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Abstract

In the modeling of discrete distributions using log-
linear models, the model selection process is equiv-
alent to imposing zero-value constraints on a sub-
set of natural parameters, which is an established
concept in information geometry. This zero-value
constraint has been implicitly employed, from clas-
sic Boltzmann machines to recent many-body ap-
proximations of tensors. However, in theory, any
constant value other than zero can be used for these
constraints, leading to different submanifolds onto
which the empirical distribution is projected, a pos-
sibility that has not been explored. Here, we inves-
tigate the asymptotic behavior of these constraint
values from the perspective of information geom-
etry. Specifically, we prove that the optimal value
converges to zero as the size of the support of
the empirical distribution increases, which corre-
sponds to the size of the input tensors in the context
of tensor decomposition. While our primary focus
is on many-body approximation of tensors, it can
serve as a basis for extending to a wide range of
log-linear modeling applications.

1 INTRODUCTION

The energy-based model is widely used in machine learning
areas [LeCun et al., 2006, Jaynes, 1957]. Since the exponen-
tial family is in the energy-based model, it covers a wide
variety of classical distributions for continuous variables,
such as Gaussian, exponential, and gamma distributions
[MacKay, 2003]. Moreover, the log-linear model, which is
also in the exponential family, covers all the positive proba-
bility distributions over a finite space [Shpitser et al., 2013].
Recently, the log-linear model has been used to model distri-
butions over partially ordered sets (posets) and its dually-flat
manifold structure has been analyzed in an information geo-

metric manner [Sugiyama et al., 2017].

The log-linear model on a partial-order structure (LPS) pro-
vides an alternative approach to decomposition for positive
tensors, which avoids the optimization difficulties associ-
ated with the common low-rank based decompositions by
replacing the squared error loss with the Kullback-Leibler
(KL) divergence [Sugiyama et al., 2018]. Each positive ten-
sor is treated as a discrete distribution with a partial-order
structure. It is parameterized by the natural parameters of
the exponential family, and the optimization is realized as
a projection onto a model submanifold constrained by a
subset of these natural parameters. We can capture the non-
trivial structure of positive tensors after the projection, one
of which is the many-body tensor approximation that cap-
tures a hierarchy of mode interactions [Ghalamkari et al.,
2023]. The mode interaction selection based on many-body
approximation can be regarded as the feature selection in
distribution learning.

In this paper, we focus on many-body approximation, as it
is not only a key application of LPS but also includes a wide
variety of graphical models such as standard and high-order
Boltzmann machines [Ackley et al., 1985, Sejnowski, 1986].
In many-body approximation, specifying the model subman-
ifold, which can be viewed as a model selection problem or
hyperparameter tuning, typically involves imposing the zero-
value constraint on a subset of the natural parameters. In
Boltzmann machines, this process corresponds to selecting a
graphical model, where a zero-value constraint is implicitly
applied. Specifically, removing an edge between nodes, each
of which represents a random variable, effectively sets the
corresponding natural parameter to zero. However, from an
information geometric perspective, these constraints could,
in principle, take any constant value other than zero. Despite
this flexibility, this possibility remains largely unexplored.

We provide a formal description and a simple example below.
In the modeling based on the LPS, including many-body
approximation and Boltzmann machines, we first select the
model submanifold, also known as an e-flat submanifold,



described as S0B =
{
Q ∈ S | θv = 0 for all v ∈ Ω+

d \B
}

,
where S denotes the set of distributions, and θv represents
the natural parameters of the LPS (exponential family). We
define Ωd = [I1]× · · · × [Id], where [Ik] = {1, 2, . . . , Ik}.
To exclude the normalization constant, we often work in
the reduced space Ω+

d = Ωd \ {(1, 1, . . . , 1)}, and consider
a subset B ⊆ Ω+

d . The parameters in B are optimized by
minimizing the KL divergence.

Here it is clear from the equation that this model subman-
ifold allows not only S0B with the “θv = 0” constraint but
also ScB with the “θv = c” constraint for any constant value
c, which may help to decrease the KL error further. For
example, let us consider decomposing the following toy
matrix: 

833 1 2 4 7 4 8
430 33 5 1 711 112 4
39 6 29 2 9 3 121
2 2 8 6 311 10 122

 .
We choose the decomposition basis as one body natural
parameters, which means θ1j and θi1 are selected as decom-
position basis. If we choose the submanifold as S0B1

, where
B1 is the index set of one-body natural parameters, the KL
error is 0.46 and the RMSE is 0.56, and the projection result
is a rank-1 matrix as follows:

396.5
598.2
96.5
212.8

 [1.0 0.03 0.03 0.01 0.8 0.1 0.2
]

=


396.5 11.9 11.9 4.0 317.2 39.7 79.3
598.2 17.95 17.95 5.98 478.6 59.8 119.6
96.5 2.9 2.9 0.97 77.2 9.65 19.3
212.8 6.38 6.38 2.13 170.2 21.3 42.56

 .
In contrast, if we choose S0.54B1

as the model submanifold,
the resulting KL error is 0.19 and RMSE is only 0.24, which
is a half of the result of S0B1

. The reconstruction matrix is in
the following.
731.1 17.6 12.5 2.2 88.7 4.3 2.55
555.05 22.96 27.99 8.49 583.33 48.7 49.49
14.95 1.06 2.22 1.16 136.1 19.5 34
2.9 0.35 1.27 1.14 229.9 56.5 169

 .
Please note that it is no longer rank-1, while the number
of free parameters is the same with the case of S0B1

. This
example highlights the necessity of studying the subman-
ifold selection problem. For the detail explanation of this
example, please refer to Appendix A.5.

To summarize, our contribution is threefold:

• We theoretically prove that, for any order many-body
approximation, the optimal e-flat model submanifold
converges to S0B as the tensor size (the number of en-
tries of a tensor) increases.

• We present an optimal e-flat submanifold searching
algorithm. This algorithm is formulated as a convex
optimization, hence it always finds the globally optimal
solution of a KL divergence minimization problem
with linear constraint conditions. This algorithm can be
used to improve the performance of small or medium-
scale datasets for tensor decomposition or distribution
learning for tabular data.

• We provide and empirical evaluation on synthetic and
real-world datasets and show the consistency between
theory and experimental results.

2 PRELIMINARIES

2.1 FORMULATION

We start with a positive dth-order input tensor
X ∈ RI1×···×Id

>0 and normalize it as P̂i1,...,id =

Xi1,...,id/
∑I1

j1=1 . . .
∑Id

jd=1 Xj1,...,jd . For the remainder
of this paper, we consistently work on the normalized
tensor P̂ as the input tensor. We can treat any normalized
tensor as a discrete distribution (or a probabilistic vector)
with the sample space Ωd = [I1] × · · · × [Id], where
[Ik] = {1, 2, . . . , Ik}. Hence, it is exactly modeled by the
log-linear model:

logPi1,...,id =

i1∑
i′1=1

· · ·
id∑

i′d=1

θi′1,...,i′d (1)

for each (i1, . . . , id) ∈ Ωd, where each θi′1,...,i′d ∈ R corre-
sponds to a natural parameter. The normalization is exposed
on θ⊥ with ⊥ = (1, . . . , 1) as

θ⊥ = − log

 ∑
(i1,...,id)∈Ω+

d

exp

 i1∑
i′1=1

· · ·
id∑

i′d=1

θi′1,...,i′d

 .

(2)
For example of log-linear model, please refer to Ap-
pendix A.6. Thus we often work on the space Ω+

d =
Ωd\{(1, 1, . . . , 1)} by excluding the normalization constant.
In addition to natural parameters, we also have another set
of parameters called expectation parameters, denoted as a
vector (η)i1,...,id . Each value of the η-parameter vector is
written as follows:

ηi1,...,id =

I1∑
i′1=i1

· · ·
Id∑

i′d=id

Pi′1,...,i
′
d
, (3)

and uniquely identifies a normalized positive tensor P by
the following equation.

Pi1,...,id =
∑

(i′1,...,i′d)∈Ωd

µ
i′1,...,i

′
d

i1,...,id
ηi′1,...,i′d , (4)



where µ is the Möbius function defined inductively as

µ
i′1,...,i

′
d

i1,...,id
=


1 ik = i′k,∀k ∈ [d],

−
∏d

k=1

∑i′k−1
jk=ik

µj1,...jd
i1,...,id

ik < i′k,∀k ∈ [d],

0 otherwise.
(5)

An example of Equation (4) is presented in Appendix A.4.
The normalization condition is realized as η1,...,1 = 1. Both
of (θ)i1,...,id and (η)i1,...,id serve as coordinate systems for
the set of distributions.

2.2 LEGENDRE DECOMPOSITION

We introduce the Legendre decomposition [Sugiyama et al.,
2018], which decomposes a given tensor via log-linear mod-
eling introduced in the previous subsection. Let S be the set
of all normalized positive tensors. When we have an index
set B ⊆ Ω+

d as a decomposition basis, the corresponding
submanifold S0B is given as

S0B =
{
Q ∈ S | θi1,...,id = 0 for all (i1, . . . , id) ∈ Ω+

d \B
}
.

Legendre decomposition is formulated as optimization that
finds PB,0 in the submanifold S0B minimizing the following
KL divergence:

PB,0 = argmin
R∈S0

B

DKL(P̂,R),

where the KL divergence from P̂ ∈ S toR ∈ S is given as

DKL(P̂,R) =
I1∑

i1=1

. . .

Id∑
id=1

P̂i1,...,id log
P̂i1,...,id

Ri1,...,id

.

It is known that the derivative of the KL divergence is

∂

∂θi1,...,id
DKL(P̂,R) = ηi1,...,id − η̂i1,...,id (6)

for every (i1, . . . , id) ∈ B, where (η)i1,...,id and (η̂)i1,...,id
are the expectation parameters of R and P̂ , respectively.
This equation implies that the KL divergence is minimized
if and only if ηi1,...,id = η̂i1,...,id for all (i1, . . . , id) ∈ B.
In information geometry, this optimization problem can be
regarded as the m-projection onto the e-flat submanifold
S0B. The tensor PB,0, such that PB,0 ∈ S0B ∩ SBP̂ , always
uniquely exists, where

SBP̂ = {Q ∈ S | ηi1,...,id = η̂i1,...,id for all (i1, . . . , id) ∈ B} .
(7)

Moreover, SBP̂ is an m-flat submanifold since it imposes
constraints on the η coordinate. For the definitions of m-flat
and e-flat submanifolds, as well as the concept of projection
theory, please refer to Appendix A.1 and A.2.

2.3 MANY-BODY APPROXIMATION

Many-body approximation is a special case of Legendre
decomposition, which emphasizes the connection to the
mode interactions of tensors by explicitly incorporating
them in the modeling [Ghalamkari et al., 2023]. For each
θi1,...,id , if there are h non-one indices, we call it an h-
body parameter. For example, if we consider a 4th-order
input tensor, θ1,2,1,1 is a one-body parameter, θ4,3,1,1 is a
two-body parameter, θ1,2,4,3 is a three-body parameter and
θ5,2,4,3 is a four-body parameter.

The definition of many-body approximation can be sum-
marized in the following: For a given tensor P̂ , its h-body
approximation is the optimal solution PBh,0 such that

PBh,0 = argmin
R∈S0

Bh

DKL(P̂,R),

where the solution space S0
Bh

is given as S0Bh
=

{Q ∈ S | θi1,...,id = 0 if θi1,...,id is n (n > h)-body param-
eters of Q}. Therefore, the decomposition basis Bh is the in-
dex set composed of all i-body parameters with 1 ≤ i ≤ h,
and the inclusion relationship Bh ⊆ Bh+1 always holds.
Moreover, it is important to note that PBd,0 = P̂ .

3 THEORETICAL ANALYSIS

We theoretically analyze the behavior of c ∈ R for the e-flat
model submanifold:

ScBh
=
{
Q ∈ S | θv = c for all v ∈ Ω+

d \ Bh
}

in h-body approximation of an input tensor P̂ ∈ RI1×···×Id
>0 .

Compared with S0Bh
that we mentioned in the previous sec-

tion, here c is a constant that is not limited to 0. The re-
sult of m-projection of P̂ onto the submanifold ScBh

is still
formulated as PBh,c = argminR∈Sc

Bh

DKL(P̂,R) and, ac-
cording to the projection theory, it is always guaranteed that
PBh,c not only exists but is also unique. For further details,
refer to Appendix A.3. The objective of our theoretical anal-
ysis is to find out whether there exists an e-flat submanifold
Sc0Bh

and its m-projection result PBh,c0 satisfying

DKL(P̂,PBh,c0) ≤ DKL(P̂,PBh,c) for all c ∈ R.

This means that there exists an optimal low-dimensional sub-
manifold Sc0Bh

which ensures that the KL divergence reaches
its minimum value under the same dimensionality, under
the fixed number h of bodies. As we show in Figure 1, each
e-flat model submanifold, ScBh

, S0Bh
, S−c

Bh
, and Sc0Bh

, has a
unique intersection with the m-flat (data) submanifold SBh

P̂
,

which corresponds to PBh,c, PBh,0, PBh,−c, and PBh,c0 ,
respectively. Please note that SBh

P̂
is defined by replacing B

with Bh in Equation (7).



Figure 1: The m-projection onto different e-flat model sub-
manifolds.

In the following, we theoretically prove that c0 exists and
converges to 0 as the size of a input tensor P̂ increases. Here,
the size of the tensor is defined as the total number of ele-
ments in the normalized tensor P̂ , simply given by

∏d
j=1 Ij .

Specifically, we primarily consider two approaches to in-
creasing the size of the tensor. The first approach involves
increasing the values of Ij for each j = 1, . . . , d, while
the second approach increases the dimensionality d of the
tensor. First, to prove the main result, we derive the closed
form of PBIj,mj

,c, which is the result of m-projection of P̂
onto a special submanifold

ScBIj,mj
=
{
Q ∈ S | θv = c for all v ∈ Ω+

d \BIj ,mj

}
.

whereBIj ,mj
= [I1]×· · ·×[Ij−1]×[mj ]×[Ij+1]×· · ·×[Id]

and [mj ] = {1, . . . ,mj} with mj ≤ Ij . Figure 2 shows an
example of the submanifold ScBI3,m3

for a 3th-order tensor.

To obtain the closed formula of PBIj,mj
,c, first we show the

following lemma.

Lemma 1. For any input tensor P̂ ∈ RI1×···×Id
>0 and its

m-projection PBIj,mj
,c onto the submanifold ScBIj,mj

, we
have

Ij∑
ij=mj

P
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id
=

Ij∑
ij=mj

P̂i1,...,ij−1,ij ,ij+1,...,id .

(8)

The proof of Lemma 1 can be found in Appendix B. This
lemma indicates that the m-projection onto the submanifold

Figure 2: The submanifold ScBI3,m3
, with BI3,m3

= [I1]×
[I2]× [m3] , [m3] = {1, . . . ,m3}.

ScBIj,mj
preserves the marginal sum over the j-th mode.

Based on the above lemma, we give the following theorem.

Theorem 1. For any input tensor P̂ ∈ RI1×···×Id
>0 , its m-

projection PBIj,mj
,c onto the submanifold ScBIj,mj

is given
as

P
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id
= P̂i1,...,ij−1,ij ,ij+1,...,id

for ij = 1, 2, . . . ,mj − 1 and

P
BIj,mj

,c

i1,...,ij−1,mj+k,ij+1,...,id
(9)

=

Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id



· exp

ck d∏
s=1
s̸=j

is


Ij−mj∑

k=0

exp

ck d∏
s=1
s ̸=j

is




−1

for k = 0, . . . , Ij −mj .

The proof can be found in Appendix B. Theorem 1 provides
the closed formula of PBIj,mj

,c, hence the closed formulae
of DKL(P̂;PBIj,mj

,c) and DKL(P̂;PBIj,mj
,0) can also be

obtained directly, facilitating the estimation of their bounds.
Because

DKL(P̂,R) =
I1∑

i1=1

. . .

Id∑
id=1

P̂i1,...,id log
P̂i1,...,id

Ri1,...,id

and the term
∑I1

i1=1 . . .
∑Id

id=1 P̂i1,...,id log P̂i1,...,id is not
related toR, we only need to consider

F (P̂;R) = −
I1∑

i1=1

. . .

Id∑
id=1

P̂i1...id logRi1,...,id .

Let smin be the value defined by the equation min(P̂) =

1/(
∏d

j=1 Ij)
smin , where the term

∏d
j=1 Ij is the total num-

ber of elements in the normalized tensor P̂ . Then it is trivial



that smin ≥ 1 always holds. Similarly, let smax be the value
satisfying max(P̂) = 1/(

∏d
j=1 Ij)

smax . Then we always
have 0 < smax ≤ 1. Furthermore, to facilitate the dis-
cussion, we assume that 0 < a ≤ Xi1,...,id ≤ b always
holds for some constant values a and b and remains un-
changed as the tensor size increases. Consequently, we have
min(P̂) ≥ a/(b

∏d
j=1 Ij) and max(P̂) ≤ b/(a

∏d
j=1 Ij).

Here we present the following theorem using the above
properties.

Theorem 2. F (P̂;PBIj,mj
,c) ≥ max {l,−l}, where

l =

c (Ij −mj) (Ij −mj + 1)
∏d

h=1
h̸=j

Ih (1 + Ih)

2d
(∏d

j=1 Ij

)smin
.

The proof of Theorem 2 can be found in Ap-
pendix B. In the following, we use F (·) and F (·)
to denote the lower and upper bounds of the func-
tion F , respectively. Consequently, this theorem estab-
lishes the lower bound of F (P̂;PBIj,mj

,c), denoted as
F (P̂;PBIj,mj

,c), which enables us to determine the range
of c that satisfies F (P̂;PBIj,mj

,c) ≥ F (P̂;PBIj,mj
,c) ≥

F (P̂;PBIj,mj
,0) ≥ F (P̂;PBIj,mj

,0). Moreover, the range
of c satisfying F (P̂;PBIj,mj

,c) ≤ F (P̂;PBIj,mj
,0) is a

subset of the complement of the range of c that satisfies
F (P̂;PBIj,mj

,c) ≥ F (P̂;PBIj,mj
,0). Based on the above

analysis, the following corollary holds.

Corollary 3. To satisfy the conditionDKL(P̂;PBIj,mj
,c) ≤

DKL(P̂;PBIj,mj
,0), for every j = 1, . . . , d, c should at

least satisfy −l ≤ c ≤ l, where

l =
2dsmax log

(∏d
j=1 Ij

)
(Ij −mj)

∏d
h=1
h̸=j

(1 + Ih)
(∏d

j=1 Ij

)smax−smin

<
2d log

(∏d
j=1 Ij

)
b2

(Ij −mj)
∏d

h=1
h̸=j

(1 + Ih) a2
. (10)

The proof of Corollary 3 can be found in Appendix B.
This corollary shows that PBIj,mj

,c0 eventually converges
to PBIj,mj

,0 as the tensor size increases. We set mj =
⌊Ij/α⌋ ≥ 1, where α is a constant that remains unchanged
as Ij increases, and ⌊·⌋ denotes the floor function. For an
index set B, |B| denotes the number of elements in B.

It is evident that

F (P̂;PBh,c) ≥ F (P̂;PBIj,mj
,c) (11)

for h = 1, . . . , d − 1 as the tensor size increases. This
holds because the KL divergence is primarily determined
by the number of parameters that can be optimized. This
implies that, if |BIj ,mj

| ≫ |Bh|, then F (P̂;PBh,c) ≥

F (P̂;PBIj,mj
,c). Accordingly, if we define the function

gh as

gh(I1, . . . , Id) =
|Bh|
|BIj ,mj

|
,

It is apparent that if one or more elements in the set
{I1, . . . , Id} increase, gh will monotonically decrease and
converge to zero. This can also be interpreted as

|BIj ,mj | ≫ |Bh|

when the tensor size is large enough. Therefore, Equa-
tion (11) follows.

Moreover, F (P̂;PB1,0) ≥ F (P̂;PBh,0) always holds be-
cause Bh ⊆ Bh+1. Therefore, once we determine the range
of c for which F (P̂;PBIj,mj

,c) ≥ F (P̂;PB1,0) holds, we
can subsequently establish that

F (P̂;PBh,c) ≥ F (P̂;PBIj,mj
,c)

≥ F (P̂;PB1,0) ≥ F (P̂;PBh,0).

[Ghalamkari and Sugiyama, 2021] shows the closed formula
of PB1,0, which is given as

PB1,0
i1,...,id

=

d∏
k=1

(
I1∑

i′1=1

· · ·
Ik−1∑

i′k−1=1

Ik+1∑
i′k+1=1

· · ·
Id∑

i′d=1

P̂i′1,...,i
′
k−1,ik,i

′
k+1,...,id

)
.

Thus, F (P̂;PB1,0) can be computed directly, allowing
us to estimate its upper bound, F (P̂;PB1,0), as given
in Equation (34) in the appendix. Consequently, the
range of c that satisfies the inequality F (P̂;PBIj,mj

,c) ≥
F (P̂;PBIj,mj

,c) ≥ F (P̂;PB1,0) ≥ F (P̂;PB1,0) can be
easily determined. As we discussed earlier, this range of c
also ensures F (P̂;PBh,c) ≥ F (P̂;PBh,0). Therefore, the
range of c that satisfies F (P̂;PBh,c) ≤ F (P̂;PBh,0) is sim-
ply a subset of the complement of this range. This leads to
the following theorem.

Theorem 4. For many-body approximation of P̂ , to satisfy
the condition DKL(P̂;PBh,c) ≤ DKL(P̂;PBh,0) for every
h = 1, . . . , d, c should at least satisfy:

− min
j=1,2,...,d

lj ≤ c ≤ min
j=1,2,...,d

lj , (12)

where

lj =
2d ((smin − 1) d+ 1) Ij log (τ) (τ)

smin

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h ̸=j

(1 + Ih) (τ)
smax

<
2d (d+ 1) Ij log (τ) b

2

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h ̸=j

(1 + Ih) (a2)
,

j = 1, . . . , d, τ =

d∏
j=1

Ij . (13)



The proof of Theorem 4 can be found in Appendix B. From
the above theorem, it is easy to observe that PBh,c0 con-
verges to PBh,0 as the tensor size increases. Please note that
this theorem can also be applied to the high-order Boltz-
mann machine, where each Ij = 2 for j = 1, . . . , d.

Moreover, it is worth mentioning that PBh,0 has the max-
imum entropy among PBh,c for all c ∈ R. This suggests
that as the tensor size increases, the m-projection selects
the point with the maximum entropy to minimize the KL
divergence, as summarized below.

Theorem 5 (Maximum Entropy Principle). Consider the
set:

P̃B =
⋃
c∈R
PB,c, PB,c = argmin

R∈Sc
B

DKL(P̂,R),

we have PB,0 ∈
⋃

c∈R PB,c and PB,0 maximizes the en-
tropy in the set P̃B.

Please note that, in this theorem, B can be any index set
that satisfies B ⊆ Ω+

d , not restricting to BIj ,mj
or Bh. The

proof of Theorem 5 and the definition of the entropy is in
Appendix B. This demonstrates that many-body approxi-
mation, as a learning model, gradually evolves into a maxi-
mum entropy model as the tensor size increases. Moreover,
it can be connected to other maximum entropy learning
models widely utilized in various machine learning do-
mains [Mezard and Montanari, 2009, Wainwright et al.,
2008].

4 SEARCHING ALGORITHM

To verify our theory, we propose an optimization algorithm
to search for the c0 value, which has been mentioned in the
previous section. Please note that our method differs from
the Legendre decomposition introduced in the preliminar-
ies, particularly in terms of the constraints and optimality
conditions.

4.1 OPTIMIZATION PROBLEM

Our optimization problem can be formulated as

PB,c0 = argmin
P∈SH

B

DKL(P̂,P),

SHB =
{
R ∈ S | θα = θβ for all α, β ∈ Ω+

d \B
}
,

(14)

This optimization problem (14) can also be recognized as an
m-projection onto the e-flat submanifold SHB . The resulting
distribution of the projection, denoted as PB,c0 , satisfies
θα = c0 for all α ∈ Ω+

d \B. According to the principles
of information geometry [Amari, 2016], the result of the
m-projection to the e-flat submanifold is guaranteed to exist
and unique. Obviously, we have the relationship ScB ⊆ SHB

Figure 3: Optimization procedure in the submanifold SHB .
P̂ is an input positive tensor, and PB,c0 is the result of the
optimization problem (14). PL is a tensor of the Lth step of
gradient decent.O is the initial point of optimization, which
is usually a uniform distribution.

for all c ∈ R. Please note that in our optimization method,
B can become any index set that satisfies B ⊆ Ω+

d , not
restricting to BIj ,mj

or Bh.

4.2 OPTIMIZATION METHOD

First we reformulate the optimization problem as follows:

argmin
P∈SH

B

F (P̂,P)

= −
I1∑

i1=1

· · ·
Id∑

id=1

P̂i1,...,id logPi1,...,id

= −
∑

(i1,...,id)∈Ωd

P̂i1,...,id

 i1∑
i′1=1

· · ·
id∑

i′d=1

θi′1,...,i′d


(15)

subject to θα = θβ for all α, β ∈ Ω+
d \B, where θα repre-

sents the θ coordinates of the tensor P ∈ SHB . Since the KL
divergence function is convex, and the constraint θα = θβ
is linear, this forms a convex optimization problem. As a
result, the optimal solution not only exists but is also unique,
aligning with the principles of information geometry that
we have previously discussed.

We use the generalized reduced gradient method [Sun and
Yuan, 2006] to solve this constrained optimization problem.
First, we select an index γ from Ω+

d \B and define Bγ = B∪
{γ}, θB = {θα | α ∈ B}, then we have θΩ+

d
= θΩ+

d \Bγ
∪

θBγ
. Moreover, from the constraint condition

SHB =
{
Q ∈ S | θα = θβ for all α, β ∈ Ω+

d \B
}
,

we obtain θα = θγ for all θα ∈ θΩ+
d \Bγ

. Therefore, we can

rewrite F as: F (θ
Ω
+
d

) = F (θΩ+
d \Bγ

, θBγ
) = F̃ (θBγ

). The



number of parameters we need to optimize is |Bγ | = |B|+1.
The gradient of θw for each w ∈ B is calculated as:

∂

∂θw
F̃ = ηw − η̂w, (16)

which is the same as that of Legendre decomposition in
Equation (6). The gradient of θγ is calculated as

∂

∂θγ
F̃ =

∑
s∈Ω+

d \Bγ

∂

∂θs
F̃ ·dθs

dθγ
+

∂

∂θγ
F̃ =

∑
s∈Ω+

d \B

(ηs−η̂s).

(17)
Equations (16) and (17) also show that the function F̃ is
minimized if and only if ηw = η̂w for all w ∈ B and∑

s∈Ω+
d \B(ηs− η̂s) = 0. However, in Legendre decomposi-

tion, the optimality condition is only given by ηw = η̂w for
all w ∈ B, which implies that

∑
s∈Ω+

d \B(ηs − η̂s) = 0 can
further reduce the KL error.

We show the pseudo-code of the above gradient method
in Algorithm 1. The time complexity of each iteration is
O(|Ωd||Bγ |), as that of computing P from (θv)v∈Bγ

(line
5 in Algorithm 1) is O(|Ωd||Bγ |) and computing (ηv)v∈Ωd

from P (line 6 in Algorithm 1) is O(|Ωd|). Thus the total
complexity is O

(
h|Ωd||Bγ |2

)
with the number of iterations

h until convergence.

Although gradient descent is an efficient approach, we
can also use the Newton method (natural gradient de-
scent) [Amari, 1998], a second-order optimization method
shown in Algorithm 2, to reduce the number of iterations
to gain efficiency. Each element of the Hessian matrix
G̃ ∈ R|Bγ |×|Bγ | of F̃ (θBγ

) is calculated as:

G̃u,v =
∂2

∂θu∂θv
F̃ = Gu,v, u, v ∈ B,

G̃γ,v =
∂

∂θv
(
∑

s∈Ω+
d \B

(ηs − η̂s)) =
∑

s∈Ω+
d \B

Gs,v, v ∈ B,

G̃v,γ =
∑

s∈Ω+
d \B

Gv,s, v ∈ B, and

G̃γ,γ =
∂

∂θγ
(
∑

s∈Ω+
d \B

(ηs − η̂s)) =
∑

s,t∈Ω+
d \B

Gs,t,

(18)
where G = (Gu,v) ∈ R|Ω+

d |×|Ω+
d | is the Hessian matrix of

F (θ
Ω
+
d

) calculated as

Gu,v(θ) =
∂ηu
∂θv

=
∂2F

∂θu∂θv

=
∑
w∈Ωd

ζ(u,w)ζ(v, w)Pw − ηuηv, (19)

where ζ(u, v) = 1 if u ≤ v and ζ(u, v) = 0 otherwise.

The time complexity of each iteration is O(|Ωd||Bγ | +
|Bγ |3), where O(|Ωd||Bγ |) is needed to compute P from

Algorithm 1 Gradient Descent Algorithm

1: procedure GRADIENTDESCENT(P̂,Bγ)
2: Initialize (θk)k∈Ω+

d
▷ e.g., θk = 0 for all k

3: repeat
4: for each t ∈ Bγ = {v | v ∈ B} ∪ {γ} do
5: Compute P using current (θt)t∈Bγ

6: Update ηk for each k ∈ Ω+
d from P

7: θv ← θv − ϵ(ηv − η̂v), v ∈ B
8: θγ ← θγ − ϵ

(∑
s∈Ω+

d \B(ηs − η̂s)
)

9: end for
10: until convergence of (θt)t∈Bγ

11: end procedure

Algorithm 2 Natural Gradient Algorithm

1: procedure NATURALGRADIENT(P̂,Bγ)
2: Initialize (θk)k∈Ω+

d
▷ e.g., θk = 0 for all k

3: repeat
4: Compute P using current (θt)t∈Bγ

5: Update ηk for each k ∈ Ω+
d from P

6: Compute matrix G and G̃ using ηk, k ∈ Ω+
d

7: Compute

∆η ←
(

ηv − η̂v∑
s∈Ω+

d \B(ηs − η̂s)

)
, v ∈ B

8: Invert matrix G̃ to get G̃−1

9: θ ← θ − ϵG̃−1∆η
10: until convergence of (θt)t∈Bγ

11: end procedure

θ and O
(
|Bγ |3

)
to compute the inverse of G̃, resulting

in the total complexity O
(
h′|Ωd||Bγ |+ h′|Bγ |3

)
with the

number of iterations h′ until convergence. We illustrate the
optimization procedure in Figure 3.

5 NUMERICAL EXPERIMENTS

We numerically examine our theoretical results using syn-
thetic and real-world datasets. Experiments were conducted
on Ubuntu 22.04.4 LTS with 88 CPU threads of 2.20GHz
Intel Xeon E7-8880 v4 and 3TB of memory.

5.1 EXPERIMENTS SETUP

Synthetic datasets. We generate tensors from the uni-
form continuous distribution in [5, 8]. In experiment (a),
we progressively increase the tensor size from (3, 3, 3) to
(3, 3, 3, 3), adding one dimension at a time until reaching
(3, 3, 3, 3, 3, 3, 3, 3, 3, 3). In experiment (b), we expand the
tensor size from (2, 2, 2, 2, 2) to (3, 3, 3, 3, 3), continuing
this process until it reaches (10, 10, 10, 10, 10).

Real-world datasets. In the first real data experiment, we
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(a) Uniform distribution with increasing dimensionality.
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(c) Butterfly figure with increasing dimensionality.
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Figure 4: Experimental results for uniform distribution and butterfly figure. (a, c) The horizontal axis is the total dimension
for the input tensor, with each mode having 3 elements. (b, d) The horizontal axis is the value of s, and the total size of the
input tensor is (s, s, s, s, s). The vertical axis shows the value of c0 or the log value of c0 in PBh,c0 .

utilize the TokyoTech hyperspectral image data set [Monno
et al., 2015, 2017]. For each image, it is a (500, 500, 31)
tensor, where each mode represents the width, height, and
31-band hyperspectral images from 420 to 720 nm at 10
nm intervals, respectively. We choose the first figure in the
dataset, which is a butterfly image, and each pixel value
lies within the range [0.00265, 1]. In experiment (c), a sub-
tensor was extracted from the original tensor, corresponding
to the segment [249:330, 249:330, 1:9], and then extracted
it and reshaped into a (3, 3, 3) tensor. This sub-tensor was
subsequently expanded and reshaped into a (3, 3, 3, 3) ten-
sor, with the process continuing until it reached the final
shape of (3, 3, 3, 3, 3, 3, 3, 3, 3, 3).

Furthermore, in experiment (d), from the original ten-
sor, we extracted a sub-tensor defined by the segment
[250 : 350, 250 : 350, 1 : 10], which was subsequently
reshaped into a (10, 10, 10, 10, 10) tensor. To progressively
enlarge the tensor, we first extracted a smaller sub-tensor
of size (2, 2, 2, 2, 2) and then expanded it to (3, 3, 3, 3, 3).
We continued this process incrementally until the tensor
reached its final size of (10, 10, 10, 10, 10). In the second
real data experiment, we used the Columbia Object Image
Library (COIL-100) dataset [Nene et al., 1996]; for each
image, it can be regarded as a tensor of size (128, 128, 3).
We randomly picked two images and combined them as
a (128, 128, 3, 2) tensor, where each mode represents the
width, height, color, and image index, respectively. Each
pixel value falls within the range [1, 255]. We increase the
tensor from (4, 4, 3, 2) to (128, 128, 3, 2) in increments of
24 at each step for width and height channels.

5.2 EXPERIMENTS RESULTS

We show the experimental results for the uniform distri-
bution and butterfly figure in Figure 4 and those for the
COIL-100 data in Figure 5. We plot both the c0 and log |c0|
to clearly show its trends. These results show that as the
tensor size increases, |c0| of PBh,c0 gradually decreases for
any many-body structure, and the results remain consistent
with our theoretical bounds. We used mj = ⌊Ij/2⌋ and the
actual values of smin and smax of each sub-tensor to com-
pute the theoretical bound. Furthermore, the convergence
rate to zero varies depending on the many-body structure.
Specifically, lower-body approximations (one or two body)
tend to converge faster than higher-body approximations
(three, four, or five body). In addition, for these five dif-
ferent experiments, the |c0| values fall within the range of
[1× 10−8, 1× 10−5] when the dimension or s is increased
to 10, indicating that they are close to zero.

6 CONCLUSION

In this paper, we have discussed the hyperparameter c0 (or
the submanifold Sc0

Bh
) selection problem in many-body ap-

proximation in the optimization problem of minimizing
the KL-divergence between the original distribution and
statistic model. Our theoretical result shows the asymptotic
characteristic of the hyperparameter c0, which means that
as the tensor size increases, the value of c0 converges to
0. The experimental results in the synthetic and real-world
datasets validate our theoretical analysis. This paper not
only provides a theoretical foundation for the widely used
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Figure 5: Experimental results for COIL-100 dataset. The
horizontal axis is the value of s, and the total size of the
input tensor is (s, s, 3, 2).

many-body approximation under large-scale parameters but
also proposes an optimal many-body model selection al-
gorithm for small-scale non-negative tensors or empirical
distributions.
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A PROJECTION THEORY IN INFORMATION GEOMETRY

We explain concepts of information geometry used in this study, including natural parameters, expectation parameters, and
model flatness. In the following discussion, we consider only discrete probability distributions.

A.1 (θ, η)-COORDINATE AND GEODESICS

In this study, we regard a normalized d-order non-negative tensor P ∈ RI1×···×Id
>0 as a discrete probability distribution

with d random variables and the ith random variable can take values in {1, . . . , Ii}. Let S be the set of discrete probability
distributions with d random variables. The entire space S is a non-Euclidean space, where the Fisher information matrix G
serves as the Riemann metric. This metric arises from the second-order differentiation of the KL divergence, as shown in
Equation (19). In Euclidean space, a straight line is the shortest path between two points. In a non-Euclidean space, such a
shortest path is called a geodesic. In the space S, two kinds of geodesics can be introduced: e-geodesics and m-geodesics.
For two points P1,P2 ∈ S, e- and m-geodesics are defined as

{Rt | logRt = (1− t) logP1 + t logP2 − ϕ(t)} , {Rt | Rt = (1− t)P1 + tP2} ,

respectively, where 0 ≤ t ≤ 1 and ϕ(t) is a normalization factor to keepRt to be a distribution.

We can parameterize the distributions P ∈ S using parameters known as natural parameters. In Equation (1), we have
described the relationship between a distribution P and a natural parameter vector θ = (θ2,...,1, . . . , θI1,...,Id). The natural
parameter θ serves as a coordinate system of S, hence any distribution in S is specified by determining θ. Furthermore,
we can also specify a distribution P by its expectation parameter vector η = (η2,...,1, . . . , ηI1,...,Id), which corresponds to
expected values of the distribution and an alternative coordinate system of S . The definition of the expectation parameter η is
described in Equations (3) and (4). The pair of coordinates, θ-coordinates and η-coordinates, are orthogonal with each other,
which means that the Fisher information matrix G has the following property, Gu,v = ∂ηu/∂θv and

(
G−1

)
u,v

= ∂θu/∂ηv .
We can describe e- and m-geodesics using these parameters as follows.{

θt | θt = (1− t)θP1 + tθP2

}
,
{
ηt | ηt = (1− t)ηP1 + tηP2

}
,

where θP and ηP are θ- and η-coordinate of a distribution P ∈ S, respectively.

A.2 FLATNESS AND PROJECTIONS

A submanifold is called e-flat if any e-geodesic connecting two points in it remains within the submanifold. The vertical
descent of an m-geodesic from a point P ∈ S onto an e-flat submanifold SBe-flat

is called the m-projection. Similarly, the
e-projection is obtained by interchanging e and m. The flatness of subspaces guarantees the uniqueness of the projection



destination, denoted as Pe-flat or Pm-flat, which minimizes the following KL divergence:

Pe-flat = argmin
Q∈SBe-flat

DKL(P,Q),

Pm-flat = argmin
Q∈SBm-flat

DKL(Q,P).

A.3 THEORETICAL REMARKS

A submanifold with some natural parameters fixed at some constant value c is e-flat, which follows directly
from the definition of e-flatness. Here, our discussion focuses on m-projection onto the submanifold ScB ={
Q ∈ S | θv = c for all v ∈ Ω+

d \ B
}

, where B can be any index set satisfying B ⊆ Ω+
d . Since the constraint θv = c

is linear and the KL divergence function is convex, the optimal solution PB,c = argminR∈Sc
B
DKL(P̂,R) always uniquely

exists. From another perspective, the e-flat ScB forms a convex set. Consequently, this optimization problem involves
minimizing a convex function over a convex set, thereby classified as a convex optimization problem. If a space is both
e-flat and m-flat, it is called dually-flat. The space S of discrete probability distributions is dually-flat.

A.4 EXAMPLES FOR MÖBIUS FUNCTION

In the proposed method, we transform the distribution P ∈ RI1×···×Id
>0 using the Möbius function, defined in Section 2.1. By

Equation (4), we can express P in terms of the expectation parameter η. For example, for d = 2, 3:

Pi1,i2 = ηi1,i2 − ηi1+1,i2 − ηi1,i2+1 + ηi1+1,i2+1,

Pi1,i2,i3 = ηi1,i2,i3 − ηi1+1,i2,i3 − ηi1,i2+1,i3 − ηi1,i2,i3+1

+ ηi1+1,i2+1,i3 + ηi1+1,i2,i3+1 + ηi1,i2+1,i3+1 − ηi1+1,i2+1,i3+1,

where we assume ηI1+1,i2 = ηi1,I2+1 = 0 and ηI1+1,i2,i3 = ηi1,I2+1,i3 = ηi1,i2,I3+1 = 0.

A.5 EXAMPLES FOR APPLICATION IN TENSOR DECOMPOSITION

An application where the effectiveness of the choice of c can be more easily observed is in the compression of multi-
dimensional data (e.g., images). To illustrate this point, we revisit the example introduced earlier. The input tensor is:

833 1 2 4 7 4 8
430 33 5 1 711 112 4
39 6 29 2 9 3 121
2 2 8 6 311 10 122

 .
Let us use the model submanifold ScB1

with B1, which denotes the index set of one-body natural parameters (the first row
and column of the θ value in the matrix). θ-parameters of each tensor in the submanifold are in the form of

θ11 θ12 θ13 θ14 θ15 θ16 θ17
θ21 c c c c c c
θ31 c c c c c c
θ41 c c c c c c

 .
In the view of multi-dimensional data compression, the original matrix X requires 4 × 7 = 28 values to represent it.
However, by approximating it by projecting it onto the submanifold ScB1

, we only need to store 11 parameters, the optimized
values of the one-body θ-parameters and the constant c (the traditional method just sets c = 0, but the number of parameters
that need to be stored is still 11). In other words, in our tensor decomposition task, sparsity does not appear in the original
matrix space; instead, it manifests in the θ-coordinate space. As shown in the introduction, selecting the submanifold S0B1

,
results in a KL error of 0.46 and the RMSE of 0.56. In contrast, choosing S0.54B1

as the model submanifold reduces the KL
error to 0.19 and the RMSE to 0.24—nearly half of the previous values. This demonstrates that varying the value of c can
significantly affect the reconstruction quality of the tensor.



A.6 EXAMPLES FOR LOG-LINEAR MODEL

As an example of the log-linear model [Agresti, 2013], consider the distribution of an n-dimensional binary vector
x = (x1, . . . , xn) ∈ {0, 1}n, where the log-probability is expressed as:

log p(x) =
∑
i

θixi +
∑
i<j

θijxixj +
∑

i<j<k

θijkxixjxk + · · ·+ θ1...nx1x2 · · ·xn − ψ,

where θ = (θ1, . . . , θ1...n) is the natural parameter vector, andψ is the log-partition function (normalizer). The corresponding
expectation parameters η = (η1, . . . , η1...n) represent the expected values of variable combinations:

ηi = E[xi] = Pr(xi = 1), ηij = E[xixj ] = Pr(xi = xj = 1), η1...n = E[x1 · · ·xn] = Pr(x1 = · · · = xn = 1).

B PROOFS.

Lemma (1). For any input tensor P̂ ∈ RI1×···×Id
>0 and its m-projection PBIj,mj

,c onto the submanifold ScBIj,mj
, we have

Ij∑
ij=mj

P
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id
=

Ij∑
ij=mj

P̂i1,...,ij−1,ij ,ij+1,...,id . (20)

Proof. Because η
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id
= η̂i1,...,ij−1,ij ,ij+1,...,id , ij = 1, . . . ,mj , and µi′1,...,i

′
d

i1...id
=
∏d

k=1 µ
i′k
ik

, it follows that

Ij∑
ij=mj

P
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id

=

Ij∑
ij=mj

∑
(i′1,...,i′d)∈Ωd

µ
i′1,...,i

′
d

i1...id
η
BIj,mj

,c

i′1,...,i
′
d

=

Ij∑
ij=mj

∑
(i′1,...,i′d)∈Ωd

(
d∏

k=1

µ
i′k
ik

)
η
BIj,mj

,c

i′1,...,i
′
d

=

Ij∑
ij=mj

i1+1∑
i′1=i1

· · ·
ij−1+1∑

i′j−1=ij−1

ij+1∑
i′j=ij

· · ·
id+1∑
i′d=id

 d∏
k=1
k ̸=j

µ
i′k
ik


 ij+1∑

i′j=ij

µ
i′j
ij
η
BIj,mj

,c

i′1,...,i
′
d



=

i1+1∑
i′1=i1

· · ·
ij−1+1∑

i′j−1=ij−1

ij+1∑
i′j=ij

· · ·
id+1∑
i′d=id

 d∏
k=1
k ̸=j

µ
i′k
ik


 Ij∑

ij=mj

(
η
BIj,mj

,c

i′1,...,i
′
j−1,ij ,i

′
j+1,...,i

′
d
− η

BIj,mj
,c

i′1,...,i
′
j−1,ij+1,i′j+1,...,i

′
d

)

=

i1+1∑
i′1=i1

· · ·
ij−1+1∑

i′j−1=ij−1

ij+1∑
i′j=ij

· · ·
id+1∑
i′d=id

 d∏
k=1
k ̸=j

µ
i′k
ik

(ηBIj,mj
,c

i′1,...,i
′
j−1,mj ,i′j+1,...,i

′
d

)

=

i1+1∑
i′1=i1

· · ·
ij−1+1∑

i′j−1=ij−1

ij+1∑
i′j=ij

· · ·
id+1∑
i′d=id

 d∏
k=1
k ̸=j

µ
i′k
ik

(η̂i′1,...,i′j−1,mj ,i′j+1,...,i
′
d

)

=

Ij∑
ij=mj

P̂i1,...,ij−1,ij ,ij+1,...,id .



Theorem (1). For any input tensor P̂ ∈ RI1×···×Id
>0 , its m-projection PBIj,mj

,c onto the submanifold ScBIj,mj
is given as

P
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id
= P̂i1,...,ij−1,ij ,ij+1,...,id

for ij = 1, 2, . . . ,mj − 1 and

P
BIj,mj

,c

i1,...,ij−1,mj+k,ij+1,...,id
=

Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id

 exp

ck d∏
s=1
s̸=j

is


Ij−mj∑

k=0

exp

ck d∏
s=1
s ̸=j

is




−1

for k = 0, . . . , Ij −mj .

Proof. Remind that η
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id
= η̂i1,...,ij−1,ij ,ij+1,...,id , ij = 1, . . . ,mj . We have

P
BIj,mj

,c

i1,...,ij−1,ij ,ij+1,...,id
=

i1+1∑
i′1=i1

· · ·
ij+1∑
i′j=ij

· · ·
id+1∑
i′d=id

(
d∏

k=1

µ
i′k
ik

)
η
BIj,mj

,c

i′1,...,i
′
d

=

i1+1∑
i′1=i1

· · ·
ij+1∑
i′j=ij

· · ·
id+1∑
i′d=id

(
d∏

k=1

µ
i′k
ik

)
η̂i′1,...,i′d

= P̂i1,...,ij−1,ij ,ij+1,...,id , ij = 1, 2, . . . ,mj − 1.

(21)

Moreover,

P
BIj,mj

,c

i1,...,ij−1,mj+k,ij+1,...,id
= P

BIj,mj
,c

i1,...,ij−1,mj ,ij+1,...,id
e
c

k
∏d

s=1
s̸=j

is


. (22)

Therefore,

P
BIj,mj

,c

i1,...,ij−1,mj ,ij+1,...,id

Ij−mj∑
k=0

e
c

k
∏d

s=1
s̸=j

is

 =

Ij−mj∑
k=0

P
BIj,mj

,c

i1,...,ij−1,mj+k,ij+1,...,id



=

Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id

 ,

P
BIj,mj

,c

i1,...,ij−1,mj ,ij+1,...,id
=

Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id

 1∑Ij−mj

k=0 e
c

k
∏d

s=1
s̸=j

is


.

Theorem (2). F (P̂;PBIj,mj
,c) ≥ max {l,−l}, where

l =

c(Ij−mj)(Ij−mj+1)
∏d

h=1
h̸=j

Ih(1+Ih)

2d
(∏d

j=1 Ij

)smin
.

Proof. Let us consider

F (P̂;PBIj,mj
,c) = −

I1∑
i1=1

. . .

Id∑
id=1

{
P̂i1...id logP

BIj,mj
,c

i1,...,id

}
. (23)



Because P
BIj,mj

,c

i1,...,ij ,...,id
= P̂i1,...,ij ,...,id for every ij = 1, 2, . . . ,mj − 1 and for any c, we only need to consider

f(P̂;PBIj,mj
,c) = −

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij−mj∑
k=0

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

{
P̂i1,...,ij−1,mj+k,ij+1,...,id logP

BIj,mj
,c

i1,...,ij−1,mj+k,ij+1,...,id

}
.

(24)
Moreover, F (P̂;PBIj,mj

,c) ≥ f(P̂;PBIj,mj
,c) always hold. On the one hand,

P
BIj,mj

,c

i1,...,ij−1,mj+k,ij+1,...,id
=

Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id

 e
c

k
∏d

s=1
s̸=j

is


∑Ij−mj

k=0 e
c

k
∏d

s=1
s̸=j

is



≤ e
c

k
∏d

s=1
s̸=j

is


∑Ij−mj

k=0 e
c

k
∏d

s=1
s̸=j

is


=

1∑Ij−mj−k
h=−k e

c

h
∏d

s=1
s̸=j

is



≤ e
c

k
∏d

s=1
s ̸=j

is


.

(25)

Therefore, by applying min(P̂) = 1

(
∏d

j=1 Ij)
smin ,

f(P̂;PBIj,mj
,c) ≥ −

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij−mj∑
k=0

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

 1(∏d
j=1 (Ij)

)smin
logP

BIj,mj
,c

i1,...,ij−1,mj+k,ij+1,...,id


≥ − 1(∏d

j=1 (Ij)
)smin

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij−mj∑
k=0

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

c
k d∏

s=1
s ̸=j

is




= − c(∏d
j=1 (Ij)

)smin

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

 d∏
s=1
s̸=j

is


Ij−mj∑

k=0

k



= −
c (Ij −mj) (Ij −mj + 1)

∏d
h=1
h ̸=j

Ih (1 + Ih)

2d
(∏d

j=1 Ij

)smin
.

(26)

On the other hand,

P
BIj,mj

,c

i1,...,ij−1,mj+k,ij+1,...,id
≤ e

c

k
∏d

s=1
s̸=j

is


∑Ij−mj

k=0 e
c

k
∏d

s=1
s̸=j

is


=

1∑Ij−mj−k
h=−k e

c

h
∏d

s=1
s̸=j

is



≤ e
c

−(Ij−mj−k)
∏d

s=1
s ̸=j

is


.

(27)



Therefore we have

f(P̂;PBIj,mj
,c) ≥ −

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij−mj∑
k=0

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

 1(∏d
j=1 (Ij)

)smin
logP

BIj,mj
,c

i1,...,ij−1,mj+k,ij+1,...,id


≥ − 1(∏d

j=1 (Ij)
)smin

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij−mj∑
k=0

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

c
− (Ij −mj − k)

d∏
s=1
s̸=j

is




=
c(∏d

j=1 (Ij)
)smin

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

 d∏
s=1
s̸=j

is


Ij−mj∑

k=0

Ij −mj − k



=

c (Ij −mj) (Ij −mj + 1)
∏d

h=1
h̸=j

Ih (1 + Ih)

2d
(∏d

j=1 (Ij)
)smin

.

(28)

Corollary (3). To satisfy the condition DKL(P̂;PBIj,mj
,c) ≤ DKL(P̂;PBIj,mj

,0), for every j = 1, . . . , d, c should at least
satisfy −l ≤ c ≤ l, where

l =
2dsmax log

(∏d
j=1 Ij

)
(Ij −mj)

∏d
h=1
h̸=j

(1 + Ih)
(∏d

j=1 Ij

)smax−smin
<

2d log
(∏d

j=1 Ij

)
b2

(Ij −mj)
∏d

h=1
h ̸=j

(1 + Ih) a2
. (29)

Proof. For c = 0, let us define

hi1,...,ij−1,ij+1,...,id :=

Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id ≤
Ij −mj + 1(∏d
j=1 (Ij)

)smax
.

Then it follows that

P
BIj,mj

,0

i1,...,ij−1,mj+k,ij+1,...,id
=

Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id

 1

Ij −mj + 1

=
hi1,...,ij−1,ij+1,...,id

Ij −mj + 1
,

f(P̂;PBIj,mj
,0) = −

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij−mj∑
k=0

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

{
P̂i1,...,ij−1,mj+k,ij+1,...,id logP

BIj,mj
,0

i1,...,ij−1,mj+k,ij+1,...,id

}

= −
I1∑

i1=1

· · ·
Ij−1∑

ij−1=1

Ij−mj∑
k=0

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

{
P̂i1,...,ij−1,mj+k,ij+1,...,id log

hi1,...,ij−1,ij+1,...,id

Ij −mj + 1

}

= −
I1∑

i1=1

· · ·
Ij−1∑

ij−1=1

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

(
log

hi1,...,ij−1,ij+1,...,id

Ij −mj + 1

)Ij−mj∑
k=0

P̂i1,...,ij−1,mj+k,ij+1,...,id


= −

I1∑
i1=1

· · ·
Ij−1∑

ij−1=1

Ij+1∑
ij+1=1

· · ·
Id∑

id=1

(
log hi1,...,ij−1,ij+1,...,id − log(Ij −mj + 1)

)
hi1,...,ij−1,ij+1,...,id

≤
smax log

(∏d
j=1 Ij

)
(Ij −mj + 1)(∏d

j=1 (Ij)
)smax

d∏
h=1
h̸=j

Ih.

(30)



If f(P̂;PBIj,mj
,c) ≥ f(P̂;PBIj,mj

,0), which means

c ≤ −
2dsmax log

(∏d
j=1 Ij

)
(Ij −mj)

(∏d
j=1 Ij

)smax−smin ∏d
h=1
h̸=j

(1 + Ih)

or

c ≥
2dsmax log

(∏d
j=1 Ij

)
(Ij −mj)

(∏d
j=1 Ij

)smax−smin ∏d
h=1
h̸=j

(1 + Ih)
,

then DKL(P̂;PBIj,mj
,c) ≥ DKL(P̂;PBIj,mj

,0).
Therefore, c should at least satisfies:

−
2dsmax log

(∏d
j=1 Ij

)
(Ij −mj)

∏d
h=1
h̸=j

(1 + Ih)
(∏d

j=1 Ij

)smax−smin
≤ c ≤

2dsmax log
(∏d

j=1 Ij

)
(Ij −mj)

∏d
h=1
h ̸=j

(1 + Ih)
(∏d

j=1 Ij

)smax−smin
. (31)

Theorem (4). For many-body approximation of P̂ , to satisfy the condition DKL(P̂;PBh,c) ≤ DKL(P̂;PBh,0) for every
h = 1, . . . , d, c should at least satisfy:

− min
j=1,2,...,d

lj ≤ c ≤ min
j=1,2,...,d

lj , (32)

where

lj =
2d ((smin − 1) d+ 1) Ij log (τ) (τ)

smin

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h ̸=j

(1 + Ih) (τ)
smax

<
2d (d+ 1) Ij log (τ) b

2

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h ̸=j

(1 + Ih) (a2)
,

j = 1, . . . , d, τ =

d∏
j=1

Ij .

Proof. According to the closed formula of PB1,0,

PB1,0
i1,...,id

=

d∏
k=1

 I1∑
i′1=1

. . .

Ik−1∑
i′k−1=1

Ik+1∑
i′k+1=1

· · ·
Id∑

i′d=1

P̂i′1,...,i
′
k−1,ik,i

′
k+1,...,id



≥
d∏

k=1

 1(∏d
j=1 Ij

)smin

d∏
j=1
j ̸=k

Ij


=

 d∏
j=1

Ij

(1−smin)d−1

.

(33)

Moreover, DKL(P̂;PBIj,mj
,c) ≥ DKL(P̂;PB1,0) if and only if F (P̂;PBIj,mj

,c) ≥ F (P̂;PB1,0). Therefore,

F (P̂;PB1,0) = −
I1∑

i1=1

. . .

Id∑
id=1

P̂i1...id logP
B1,0
i1,...,id

≤ −
I1∑

i1=1

. . .

Id∑
id=1

1(∏d
j=1 Ij

)smax
logPB1,0

i1,...,id

≤
((smin − 1) d+ 1)

(∏d
j=1 Ij

)
log
∏d

j=1 Ij(∏d
j=1 Ij

)smax
.

(34)



On the one hand,

F (P̂;PBIj,mj
,c) ≥ f(P̂;P

BIj,mj
,c

)

≥
c (Ij −mj) (Ij −mj + 1)

∏d
h=1
h ̸=j

Ih (1 + Ih)

2d
(∏d

j=1 Ij

)smin
.

(35)

On the other hand,

F (P̂;PBIj,mj
,c) ≥ f(P̂;P

BIj,mj
,c

)

≥ −
c (Ij −mj) (Ij −mj + 1)

∏d
h=1
h̸=j

Ih (1 + Ih)

2d
(∏d

j=1 Ij

)smin
.

(36)

If

−
c (Ij −mj) (Ij −mj + 1)

∏d
h=1
h̸=j

Ih (1 + Ih)

2d
(∏d

j=1 Ij

)smin
≥

((smin − 1) d+ 1)
(∏d

j=1 Ij

)
log
∏d

j=1 Ij(∏d
j=1 Ij

)smax

⇔ c ≤ −
2d ((smin − 1) d+ 1) Ij log

∏d
j=1 Ij

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h̸=j

(1 + Ih)
(∏d

j=1 Ij

)smax−smin

(37)

or
c (Ij −mj) (Ij −mj + 1)

∏d
h=1
h̸=j

Ih (1 + Ih)

2d
(∏d

j=1 Ij

)smin
≥

((smin − 1) d+ 1)
(∏d

j=1 Ij

)
log
∏d

j=1 Ij(∏d
j=1 Ij

)smax

⇔ c ≥
2d ((smin − 1) d+ 1) Ij log

∏d
j=1 Ij

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h̸=j

(1 + Ih)
(∏d

j=1 Ij

)smax−smin
,

(38)

then F (P̂;PBh,c) ≥ F (P̂;PBIj,mj
,c) ≥ f(P̂;P

BIj,mj
,c

) ≥ F (P̂;PB1,0) ≥ F (P̂;PBh,0). Therefore, c should at least
satisfies

− min
j=1,2,...,d

lj ≤ c ≤ min
j=1,2,...,d

lj , (39)

where

lj =
2d ((smin − 1) d+ 1) Ij log

(∏d
j=1 Ij

)(∏d
j=1 Ij

)smin

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h ̸=j

(1 + Ih)
(∏d

j=1 Ij

)smax

<
2d (d+ 1) Ij log

(∏d
j=1 Ij

)
b2

(Ij −mj) (Ij −mj + 1)
∏d

h=1
h ̸=j

(1 + Ih) a2

for each j = 1, . . . , d.

Theorem (5). Consider the set:

P̃B =
⋃
c∈R
PB,c, PB,c = argmin

R∈Sc
B

DKL(P̂,R),

we have PB,0 ∈
⋃

c∈R PB,c and PB,0 maximizes the entropy in the set P̃B.

Proof. The Legendre transformation [Amari and Nagaoka, 2000] of ψ(θ) = −θ1,...,1 is given as

φ(η) = max
θ′

(θ′η − ψ(θ′)) , θ′η =
∑
x∈Ω+

d

θ′xηx.



Then φ(η) coincides with the negative entropy, which is defined as

φ(η) =
∑

(i1,...,id)∈Ωd

Pi1,...,id logPi1,...,id .

Thus, it is clear that φ(η) is a convex function that attains the minimum value. Moreover, we also have

∂φ(η)

∂ηx
=

∂

∂ηx
(θη − ψ(θ)) = θx.

This holds for all PB,c, PB,c = ScB ∩ SBP̂ . Therefore, PB,0 satisfies the following.

∂φ(η)

∂ηv
=

∂

∂ηv
(θη − ψ(θ)) = θv = 0, ∀v ∈ Ω+

d \B,

ηs = η̂s ∀s ∈ B.

This shows that φ(η(PB,0)) obtains the minimum value in the set
⋃

c∈R PB,c.
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