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Abstract
We analyze nonlinearly preconditioned gradient
methods for solving smooth minimization prob-
lems. We introduce a generalized smoothness
property, based on the notion of abstract convex-
ity, that is broader than Lipschitz smoothness and
provide sufficient first- and second-order condi-
tions. Notably, our framework encapsulates al-
gorithms associated with the gradient clipping
method and brings out novel insights for the class
of (L0, L1)-smooth functions that has received
widespread interest recently, thus allowing us
to extend beyond already established methods.
We investigate the convergence of the proposed
method in both the convex and nonconvex set-
ting.

1. Introduction and preliminaries
We consider minimization problems of the form:

min
x∈Rn

f(x), (1)

where f is a continuously differentiable and possibly non-
convex function. While gradient descent is a reliable solver
for this type of problems, in many cases it does not fully
take advantage of the cost function properties and requires
well-tuned or costly stepsize strategies to converge.

In this paper we thus focus on nonlinearly preconditioned
gradient methods that are tailored to the properties of the
cost function. Given stepsizes γ > 0 and λ > 0 and a
starting point x0 ∈ Rn, we consider the following iteration:

xk+1 = Tγ,λ(x
k) := xk − γ∇ϕ∗(λ∇f(xk)), (2)
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where ϕ∗ : Rn → R is convex and is called the dual ref-
erence function. The convex conjugate of ϕ∗, ϕ is called
the reference function and its properties are crucial to our
analysis. This general framework was originally analyzed
in (Maddison et al., 2021) under the so-called dual relative
smoothness condition for convex and essentially smooth
functions. In the general nonconvex and composite non-
smooth setting, it was studied in (Laude & Patrinos, 2025)
under a condition called the anisotropic descent property,
which was itself first introduced in (Laude et al., 2023)
and can be regarded as a globalization of anisotropic prox-
regularity (Laude, 2021) for smooth functions.

Our analysis is mainly focused on two types of reference
functions that are both generated by a kernel function h :
R → R+ ∪{∞}, thus resulting in two different families of
algorithms. The first one is given by the composition with
the Euclidean norm, i.e., ϕ = h ◦ ∥ · ∥ and is referred to
as the isotropic reference function. In this case, the main
iteration (2) takes the form of gradient descent with a scalar
stepsize that depends on the iterates. The second is a sep-
arable sum obtained via ϕ(x) =

∑n
i=1 h(xi), henceforth

called the anisotropic reference function. In this case, (2)
becomes gradient descent with a coordinate-wise stepsize
that depends on the iterates of the algorithm. We remark
that although the anisotropic reference function makes the
analysis of the method more challenging, it generates more
interesting algorithms, akin to the ones that are often used
in practice.

1.1. Motivation

Unifying framework for clipping algorithms. Gradient
clipping and signed gradient methods have garnered atten-
tion in recent years due to their efficiency in neural net-
work training and other applications (Bernstein et al., 2018;
Gorbunov et al., 2020; Zhang et al., 2020a;b;c; Koloskova
et al., 2023; Kunstner et al., 2024). The intuition behind
gradient clipping is straightforward, since by clipping one
does not allow the potentially very large (stochastic) gradi-
ents to hinder the training. Nevertheless, in many cases the
clipping threshold and stepsize should be carefully tuned
in practice, otherwise leading to suboptimal performance
(Koloskova et al., 2023). While algorithms of this type
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Table 1. Examples of kernel functions along with the generated preconditioner and its (generalized) derivative in one dimension. The
last column indicates whether Assumption 1.1 and Assumption 1.2 are satisfied, respectively.

h(x) domh h∗′(y) h∗′′(y) Assumption 1.1/1.2

cosh(x)− 1 R arcsinh(y) 1√
1+y2

✓/✓

exp(|x|)− |x| − 1 R ln(1 + |y|)sgn(y) 1
1+|y| ✓/✓

−|x| − ln(1− |x|) (−1, 1) y
1+|y|

1
(1+|y|)2 ✓/✓

1−
√
1− x2 [−1, 1] y√

1+y2
(1 + y2)−3/2 ✓/✓

x arctanh(x)− ln(cosh(arctanh(x))) (−1, 1) tanh(y) 1− tanh2(y) ✓/✓
1
2x

2 + δ[−1,1](x) [−1, 1] min(1,max(−1, y)) ∂C(Π[−1,1])(y) ✓/

have been analyzed under various smoothness and stochas-
ticity assumptions, there does not seem to exist a simple
unifying framework that encapsulates them. Motivated by
this gap, we propose a framework that provides further in-
sights into existing methods but also naturally generates
new algorithms.

Majorization-minimization and Φ-convexity. A plethora
of well-known optimization algorithms belong to the so-
called majorization-minimization framework in that they
are generated by successively minimizing upper bounds
of the objective function. As a classical example, under
Lipschitz smoothness of f , the celebrated gradient descent
method with stepsize 1/L iteratively minimizes the follow-
ing (global) quadratic upper bound around the current point
x̄ ∈ Rn:

f(x) ≤ f(x̄) + ⟨∇f(x̄), x− x̄⟩+ L
2 ∥x− x̄∥2.

It is straightforward that this inequality can be written as

f(x) ≤ f(x̄) + 1
Lϕ(L(x− ȳ))− 1

Lϕ(L(x̄− ȳ)), (3)

for ϕ = 1
2∥ · ∥2 and ȳ = TL−1,1(x̄) = x̄− 1

L∇ϕ∗(∇f(x̄)).
Going beyond the standard Lipschitzian assumptions, it
is natural to consider reference functions ϕ that generate
less restrictive descent inequalities thus allowing us to ef-
ficiently tackle more general problems. This is exactly the
anisotropic descent property (Laude & Patrinos, 2025, Def-
inition 3.1) and minimizing this upper bound leads to the
algorithm described in (2) (for λ fixed). Considering (3), it
is natural to examine reference functions that are strongly
convex and grow faster than a quadratic in order to obtain a
less restrictive descent inequality. It turns out that in many
interesting cases, the preconditioner in (2) becomes simi-
lar to a sigmoid function and the algorithmic step takes the
form of popular algorithms. We present examples of kernel
functions and the corresponding preconditioners in Table 1.

The abstraction discussed in the previous paragraph is in
fact tightly connected to the notion of Φ-convexity (also
known as c-concavity in the optimal transport literature),

which states that a function is Φ-convex if it can be writ-
ten as the pointwise supremum over a family of nonlinear
functions. Similarly to the fact that every proper, lsc and
convex function can be expressed as a pointwise supremum
of its affine minorizers (Rockafellar & Wets, 1998, Theo-
rem 8.13), anisotropic smoothness then requires that −f is
a pointwise supremum of nonlinear minorizers. This fact
is once again in parallel to classical L-smoothness, which
requires that −f is the pointwise supremum over concave
quadratics, and leads to an envelope representation of f that
is useful in studying the corresponding calculus. In that re-
gard, anisotropic smoothness is a straightforward extension
of Lipschitz smoothness. A visualization of the concept of
Φ-convexity is shown in Figure 1.

f(x)

x

Figure 1. Visualization of the quadratic upper bounds of the func-
tion f(x) at various points. By flipping the figure it can be seen
that −f is a Φ-convex function: it is the pointwise supremum over
concave quadratics of the form −ϕ(x− y)+β, with ϕ = L

2
∥ · ∥2

and y, β ∈ R. Note that this function is not convex in the classical
sense, as there are no linear functions supporting it.

1.2. Our contribution

Our approach departs from and improves upon existing
works in the following aspects.

• We describe a common nonlinear gradient precon-
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ditioning scheme for the main iterates, i.e., without
momentum nor exponential moving average mecha-
nisms, of popular algorithms including gradient clip-
ping, Adam, Adagrad and recently introduced meth-
ods for (L0, L1)-smoothness. These precondition-
ers are gradients of smooth convex functions and
have sigmoid shape, reminiscent of common activa-
tion functions in neural networks.

• We introduce (L, L̄)-anisotropic smoothness, which
extends (Laude & Patrinos, 2025) allowing for two
constants and a reference function ϕ of possibly non-
full domain and prove that it is less restrictive than
L-smoothness. Through a novel technique we study
necessary and sufficient first- and second-order con-
ditions for (L, L̄)-anisotropic smoothness, in the pro-
cess obtaining novel characterizations for the forward
operator Tγ,λ, which in turn leads to new insights into
the class of (L0, L1)-smooth functions.

• We analyze the convergence of (2) in the nonconvex
setting, obtaining new results for our stationarity mea-
sure. In the convex setting, we prove the sublinear
rate of the method for a large family of isotropic ref-
erence functions, utilizing only a simple dual charac-
terization. In the more challenging case where ϕ is
anisotropic, we present an unconventional proof that
is based on the envelope representation of anisotropic
smoothness. We are thus able to obtain standard
O(1/K) convergence rates for large classes of func-
tions.

1.3. Related work

Dual space preconditioning and anisotropic smooth-
ness. The scheme described in (2) was originally intro-
duced in (Maddison et al., 2021) in the convex setting,
where it was analyzed under a condition called dual relative
smoothness for which sufficient second-order conditions
were provided. In (Laude & Patrinos, 2025) the anisotropic
smoothness condition was studied, which was shown to
naturally lead to the convergence of the method in the non-
convex and proximal case. Moreover, in (Léger & Aubin-
Frankowski, 2023) the scheme was also analyzed under the
general framework of Φ-convexity and a sufficient second-
order condition for anisotropic smoothness was provided.
Nevertheless, this requires that ϕ ∈ C4(Rn) satisfies the
non-negative cross curvature condition from optimal trans-
port (NNCC) (see (Figalli et al., 2011, Assumption (B3))
and (Léger & Aubin-Frankowski, 2023, Definition 2.8)),
which is a strong assumption that does not hold for many
interesting reference functions. An accelerated version of
the method for Lipschitz smooth problems was introduced
and studied in (Kim et al., 2023). Recently, the method was
also extended to measure spaces in (Bonet et al., 2024).

Furthermore, a relaxed proximal point algorithm with non-
linear preconditioning akin to (2) for solving monotone in-
clusion problems was studied in (Laude & Patrinos, 2023).

Generalized smoothness. Our work is also connected to
other notions of generalized smoothness, i.e., descent in-
equalities beyond the standard Lipschitzian assumptions.
To begin with, Bregman (relative) smoothness is a pop-
ular extension of Lipschitz smoothness (Bauschke et al.,
2017a; Lu et al., 2018; Bolte et al., 2018; Ahookhosh
et al., 2021) that can encapsulate a wide variety of func-
tions such as those whose Hessians exhibit a certain poly-
nomial growth (Lu et al., 2018). Other notions of gen-
eralized smoothness include Hölder smoothness (Bredies,
2008; Nesterov, 2015) and also higher-order smoothness
where higher-order derivatives of f are Lipschitz continu-
ous (Nesterov & Polyak, 2006; Doikov & Nesterov, 2020).

Recently, a new concept of smoothness has been introduced
in order to capture the cases where the norm of the Hes-
sian is upper bounded by some function of the norm of the
gradient (Zhang et al., 2020b; Chen et al., 2020; Li et al.,
2024). This condition, which in its most popular form is
called (L0, L1)-smoothness (Zhang et al., 2020b, Defini-
tion 1), has received widespread attention. Various existing
methods have been analyzed under this new smoothness
condition (Wang et al., 2023; Faw et al., 2023; Koloskova
et al., 2023), while also new ones have been proposed (Gor-
bunov et al., 2024; Vankov et al., 2024). We remark that a
number of these algorithms can actually be obtained in (2)
via a suitable choice of the reference function. Neverthe-
less, it is important to note that in contrast to the aforemen-
tioned types of smoothness, anisotropic smoothness is not
obtained via a linearization of the cost function around a
point and thus it is not straightforward to compare the ob-
tained descent lemmas.

1.4. Notation

We denote by ⟨·, ·⟩ the standard Euclidean inner product
on Rn and by ∥ · ∥ the standard Euclidean norm on Rn as
well as the spectral norm for matrices. For a square ma-
trix A with real spectrum, λmax(A) and λmin(A) denote
the largest and smallest eigenvalue respectively. We de-
note by Ck(Y ) the class of functions which are k times
continuously differentiable on an open set Y ⊆ Rn. For
a proper function f : Rn → R and λ ≥ 0 we define
the episcaling (λ ⋆ f)(x) = λf(λ−1x) for λ > 0 and
(λ ⋆ f)(x) = δ{0}(x) otherwise. We adopt the notions
of essential smoothness, essential strict convexity and Leg-
endre functions from (Rockafellar, 1997, Section 26): we
say that a proper, lsc and convex function f : Rn → R
is essentially smooth if int(dom f) ̸= ∅ and f is differ-
entiable on int(dom f) such that ∥∇f(xν)∥ → ∞, when-
ever int(dom f) ∋ xν → x ∈ bdry dom f , and essen-
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tially strictly convex, if f is strictly convex on every con-
vex subset of dom ∂f , and Legendre, if f is both essen-
tially smooth and essentially strictly convex. In particular,
a smooth convex function on Rn is essentially smooth.

Let F : Rn → Rn be a locally Lipschitz function, we
denote the (Clarke) generalized Jacobian as ∂CF (x) =
con{limxi→x ∇F (xi) : xi /∈ ΩF }, where ΩF is the set
of points where F fails to be differentiable. ΠC denotes
the projection on a set C. For an f ∈ C2(Rn) we say that
it is (L0, L1)-smooth for some L0, L1 > 0 if it holds that
∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ for all x ∈ Rn. Otherwise
we adopt the notation from (Rockafellar & Wets, 1998).

For clarity of exposition, for a vector x ∈ Rn we consider
the function sgn(x) = x/∥x∥ for x ∈ Rn \ {0} and 0
otherwise.

1.5. Assumptions on the reference function

Our assumptions on the reference function ϕ are formu-
lated as follows.
Assumption 1.1. The reference function ϕ : Rn → R is
proper, lsc, strongly convex and even, i.e., ϕ(x) = ϕ(−x),
with ϕ(0) = 0.

Assumption 1.1 is considered valid throughout the paper.
Note that through the duality of strong convexity and Lips-
chitz smoothness, it implies that ϕ∗ ∈ C1(Rn). Moreover,
from (Bauschke et al., 2017b, Proposition 11.7), {0} =
argminϕ and thus ϕ ≥ 0. Throughout the paper we also
consider specifically the case where ϕ∗ ∈ C2(Rn), for
which we encode a sufficient condition in the following as-
sumption, in light of (Rockafellar, 1977, p. 42).
Assumption 1.2. ϕ ∈ C2(int domϕ) is essentially smooth.

It is important to note that through (Rockafellar, 1977, p.
42), under Assumptions 1.1 and 1.2, the Hessian matrix of
ϕ∗ is positive-definite everywhere.

Although we state both assumptions for the reference func-
tion ϕ, we also use them throughout the paper by a slight
abuse of notation for the kernel function h which gener-
ates ϕ.

When considering a kernel function h, in the anisotropic
case, it is straightforward that ϕ inherits the properties
of h and the preconditioner takes the form ∇ϕ∗(x) =
(h∗′(x1), . . . , h

∗′(xn)). In the isotropic case, the differen-
tiability of ϕ∗ depends on the properties of h, as we show
next.
Lemma 1.3. Let h : R → R satisfy Assumption 1.1. Then
h∗ ≥ 0 is an even function and increasing on R+, while
h∗′(0) = 0. Moreover, ϕ = h ◦ ∥ · ∥ is strongly convex,
ϕ∗ = h∗ ◦ ∥ · ∥ and

∇ϕ∗(y) = h∗′(∥y∥)sgn(y), ∀y ∈ Rn.

If, furthermore, h satisfies Assumption 1.2, then ϕ∗ ∈
C2(Rn).

We provide examples of interesting kernel functions, along
with the assumptions that they satisfy, in Table 1.

1.6. Connections with existing methods

As already mentioned, the scheme presented in (2) encom-
passes the basic iterations of various algorithms that are
widely used in practice. In this subsection we thus provide
some examples that showcase the generalizing properties
of our framework.
Example 1.4. The standard gradient descent method can be
obtained from (2) by choosing ϕ = 1

2∥ · ∥2.

Example 1.5. Let ϕ(x) =
∑n

i=1 1 −
√

1− x2i . Then, (2)
becomes

xk+1
i = xki − γ

∇if(x
k)√

1/λ2 + (∇if(xk))2

and by choosing λ = ε−1/2 for some ε > 0 we retrieve the
form of Adagrad (Duchi et al., 2011) without memory from
(Défossez et al., 2022, Equation (3)) with β1 = β2 = 0.
Example 1.6. Let ϕ(x) =

∑n
i=1 −|xi|−ln(1−|xi|). Then,

the main iterate (2) takes the following form:

xk+1
i = xki − γ

∇if(x
k)

1/λ+ |∇if(xk)|
.

and by choosing λ = ε−1 for ε > 0, we retrieve the iterates
of Adam (Kingma & Ba, 2014, Algorithm 1) where both
the exponential decay rates are set to 0, i.e. β1 = β2 = 0.
Example 1.7. Let h(x) = 1

2x
2+δ[−1,1](x) and ϕ = h◦∥·∥.

Then, (2) becomes

xk+1 = xk −min(γ/∥∇f(xk)∥, γλ)∇f(xk).

Note that the gradient clipping method as presented in
(Zhang et al., 2020b, Equation (5)) is given by xk+1 =
xk − min{ηc, γ̃ηc/∥∇f(xk)∥}∇f(xk). Therefore, by
choosing γ = γ̃ηc and λ = 1/γ̃ we can see that (2) en-
compasses the gradient clipping method.

2. The extended anisotropic descent
inequality

In this section we extend the definition of anisotropic
smoothness from (Laude & Patrinos, 2025) to our setting
where ϕ is potentially nonsmooth and provide sufficient
conditions for a smooth function f to satisfy this gener-
alized descent inequality. The proofs can be found in Ap-
pendix B.

We begin with the definition of our extension of anisotropic
smoothness.
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Definition 2.1 ((L, L̄)-anisotropic smoothness). Let f ∈
C1(Rn). We say that f is (L, L̄)-anisotropically smooth
relative to ϕ with constants L, L̄ > 0 if for all x, x̄ ∈ Rn

f(x) ≤ f(x̄) + L̄
[
(L−1 ⋆ ϕ)(x− ȳ)

−(L−1 ⋆ ϕ)(x̄− ȳ)
]
,

(4)

where ȳ = TL−1,L̄−1(x̄) = x̄− L−1∇ϕ∗(L̄−1∇f(x̄)).

Note that inequality (4) is well-defined for ϕ without full
domain, but does not provide information for points x ∈
Rn such that L(x− ȳ) /∈ domϕ. The intuition behind this
extension of (Laude & Patrinos, 2025) is straightforward:
we allow for two different smoothness constants that play
a complementary role, while allowing domϕ ̸= Rn leads
to a more general descent inequality. It can be checked
that for domϕ = Rn, Definition 2.1 reduces to (Laude &
Patrinos, 2025, Definition 3.1) but w.r.t. L̄ϕ.

Our first result is an extension of the envelope representa-
tion of f under anisotropic smoothness (Laude & Patrinos,
2025, Proposition 4.1) to our setting where ϕ possibly does
not have full domain.

Proposition 2.2. Let f : Rn → R satisfy Definition 2.1.
Then, f(x) = infy∈Rn L̄(L−1 ⋆ ϕ)(x− y) + ξ(y) for some
proper ξ : Rn → R. Moreover, f∗ = ψ + L−1(L̄ ⋆ ϕ∗)
for some lsc and convex ψ : Rn → R, implying that f∗ −
L−1(L̄ ⋆ ϕ∗) is convex.

Note that Proposition 2.2 describes one direction of a con-
jugate duality between anisotropic smoothness and Breg-
man (relative) strong convexity (Lu et al., 2018, Definition
1.2). This result along with the envelope representation of
f will be utilized later on in order to describe the conver-
gence of the method in the convex setting.

In this paper we are mostly interested in cost functions that
are not covered by the classical L-smoothness assumption
and thus study reference functions ϕ that generate a less
restrictive descent inequality. Therefore, we next show
that for strongly convex reference functions, the class of
anisotropically smooth functions is at least as large as that
of Lipschitz smooth ones.

Proposition 2.3. Let f : Rn → R be Lipschitz smooth with
modulo Lf and ϕ satisfy Assumption 1.1 with strong con-
vexity parameter µ. Then f is (Lf/µ, 1)-anisotropically
smooth relative to ϕ .

2.1. Second-order sufficient conditions

In contrast to Euclidean or Bregman smoothness,
anisotropic smoothness cannot in general be directly ob-
tained via a second-order condition. This fact be-
comes apparent by noting that (4) is equivalent to x̄ ∈
argminx g(x) := L̄(L−1 ⋆ ϕ)(x− ȳ)− f(x). The second-
order necessary condition for the minimality of x̄ under As-

sumption 1.2 then becomes L̄L∇2ϕ(∇ϕ∗(L̄−1∇f(x̄))) −
∇2f(x̄) ⪰ 0, which does not normally imply the convex-
ity of g. From the implicit function theorem, the above
expression can be written as L̄L[∇2ϕ∗(L̄−1∇f(x̄))]−1 −
∇2f(x̄) ⪰ 0, which is the form that we consider through-
out the paper. This condition becomes sufficient when
f, ϕ ∈ C2(Rn) are Legendre through (Laude & Patrinos,
2025, Proposition 4.1). Harnessing the connection with Φ-
convexity, it is sufficient for general f when ϕ is a regular
optimal transport cost in light of (Villani, 2008, Theorem
12.46). Nevertheless, the regularity of ϕ is in general hard
to verify, since its equivalent form requires the computa-
tion of fourth-order derivatives (Villani, 2008, Definition
12.27), and quite restrictive, not holding for many inter-
esting functions. We thus follow a different strategy and
study the minimization of g using tools from optimization
and nonsmooth analysis.

Definition 2.4. Let f ∈ C2(Rn). f satisfies the second-
order characterization for (L, L̄)-anisotropic smoothness
if for all x ∈ Rn and H ∈ ∂C(∇ϕ∗)(L̄−1∇f(x)),

λmax(H∇2f(x)) < LL̄ (5)

and lim∥x∥→∞ ∥TL−1,L̄−1(x)∥ = ∞. In particular, (5) re-
duces to λmax(∇2ϕ∗(L̄−1∇f(x))∇2f(x)) < LL̄ under
Assumption 1.2.

Note that, since ϕ∗ is Lipschitz smooth and convex, from
(Hiriart-Urruty et al., 1984, Example 2.2) we know that
H is always a positive semi-definite matrix and thus from
(Horn & Johnson, 2012, Theorem 1.3.22) with A =
H1/2∇2f(x) and B = H1/2 we have that H∇2f(x) has
real eigenvalues.

The generalized Jacobian considered in the definition
above can in fact be computed for many interesting refer-
ence functions. As an example we study the inequality (5)
for the reference function of Example 1.7 in Appendix D.2.
The coercivity assumption on the forward operator in Def-
inition 2.4 is very mild. For example consider a refer-
ence function ϕ with domϕ ⊆ B(0, 1) as the isotropic
ones generated by the kernels in the four last rows of Ta-
ble 1. Then, by standard convex conjugacy, ∥∇ϕ∗∥ ≤ 1
and lim∥x∥→∞ ∥Tγ,λ(x)∥ = ∞ always. We provide more
results regarding the norm-coercivity property of TL−1,L̄−1

in Appendix D.1. It is important to note that when the ma-
trix H∇2f(x) is symmetric, we can remove this extra con-
dition on the forward operator, as we show in Appendix D.

Under Assumption 1.2 we obtain a condition that is more
straightforward to check.

Lemma 2.5. Let ϕ satisfy Assumption 1.2 and f ∈
C2(Rn). Then, (5) holds if and only if for all x ∈ Rn

∇2f(x) ≺ LL̄[∇2ϕ∗(L̄−1∇f(x))]−1. (6)
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A sufficient condition for (6) is given by

λmax(∇2f(x)) < LL̄λmin([∇2ϕ∗(L̄−1∇f(x))]−1). (7)

Next, we show that under Definition 2.4 the forward op-
erator is actually a global homeomorphism (Facchinei &
Pang, 2003, Definition 2.1.9), which we further utilize later
on in proving our main result regarding the sufficiency of
the second-order condition, Proposition 2.9.

Proposition 2.6. Let f ∈ C2(Rn) satisfy Definition 2.4.
Then, TL−1,L̄−1 is injective.

As a byproduct of our analysis, we obtain novel insights
into the class of C2(Rn) (L0, L1)-smooth functions.

Corollary 2.7. Let f ∈ C2(Rn) be (L0, L1)-smooth. Then,
TδL−1,L̄−1 = x − δ

L0+L1∥∇f(x)∥∇f(x) is monotone for
δ = 1 and strongly monotone for 0 < δ < 1.

Remark 2.8. Considering the forward operator as defined
in Corollary 2.7, the main iteration (2) becomes:

xk+1 = xk − δ
L0+L1∥∇f(xk)∥∇f(xk). (8)

Note that in this case, (Gorbunov et al., 2024, Algorithm
1) can be viewed as (2) with a conservative choice of δ ≤
0.57. This algorithm is in fact generated by ϕ = h ◦ ∥ · ∥
with h(x) = −|x| − ln(1− |x|).

Although Corollary 2.7 establishes new characterizations
for (L0, L1)-smoothness, the simplification used in the
proof of the second-order condition is quite restrictive. We
provide examples where we can obtain tighter constants
utilizing directly Definition 2.4 in Appendix D.

Having obtained a sufficient condition for the injectivity
of the forward operator in Proposition 2.6, we now move
on to providing sufficient conditions for f to be (L, L̄)-
anisotropically smooth.

Proposition 2.9. Let f ∈ C1(Rn) and TL−1,L̄−1 be in-
jective. Let moreover either (i) domϕ be bounded or (ii)
domϕ = Rn and the following growth condition hold

f(x) ≤ L̄(r−1 ⋆ ϕ)(x)− β

for all x ∈ Rn and some r, β ∈ R such that 0 < r < L.
Then, f is (L, L̄)-anisotropically smooth relative to ϕ.

Remark 2.10. The growth condition assumed in Proposi-
tion 2.9 when domϕ = Rn is in fact not restrictive. Con-
sider ϕ = cosh ◦∥ · ∥ − 1 and let f be bounded above by
some polynomial of the norm. Then, lim∥x∥→∞ L̄(r−1 ⋆
ϕ)(x)−f(x) = +∞ for any fixed constants L̄, r, implying
that L̄(r−1 ⋆ ϕ)(x)− f(x) is lower bounded.

By combining Corollary 2.7 and Proposition 2.9 we can
easily obtain the following result that describes the rela-
tion between (L, L̄)-anisotropic smoothness and (L0, L1)-
smoothness.

Corollary 2.11. Let f ∈ C2(Rn) be (L0, L1)-smooth.
Then, f is (δL1, L0/L1)-anisotropically smooth relative to
ϕ(x) = −∥x∥ − ln(1− ∥x∥) with δ ∈ (0, 1).

2.2. How to compute the second-order condition

In this subsection we demonstrate how the second-order
condition of Definition 2.4 can be computed for the two
different instances of our preconditioned scheme. We con-
sider kernel functions that satisfy Assumptions 1.1 and 1.2
implying that the results of Lemma 1.3 hold, lifting thus
the need to compute generalized Jacobians.

Anisotropic reference functions. Thanks to the sepa-
rability of ϕ, the condition is simple to compute, since
[∇2ϕ∗(L̄−1∇f(x))]−1 is just a diagonal matrix with ele-
ments αii given by

αii = 1/h∗′′(L̄−1∇if(x)) (9)

Isotropic reference functions. As already mentioned in
the introduction, in the isotropic case ϕ = h ◦ ∥ · ∥ the dif-
ferentiability properties of ϕ∗ depend on those of h∗. In
the setting considered in this subsection though, we have
∇ϕ∗(y) = h∗′(∥y∥)sgn(y) with ϕ∗ ∈ C2(Rn) and the
Hessian is given by

[∇2ϕ∗(y)]−1 =
1

h∗′′(∥y∥)
yy⊤

∥y∥2 +
∥y∥

h∗′(∥y∥)

(
I − yy⊤

∥y∥2
)

for y ∈ Rn \ {0} and [∇2ϕ∗(y)]−1 = 1/h∗′′(∥y∥)I oth-
erwise. We provide examples of this condition for kernel
functions displayed in Table 1 in Appendix D.

3. Algorithmic analysis
In this section we study the convergence properties of the
method in the nonconvex and convex setting. The follow-
ing assumption is considered valid throughout the remain-
der of the paper. The proofs of this section are deferred to
Appendix C.
Assumption 3.1. f ∈ C1(Rn) is (L, L̄)-anisotropically
smooth relative to ϕ and f⋆ = inf f > −∞.

3.1. Nonconvex setting

The convergence of the method to stationary points, in the
composite case with an additional nonconvex, nonsmooth
term, was established in (Laude & Patrinos, 2025, Theo-
rem 5.3) with a fixed stepsize γ ≤ L−1 and in (Laude &
Patrinos, 2025, Theorem 5.5) using an adaptive linesearch
strategy for choosing γ, always under the assumption that
ϕ is of full domain. In the smooth setting studied in this pa-
per, where ϕ is also even, we can improve upon the afore-
mentioned results and show that stepsizes γ up to 2L−1 can
actually be used in the algorithm.
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Figure 2. Minimizing 1
4
∥x∥4 using (2). The figure on the left corresponds to ϕ1(x) = cosh(∥x∥) − 1, the middle one to ϕ2(x) =

exp(∥x∥)−∥x∥− 1 and the one on the right to ϕ3(x) = −∥x∥− ln(1−∥x∥). We choose values of L̄, set λ = L̄−1 and then compute
γ = L−1 with L as in Appendix D.

Theorem 3.2. Let Assumption 3.1 hold and {xk}k∈N0 be
the sequence of iterates generated by (2) with γ = αL−1,
α ∈ (0, 2), λ = L̄−1 and let β = 1 − |1 − α|. Then we
have the following rate:

min
0≤k≤K

ϕ(∇ϕ∗(L̄−1∇f(xk))) ≤ L(f(x0)− f⋆)

L̄β(K + 1)
.

Using the result of Theorem 3.2 and specifying the ref-
erence function ϕ, we can obtain convergence guarantees
for the standard stationarity measure, ∥∇f(xk)∥. For ϕ =
cosh ◦∥ · ∥ − 1, this is captured in the following corollary.

Corollary 3.3. Let Assumption 3.1 hold, ϕ = cosh ◦∥·∥−1
and {xk}k∈N0 be the sequence of iterates generated by (2)
with γ = αL−1, α ∈ (0, 2), λ = L̄−1 and β = 1−|1−α|.
Then, the following holds for P0 = f(x0)− f⋆:

min
0≤k≤K

∥∇f(xk)∥ ≤
√

2LL̄P0

β(K + 1)
+

LP0

β(K + 1)
.

3.2. Convex setting

In the convex setting, Proposition 2.2 establishes a useful
connection between anisotropic smoothness and the con-
vexity of f∗−L−1(L̄ ⋆ϕ∗), i.e., the strong convexity of f∗

relative to L̄ ⋆ ϕ∗ with constant L−1 in the Bregman sense.
We utilize this connection in Proposition 3.5 and Theo-
rem 3.6 in order to obtain standard sublinear convergence
rates for the suboptimality gap in the isotropic case.

Henceforth we make the following standard assumption,
which we consider valid throughout the rest of the paper
unless stated otherwise.

Assumption 3.4. argmin f ̸= ∅.

Our first result is the following novel characterization re-
garding the minimizers of f .

Proposition 3.5. Let x ∈ Rn and x⋆ ∈ argmin f . More-
over, let f be (L, L̄)-anisotropically smooth relative to ϕ

and convex. Then, the following inequality holds:

⟨∇f(x), x− x⋆⟩ ≥ L−1⟨∇ϕ∗(L̄−1∇f(x)),∇f(x)⟩.

Obtaining sublinear rates for the function values is not a
straightforward task. To the best of our knowledge, there
do not exist such guarantees for the full generality of the
setting we consider in this paper. Proposition 3.5 is useful
in that regard, since it allows us to show a O(1/K) rate
for the suboptimality gap in the isotropic case, as we show
next.

Theorem 3.6. Let Assumption 3.1 hold, f be convex and
ϕ = h◦∥·∥ with h satisfying Assumption 1.1. For {xk}k∈N0

the sequence of iterates generated by (2) with γ = L−1 and
λ = L̄−1, the following holds:

∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥, (10)

where x⋆ ∈ argmin f , i.e. {xk}k∈N0 is Fejér monotone
w.r.t. argmin f . Moreover, the norm of the gradient of
f monotonically decreases along the iterates of the algo-
rithm:

∥∇f(xk+1)∥ ≤ ∥∇f(xk)∥,
for all k ∈ N0. If, in addition, h∗′(x)/x is a decreasing
function on R+, we have the following rate for the subop-
timality gap:

f(xK)− f⋆ ≤ L∥∇f(x0)∥∥x0 − x⋆∥2
h∗′(∥L̄−1∇f(x0)∥)(K + 1)

(11)

We remark that h∗′(x)/x being a decreasing function on
R+ is in fact a mild assumption that holds for all the kernel
functions presented in Table 1. The result above strength-
ens the known results regarding the convergence of the
method from (Maddison et al., 2021) and (Laude & Pa-
trinos, 2025), while also answering the question posed in
(Maddison et al., 2021, p. 17), regarding obtaining conver-
gence guarantees for the suboptimality gap f(xk)−f⋆. We
remark that although the obtained rate in (11) depends on

7
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Figure 3. Nonconvex phase retrieval. ϕ1 corresponds to the isotropic reference function and ϕ2 to the anisotropic one, both of which are
generated by cosh(·) − 1. The two figures on the left compare the algorithms for one instance of the problem. The figure on the right
displays the results of gradient clipping and the isotropic version of (2) averaged across 100 random instances.
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Figure 4. Simple NN training. (left) results for (2) with ϕ1(x) = cosh(∥x∥) − 1; (middle) ϕ2(x) = −∥x∥ − ln(1 − ∥x∥); (right)
gradient clipping method as presented in Example 1.7.

the initial norm of the gradient, one can use the techniques
from (Vankov et al., 2024) or (Gorbunov et al., 2024) to
achieve a better complexity when specifying the reference
function ϕ. Nevertheless, such an endeavor is beyond the
scope of this paper.

Although Theorem 3.6 provides a sublinear rate for the
isotropic case, obtaining such guarantees for anisotropic
reference functions is not straightforward: key in the proof
of Theorem 3.6 is the fact that ∇ϕ∗(L̄−1∇f(xk)) =
h∗′(∥L̄−1∇f(xk)∥)sgn(∇f(xk)) and therefore the con-
vex gradient inequality for f can directly be utilized to
show the Fejér monotonocity of {xk}k∈N0 . Nevertheless,
we are able to prove the sublinear convergence rate for
the suboptimality gap for subhomogeneous (Azé & Penot,
1995, p. 708) reference functions using a different tech-
nique based on generalized conjugacy. More precisely, we
utilize the characterization of anisotropically smooth func-
tions as (generalized) envelopes and interpret the algorithm
as a nonlinear proximal point method, generalizing thus
the duality between gradient descent and proximal point
in the Euclidean case (Laude, 2021, Theorem 3.8). Then,
we combine the subhomogeneity of ϕ with the proof tech-
nique of (Doikov & Nesterov, 2020, Theorem 1) for inexact
tensor methods and obtain the claimed rate. This result is
captured in the following theorem.

Theorem 3.7. Let Assumption 3.1 hold, f be convex and
{xk}k∈N0

be the sequence of iterates generated by (2) with
γ = L−1, λ = L̄−1 and assume that domϕ = Rn. More-
over, let ϕ be 2-subhomogeneous, i.e., such that ϕ(θx) ≤
θ2ϕ(x) for all θ ∈ [0, 1]. Then, for all K ≥ 1

f(xK)− f⋆ ≤ 4D0

K
, (12)

where D0 = sup{L̄(L−1 ⋆ ϕ)(x − x⋆) : f(x) ≤ f(x0)}
for x⋆ ∈ argmin f .

In general the set D0 might be unbounded, except if f
has bounded level-sets, which is the case if argmin f is
bounded in light of (Bauschke et al., 2017b, Proposition
11.13). In theory, this dependence on the initial level-set
can be eliminated by considering an averaging procedure
akin to (Doikov & Nesterov, 2020, Algorithm 3), thus lead-
ing to a convergence rate in terms of some function of the
initial distance to the solution. Nevertheless, such methods
tend to underperform in practice compared to their more
straightforward counterparts.

Examples of 2-subhomogeneous reference functions are
those generated by cosh−1, as described in the following
Lemma.

Lemma 3.8. The function h(x) := cosh(x) − 1 is 2-

8
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subhomogeneous, i.e., the following inequality holds:

h(θx) ≤ θ2h(x), (13)

for all θ ∈ [0, 1] and x ∈ R.

4. Experiments
In this section we present some simple experiments that
display the behavior of the proposed method on problems
beyond traditional Lipschitzian assumptions. The code for
reproducing the experiments is publicly available1.

4.1. Norm to power

For the first part of our experiments we consider the toy
example of minimizing f(x) = 1

4∥x∥4, with x ∈ R500,
using different preconditioning schemes. We consider the
reference functions cosh(∥x∥) − 1, exp(∥x∥) − ∥x∥ − 1
and −∥x∥ − ln(1 − ∥x∥) and remind that the algorithm
generated by the latter function is a tighter version of the
algorithm proposed in (Gorbunov et al., 2024). In this ex-
periment, we keep L̄ fixed, compute L according to the
rules established in Appendix D and apply algorithm (2)
with γ = L−1 and λ = L̄−1. The results are presented in
Figure 2. For different values of L and L̄ there seems to be
a trade-off between faster convergence to medium accuracy
and slower convergence to very good accuracy for all three
preconditioned methods.

4.2. Nonconvex phase retrieval

In this experiment we consider the nonconvex phase re-
trieval problem

min
x∈Rn

f(x) =
1

2m

m∑
i=1

(yi − (a⊤i x)
2)2

with yi ∈ R, ai ∈ Rn. The data is generated as in (Chen
et al., 2023): n = 100, m = 3000 and ai, z ∼ N (0, 0.5),
x0 ∼ N (5, 0.5) generated element-wise with z denoting
the true underlying object. The measurements are gener-
ated as yi = (a⊤i z)

2 + ni with ni ∼ N (0, 42).

We compare the algorithm (2) with the isotropic and
anisotropic reference functions generated by cosh−1, de-
noted respectively by ϕ1(x) = cosh(∥x∥)−1 and ϕ2(x) =∑n

i=1 cosh(xi)− 1 against vanilla gradient descent, gradi-
ent clipping (Zhang et al., 2020b) and (Chen et al., 2023,
Algorithm 1) with the tuning described in (Chen et al.,
2023, Section 7). For the isotropic case of (2) we take
γ = 5/3 and λ = 1/100, while for the anisotropic one
γ = 1/5 and λ = 1/14. The results are presented in Fig-
ure 3. We use as f⋆ the minimum value of the cost function

1https://github.com/JanQ/
nonlinearly-preconditioned-gradient

among all algorithms. In this experiment the two versions
of the algorithm proposed in this paper outperform the rest
of the methods.

Moreover, we test the clipping and the isotropic algorithm
over 100 random instances of the problem and plot the
mean along with error bars representing one standard devi-
ation on a logarithmic scale. It can be seen that the isotropic
algorithm outperforms the clipping method across the tests
for this particular tuning. Note that the tuning for both of
the methods is quite robust.

4.3. Neural network training

In this experiment we consider training a simple four-
layer fully connected network with layer dimensions [28×
28, 128, 64, 32, 32, 10] and ReLU activation functions on
a subset of the MNIST dataset (Deng, 2012), using the
cross-entropy loss. We consider a subset (m = 600) of
the dataset in order to efficiently use full gradient updates.

We compare the methods generated by ϕ1(x) =
cosh(∥x∥)− 1, ϕ2(x) = −∥x∥ − ln(1− ∥x∥) and the gra-
dient clipping method (Zhang et al., 2020b), that can also
be considered as an instance of (2) through Example 1.7,
for various choices of the stepsizes and the clipping param-
eters. The results are presented in Figure 4. It can be seen
that different combinations of γ and λ lead to different be-
haviors for the compared methods.

5. Conclusion and Future Work
In this paper we introduced and studied a new generalized
smoothness inequality that is less restrictive than Lipschitz
smoothness. We provided sufficient first- and second-order
conditions through an unconventional technique that also
leads to novel insights into the class of (L0, L1)-smooth
functions. We moreover analyzed a nonlinearly precon-
ditioned gradient scheme that is tailored to the proposed
smoothness condition and studied its convergence prop-
erties both in the nonconvex and convex setting. This
framework encapsulates a plethora of well-known meth-
ods, while it also generates new algorithms.

Our work paves the way for better understanding clip-
ping and signed gradient methods from a majorization-
minimization perspective. Possible interesting future work
includes integrating momentum both in the convex and
nonconvex regime and studying the stochastic setup. An-
other interesting research direction is extending our conver-
gence results for the suboptimality gap from the smooth to
the additive nonsmooth setting where the nonsmooth term
is handled similarly to (Laude & Patrinos, 2025). We be-
lieve that this extension is not straightforward and requires
additional effort compared to the standard Euclidean setup
of gradient descent.
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A. Missing proofs of Section 1
A.1. Proof of Lemma 1.3

Proof. To begin with, since h is proper, lsc and convex, h = h∗∗. In light of (Rockafellar & Wets, 1998, Theorem
11.8), we have that minh∗ = −h∗∗(0) = −h(0) = 0, implying that h∗ ≥ 0. Moreover, from the same theorem,
argminh = {h∗′(0)} further implying that h∗′(0) = 0 and h∗(0) = 0. Since h is even, we have from (Bauschke et al.,
2017b, Example 13.8) that h∗ = (h ◦ | · |)∗ = h∗ ◦ | · |, which means that h∗ is also even. Therefore, through (Bauschke
et al., 2017b, Proposition 11.7) we get that h∗ is increasing on R+.

Now, note that the function g = h − µ
2 | · |2 is proper, lsc and convex where µ is the strong convexity parameter of h.

Moreover, it is even as the difference of two even functions. Therefore, from (Bauschke et al., 2017b, Proposition 11.7) g
is an increasing function on R+ and thus g ◦ ∥ · ∥ is a convex function on Rn. This implies that h(∥x∥)− µ

2 ∥x∥2 is convex
and thus that ϕ = h ◦ ∥ · ∥ is strongly convex with the same strong convexity parameter.

Again from (Bauschke et al., 2017b, Example 13.8), we have that ϕ∗ = h∗ ◦ ∥ · ∥ and to get the gradient of ϕ∗ we can then
utilize (Bauschke et al., 2017b, Corollary 16.72) to obtain ∇ϕ∗(y) = h∗′(∥y∥)sgn(y).
Regarding the twice continuous differentiability of ϕ∗, it follows from (Rockafellar, 1977, p. 42) that h∗ ∈ C2(Rn) and the
claimed result follows from (Strichartz, 2000, Exercise 10.2.20), since h∗ is even.

A.2. Proof of Example 1.7

Proof. It is straightforward that h(x) = 1
2x

2+δ[−1,1](x), is a proper, lsc, strongly convex and even function with h(0) = 0.
Then, from (Rockafellar & Wets, 1998, Theorem 11.23) we have that h∗(y) = infx σ[−1,1](x) +

1
2 (y − x)2, where σ[−1,1]

is the support function of [−1, 1] and in light of (Rockafellar & Wets, 1998, Exercise 11.27), h∗′(y) = Π[−1,1](y), where
Π[−1,1](y) = min(1,max(−1, y)) is the projection on the closed convex set [−1, 1]. Using Lemma 1.3 we thus obtain
∇ϕ∗(y) = min(1, ∥y∥)sgn(y) and the algorithm becomes:

xk+1 = xk − γmin(1/∥∇f(xk)∥, λ)∇f(xk),
by pulling the norm inside the min.

B. Missing proofs of Section 2
B.1. Proof of Proposition 2.2

Proof. Consider the following quantities, which are generalized conjugates as defined in (Rockafellar & Wets, 1998,
Chapter 11L):

(−f)Φ(y) = sup
x∈Rn

−L̄(L−1 ⋆ ϕ)(x− y) + f(x) = − inf
x∈Rn

L̄(L−1 ⋆ ϕ)(x− y)− f(x),

(−f)ΦΦ(x) = sup
y∈Rn

−L̄(L−1 ⋆ ϕ)(x− y)− (−f)Φ(y).

Let x̄ ∈ Rn. Since f is (L, L̄)-anisotropically smooth, we have that

x̄ ∈ argmin
x∈Rn

L̄(L−1 ⋆ ϕ)(x− ȳ)− f(x),

where ȳ = TL−1,L̄−1(x̄) = x̄− L−1∇ϕ∗(L̄−1∇f(x̄)) and thus

(−f)Φ(ȳ) = −L̄(L−1 ⋆ ϕ)(x̄− ȳ) + f(x̄) ∈ R, (14)

which implies that (−f)Φ is proper. Since x̄ was arbitrary, this holds for any x ∈ Rn and y = TL−1,L̄−1(x). By the
definition of (−f)ΦΦ for such pairs x and y we have that

(−f)ΦΦ(x) + (−f)Φ(y) ≥ −L̄(L−1 ⋆ ϕ)(x− y).

Substituting (14) in the inequality above, we obtain (−f)ΦΦ(x) + f(x) ≥ 0 or −f(x) ≤ (−f)ΦΦ(x). Moreover, by the
definition of (−f)Φ, we have that for any x, y ∈ Rn

(−f)Φ(y)− f(x) ≥ −L̄(L−1 ⋆ ϕ)(x− y).

12
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Moving (−f)Φ(y) to the other side and taking the supremum with respect to y we obtain −f(x) ≥ (−f)ΦΦ(x), which
combined with the previous result means that −f(x) = (−f)ΦΦ(x). Therefore, we have

−f(x) = (−f)ΦΦ(x) = sup
y∈Rn

−L̄(L−1 ⋆ ϕ)(x− y)− (−f)Φ(y)

= − inf
y∈Rn

L̄(L−1 ⋆ ϕ)(x− y) + (−f)Φ(y),

which is the claimed result for ξ = (−f)Φ.

We now show the convexity of f∗ − L−1(L̄ ⋆ ϕ∗). In light of (Rockafellar & Wets, 1998, Theorem 11.23) and (Bauschke
et al., 2017b, Proposition 13.23) we have

f∗ =
(
inf

y∈Rn
L̄(L−1 ⋆ ϕ)(· − y) + (−f)Φ(y)

)∗
= ξ∗ + (L̄(L−1 ⋆ ϕ))∗ = ξ∗ + L−1(L̄ ⋆ ϕ∗)

and as such the result follows for ψ = ξ∗ which is lsc and convex, using moreover the fact that domϕ∗ = Rn since ϕ is
strongly convex.

B.2. Proof of Proposition 2.3

Proof. Consider any points x, x̄ ∈ Rn. If L(x−x̄+L−1∇ϕ∗(∇f(x̄))) /∈ domϕ then the bound holds trivially. Otherwise,
from the Euclidean descent lemma for f we have:

f(x) ≤ f(x̄) + ⟨∇f(x̄), x− x̄⟩+ Lf

2 ∥x− x̄∥2.

Moreover, from the strong convexity of ϕ between points L(x− x̄+ L−1∇ϕ∗(∇f(x̄))) and ∇ϕ∗(∇f(x̄)):
1
L ⋆ ϕ(x− x̄+ L−1∇ϕ∗(∇f(x̄))) = 1

Lϕ(L(x− x̄+ L−1∇ϕ∗(∇f(x̄))))
≥ 1

L

[
ϕ(∇ϕ∗(∇f(x̄))) + L⟨∇f(x̄), x− x̄⟩+ µL2

2 ∥x− x̄∥2
]

= 1
L ⋆ ϕ(L

−1∇ϕ∗(∇f(x̄))) + ⟨∇f(x̄), x− x̄⟩+ µL
2 ∥x− x̄∥2,

where we have used the fact that rge∇ϕ∗ ⊆ domϕ along with ∇f(x̄) ∈ ∂ϕ(∇ϕ∗(∇f(x̄))). Therefore, the claimed result
follows.

B.3. Proof of Lemma 2.5

Proof. Let Q := ∇2f(x) and note that H := ∇2ϕ∗(L̄−1∇f(x)) ≻ 0 from (Rockafellar, 1977, p. 42). Then

Q ≺ L̄LH−1 ⇐⇒ H1/2QH1/2 ≺ L̄LI ⇐⇒ λmax(H
1/2QH1/2) < L̄L⇐⇒ λmax(HQ) < L̄L,

where the first equivalence follows by (Horn & Johnson, 2012, Theorem 7.7.2c) with S = H1/2. The last equivalence
follows by noting that the (generally nonsymmetric) matrix HQ is similar to the symmetric matrix H1/2QH1/2, by using
(Horn & Johnson, 2012, Theorem 1.3.22) with A = H1/2Q and B = H1/2, and noting that H1/2 is nonsingular. The
sufficient condition follows from Weyl’s inequality (Horn & Johnson, 2012, Theorem 4.3.1).

B.4. Proof of Proposition 2.6

Proof. We will prove that TL−1,L̄−1 = id−L−1∇ϕ∗ ◦ (L̄−1∇f) is a global homeomorphism from Rn → Rn using
(Facchinei & Pang, 2003, Theorem 2.1.10).

Note that from Definition 2.4, lim∥x∥→∞ ∥TL−1,L̄−1(x)∥ = ∞, i.e. TL−1,L̄−1 is norm-coercive, we only need to show that
it is everywhere a local homeomorphism. The mapping TL−1,L̄−1 is locally Lipschitz, since ∇ϕ∗ is globally Lipschitz and
f ∈ C2(Rn) and thus the generalized Jacobian is well-defined. Now, we have that ∂CTL−1,L̄−1(x) = {I − L−1V : V ∈
∂C(∇ϕ∗ ◦ L̄−1∇f)(x)} and in light of (Clarke, 1990, p. 75),

∂C(∇ϕ∗ ◦ L̄−1∇f)(x)v ⊆ con{∂C(∇ϕ∗)(L̄−1∇f(x))L̄−1∇2f(x)v}

13
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for any v ∈ Rn. In order to show that TL−1,L̄−1 is everywhere a local homeomorphism we are going to use Clarke’s inverse
function theorem as presented in (Dontchev & Rockafellar, 2009, Theorem 4D.4). Consider thus any point x̄ ∈ Rn and the
mapping GA(x) := TL−1,L̄−1(x̄) +A(x− x̄), where A ∈ ∂CTL−1,L̄−1(x̄). Now, from the reasoning above we have that

A(x− x̄) ∈ con{(I − L−1∂C(∇ϕ∗)(L̄−1∇f(x̄))L̄−1∇2f(x̄))(x− x̄)}.

From Definition 2.4 we have that for allH ∈ ∂C(∇ϕ∗)(L̄−1∇f(x)), λmin(I−L−1L̄−1H∇2f(x̄)) > 0, implying thatGA

is an invertible linear mapping for any A ∈ ∂CTL−1,L̄−1(x̄). Therefore, from (Dontchev & Rockafellar, 2009, Theorem
4D.4), there exists a Lipschitz continuous mapping T−1

L−1,L̄−1 such that T−1
L−1,L̄−1(TL−1,L̄−1(x)) = x for some neighbor-

hoods U of x̄ and V of TL−1,L̄−1(x̄). Since, moreover TL−1,L̄−1 is Lipschitz continuous, it is a local homeomorphism at
x̄ in the sense of (Facchinei & Pang, 2003, Definition 2.1.9). Since this holds for any x̄ ∈ Rn, it is everywhere a local
homeomorphism. This concludes our proof by using (Facchinei & Pang, 2003, Theorem 2.1.10).

B.5. Proof of Corollary 2.7

Consider ϕ(x) = −∥x∥−ln(1−∥x∥). In this case, h(x) = −|x|−ln(1−|x|) and thus from Lemma 1.3, ∇ϕ∗(y) = y
1+∥y∥ .

We thus have

∇2ϕ∗(y) =
1

1 + ∥y∥I +
(

1

(1 + ∥y∥)2 − 1

1 + ∥y∥

)
yy⊤

∥y∥2

=
1

1 + ∥y∥

[
I − ∥y∥

(1 + ∥y∥)
yy⊤

∥y∥2
]

The term multiplying yy⊤

∥y∥2 is negative and as such λmax(∇2ϕ∗(y)) ≤ 1
1+∥y∥ . Moreover, ∇2ϕ∗(y) is positive-definite,

since 1 > ∥y∥
1+∥y∥ , which then implies ∥∇2ϕ∗(y)∥ ≤ 1

1+∥y∥ . Therefore,

∥∇2ϕ∗(L̄−1y)∥ ≤ L̄

L̄+ ∥y∥ =
L0

L0 + L1∥y∥
,

by choosing L̄ = L0/L1. By (L0, L1)-smoothness we moreover have ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ and thus

∥∇2ϕ∗(L̄−1∇f(x))∇2f(x)∥ ≤ ∥∇2ϕ∗(L̄−1∇f(x))∥∥∇2f(x)∥ ≤ L0.

Choosing now L = L1 we further have

∥∇2ϕ∗(L̄−1∇f(x))∇2f(x)∥ ≤ LL̄. (15)

Now take any points x, x̄ ∈ Rn and note that from the Cauchy–Schwarz inequality:

⟨∇ϕ∗(L̄−1∇f(x))−∇ϕ∗(L̄−1∇f(x̄)), x− x̄⟩ ≤ ∥∇ϕ∗(L̄−1∇f(x))−∇ϕ∗(L̄−1∇f(x̄))∥∥x− x̄∥. (16)

By the fundamental theorem of calculus for the mapping ∇ϕ∗ ◦ (L̄−1∇f),

∇ϕ∗(L̄−1∇f(x))−∇ϕ∗(L̄−1∇f(x̄)) =
∫ 1

0

L̄−1∇2ϕ∗(L̄−1∇f(x̄+ t(x− x̄)))∇2f(x̄+ t(x− x̄))(x− x̄)dt

and as such

∥∇ϕ∗(L̄−1∇f(x))−∇ϕ∗(L̄−1∇f(x̄))∥ = L̄−1

∥∥∥∥∫ 1

0

∇2ϕ∗(∇f(x̄+ t(x− x̄)))∇2f(x̄+ t(x− x̄))(x− x̄)dt

∥∥∥∥
≤ L̄−1

∫ 1

0

∥∥∇2ϕ∗(∇f(x̄+ t(x− x̄)))∇2f(x̄+ t(x− x̄))
∥∥dt∥x− x̄∥

≤ L∥x− x̄∥,
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where the second inequality follows by (15). Putting this result back into (16), multiplying with −γ < 0 and adding
∥x− x̄∥2 to both sides we obtain:

∥x− x̄∥2 − ⟨γ∇ϕ∗(L̄−1∇f(x))− γ∇ϕ∗(L̄−1∇f(x̄)), x− x̄⟩ ≥ (1− γL)∥x− x̄∥2,

implying that
⟨TδL−1,L̄−1(x)− TδL−1,L̄−1(x̄), x− x̄⟩ ≥ (1− δ)∥x− x̄∥2,

since γ = δL−1.

B.6. Proof of Proposition 2.9

Proof. Note that (4) is equivalent to x̄ ∈ argminx∈Rn g(x) := L̄(L−1 ⋆ ϕ)(x − ȳ) − f(x) for all x̄ ∈ Rn, where
ȳ = x̄− L−1∇ϕ∗(L̄−1∇f(x̄)). In light of the modern version of Fermat’s theorem (Rockafellar & Wets, 1998, Theorem
10.1), for x̃ to be a local minimizer of g, the following inclusion should hold: 0 ∈ ∂̂g(x̃). Through (Rockafellar & Wets,
1998, Exercise 10.10) this implies that

∇f(x̃) ∈ ∂(L̄(L−1 ⋆ ϕ))(x̃− ȳ) = L̄∂ϕ(L(x̃− ȳ))

or that L(x̃ − ȳ) = ∇ϕ∗(L̄−1∇f(x̃)) or x̃ − L−1∇ϕ∗(L̄−1∇f(x̃)) = ȳ. This means that TL−1,L̄−1(x̃) = TL−1,L̄−1(x̄)
and since TL−1,L̄−1 is injective, the only possible minimizer of g is x̄.

Therefore, if we show that g has a minimizer we are done.

Case 1: domϕ is bounded. In light of (Rockafellar & Wets, 1998, p. 91), g is a coercive function and as it is also proper
and lsc, it attains its minimum.

Case 2: domϕ = Rn. By the assumption of the proposition we have that

g(x) ≥ L̄(L−1 ⋆ ϕ)(x− ȳ)− L̄(r−1 ⋆ ϕ)(x) + β. (17)

Let µ be the strong convexity parameter of ϕ, then we have the following for all α ∈ (0, 1):

L̄(r−1 ⋆ ϕ)(x) = L̄r−1ϕ(rx)

= L̄r−1ϕ(r(x− ȳ) + rȳ)

= L̄r−1ϕ

(
rα
x− ȳ

α
+ r(1− α)

ȳ

1− α

)
≤ L̄r−1αϕ

( r
α
(x− ȳ)

)
+ L̄r−1(1− α)ϕ

(
r

1− α
ȳ

)
− µ

2
L̄r−1α(1− α)

∥∥∥∥ rα (x− ȳ)− r

1− α
ȳ

∥∥∥∥2 ,
where the inequality follows by the strong convexity inequality for ϕ between points r

α (x− ȳ) and r
1−α ȳ. Choosing now

α = rL−1 < 1 we obtain:

L̄(r−1 ⋆ ϕ)(x) ≤ L̄(L−1 ⋆ ϕ)(x− ȳ) + L̄(r−1(1− rL−1) ⋆ ϕ)(ȳ)− µ

2

L̄

L(1− rL−1)
∥(L− r)x− Lȳ∥2 .

Substituting this inequality in (17) we get

g(x) ≥ −L̄(r−1(1− rL−1) ⋆ ϕ)(ȳ) +
µ

2

L̄

L(1− rL−1)
∥(L− r)x− Lȳ∥2 + β =: ψ(x).

Note now that ψ is a proper, lsc and strongly convex function and as such it has bounded level-sets. Due to the inequality,
the level-sets of g are contained in those of ψ and thus g also has bounded level-sets. Since moreover g is lsc, it attains its
minimum.

We thus have showed that in both of the above cases, g has a minimizer and the proof is complete.

15



Nonlinearly Preconditioned Gradient Methods

C. Missing proofs of Section 3
C.1. Proof of Theorem 3.2

Proof. From inequality (4) between points xk+1 and xk we have:

f(xk+1) ≤ f(xk) + L̄L−1[ϕ((1− α)∇ϕ∗(L̄−1∇f(xk)))− ϕ(∇ϕ∗(L̄−1∇f(xk)))].

Using the fact that ϕ is even, we have ϕ((1−α)∇ϕ∗(L̄−1∇f(xk))) = ϕ(|1−α|∇ϕ∗(L̄−1∇f(xk))) and since ϕ is convex,
we have

ϕ(θx) = ϕ((1− θ)0 + θx) ≤ (1− θ)ϕ(0) + θϕ(x) = θϕ(x),

for any θ ∈ [0, 1]. Note now that |1− α| < 1 and the previous inequality becomes:

f(xk+1) ≤ f(xk)− (1− |1− α|)L̄L−1ϕ(∇ϕ∗(L̄−1∇f(xk))). (18)

Therefore, summing up the above inequality we obtain

K∑
k=0

ϕ(∇ϕ∗(L̄−1∇f(xk))) ≤ L

L̄β
(f(x0)− f(xK+1)) ≤ L

L̄β
(f(x0)− f⋆),

which leads to

(K + 1) min
0≤k≤K

ϕ(∇ϕ∗(L̄−1∇f(xk))) ≤ L

L̄β
(f(x0)− f⋆). (19)

Dividing now by K + 1 we obtain the claimed rate.

C.2. Proof of Corollary 3.3

Proof. In light of Theorem 3.2, the following holds:

min
0≤k≤K

ϕ(∇ϕ∗(L̄−1∇f(xk))) ≤ L(f(x0)− f⋆)

L̄β(K + 1)
. (20)

Now, using the fact that cosh(arcsinh(x)) =
√
1 + x2 we have:

ϕ(∇ϕ∗(L̄−1∇f(xk))) = cosh

(∥∥∥∥arcsinh(∥L̄−1∇f(xk)∥)
∥∇f(xk)∥ ∇f(xk)

∥∥∥∥)− 1

= cosh(arcsinh(L̄−1∥∇f(xk)∥))− 1

=
√
1 + L̄−2∥∇f(xk)∥2 − 1.

The function
√
1 + x2 − 1 is increasing for x ≥ 0 and as such k⋆ ∈ argmin0≤k≤K{ϕ(∇ϕ∗(L̄−1∇f(xk)))} is equivalent

to k⋆ ∈ argmin0≤k≤K ∥∇f(xk)∥2. Therefore, by taking 1 to the other side in (20) and taking the square, we obtain:

1 + L̄−2∥∇f(xk⋆

)∥2 ≤
(
L(f(x0)− f⋆)

L̄β(K + 1)

)2

+
2L(f(x0)− f⋆)

L̄β(K + 1)
+ 1,

or that

∥∇f(xk⋆

)∥2 ≤
(
L(f(x0)− f⋆)

β(K + 1)

)2

+
2L̄L(f(x0)− f⋆)

β(K + 1)
.

Taking the square root and using the fact that
√
α+ β ≤ √

α+
√
β we obtain the claimed result.
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C.3. Proof of Proposition 3.5

Proof. To begin with, with similar arguments as in the proof of Lemma 1.3 we have that ϕ∗(0) = 0 and ∇ϕ∗(0) = 0.
In light of Proposition 2.2, f∗ − L−1(L̄ ⋆ ϕ∗) is a convex function. By definition ∇f(x) ∈ dom ∂f∗ ⊆ dom f∗ for all
x ∈ Rn and as such we can consider the convex subgradient inequality for f∗ − L−1(L̄ ⋆ ϕ∗) between points ∇f(x) and
∇f(x⋆) and obtain:

f∗(∇f(x))− L−1L̄ϕ∗(L̄−1∇f(x)) ≥ f∗(∇f(x⋆)) + ⟨x⋆,∇f(x)⟩, (21)

where we have used the fact that ∇f(x⋆) = 0, ∇ϕ∗(0) = 0, ϕ∗(0) = 0 and x ∈ ∂f∗(∇f(x)), since f is convex. Taking
once again the convex gradient inequality between points ∇f(x⋆) and ∇f(x), we now have:

f∗(∇f(x⋆)) ≥ f∗(∇f(x))− L−1L̄ϕ∗(L̄−1∇f(x)) + ⟨x− L−1∇ϕ∗(L̄−1∇f(x)),−∇f(x)⟩, (22)

with the same reasoning as before. Summing now (21) and (22) and rearranging we obtain the claimed result.

C.4. Proof of Theorem 3.6

Proof. We begin as in the classical analysis of gradient descent by using the Pythagorean theorem:

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2L−1⟨∇ϕ∗(L̄−1∇f(xk)), xk − x⋆⟩+ ∥L−1∇ϕ∗(L̄−1∇f(xk))∥2. (23)

We further have:

−L−1⟨∇ϕ∗(L̄−1∇f(xk)), xk − x⋆⟩ = −L−1h
∗′(∥L̄−1∇f(xk)∥)
∥L̄−1∇f(xk)∥ ⟨L̄−1∇f(xk), xk − x⋆⟩

≤ −L−2h
∗′(∥L̄−1∇f(xk)∥)
∥L̄−1∇f(xk)∥ ⟨L̄−1∇f(xk),∇ϕ∗(L̄−1∇f(xk))⟩

= −∥L−1∇ϕ∗(L̄−1∇f(xk))∥2, (24)

where in the inequality we used Proposition 3.5 and in the equalities the fact that ∇ϕ∗(L−1∇f(xk)) =
h∗′(∥L−1∇f(xk)∥)

∥L−1∇f(xk)∥ L̄−1∇f(xk) from Lemma 1.3. In the inequality, we also used the fact that h∗′(t) ≥ 0 for t ≥ 0.
Indeed, by convexity, we have that:

h∗(0) ≥ h∗(t)− h∗′(t)t⇐⇒ h∗′(t)t ≥ h∗(t)− h∗(0),

implying that h∗′(t) ≥ 0 for all t ≥ 0. Plugging now (24) into (23), we obtain

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − L−1⟨∇ϕ∗(L̄−1∇f(xk)), xk − x⋆⟩ ≤ ∥xk − x∗∥2 − ∥L−1∇ϕ∗(L̄−1∇f(xk))∥2, (25)

which shows the Fejér monotonicity of {xk}k∈N0
w.r.t. x⋆ ∈ argmin f . Since (L̄h)∗ = L̄ ⋆ h∗ and h is an even function,

we have that (L̄ϕ)∗ = L̄ ⋆ (h∗ ◦ ∥ · ∥). In light of Proposition 2.2, we have that f∗ − L−1(L̄ϕ)∗ is a convex function.
Now, for any x, x̄ ∈ Rn, from the convex subgradient inequality for this function, between points ∇f(x) ∈ dom ∂f∗ and
∇f(x̄) ∈ dom ∂f∗ we have:

(f∗ − L−1(L̄ϕ)∗)(∇f(x)) ≥ (f∗ − L−1(L̄ϕ)∗)(∇f(x̄)) + ⟨x̄−∇(L−1(L̄ϕ)∗)(∇f(x̄)),∇f(x)−∇f(x̄)⟩,

where we have moreover used the fact that x̄ ∈ ∂f∗(∇f(x̄)). Therefore,

D(L̄ϕ)∗(∇f(x),∇f(x̄)) = (L̄ϕ)∗(∇f(x))− (L̄ϕ)∗(∇f(x̄))− ⟨∇(L̄ϕ)∗(∇f(x̄)),∇f(x)−∇f(x̄)⟩
≤ L[f∗(∇f(x))− f∗(∇f(x̄))− ⟨x̄,∇f(x)−∇f(x̄)⟩]
= LDf (x̄, x)

where Dg denotes the Bregman divergence associated with g and the equality follows by the definition of the convex
conjugate.

Thus, (Maddison et al., 2021, Assumption 3.1) holds for k = (L̄ϕ)∗. Therefore, substituting from (Maddison et al., 2021,
Equation (41)), we obtain (L̄ϕ)∗(∇f(xk+1)) ≤ (L̄ϕ)∗(∇f(xk)) for all k ∈ N0 and since h∗ is an increasing function on
R+ from Lemma 1.3,

L̄h∗(L̄−1∥∇f(xk+1)∥) ≤ L̄h∗(L̄−1∥∇f(xk)∥) =⇒ ∥∇f(xk+1)∥ ≤ ∥∇f(xk)∥. (26)
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and thus we proved that the norm of the gradient of f monotonically decreases along the iterates.

We now return to the Fejér-type inequality (25):

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − L−1h
∗′(∥L̄−1∇f(xk)∥)
∥L̄−1∇f(xk)∥ ⟨L̄−1∇f(xk), xk − x⋆⟩.

Using the convex gradient inequality for f we further have:

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − L−1L̄−1h
∗′(∥L̄−1∇f(xk)∥)
∥L̄−1∇f(xk)∥ (f(xk)− f⋆).

Summing up now the inequality above we obtain:

K∑
k=0

L−1L̄−1h
∗′(∥L̄−1∇f(xk)∥)
∥L̄−1∇f(xk)∥ (f(xk)− f⋆) ≤ ∥x0 − x⋆∥2,

which after utilizing the fact that

∥L̄−1∇f(xk+1)∥ ≤ ∥L̄−1∇f(xk)∥ ∀k ∈ N0 =⇒ h∗′(∥L̄−1∇f(xk)∥)
∥L̄−1∇f(xk)∥ ≥ h∗′(∥L̄−1∇f(x0)∥)

∥L̄−1∇f(x0)∥ ∀k ∈ N0,

since h∗′(x)
x is decreasing on R+, implies that

(K + 1)L−1h
∗′(∥L̄−1∇f(x0)∥)

∥∇f(x0)∥ min
0≤k≤K

(f(xk)− f⋆) ≤ ∥x0 − x⋆∥2.

This is the claimed result, since the function values decrease along the iterates of the algorithm from (18).

C.5. Proof of Theorem 3.7

In light of Proposition 2.2, f = infy∈Rn L̄(L−1 ⋆ ϕ)(· − y) + ξ(y) for some ξ : Rn → R. Since f is moreover convex in
this setting and domϕ = Rn, we can take ξ to be convex and lsc from (Laude & Patrinos, 2025, Proposition 4.1). In order
to prove our result, we will resort to a nonlinear proximal point interpretation of (2) with a strongly convex prox-kernel.
We therefore consider the following iteration:

xk+1 = argmin
y∈Rn

L̄(L−1 ⋆ ϕ)(xk − y) + ξ(y). (27)

From (Laude & Patrinos, 2025, Proposition 3.9 (ii)), since domϕ = Rn, we have that

∇f(xk) = ∇( inf
y∈Rn

L̄(L−1 ⋆ ϕ)(xk − y) + ξ(y)) = L̄∇ϕ(L(xk − xk+1)),

which directly implies that xk+1 = xk −L−1∇ϕ∗(L̄−1∇f(xk)) and the claimed equivalence between the two schemes is
established. Using this result we can now prove a certain three-point-like property for the iterates generated by (2).
Lemma C.1. Let {xk}k∈N0

be the sequence of iterates generated from (27). Then, the following inequality holds for all
x ∈ Rn:

ξ(xk+1) ≤ ξ(x)− L̄[(L−1 ⋆ ϕ)(xk − xk+1)− (L−1 ⋆ ϕ)(xk − x)]. (28)

Proof. By the optimality conditions for (27), we have that

0 ∈ −L̄∇ϕ(L(xk − xk+1)) + ∂ξ(xk+1).

Now, by the convex subgradient inequality for ξ, with uk+1 ∈ ∂ξ(xk+1), we have that

ξ(x) ≥ ξ(xk+1) + ⟨uk+1, x− xk+1⟩
= ξ(xk+1) + L̄⟨∇ϕ(L(xk − xk+1)), x− xk+1⟩
= ξ(xk+1) + L̄L−1⟨∇ϕ(L(xk − xk+1)), L(x− xk) + L(xk − xk+1)⟩
≥ ξ(xk+1) + L̄[(L−1 ⋆ ϕ)(xk − xk+1)− (L−1 ⋆ ϕ)(xk − x)]
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where the first equality follows by the inclusion above and the second by simple algebraic manipulations. The final
inequality follows by using the convex gradient inequality for ϕ between points L(xk − x) and L(xk − xk+1). Therefore,
the claimed result follows by rearranging.

Now, we move on to the proof of our main theorem. It is inspired by the proof of (Doikov & Nesterov, 2020), where we
have also utilized the fact that ϕ is 2-subhomogeneous.

Proof. As established above, we consider the sequence of iterates generated by (27). In light of Lemma C.1 and since
ϕ ≥ 0 we have for any x ∈ Rn:

ξ(xk+1) ≤ ξ(x) + L̄(L−1 ⋆ ϕ)(xk − x). (29)

Now consider an arbitrary increasing sequence {Ak}k∈N0 with Ak > 0 and A0 = 0. We denote by ak+1 := Ak+1 − Ak

and by taking x := ak+1x
⋆+Akx

k

Ak+1
we have xk − x = ak+1

Ak+1
(xk − x⋆). Plugging this in (29) and using the convexity of ξ we

obtain:

ξ(xk+1) ≤ ak+1

Ak+1
ξ(x⋆) + Ak

Ak+1
ξ(xk) + L̄(L−1 ⋆ ϕ)( ak+1

Ak+1
(xk − x⋆)).

Let θk := ak+1

Ak+1
≤ 1. By the subhomogeneity of ϕ we have that

ξ(xk+1) ≤ ak+1

Ak+1
ξ(x⋆) + Ak

Ak+1
ξ(xk) + θ2kL̄(L

−1 ⋆ ϕ)(xk − x⋆).

Multiplying both sides with Ak+1 we get since ak+1 = Ak+1 −Ak

Ak+1

(
ξ(xk+1)− ξ(x⋆)

)
≤ Ak

(
ξ(xk)− ξ(x⋆)

)
+

a2
k+1

Ak+1
L̄(L−1 ⋆ ϕ)(xk − x⋆).

Summing the inequality from k = 0 to k = K − 1 we obtain since A0 = 0:

AK

(
ξ(xK)− ξ(x⋆)

)
≤

K−1∑
k=0

a2
k+1

Ak+1
L̄(L−1 ⋆ ϕ)(xk − x⋆). (30)

Choosing x = xk in (29) we have

ξ(xk+1) ≤ ξ(xk).

and thus ξ(xK)− ξ(x1) ≤ 0, which implies that

f(xK) ≤ ξ(xK) ≤ ξ(x1) ≤ ξ(x1) + L̄(L−1 ⋆ ϕ)(x0 − x1) = f(x0).

The first inequality in the above display follows by the envelope representation of f , which implies that f(x) ≤ ξ(x) for
all x ∈ Rn. The equality also follows from the envelope representation, since

f(x0) = inf
y∈Rn

L̄(L−1 ⋆ ϕ)(x0 − y) + ξ(y) = L̄(L−1 ⋆ ϕ)(x0 − x1) + ξ(x1)

from (27). Thus we can further bound (30):

AK

(
ξ(xK)− ξ(x⋆)

)
≤ D0

K−1∑
k=0

a2
k+1

Ak+1
.

We choose Ak = k2 and by using the fact that
∑K

k=1
a2
k

Ak
≤ 4K (Doikov & Nesterov, 2020, Equation (35)):

AK

(
ξ(xK)− ξ(x⋆)

)
≤ 4D0K.

Dividing by AK we obtain:

ξ(xK)− ξ(x⋆) ≤ 4D0

K
.

Noting that f(xK) ≤ ξ(xK), from the envelope representation of f , and ξ(x⋆) = f(x⋆) we obtain the desired result.
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C.6. Proof of Lemma 3.8

Proof. Fix x ∈ R \ {0} and consider the function g(θ) := cosh(θx) − 1 − θ2(cosh(x) − 1). If this function is at most
nonpositive for θ ∈ [0, 1], then the claim is proven. Note that g(0) = 0 and g(1) = 0. Moreover, g′(θ) = x sinh(θx) −
2θ(cosh(x)−1) and thus g′(0) = 0. Now, g′′(θ) = x2 cosh(θx)−2 cosh(x)+2 and thus g′′(0) = x2+2−2 cosh(x) < 0,
which further implies that 0 is a local maximum. Therefore, there exists a θ̄ ∈ (0, 1] such that g(θ) < g(0) = 0 for all
θ ∈ [0, θ̄), which implies that if we prove that g(θ) ̸= 0 for all θ ∈ (0, 1) we are done.

Let us assume now that there exists a θ∗ ∈ (0, 1) such that g(θ∗) = 0. Then, by Rolle’s theorem, there must exist two
critical points for g in (0, 1), one in (0, θ∗) and one in (θ∗, 1). We have that

g′(θ) = 0 ⇐⇒ sinh(θx) = 2θ
cosh(x)− 1

x
.

Setting y = θx the equation above is the same as

sinh(y) = 2
cosh(x)− 1

x2
y = αy,

which has exactly three solutions: y1 < 0, y2 = 0, y3 > 0, since 2 cosh(x) > 2+ x2 for x ̸= 0. Without loss of generality
we assume that x > 0 and thus we get that there exists only one θ > 0 such that g′(θ) = 0, which is a contradiction.

D. Details on the second-order condition
In this section we provide further details on the second-order condition Definition 2.4. We complement the discussion in
Section 2 by showing that the norm-coercivity condition on the forward operator in Definition 2.4 is in fact mild even for
functions ϕ with full domain.

Proposition D.1. Let ϕ = h ◦ ∥ · ∥ such that h ∈ C1(R) satisfies Assumption 1.1. If there exists some C > 0 such that

∥∇f(x)∥ ≤ L̄|h′(L∥x∥)| (31)

for all x such that ∥x∥ ≥ C, then
lim

∥x∥→∞
∥TδL−1,L̄−1(x)∥ = ∞,

for all δ < 1.

Proof. In the following we assume that ∥x∥ is large enough such that the assumption of the proposition holds. We have
that

L̄−1∥∇f(x)∥ ≤ |h′(L∥x∥)| ⇒ h∗′(L̄−1∥∇f(x)∥) ≤ L∥x∥. (32)

The implication follows since h(0) ≥ h(t) − h′(t)t, meaning that h′(t) ≥ 0 for t ≥ 0 and thus |h′(t)| = h′(t) on this
interval implying h∗′(|h′(t)|) = t. Now, by the reverse triangle inequality:

∥TδL−1,L̄−1(x)∥ ≥ ∥x∥ − δL−1|h∗′(L̄−1∥∇f(x)∥)|
≥ ∥x∥(1− δ),

where the second inequality follows by (32). Therefore, since δ < 1, lim∥x∥→∞ ∥TδL−1,L̄−1(x)∥ = ∞ and the proof is
complete.

The fact that this condition is quite mild can be seen by choosing ϕ(x) = cosh(∥x∥) − 1, where we allow ∥∇f(x)∥ to
grow exponentially with ∥x∥. It is straightforward that this condition holds for example when the norm of the gradient is
bounded by some polynomial of the norm of x when ∥x∥ is large enough.

We next show that when the matrix H∇2f(x) is symmetric, the norm-coercivity property of the forward operator in
Definition 2.4 is not required in order to obtain a result similar to Proposition 2.6.
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Proposition D.2. Let f ∈ C2(Rn) be such that for all x ∈ Rn and H ∈ ∂C(∇ϕ∗)(L̄−1∇f(x)),

λmax(H∇2f(x)) ≤ LL̄ (33)

and H∇2f(x) is symmetric. Then, the following inequality holds:

⟨Tγ,L̄−1(x)− Tγ,L̄−1(x̄), x− x̄⟩ ≥ (1− γL)∥x− x̄∥2, (34)

for all x, x̄ ∈ Rn. In particular, for γ < L−1, the forward operator is strongly monotone with parameter 1− γL and thus
injective.

Proof. Note that the mapping ∇ϕ∗◦(L̄−1∇f) is locally Lipschitz, since ∇ϕ∗ is globally Lipschitz and f ∈ C2(Rn). Then,
we can invoke the generalized mean value theorem in its summation form (Facchinei & Pang, 2003, Proposition 7.1.16):
for two points x, x̄ ∈ Rn, there exist n points zi ∈ (x, x̄) and n scalars αi ≥ 0 summing to unity such that

∇ϕ∗(L̄−1∇f(x))−∇ϕ∗(L̄−1∇f(x̄)) =
n∑

i=1

αiVi(x− x̄), (35)

where Vi ∈ ∂C(∇ϕ∗ ◦ L̄−1∇f)(zi). Now, in light of (Clarke, 1990, p. 75),

∂C(∇ϕ∗ ◦ L̄−1∇f)(x)v ⊆ con{∂C(∇ϕ∗)(L̄−1∇f(x))L̄−1∇2f(x)v}

for any v ∈ Rn. Therefore, any Vi(x − x̄) can be written as L̄−1
∑d

j=1 βjHj∇2f(zi)(x − x̄), for d > 0, with Hj ∈
∂C(∇ϕ∗)(L̄−1∇f(zi)) and βj ≥ 0 summing to unity.

Taking an inner product with (x− x̄), we have that

⟨∇ϕ∗(L̄−1∇f(x))−∇ϕ∗(L̄−1∇f(x̄)), x− x̄⟩ = L̄−1
n∑

i=1

αi

d∑
j=1

βj⟨x− x̄, Hj∇2f(zi)(x− x̄)⟩

≤ L̄−1
n∑

i=1

αiL̄L∥x− x̄∥2

= L∥x− x̄∥2,

where we have used the fact that λmax(Hj∇2f(zi)) ≤ LL̄.

By multiplying the inequality above with −γ < 0 and then adding ∥x− x̄∥2 to both sides we obtain:

∥x− x̄∥2 − ⟨γ∇ϕ∗(L̄−1∇f(x))− γ∇ϕ∗(L̄−1∇f(x̄)), x− x̄⟩ ≥ (1− γL)∥x− x̄∥2,

implying that

⟨Tγ,L̄−1(x)− Tγ,L̄−1(x̄), x− x̄⟩ ≥ (1− γL)∥x− x̄∥2,

which is the claimed result.

D.1. Examples

We now move on to providing examples of functions satisfying Definition 2.4. We consider the reference functions ϕ1(x) =
cosh(∥x∥)−1, ϕ2(x) = exp(∥x∥)−∥x∥−1 and ϕ3(x) = −∥x∥−ln(1−∥x∥), which are generated by the (1-dimensional)
kernel functions h1(x) = cosh(x)− 1, h2(x) = exp(|x|)− |x| − 1 and h3(x) = −|x| − ln(1− |x|).
We first recall the preconditioner ∇ϕ∗ and its Jacobian ∇2ϕ∗ for general isotropic reference functions.

∇ϕ∗i (y) = h∗i
′(∥y∥)sgn(y) ∀y ∈ Rn

and

∇2ϕ∗i (y) = h∗i
′′(∥y∥) yy

⊤

∥y∥2 +
h∗i

′(∥y∥)
∥y∥

(
I − yy⊤

∥y∥2
)

∀y ∈ Rn \ {0}

and ∇2ϕ∗i (y) = h∗i
′′(∥y∥)I otherwise. For ease of presentation we denote ai(y) = h∗i

′′(∥y∥) and bi(y) =
h∗
i
′(∥y∥)
∥y∥ .
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Table 2. Anisotropic smoothness constants for the examples of Appendix D.1

.

ϕ1 ϕ2 ϕ3

Lnorm
21/3

√
3

L̄1/3

22/3

L̄1/3

24/3

3L̄1/3

Llogistic
∥α∥2√

16L̄2 + ∥α∥2
∥α∥2

4L̄+ ∥α∥
L̄∥α∥2 + ∥α∥3
4(L̄+ ∥α∥)2

Example D.3 (Norm to power). Let f(x) = 1
4∥x∥4. Then, f is (L, L̄)-anisotropically smooth relative to ϕi for any L̄ > 0

and L > Lnorm from the first row of Table 2.

Proof. We first consider the more general f(x) = 1
p∥x∥p with p ≥ 4. The gradient and Hessian of f are given respectively

by
∇f(x) = ∥x∥p−2x, ∇2f(x) = ∥x∥p−2I + (p− 2)∥x∥p−4xx⊤. (36)

The second-order condition then involves the following quantity:

∇2ϕ∗i (L̄
−1∇f(x)) = ai(L̄

−1∥∇f(x)∥)∇f(x)∇f(x)
⊤

∥∇f(x)∥2 + bi(L̄
−1∥∇f(x)∥)

(
I − ∇f(x)∇f(x)⊤

∥∇f(x)∥2
)

= ai(L̄
−1∥x∥p−1)

xx⊤

∥x∥2 + bi(L̄
−1∥x∥p−1)

(
I − xx⊤

∥x∥2
)
.

We thus have:

∇2ϕ∗i (L̄
−1∇f(x))∇2f(x) = (p− 1)ai(L̄

−1∥x∥p−1)∥x∥p−2 xx
⊤

∥x∥2 + bi(L̄
−1∥x∥p−1)∥x∥p−2

(
I − xx⊤

∥x∥2
)
.

The largest eigenvalue of this (symmetric) matrix is

λmax(∇2ϕ∗i (L̄
−1∇f(x))∇2f(x)) = max

{
(p− 1)ai(L̄

−1∥x∥p−1), bi(L̄
−1∥x∥p−1)

}
∥x∥p−2. (37)

and for all the reference functions we consider in this subsection, (p − 1)ai(L̄
−1∥x∥p−1) ≥ bi(L̄

−1∥x∥p−1). Therefore
the inequality (5) dictates (p− 1)ai(L̄

−1∥x∥p−1)∥x∥p−2 < LL̄ for all x ∈ Rn.

Now we specialize to each of the reference functions we consider as well as take p = 4.

For ϕ1, ϕ2 and ϕ3, we obtain the conditions

ϕ1 :
3∥x∥2√
L̄2 + ∥x∥6

< L, ϕ2 :
3∥x∥2

L̄+ ∥x∥3 < L, ϕ3 :
3L̄∥x∥2

(L̄+ ∥x∥3)2 < L

for which the left-hand sides are maximized at ∥x∥ = (2L̄2)1/6, ∥x∥ = (2L̄)1/3 and ∥x∥ = ( L̄2 )
1/3 respectively. Plugging

these values in yields the resulting lower bounds Lnorm in Table 2.

Since in every case H∇2f(x) is a symmetric matrix, it follows from Proposition D.2 that the operator TδL−1,L̄−1 is
injective for any δ < 1. This implies the anisotropic smoothness of f relative to ϕ3 in light of Proposition 2.9 since domϕ3
is bounded. For ϕ1 and ϕ2 the result follows from Proposition 2.9 by the reasoning in Remark 2.10.

We now move on to the logistic loss function.
Example D.4. Let f(x) = log(1 + exp(−α⊤x)). Then, f is (L, L̄)-anisotropically smooth relative to ϕi for any L̄ > 0
and L > Llogistic defined in the second row of Table 2.

Proof. The gradient and the hessian of f are given respectively by

∇f(x) = − α

1 + exp(α⊤x)
, ∇2f(x) =

αα⊤

exp(−α⊤x)(1 + exp(α⊤x))2
. (38)
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In this case the second-order condition becomes

ai(L̄
−1∇f(x)) ∥α∥2

exp(−α⊤x)(1 + exp(α⊤x))2
< LL̄. (39)

The results from Table 2 for ϕ1, ϕ2 and ϕ3 then follow respectively from

∥α∥2
(1 + exp(−α⊤x))

√
L̄2(1 + exp(α⊤x))2 + ∥α∥2

≤ ∥α∥2√
16L̄2 + ∥α∥2

< L,

∥α∥2
(L̄(1 + exp(α⊤x)) + ∥α∥)(1 + exp(−α⊤x))

≤ ∥α∥2
4L̄+ ∥α∥ < L,

L̄∥α∥2
(L̄(1 + exp(α⊤x)) + ∥α∥)2 exp(−α⊤x)

≤ L̄∥α∥2 + ∥α∥3
4(L̄+ ∥α∥)2 < L.

Note that in this case as well, H∇2f(x) is a symmetric matrix and it follows from Proposition D.2 that the operator
TδL−1,L̄−1 is injective for any δ < 1. The growth condition in Proposition 2.9 is satisfied automatically, since f is
bounded.

D.2. Gradient clipping

We now consider the case that ϕ = 1
2∥ · ∥2 + δB(0,1)(·). By (Themelis et al., 2019, p. 404), the generalized Jacobian of the

preconditioner is given by

∂C(∇ϕ∗)(y) =


{I}, if ∥y∥ < 1,
con{I,Πy⊥}, if ∥y∥ = 1,
{∥y∥−1Πy⊥}, if ∥y∥ > 1.

where Πy⊥ denotes the projection matrix onto the orthogonal complement of the subspace spanned by y. The second-order
condition (5) then becomes

λmax(∇2f(x)) < LL̄, if ∥∇f(x)∥ < L̄,
λmax

(
α∇2f(x) + (1− α)L̄Π∇f(x)⊥∇2f(x)

)
< LL̄, if ∥∇f(x)∥ = L̄,

λmax(Π∇f(x)⊥∇2f(x)) < L∥∇f(x)∥, if ∥∇f(x)∥ > L̄,

for all α ∈ [0, 1]. In particular, for α = 1, the second condition becomes ∇2f(x) ≺ LL̄I , and using the fact that
λmax(Π∇f(x)⊥) = 1, we also have λmax((αI + (1− α)Π∇f(x)⊥)∇2f(x)) ≤ λmax(∇2f(x)) such that this clause can be
merged with the first case. To rewrite the last case in terms of symmetric matrices, we note that λmax(Π∇f(x)⊥∇2f(x)) =
λmax(Π

2
∇f(x)⊥∇2f(x)) = λmax(Π∇f(x)⊥∇2f(x)Π∇f(x)⊥) where the last equality follows by (Horn & Johnson, 2012,

Theorem 1.3.22). The second-order condition is therefore{
∇2f(x) ≺ LL̄I, if ∥∇f(x)∥ ≤ L̄,
Π∇f(x)⊤∇2f(x)Π∇f(x)⊤ ≺ L∥∇f(x)∥I, if ∥∇f(x)∥ > L̄.

Note that the first case is akin to standard L-smoothness while the second case is reminiscent of (L0, L1)-smoothness with
L0 = 0 but restricted to some subspace. In particular, if ∇2f(x) = C(x)∇f(x)∇f(x)⊤ for some C : Rn → R, then the
second case is always satisfied, and we only require that ∇2f(x) ≺ LL̄I for ∥∇f(x)∥ ≤ L̄. This is the case for both of
the examples considered in Appendix D.1.
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