-Shwartz and Ben-David, 2014). They are extensively applied in diverse domains such as
portfolio selection (Li et al., 2012; Li and Hoi, 2012), malicious URL detection (Ma et al., 2009;
Zhao and Hoi, 2013), and time series prediction (Anava et al., 2013, 2015; Hazan et al., 2018; Lale
et al., 2020; Tsiamis and Pappas, 2022; Zhang et al., 2024). Without relying on strong assumptions,
online regression models demonstrate robustness with regret guarantees in challenging scenarios.
Furthermore, their incremental learning schemes make them highly adaptable to streaming data,
eliminating the need to retrain the entire dataset and resulting in significant efficiency advantages.

One well-known online regression method is the Passive-Aggressive (PA) algorithm (Crammer et al.,
2006). PA employs a passive-aggressive updating scheme to learn a weight vector for linear regression
problems. It passively maintains the previous weight below a certain threshold and aggressively
updates the weight when the loss exceeds the threshold. However, determining an appropriate
threshold can be challenging. A small threshold prioritizes real-time tracking accuracy but may
lead to overfitting and sensitivity to noise, compromising long-term tracking accuracy. Additionally,
the selected weight may impact factors beyond accuracy in practical model performance. When
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additional metrics and side information are available for evaluating performance, PA may struggle to
achieve a more nuanced weight selection.

To address the aforementioned challenges, we propose an Adaptive Passive-Aggressive online
regression framework with Side information (APAS) to achieve the following objectives:

• Novel APAS framework: We introduce a novel APAS framework that integrates side information
into PA to enhance weight evaluation and selection. This framework adaptively selects the threshold
parameter in PA, enabling it to achieve outstanding performance associated with the side information
while maintaining a low tracking error.

• Efficient algorithm: We develop an efficient algorithm using the successive convex approximation
(SCA, Scutari et al., 2013) to accelerate the computation of APAS. This algorithm rapidly converges
to the optimal point, allowing flexibility in selecting measurements to integrate side information.

• Regret bound: We derive an O(
√
T ) regret bound for our APAS framework for non-convex loss

functions, ensuring the robustness and effectiveness of APAS theoretically. This regret bound
matches the optimal regret bound for non-convex loss functions.

• Extensive experiments: We conduct an enhanced index tracking task on both synthetic and real
financial datasets to validate the effectiveness and efficiency of APAS, which demonstrates the
impressive performance of APAS in achieving high returns while maintaining small tracking errors.

Notation: Matrices and vectors are represented by bold letters. [T ] denotes the set {1, 2, . . . , T}.
The weight vector at time t is denoted by wt ∈ W . The instance and target in an online regression
problem are denoted by xt ∈ RN and yt ∈ R, respectively. The proximal operator and Moreau
envelope associated with λh are denoted as proxλh and Mλh, respectively. The Euclidean projection
of vector u ∈ RN onto the setW is denoted by ΠW(u) = arg minw∈W ∥w−u∥22. For a continuous
function f(x), the set of subderivatives at point a is denoted as ∂f(a). The left derivative at a is
denoted by ∂−f(a) = limx→a−

f(x)−f(a)
x−a . The derivative at point a, if it exists, is denoted as f ′(a).

2 Preliminaries

2.1 Online Learning

Online learning is a mathematical framework designed to address optimization problems where
objective functions change over time. In this context, an online learner sequentially makes decisions
bt based on historical loss and receives a new loss ft(bt) after making the decision. The performance
of an online learning algorithm is evaluated using the concept of regret RT , which quantifies the
discrepancy between the algorithm’s performance and that of an optimal static parameter setting:

RT =

T∑
t=1

ft(bt)−min
b∈X

(
T∑

t=1

ft(b)

)
,

whereX denotes the feasible set. An online learning strategy converges to the optimal static parameter
setting if RT = o(T ), indicating the average performance gap diminishes as the number of iterations
T approaches infinity. In the case of convex loss functions, different regularization functions can be
employed to achieve various optimal regret bounds, depending on the assumptions about the curve of
the loss function (Zinkevich, 2003; Hazan et al., 2007; Hazan and Seshadhri, 2007, 2009). Adaptive
regularization methods, which select the regularization term dynamically, have also been proposed
and widely adopted in various domains (Duchi et al., 2010, 2011; Van Erven and Koolen, 2016).

2.2 Passive-Aggressive Method

The Passive-Aggressive (PA) method is a popular online algorithm utilized for regression problems
involving streaming data (Crammer et al., 2006). In an online regression problem, we receive an
instance xt ∈ RN and predict the target value wT

t xt using the incrementally learned vector wt,
where the ground truth is yt. PA predicts the next weight vector by solving the following optimization
problem:

ŵt+1 = arg min
w∈RN

1

2
∥w −wt∥22 subject to ℓε(w; (xt, yt)) = 0, (1)
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where ℓε is the ε-insensitive hinge loss function defined as follows:

ℓε (w; (x, y)) =

{
0

∣∣wTx− y
∣∣ ≤ ε,∣∣wTx− y

∣∣− ε otherwise.

Intuitively, PA performs an aggressive update when the discrepancy between the predicted value
and the ground truth exceeds the threshold ε, and passively maintains the previous weight when the
discrepancy is within the threshold ε. A smaller threshold may prioritize real-time tracking accuracy
but could result in overfitting and compromise long-term performance. Therefore, the selection of
the threshold ε significantly influences the performance. Additionally, relying solely on tracking
accuracy without considering side information may limit the method’s potential performance.

3 Proposed Method

In this section, we present a novel framework that incorporates the side information into PA for
evaluating and selecting weight vector wt+1 and threshold ε. This framework adaptively selects
select ε by balancing real-time tracking accuracy and side performance, achieving performance
comparable to the optimal parameter setting, supported by theoretical regret guarantees. Additionally,
we propose an efficient method based on the successive convex approximation technique, which
significantly reduces time complexity and accelerates computation.

3.1 PAS Framework

In this section, we present a novel Passive-Aggressive with Side information (PAS) framework that
considers the trade-off between real-time tracking accuracy and side performance. PAS builds upon
two variations of PA, each providing closed-form solutions for a given value of ε, without imposing
any constraints as follows:

ŵt+1(ε) =

{
wt |wT

t xt − yt| ≤ ε,
wt + sign

[
yt −wT

t xt

]
τtxt otherwise,

(2)

where

τt =

{(∣∣wT
t xt − yt

∣∣− ε)/∥xt∥22 (PA)(∣∣wT
t xt − yt

∣∣− ε)/(∥xt∥22 + 1
2C

)
(PA-II),

(3)

and PA-II refers to a robust PA method with an aggressiveness constant C. For the regression problem
with constraints, the final weight is determined by performing a projection onto the feasible setW:

wt+1(ε) = arg min
w∈W

∥w − ŵt+1(ε)∥22. (4)

Although Crammer et al. (2006) does not include a projection operation, we demonstrate in Appendix
D that PA with lazy projection still achieves a comparable bound to Crammer et al. (2006).

Suppose that at each round t, we have a lower semi-continuous convex function ht(w) that quantifies
the performance associated with the side information. To leverage this information and enhance the
performance of the weight selection, we integrate ht(w) into the projection step of the PA method
and propose the PAS framework for selecting the next weight vector:

wt+1(ε) = arg min
w∈W

(
ht(w) +

1

2λ
∥w − ŵt+1(ε)∥22

)
= proxλht

(ŵt+1 (ε)) , (5)

where proxλht
denotes the proximal operator. In PAS, λ serves as the trade-off parameter that

quantifies the preference between tracking accuracy and side performance. When ht(w) is set as
a constant, the PAS model essentially simplifies to the original PA method with lazy projection,
as shown in Equation (4). By leveraging the proximal operator, we can explicitly integrate side
performance into the weight selection process by modifying ht(w).

From another perspective, ∥w − ŵt+1(ε)∥22 can be viewed as a regularization term that passively
aligns with the trend of the ground truth. In contrast, ht(w) serves as the primary loss measurement,
acting as the main driver for aggressively updating the weight vector. To understand how the weight
vector wt+1(ε) is selected, we discuss the following two scenarios:
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Figure 1: Adaptive learning scheme of APAS.

• If |wT
t xt − yt| ≤ ε, we have wt+1(ε) = arg minw∈W

(
ht(w) + 1

2λ∥w −wt∥22
)
. This implies

that we aim to passively maintain the same weight setting as the previous round while aggressively
updating the weight to improve side performance for small real-time tracking errors.

• If |wT
t xt − yt| > ε, we have wt+1(ε) = arg minw∈W

(
ht(w) + 1

2λ∥w − wt∥22 −
1
λw

Tsign
[
yt −wT

t xt

]
τtxt + const

)
. This implies that we aim to passively maintain the same

weight setting as the previous round while aggressively updating the weight to improve real-time
tracking accuracy and side performance for large real-time tracking errors.

This framework ensures that while the selected weight passively follows the general trend of the data
through the ℓ2-norm, it actively seeks to improve performance based on the side information, thus
achieving a balance between stability and adaptability. Consequently, wt+1(ε) corresponds to the
point that defines the infimum of the trade-off between side performance ht and real-time tracking
accuracy. The infimum is essentially the Moreau Envelope (Parikh et al., 2014), which we define as
the loss function with respect to ε:

ft(ε) = inf
w∈W

[
ht(w) +

1

2λ
∥w − ŵt+1(ε)∥22

]
=Mλht

(ŵt+1(ε)) . (6)

Here, Mλht represents the Moreau Envelope of λht with respect to λŵt+1(ε). In this way, we
establish a connection between the determined weight vector wt+1(ε) and loss function ft(ε) with ε.

3.2 Adaptive PAS

The parameter ε is a crucial component in PAS, as it determines the weight selection wt+1(ε) and
the performance evaluation ft(ε). While the trade-off parameter λ has an intuitive interpretation,
the process of setting ε is less straightforward. A smaller threshold ε may prioritize real-time
tracking accuracy but could lead to overfitting, affecting long-term accuracy and compromising side
performance. Conversely, a larger ε might stabilize performance but result in underfitting. Hence, our
objective is to develop an adaptive algorithm that can dynamically choose the value of ε based on
the designed loss function ft(ε). To facilitate the dynamic selection of ε, we introduce the following
assumptions:
Assumption 1. The feasible domain D of the parameter ε is bounded with D = [ν,D] and ν > 0.
Assumption 2. The subderivatives of ft(ε) is bounded, such that supε∈D,t∈[T ] |∂ft(ε)| ≤ G.

Our proposed adaptive parameter updating scheme for wt+1 and εt+1 is as follows: At each round
t, we receive information up to time t and use it to select the next weight vector wt+1(εt) with εt.
Subsequently, we update εt+1 based on the loss ft(εt). The overall procedure is illustrated in Figure
1. Under Assumptions 1 and 2, the updating rule for εt+1 is formulated as follows:

εt+1 = ΠD [εt − ηtg̃t(εt)] , (7)
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where ΠD[ε] = min {max {ε, ν} , D}, ηt = ζt
√
D

G
√
νt

, and ζt = ΠD
[
|wT

t xt − yt|
]
. Here, g̃t(ε) is a

modified derivative of ft(ε), which is defined as follows:

g̃t(ε) :=

{
f ′t(ε) if ε < ζt,

max{0, ∂−ft(ζt)} otherwise.
(8)

Since ŵt+1(ε) is a continuous piecewise function with respect to ε, being affine on ε < ζt and
constant otherwise, and Mλht

(ŵt+1(ε)) is a strongly convex function, their composition ft(ε)
becomes a piecewise-convex function. Thus, ft(ε) is differentiable and strongly convex for ε < ζt,
and constant otherwise. The derivative of ft(ε) for ε < ζt can be calculated using the chain rule:

f ′t(ε) =
∂Mλht (ŵt+1(ε))

∂ε
=
∂Mλht (ŵt+1(ε))

∂ŵt+1(ε)

∂ŵt+1(ε)

∂ε
. (9)

The derivative of the Moreau Envelope Mλht
with respect to ŵt+1(ε) can be calculated as follows:

∂Mλht (ŵt+1(ε))

∂ŵt+1(ε)
=

1

λ

(
ŵt+1(ε)− proxλht

(ŵt+1 (ε))
)
. (10)

To summarize, the overall updating scheme for εt+1 and weight vector wt+1 is outlined in Algorithm
1. This adaptive mechanism enables the framework to adjust dynamically to changing environments,
eliminating the need for a manually set static threshold. Intuitively, the update process for ε works as
follows: If the real-time tracking error is lower than εt (i.e., ζt ≤ εt), then according to Equation (8),
the derivative g̃t(εt) ≥ 0. Based on the update rule in Equation (7), this suggests that εt is reduced to
avoid underestimating the tracking accuracy. Conversely, when the real-time tracking error exceeds
εt, the update mechanism adjusts εt to strike a balance between minimizing side loss and maintaining
tracking accuracy.

Algorithm 1 Adaptive Passive-Aggressive Framework with Side Information (APAS)

1: Input: trade-off parameter λ.
2: Initialize ε1 ∈ D and w1 ∈ W .
3: for t = 1, 2, . . . , T do
4: Calculate ŵt+1 (εt) according to Equation (2);
5: Update wt+1(εt) = proxλht

(ŵt+1 (εt));
6: Update εt+1 according to Equation (7);
7: end for
8: Output: wT+1(εT ).

3.3 Efficient Algorithm

Algorithm 1 requires the calculation of the proximal operator at each iteration (see Line 5), which
can be computationally expensive. While this problem can be addressed directly using the Interior
Point Method (IPM) with an off-the-shelf solver (Nemirovski, 2004), it generally incurs a high-order
time complexity of O(N3.5), making it inefficient for large-scale problems.

To improve efficiency, we propose an algorithm that utilizes the Successive Convex Approximation
(SCA) framework to accelerate computation (Scutari et al., 2013). SCA reduces time complexity
by iteratively optimizing a more manageable surrogate function in place of the original objective
function until convergence is reached (Sun et al., 2016; Scutari and Sun, 2018). We denote the
objective function of Problem (5) as ut(w) = ht(w) + 1

2λ∥w − ŵt+1(ε)∥22. To apply SCA, the
surrogate function, denoted as ũt(w |wk), should be strongly convex and satisfy the condition that
∇ũt(wk |wk) = ∇ut(wk), ensuring the gradients match at wk.

We employ the first-order Taylor expansion to approximate ht(w), defining the surrogate function
ũt(w |wk) as follows:

ũt(w |wk) =
1

2λ
wTw −

(
1

λ
ŵt+1(ε)−∇ht(wk)

)T

w + const.
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By simplifying the formulation, we iteratively optimize the following surrogate problem instead:
minimize

w∈RN
∥w − qk∥22 subject to w ∈ W, (11)

where qk = ŵt+1(ε)− λ∇ht(wk). When the feasible setW exhibits special geometric properties,
such as being a probability simplex or a hyperplane, the optimization problem in Equation (11) admits
a closed-form solution, as provided in Appendix C (Palomar and Fonollosa, 2005; Duchi et al., 2008).

Algorithm 2 Efficient Algorithm for (5)

1: Input: ŵt+1(ε), λ, and ∇ht.
2: Initialize k = 1, w1 ∈ W and {γk}.
3: repeat:
4: Solve (11) with qk = ŵt+1(ε)− λ∇ht(wk) and set the optimal point as w̃k+1;
5: Compute wk+1 = wk + γk

(
w̃k+1 −wk

)
;

6: k ← k + 1;
7: until convergence
8: Output: wt+1(ε) = wk+1.

The overall procedure for efficiently calculating (5) is encapsulated in Algorithm 2. Empirically, this
method converges very quickly, reaching the optimal point within only a few iterations. Additionally,
it does not require calculating the objective value of ht(w), making it more flexible for incorporating
side information. By setting γk+1 = γk(1 − ργk) with ρ ∈ (0, 1) and γ0 < 1/ρ, Algorithm 2
guarantees convergence to the optimal point of Problem (5). This convergence behavior is analyzed
in Proposition 1, with the proof provided in Appendix B.
Proposition 1. With γk ∈ (0, 1], γk → 0 and

∑
k γ

k = +∞, Algorithm 2 converges in a finite
number of iterations to an optimal solution of (5) or every limit point of the sequence {wk}∞k=1 (at
least one such point exists) is an optimal solution of (5).

3.4 Regret Analysis

The loss function ft(ε) in the APAS framework is piecewise convex, leading to a scenario where
it is generally non-convex and non-smooth. In general convex online learning settings, optimal
regret bounds are well-established, typically O(

√
T ) for T iterations. However, achieving these

optimal regret bounds in non-convex online learning scenarios poses significant challenges due to
the inherent difficulties in optimizing non-convex functions. Strategies to address these challenges
often involve either working with a restricted class of loss functions or focusing on a computationally
feasible notion of regret (Hazan et al., 2017; Gao et al., 2018). Additionally, some approaches
dealing with general non-convex losses rely on access to sampling oracles, which are impractical
in many real-world applications (Maillard and Munos, 2010; Krichene et al., 2015; Agarwal et al.,
2019; Suggala and Netrapalli, 2020). Despite recent advances, obtaining optimal regret bounds in
non-convex settings remains an open and active area of research.

In our work, we demonstrate that Algorithm 1 can achieve the optimal O(
√
T ) regret bound. Our

approach is novel in that it does not rely on restrictive assumptions or oracles. Instead, it leverages the
properties of the function curve and quasi-convexity, as detailed in Proposition 3 and Proposition 4 in
Appendix A. Although ft(ε) is non-convex and non-smooth, its behavior along the function curve
enables us to derive favorable regret bounds, achieved by carefully designing the learning rate ηt and
the updating rule for εt+1. The following theorem formalizes the regret bound of our approach:
Theorem 2. Under Assumptions 1 and 2, Algorithm 1 achieves the following regret bound for T ≥ 1:

RT =

T∑
t=1

ft(εt)−min
ε∈D

T∑
t=1

ft(ε) ≤ 2

√
D3G2

ν

√
T = O(

√
T ), (12)

where D, ν, and G are constants defined in Assumptions 1 and 2.

The proof of Theorem 2 is provided in Appendix A. Theorem 2 ensures that Algorithm 1 achieves
performance that is comparable to the optimal parameter setting over the long term. Crucially, our
approach does not depend on restrictive assumptions or external oracles. Instead, it dynamically
adjusts the parameter ε by responding to real-time changes, allowing for optimal performance in both
stable and volatile environments.
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4 Experiments

To demonstrate the performance of our proposed methods, we conduct experiments using stock
lists from S&P 500 and NASDAQ 100 from Yahoo! FinanceTM for an enhanced index-tracking task.
Enhanced index tracking is a passive portfolio selection strategy that aims to enhance returns by
incorporating tactical tilts towards specific styles, while still maintaining a portfolio that closely
mirrors an index (Dose and Cincotti, 2005; Benidis et al., 2017, 2018; Xu et al., 2022).

In our experiments, the instance xt represents the stock return at time t, where xt,i =
(pt,i − pt−1,i)/pt−1,i with pt,i denoting the price of asset i at time t. The target value yt is the
index return at time t. In the enhanced index tracking task, we sequentially select the portfolio weight
wt at each iteration to mimic the trend of the index yt, where the feasible set is the probability simplex
W = {w ∈ RN | 1Tw = 1,w ⪰ 0}. To achieve a higher return, rather than merely tracking the
index, we define the side information as the negative log return, i.e., ht(w) = − log(1 + xT

t w).

We measure the performance of different methods using tracking error and excess cumulative return.
The tracking error is quantified by the magnitude of the daily tracking error (MDTE), computed by:

Tracking Error =
1

T

√√√√ T∑
t=1

(
wT

t xt − yt
)2
. (13)

The excess cumulative return is used to assess the performance relative to the tracking index, which
represents the discrepancy between the logarithmic cumulative return of the strategy and the index:

Excess Cumulative Return =

T∑
t=1

log
(
1 +wT

t xt

)
−

T∑
t=1

log (1 + yt) . (14)

Benchmark: In addition to the base model PA, we compare the performance with two versions of
SLAIT: SLAIT-ETE and SLAIT-DR (Benidis et al., 2017). SLAIT-ETE focuses on tracking accuracy,
while SLAIT-DR aims to replicate the index while avoiding excessively large drawdowns.

4.1 Synthetic Data Experiments

We generate synthetic data by sampling xt ∼ N (µ,Σ), where µ ∈ RN and Σ ∈ RN×N are the
sample mean and sample covariance matrix calculated from the real market data from the S&P 500.
The corresponding index value is generated by:

yt = xT
t w

⋆ + ω,

where ω ∼ N (0, δ2) represents Gaussian noise, and w⋆ is the true weight of the index components.
We generate 50 datasets to test the average performance of different methods, with each dataset
containing T = 200 observations and N = 100 dimensions. The training set consists of 50% of the
data, while the test set contains the remaining 50%. Both SLAIT-ETE and SLAIT-DR use a rolling
training window of 100-day observations, rebalanced every 3 days.

Figure 2 presents the performance comparison and ablation experiments of the proposed APAS
framework against benchmarks on the synthetic dataset. Specifically, Figure 2a illustrates the
comparison of excess return and tracking error for APAS and the benchmarks, where the curve for
APAS is generated by varying the trade-off parameter λ. For small λ, APAS exhibits relatively low
tracking error, while for large λ, APAS achieves higher returns with a slight sacrifice in accuracy.
Compared to the benchmarks, APAS demonstrates higher excess cumulative return for the same level
of tracking error and lower tracking error for the same level of excess cumulative return.

Figure 2a also shows how varying the trade-off parameter λ affects the balance between side
performance (measured as excess cumulative return) and tracking error. Generally, λ can be selected
based on the specific problem’s considerations, such as the magnitude of side information and the
desired balance between minimizing tracking error and maximizing side performance. In practice, λ
can be determined using domain knowledge and cross-validation. For example, if a specific range of
tracking error is desired, the bisection method can be employed during cross-validation to identify
the value of λ that maximizes side performance while meeting the tracking error requirement.

Figure 2b compares the performance of the fixed parameter setting with the adaptive one, where PAS
refers to the non-adaptive version of APAS with fixed ε. The closer the curve is to the top left, the
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Figure 2: Comparison of tracking error and excess cumulative return on the synthetic dataset.
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Figure 3: Tracking error and excess cumulative return over time T for different methods on the
synthetic dataset.

better the performance. Even without knowing the optimal parameter setting for ε, the adaptive ε
updating scheme in APAS ensures relatively good performance.

We also compare the trends of tracking error and excess cumulative return over time T in Figure 3.
This figure shows that both the PA method and the proposed APAS method exhibit relatively low
tracking error. Although the PA method has the minimum tracking error, it achieves the lowest excess
cumulative return among all methods. In comparison, the APAS method maintains a comparably low
tracking error but with a significantly higher excess cumulative return.

It is widely acknowledged that heavy-tailed distributions offer a more realistic model for data-
generating processes in financial markets compared to Gaussian distributions (Cardoso et al., 2021,
2022). To further evaluate the performance of APAS in highly volatile and noisy environments, we
include a detailed comparison of our proposed methods under various data and noise distributions,
available in Appendix E.

4.2 Real Market Data Experiments

We conduct simulations on two well-known indices using real market data from Yahoo! FinanceTM:
the S&P 500 Index and the NASDAQ 100 Index. For the S&P 500 Index, we collect data from
2021-01-01 to 2023-01-01, totaling T = 503 daily observations with N = 453 stocks. For the
NASDAQ 100 Index, we collect data from 2019-01-01 to 2021-01-01, also totaling T = 503 daily
observations with N = 101 stocks. For the PA and APAS methods, 50% of the data is used for
training, with weights updated adaptively each day based on the latest data. For the SLAIT-ETE and
SLAIT-DR methods, the training lookback period is 50% of the data, with rebalancing occurring
every 10 days.

8



Figures 4 and 5 show the performance comparison on the S&P 500 and NASDAQ 100 datasets,
respectively. As observed, with a small λ setting, APAS has a comparable tracking error to PA while
yielding a better excess cumulative return. With a large λ setting, APAS exhibits a higher tracking
error but achieves the best excess cumulative return among all methods. The real market comparisons
across different datasets demonstrate that the proposed APAS model provides a superior trade-off
between tracking error and excess cumulative return compared to the benchmarks.
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Figure 4: Tracking error and excess cumulative return over time T for different methods on S&P 500
dataset.
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Figure 5: Tracking error and excess cumulative return over time T for different methods on NASDAQ
100 dataset.

4.3 Speed Comparison of Acceleration Schemes

This section evaluates the computational efficiency of our proposed method (Algorithm 2) in Section
3.3 across different problem dimensionsN . The benchmarks include the widely-used convex problem
solver CVXR Fu et al. (2020), Projected Gradient Descent (PGD), and Alternating Direction Method
of Multipliers (ADMM, Boyd et al., 2011).

We assess the performance of the proposed method over 100 randomized trials, comparing the
convergence speed and CPU time (in seconds), as shown in Figure 6. The left panel of Figure 6
illustrates the average convergence gap versus the number of iterations on a dataset with N = 1000
dimensions, comparing the proposed method with PGD and ADMM. The right panel displays the
average CPU time for each method across different problem dimensions N . The results demonstrate
that our method converges rapidly to the optimal point, being nearly 100 times faster than CVXR and
ADMM and 10 times faster than PGD for high-dimensional data.

To further assess whether time complexity is affected by including different types of side information,
we conduct additional experiments using various forms of side information beyond the log return
ht(w) = − log(1 + rTt w), such as:
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• Switching cost: ht(w) = ||w −wt||1;

• Weighted ℓ1 norm: ht(w) =
∑N

i=1 ρi|wi|;

• Group Lasso: ht(w) =
∑m

i=1 ρi||w|Gi
||2, where Gi, . . . ,Gm are m disjoint groups.

We evaluate the performance of the proposed efficient method with different types of side information
functions over 100 randomized trials, comparing the average CPU time (in seconds) in Table 1. From
Table 1, it appears that group Lasso incurs higher CPU times, especially for larger dimensions N , due
to the added complexity of calculating norms for disjoint groups. In general, while the type of side
information can impact the computational time, the APAS framework maintains efficiency across
different scenarios.
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Figure 6: Average convergence speed and CPU time comparison of 100 randomized trials on N -
dimensional datasets of Algorithm 2.

log return switching cost weighted ℓ1 norm group Lasso
N = 500 0.00084± 0.00051 0.00084± 0.00163 0.00045± 0.00051 0.00162± 0.00054
N = 1000 0.00119± 0.00050 0.00084± 0.00048 0.00084± 0.00052 0.00252± 0.00154
N = 2000 0.00181± 0.00103 0.00156± 0.00129 0.00113± 0.00043 0.00344± 0.00138
N = 5000 0.00335± 0.00080 0.00356± 0.00125 0.00282± 0.00122 0.00702± 0.00205

Table 1: Average CPU time (in seconds) for different side information functions over 100 randomized
trials of Algorithm 2.

5 Conclusions

In this paper, we addressed the limitations of the Passive-Aggressive (PA) algorithm in online regres-
sion, particularly in determining the appropriate threshold and integrating side information for weight
selection. To tackle these issues, we proposed the APAS framework, which incorporates side informa-
tion into PA. Our APAS framework adaptively selects the threshold parameter, enabling it to leverage
side information for improved performance while maintaining a low tracking error. We demonstrated
the robustness and effectiveness of APAS through anO(

√
T ) regret bound, even with non-convex loss

functions. Additionally, we developed an efficient algorithm that significantly reduced computational
complexity without compromising theoretical performance guarantees. Comprehensive experiments
on synthetic and real market datasets validated the effectiveness and efficiency of APAS, highlighting
its practical applicability across various scenarios.
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Appendix

In the following sections, we present the theoretical proofs for Theorem 2 and Proposition 1. Addi-
tionally, we provide closed-form solutions for Algorithm 2 under special cases not explicitly stated in
the main manuscript, along with a detailed specification of the regret bound analysis for the Passive-
Aggressive (PA) method with lazy projection. Furthermore, we include additional experiments to
assess the robustness of the proposed APAS framework under various conditions.

A Proof of Theorem 2

The proof of Theorem 2 relies on the first order bound of ft(ε), shown in the following proposition.

Proposition 3. Under Assumption 1 and 2, ft(ε) is quasi-convex on D = [ν,D]. With the definition
of g̃t(ε) in Equation (8) and ζt = ΠD

[
|wT

t xt − yt|
]
, for all t ∈ [T ] and all v, u ∈ D, we have

ft(v)− ft(u) ≤ g̃t(v)(v − ũ), (15)

where ũ = min{u, ζt}.

The proof of Proposition 3 is detailed in Appendix A.1. Let ε⋆ ∈ arg minε∈D
∑T

t=1 ft(ε). According
to Proposition 3, we have:

ft(εt)− ft(ε⋆) ≤ g̃t(εt)(εt − zt),

where zt = min {ζt, ε⋆}. Since εt+1 = ΠD [εt − ηtg̃t(εt)] and employing the Pythagorean theorem,
we have:

(εt+1 − zt)2 = (ΠD [εt − ηtg̃t(εt)]− zt)2 ≤ (εt − ηtg̃t(εt)− zt)2 .
By properly reformulating the inequality, we have:

g̃t(εt)(εt − zt) ≤ ϕt(zt)− ψt(zt) +
ηtG

2

2
,

where ϕt(zt) =
ε2t−2εtzt

2ηt
and ψt(zt) =

ε2t+1−2εt+1zt
2ηt

. Summing from t = 1 to T , we have:

RT =

T∑
t=1

(ft (εt)− ft (ε⋆))

≤
T∑

t=1

(
ϕt(zt)− ψt(zt) +

ηtG
2

2

)

= ϕ1(z1)− ψT (zT ) +

T∑
t=2

(ϕt(zt)− ψt−1(zt−1)) +
G2

2

T∑
t=1

ηt.

Thus, we only need to bound ϕt(zt)− ψt−1(zt−1).

Proposition 4. Set ηt = ζt
√
D

G
√
νt

with ζt = ΠD
[
|wT

t xt − yt|
]
. Under Assumptions 1 and 2, for

ε⋆ ∈ arg minε∈D
∑T

t=1 ft(ε), and zt = min{ζt, ε⋆}, we have:

ϕt(zt)− ψt−1(zt−1) ≤
D2

2

(
1

ηt
− 1

ηt−1

)
, (16)

where ϕt(zt) =
ε2t−2εtzt

2ηt
and ψt(zt) =

ε2t+1−2εt+1zt
2ηt

.

The proof for Proposition 4 is detailed in Appendix A.2. Based on Proposition 4, we have

RT ≤
D2

ηT
+
G2

2

T∑
t=1

ηt ≤ 2

√
D3G2

ν

√
T = O(

√
T ).
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A.1 Proof of Proposition 3

Proof. First we show that ft(ε) is quasi-convex on D. The loss function ft(ε) is the Moreau Envelop
of ŵt+1(ε), which is given by:

ft(ε) =Mλht
(ŵt+1(ε)) = inf

w∈W

[
ht(w) +

1

2λ
∥w − ŵt+1(ε)∥22

]
.

Here,Mλht
(ŵt+1(ε)) is strongly convex and smooth with respect to ŵt+1(ε). Furthermore, ŵt+1(ε)

is a piecewise continuous affine function of ε, as shown in Equation (2). It is constant if ε ≥
|wT

t xt− yt| and an affine function of ε otherwise. Since ft(ε) is a composite function of the strongly
convex function Mλht

(ŵt+1(ε)) and the piecewise continuous affine function ŵt+1(ε), we have:

ft(ε) =

{
strongly convex function ε ∈ [ν, ζt)

const ε ∈ [ζt, D],

where ζt = ΠD
[
|wT

t xt − yt|
]
. Thus, it is straightforward to verify that ft(ε) is quasi-convex.

To verify the inequality (15), we analyze different cases. First, we consider the simplest case where
ζt = ν, which implies that |wT

t xt − yt| ≤ ν and ft(ε) is a constant on D = [ν,D]. Since g̃t(ε) ≥ 0
according to (8) and ũ = ν, it is straightforward to verify that:

ft(v)− ft(u) = 0 ≤ g̃t(v)(v − ũ).

Then, we consider the case where ζt = D, which implies that |wT
t xt − yt| ≥ D and ft(ε) is strongly

convex on D = [ν,D]. Here, ũ = u, and we consider the following cases:

1. For v < ζt, we have g̃t(v) = f ′t(v), and thus, by convexity:

ft(v)− ft(u) ≤ f ′t(v)(v − u) = g̃t(v)(v − ũ).

2. For v = ζt: if ∂−ft(v) ≥ 0, then g̃t(v) = ∂−ft(v), and by convexity:

ft(v)− ft(u) ≤ ∂−ft(v)(v − u) = g̃t(v)(v − ũ).

If ∂−ft(v) < 0, then g̃t(v) = 0, and we have:

ft(v)− ft(u) ≤ ∂−ft(v)(v − u) ≤ 0 = g̃t(v)(v − ũ).

𝜁𝑡 ε

𝑓𝑡(ε)

𝜕−𝑓𝑡(𝜁𝑡)

(a) ∂−ft(ζt) < 0.

𝜁𝑡 ε

𝑓𝑡(ε)

𝜕−𝑓𝑡(𝜁𝑡)

(b) ∂−ft(ζt) ≥ 0.

Figure 7: Illustration for curves of ft(ε) with ν < ζt < D.

Next, we consider the case where ν < ζt < D, meaning that ζt = |wT
t xt − yt|. Figure 7 illustrates

the curve of ft(ε). The curve of the loss function f̃t(ε) could be divided into two categories: when
∂−ft(ζt) < 0, we obtain a convex function, as shown in Figure 7a; when ∂−ft(ζt) ≥ 0, we get
a quasi-convex function, as shown in Figure 7b. To verify the inequalities (15), we consider the
following cases:

1. For ν ≤ v < ζt, we have g̃t(v) = f ′t(v):
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(a) If ν ≤ u < ζt, then ũ = min{u, ζt} = u. We can directly verify inequality (15)
directly by convexity:

ft(v)− ft(u) ≤ f ′t(v)(v − u) = g̃t(v)(v − ũ).

(b) If ζt ≤ u ≤ D, then ũ = min{u, ζt} = ζt. By convexity, we have:

ft(v)− ft(u) = ft(v)− ft(ζt) ≤ f ′t(v)(v − ζt) = g̃t(v)(v − ũ).

2. For ζt ≤ v ≤ D, we have g̃t(v) = max {0, ∂−ft(ζt)}:

(a) If ν ≤ u < ζt and ∂−ft(ζt) > 0, then g̃t(v) = ∂−ft(ζt). Thus, by convexity:

ft(v)−ft(u) = ft(ζt)−ft(u) ≤ ∂−ft(ζt)(ζt−u) ≤ ∂−ft(ζt)(v−u) = g̃t(v)(v−ũ).

If ν ≤ u < ζt and ∂−ft(ζt) ≤ 0, then g̃t(v) = 0. Since ft(ε) is strongly convex on
[ν, ζt], we have ft(u) > ft(ζt). Thus, we have:

ft(v)− ft(u) = ft(ζt)− ft(u) < 0 = g̃t(v)(v − u) = g̃t(v)(v − ũ).

(b) If ζt ≤ u ≤ D, it is straightforward to verify that ft(v)−ft(u) = 0 and g̃t(v)(v−ζt) ≥
0. Then we have:

ft(v)− ft(u) = 0 ≤ g̃t(v)(v − ζt) = g̃t(v)(v − ũ).

Thus, we prove inequality (15).

A.2 Proof of Proposition 4

Proof. Let ϕt(zt) =
ε2t−2εtzt

2ηt
and ψt(zt) =

ε2t+1−2εt+1zt
2ηt

, where ε⋆ ∈ arg minε∈D
∑T

t=1 ft(ε) and
zt = min{ζt, ε⋆}. Let ζt = ΠD

[
|wT

t xt − yt|
]
, and consider the following four situations for

ηt =
ζt
√
D

G
√
νt

:

• if ε⋆ ≥ ζt−1 and ε⋆ ≥ ζt:

ϕt(zt)− ψt−1(zt−1) = ϕt(ζt)− ψt−1(ζt−1)

=
ε2t − 2εtζt

2ηt
− ε2t − 2εtζt−1

2ηt−1

≤ D2

2

(
1

ηt
− 1

ηt−1

)
+ εt

(
ζt−1

ηt−1
− ζt
ηt

)
=
D2

2

(
1

ηt
− 1

ηt−1

)
+
G
√
νεt√
D

(√
t− 1−

√
t
)

≤ D2

2

(
1

ηt
− 1

ηt−1

)
.

• if ε⋆ ≥ ζt−1 and ε⋆ < ζt:

ϕt(zt)− ψt−1(zt−1) = ϕt(ε
⋆)− ψt−1(ζt−1)

=
ε2t − 2εtε

⋆

2ηt
− ε2t − 2εtζt−1

2ηt−1

≤ ε2t − 2εtε
⋆

2ηt
− ε2t − 2εtε

⋆

2ηt−1
[Since ε⋆ ≥ ζt−1]

≤ D2

2

(
1

ηt
− 1

ηt−1

)
.
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• if ε⋆ < ζt−1 and ε⋆ ≥ ζt:
ϕt(zt)− ψt−1(zt−1) = ϕt(ζt)− ψt−1(ε

⋆)

=
ε2t − 2εtζt

2ηt
− ε2t − 2εtε

⋆

2ηt−1

≤ ε2t − 2εtζt
2ηt

− ε2t − 2εtζt−1

2ηt−1
[Since ε⋆ < ζt−1]

≤ D2

2

(
1

ηt
− 1

ηt−1

)
.

• if ε⋆ < ζt−1 and ε⋆ < ζt:

ϕt(zt)− ψt−1(zt−1) = ϕt(ε
⋆)− ψt−1(ε

⋆)

=
ε2t − 2εtε

⋆

2ηt
− ε2t − 2εtε

⋆

2ηt−1

≤ D2

2

(
1

ηt
− 1

ηt−1

)
.

To summarize, we have

ϕt(zt)− ψt−1(zt−1) ≤
D2

2

(
1

ηt
− 1

ηt−1

)
.

B Proof of Proposition 1

Proof. Since (Scutari et al., 2013, Assumptions A1-A4) hold and (5) is a convex problem, the proof
for Proposition (1) follows directly from (Scutari et al., 2013, Theorem 3).

C Efficient Euclidean Projection Methods

C.1 Projection onto the Probability Simplex

Proposition 5 (Projection onto Simplex (Palomar and Fonollosa, 2005)). WhenW = {w ∈ RN |
1Tw = 1,w ⪰ 0}, problem (11) has a closed-form solution given by:

w⋆
i =

[
qki + κ

]
+

i = 1, . . . , N, (17)

where κ = 1
ρ

(
1−

∑ρ
i=1 q

k
[i]

)
with ρ = max

{
1 ≤ j ≤ N : qk[j] +

1
j

(
1−

∑j
i=1 q

k
[i]

)
> 0
}

, and

qk[i] are the sorted elements of qk, arranged such that qk[1] ≥ q
k
[2] ≥ · · · ≥ q

k
[N ].

C.2 Projection onto ℓ1 Norm Ball

Proposition 6 (Projection onto ℓ1 Norm Ball (Duchi et al., 2008)). WhenW = {w ∈ RN | ∥w∥1 ≤
c} for some constant c > 0, problem (11) has a closed-form solution given by:

w⋆
i = sign(qki )

[∣∣qki ∣∣− τ]+ i = 1, . . . , N, (18)

where τ is chosen such that
∑N

i=1

[∣∣qki ∣∣− τ]+ = c. The value of τ can be efficiently found by sorting
|qki | and using a bisection search.

D Regret Analysis of PA with Lazy Projection

Lemma 7. Let (x1, y1), . . . , (xT , yT ) be an arbitrary sequence of examples, where xt ∈ RN and
yt ∈ R for all t. Let ξt = 0 for |wT

t xt − yt| ≤ ε and ξt = τt in Equation (3) otherwise. Let
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W ⊆ RN be the feasible set of the weight vector and u be an arbitrary vector in W . Define
ℓt = ℓε(wt; (xt, yt)) and ℓ⋆t = ℓε(u; (xt, yt)). The following bound holds for any u ∈ RN :

T∑
t=1

ξt
(
2ℓt − ξt∥xt∥22 − 2ℓ⋆t

)
≤ ∥u∥22. (19)

Proof. The proof is mainly based on (Crammer et al., 2006, Lemma 6) with minor modification. To
facilitate the analysis of the regret bound, we rewrite the recursive updating rule of ŵt+1 in PA as

ŵt+1 = wt + sign
[
yt −wT

t xt

]
ξtxt,

where ξt = 0 for |wT
t xt − yt| ≤ ε and ξt = τt in Equation (3) otherwise. By projecting on the

feasible setW , we have the weight generated by PA with lazy projection as the following:

wt+1 = ΠW(ŵt+1) = arg min
w∈W

∥w − ŵt+1∥22.

Without loss of generality, we set ŵ1 = 0 and define

∆t = ∥wt − u∥22 − ∥wt+1 − u∥22.
Summing from 1 to T , we have

T∑
t=1

∆t =

T∑
t=1

(
∥wt − u∥22 − ∥wt+1 − u∥22

)
= ∥w1 − u∥22 − ∥wT+1 − u∥22
≤ ∥w1 − u∥22
≤ ∥ŵ1 − u∥22

[
since ∥ΠW (ŵ1)− u∥22 ≤ ∥ŵ1 − u∥22

]
≤ ∥u∥22. [since ŵ1 = 0]

Let ∆̃t = ∥wt − u∥22 − ∥ŵt+1 − u∥22, we have

∆̃t ≤ ∥wt − u∥22 − ∥wt+1 − u∥22 = ∆t.

Using the recursive updating rule of ŵt+1 in PA, we rewrite ∆̃t as

∆̃t = ∥wt − u∥22 − ∥wt + sign
[
yt −wT

t xt

]
ξtxt − u∥22

= −∥sign
[
yt −wT

t xt

]
ξtxt∥22 − 2(wt − u)Tsign

[
yt −wT

t xt

]
ξtxt

= −ξ2t ∥xt∥22 − 2 · sign
[
yt −wT

t xt

]
ξt
(
wT

t xt − uTxt

)
= −ξ2t ∥xt∥22 − 2 · sign

[
yt −wT

t xt

]
ξt
(
wT

t xt − yt + yt − uTxt

)
= −ξ2t ∥xt∥22 − 2 · sign

[
yt −wT

t xt

]
ξt
(
wT

t xt − yt
)
+ 2 · sign

[
yt −wT

t xt

]
ξt
(
uTxt − yt

)
= −ξ2t ∥xt∥22 + 2ξt|wT

t xt − yt|+ 2 · sign
[
yt −wT

t xt

]
ξt
(
uTxt − yt

)
≥ −ξ2t ∥xt∥22 + 2ξt(ℓt + ε)− 2ξt(ℓ

⋆
t + ε)

= ξt
(
2ℓt − ξt∥xt∥22 − 2ℓ⋆t

)
.

Therefore, we have
T∑

t=1

ξt
(
2ℓt − ξt∥xt∥22 − 2ℓ⋆t

)
≤

T∑
t=1

∆̃t ≤
T∑

t=1

∆t ≤ ∥u∥22.

E Robust Analysis on Performance of APAS on Heavy-tailed Data

To demonstrate the performance of APAS in the presence of high volatility and noisy data, we
conducted simulations following the same procedure as in our synthetic data experiments outlined in
Section 4.1.
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In Section 4.1, we considered Gaussian noise ω ∼ N (0, δ2) and Gaussian-distributed side information
data rt ∼ N (µ,Σ). However, heavy-tailed distributions are generally considered more realistic
models of data-generating processes in financial markets than Gaussian distributions (Cardoso et al.,
2021, 2022). To evaluate the performance of APAS with highly volatile and noisy data, we generate
heavy-tailed noise ω and data rt based on the Student’s t-distribution, using the same mean and
variance settings. The degree of freedom for the Student’s t-distribution is set to 3, representing
significant heavy tails.

Table 2 shows the tracking error of APAS with different combinations of noise and data distributions.
Specifically, the column "N noise + t data" means the noise ω is generated by Gaussian distribution
and the side information data rt is generated by Student’s t-distribution. In general, the difference in
tracking error is small, indicating the robust performance of APAS in highly volatile data scenarios.

N noise + N data N noise + t data t noise + N data t noise + t data

λ = 1× 10−2 0.000157 0.000159 0.000164 0.000174
λ = 5× 10−2 0.000198 0.000206 0.000198 0.000204
λ = 1× 10−1 0.000261 0.000271 0.000259 0.000261
λ = 2× 10−1 0.000354 0.000369 0.000353 0.000346

Table 2: Tracking error of APAS under different combinations of noise and data distributions.

Table 3 compares the excess cumulative return under different combinations of noise and data distri-
butions. For heavy-tailed noise (i.e., t-distribution noise), there is a mild performance degradation.
Interestingly, for heavy-tailed data, there is a modest improvement, illustrating the robustness of
APAS. This is mainly due to the increased chances of outliers in positive side performance for
heavy-tailed data. These results show that APAS is robust to heavy-tailed data with adaptivity in
tilting the weight towards positive side information.

N noise + N data N noise + t data t noise + N data t noise + t data

λ = 1× 10−2 0.000157 0.000159 0.000164 0.000174
λ = 5× 10−2 0.000198 0.000206 0.000198 0.000204
λ = 1× 10−1 0.000261 0.000271 0.000259 0.000261
λ = 2× 10−1 0.000354 0.000369 0.000353 0.000346

Table 3: Excess cumulative return of APAS under different combinations of noise and data distribu-
tions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect our paper’s
contribution and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the assumptions and scope for this paper in Section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions and a complete proof have been provided in Section 3 and
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code, data, and instructions to reproduce the experiments are available in
the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] ,

Justification: The code, data, and instructions to reproduce the experiments are available in
the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting and details have been specified in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The details for the error bars have been specified in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments are conducted on a PC equipped with a 13th Gen Intel(R)
Core(TM) i7-13700 CPU and 16GB of memory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms fully with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts have been discussed in the Abstract and Introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The licenses for existing assets are mentioned in Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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