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ABSTRACT

Firearm identification plays a crucial role in criminal justice globally. The capability to link firearms to specific
crimes is invaluable for investigations and court cases. Each firearm leaves distinctive markings on bullets
and cartridge cases, creating a “mechanical fingerprint” that can be used for the comparison of bullets and
cartridge cases and underpins this area of forensic science. Cartridge cases fired from the same firearm exhibit
similar markings on their bases. These traces can be used for investigation purposes as a means to potentially
provide a link between more than one scene where cartridge cases have been recovered, or to provide a
potential evidential link between a firearm and a cartridge case. These applications involve comparing the
markings on the base of two or more cartridge cases, consisting of the headstamp, breech face and firing pin
areas. The headstamp area usually contains information about the manufacturer and the calibre. Once this is
considered, the remaining task is to compare the breech and firing pin areas of the two cartridges. Currently,
some automated methods exist for this comparison, all of which involve the removal of the headstamp
area to minimize bias. Some semi-automated methods for headstamp removal are available, and recently, an
automated deep learning method that can be applied to 256 x 256 pixel resolution images has been introduced.
In this article, we also propose a deep learning method addressing a more computationally demanding task
of removing the head stamp area in higher-resolution images, 512 x 512 and 2592 x 1944 pixels, which will
permit the automated extraction of finer features at a higher resolution. We also (a) introduce a post-processing
method that improves the performance of our method, (b) provide the labelled data that we have produced so
it can be used, together with the NIST database of cartridge case images, as a benchmark for future research,
and (c) provide the estimated weights and models of the convolutional neural networks that can either be
used directly or as initial values for further research. This article contributes to the emerging body of research
on deep learning applications in forensic science.

1. Introduction

These applications involve comparing the markings on the base of two
or more cartridge cases.

Firearm identification is essential to criminal justice systems world-
wide [1]. Each firearm imparts markings on discharged bullets and
cartridge cases, creating a “mechanical fingerprint” of the firearm,
which forms the basis for the comparison of these evidence types and
testing the competing propositions that bullets were fired from the same
or from different firearms. This article focuses on cartridge cases.

A cartridge case, Fig. 1, is ejected from a firearm immediately after
a bullet is fired. Cartridge cases fired from the same firearm would
be expected to contain similar distinctive markings on their bases [2].
These markings are used to group cartridge cases recovered from a
crime scene, or to potentially link the recovered traces to a firearm.
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A fired cartridge case base is a circular region consisting of three
areas, namely (i) the Head Stamp Area (HSA), the Breech Face Area
(BFA), and the Firing Pin Area (FPA), Fig. 2. The HSA contains factual
information consisting of text that specifies the manufacturer and the
calibre of the bullet, and the ejector’s mark. The BFA is the area where
the firearm’s breech face impacts the cartridge case, and the FPA is the
area where the firing pin hits the cartridge case, see [3,4] for a detailed
description.

Once the information of the HSA has been taken into consideration,
the focus lies on the comparison of the BFA and FPA of two or more

Received 20 January 2025; Received in revised form 4 June 2025; Accepted 30 June 2025

Available online 12 July 2025

0379-0738/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/forsciint
https://www.elsevier.com/locate/forsciint
https://orcid.org/0000-0003-4867-893X
mailto:rpuchsolis001@dundee.ac.uk
https://doi.org/10.1016/j.forsciint.2025.112554
https://doi.org/10.1016/j.forsciint.2025.112554
http://crossmark.crossref.org/dialog/?doi=10.1016/j.forsciint.2025.112554&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M.R.K. Mookiah et al.

Fig. 1. A cartridge case of a fired bullet (Robert M. Thompson, National Institute of
Standards and Technology).

Head-stamp area Breech-face area Firing-pin area

Fig. 2. Areas of the base of a fired cartridge case.

fired cartridge cases to examine these areas for similarities and/or
differences. Firearm identification current practice relies mostly on
visual comparison of these two areas by an expert using a comparison
microscope [5-7]. There are some automated methods for cartridge
case comparison [4,8], which may improve the speed and improves the
objectivity of the process. These methods require automated extraction
of features from the FPA and BFA. The automated removal of the HSA
from the cartridge case image has become crucial so these algorithms
extract features only from the regions of interest (ROISs).

With a large dataset, deep learning algorithms could be trained to
extract features only from the BFA and FPA. However, large datasets
are difficult to obtain. The removal of the HSA will permit the applica-
tion of machine learning and deep learning algorithms for classifying
cartridge cases, which incorporate automated feature extraction only
from the BFA and FPA. In machine learning, the removal of sec-
tions of an image is usually called semantic segmentation or simply
segmentation.

There have been some image-processing methods for removing the
HSA [9,10], see [11,12] for a detailed description. In recent years, deep
learning has produced excellent image segmentation results in other
areas [13,14] including in medical imaging and autonomous vehicles.
Recently, deep learning has been applied to image segmentation of
cartridge cases [12]. In this work, a UNet convolutional neural network
(CNN) was trained with 1,195 images of (256 x 256 pixel resolution)
cartridge cases fired by 9 mm calibre ammunition firearms.

This article addresses the more computationally demanding task of
segmentation of cartridge case images at a higher resolution, which
will permit the automated extraction of finer features at a higher
resolution. We use NIST’s publicly available dataset [15] consisting of
1,703 images of cartridge cases also fired by 9 mm calibre ammunition
firearms. In contrast with [12], the input images used here are of higher
resolution: 512 x 512 pixels which would allow finer feature extraction
at a higher resolution. Three CNNs were trained: UNet [16], Dense
UNet [17] and DeepLabv3+ [18]. A post-processing step was added to
increase performance. DeepLabv3+ returned a better performance on
the NIST dataset, surpassing both UNet and Dense UNet. The segmented
masks, used to produce segmented images, were upsampled to their
original resolution of 2592 x 1944 pixels. This would permit the use
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Table 1
2D images used from the NIST database.

Study Firearm Cartridge Number
Cary Wong Ruger P89 Winchester 182
De Kinder Sig Sauer P226 Remington 70

CCI

Wolf

Winchester

Speer

Federal
Thomas Fadul Ruger P95PR15 Federal 80
Hampby Hi-Point C9 Remington 60
Kong Smith and Wesson 10 Flocchi 72
Laura Lighttone Smith and Wesson 40VE PMC 60
FBIL: Colt Colt VM Remington 180
FBIL: Glock Glock VM Remington 180
FBI: Ruger Ruger VM Remington 200
FBL: Smith & Wesson Smith and Wesson VM Remington 260
FBI: Sig Sauer Sig Sauer VM Remington 259
Todd Weller Ruger P95DC Winchester 100

of the images for feature extraction at an even higher resolution. The
dataset of masks for the ROIs is provided as a benchmark for future
research performance comparisons. The estimated parameters for the
three models and the models are also provided, allowing them to be
readily applied or used as starting values for further training. The
predicted segmentation masks for the images in the test dataset are
provided in the supplementary material.

2. Materials and methods
2.1. Data

2.1.1. NIST dataset

We use an open-access research database, namely the NIST ballistic
toolmark research database [15]. It is the largest public dataset with
bullet and cartridge case toolmark data. The NIST database contains
both 2D and 3D images from different studies conducted by various
groups in the firearm and toolmark community. In this study, we use
1,703 2D cartridge case images discharged from a variety of weapons,
including models from Ruger, Sig Sauer, Hi-Point, Smith & Wesson,
Colt, and Glock, tested with multiple ammunition manufacturers such
as Remington, CCI, Wolf, Winchester, Speer, Federal, Fiocchi, and PMC,
Table 1. Examples of these images are shown in Fig. 3.

2.1.2. Segmentations masks

Training a CNN for cartridge case segmentation requires labelling
each pixel of an image to belong to one of the three areas of interest,
Fig. 2. This can be achieved by creating three masks for each cartridge
case image, one for each area. A mask is a black-and-white image of the
same size as the cartridge case image where the white pixels correspond
to the area of interest. The ROI boundaries are rugged and close to a
circular shape. It would require a significant amount of time to label
them. Instead, for practical reasons, circles that enclose the vast ma-
jority of the ROIs were used. However, predictions may follow rugged
boundaries. One of the authors labelled the great majority of the images
(1663) and another author labelled only 40 images. Therefore, there
is a very small variability introduced by people creating ground-truth
data. The authors of [12] also used circles for labelling ROIs.

Each ground truth mask of a FPA was generated by placing a circle
in the boundary of the FPA and BFA on the cartridge case image.
Two points were selected from the boundary and a minimum bounding
circle was calculated. The FPA mask was constructed by setting pixels
inside the circle to white and outside the circle to black, Fig. 4(c,d). A
mask containing the BFA and FPA was created using the same method,
Fig. 4(a,b). A mask for the BFA was created from the joint mask for the
BFA and FPA by setting the pixels corresponding to the FPA to black. A
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Flocchi

Fig. 3. Example images from different cartridge cases.

(d

Fig. 4. Ground truth mask generation. (a) A cartridge case image with a red circle
showing the boundary of BFA with HSA, and (c) a red circle showing the boundary of
FPA. (b,d) are the corresponding masks. (For interpretation of the references to colour
in this figure caption, the reader is referred to the web version of this article.).

mask for the HSA was created by inverting the joint mask for the BFA
and FPA, Fig. 4(b), i.e. by setting black pixels to white and white pixels
to black.

The original resolution of the NIST dataset is 2592 x 1944. Ground
truth masks were created at this resolution where ROIs are close
to circles. Our hardware setup includes an Intel Core i7-8700 CPU
(48 GB RAM) and an NVIDIA TITAN Xp GPU (12 GB VRAM). Due
to memory constraints, it is not feasible to use full-resolution images
(2,592 x 1,944) directly for training even with a batch size of one.
Additionally, our code expects square inputs, as we employ a patch-
based training approach. To address these limitations, we resize the
full-resolution images and ground truth masks to 512 x 512, enabling
efficient training. For resizing, we use the Python OpenCV library
with the cv2.INTER_AREA interpolation method. This method performs
resampling by averaging pixel values over the target area, resulting
in smoother and higher-quality results during down sampling. After
segmentation is completed on the down-sampled image (512 x 512),
the binary breech face and firing pin masks are resized back to the

original resolution (2,592 x 1,944) using the cv2.INTER_NEAREST in-
terpolation method. This method preserves the exact binary values (0 or
255) by simply replicating the nearest pixel values without introducing
intermediate grey levels, ensuring the masks remain clean and accurate.
These steps are illustrated in Fig. 5.

The set of masks for the FPA, BFA and both areas were collected in
a dataset which was partitioned into training (70%), validation (10%)
and testing (20%) datasets. The selection was performed within each
type of cartridge case in Table 1, which also shows the distributions
of cartridge cases in these sets. The actual partition resulted in a split
of 72%, 8%, and 20% for training, validation and testing. The dataset
containing the masks is publicly available in [19]. The file name of
each mask contains the name of its corresponding NIST cartridge case
image.

2.2. Deep learning models

2.2.1. UNet

UNet architecture is very robust and has successfully segmented
various targets in medical imaging [16]. Compared to medical imaging,
segmentation of cartridge cases is less complex because there are only
two regions to detect and both have a circular border compared to
multiple asymmetrical regions in a medical image. Therefore, we use
the complexity of the UNet architecture for our task by reducing the
number of encoder and decoder layers to two instead of four in the
original UNet. The code was obtained from Optic-Disc-Unet in the
DeepTrial repository [20]. This modification decreases the training
time whilst still providing accurate segmentations. The modified archi-
tecture, Fig. 6, consists of an encoder and a decoder path typical of a
UNet architecture.

The input is a 512 x 512 pixel greyscale image which is passed
through a 3 x 3 padded convolution layers with 32 channels followed
by a Leaky Rectified Linear Unit (Leaky ReLU) activation function to
each channel. These two operations are repeated three times. The next
step is downsampling from 5122 to 2567 filters using a 2 x 2 max-
pooling operation. These operations (the three convolutions with Leaky
ReLU and the max pooling) are repeated with the number of channels in
the convolutions doubled to 64 resulting in 64 1282 filters. The encoder
layers end here. The output of the encoder layer is passed on to the
transition layers which consists of three 3 x 3 padded convolution
layers with 128 channels, each followed by a Leaky ReLU activation
function. The decoder, at each step, also applies three transformations.
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Down-Sampling
(INTER AREA
Interpolation)

Full Resolution Image
(2592 x 1944)

Resized Image
(512x512)
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Segmented Image
(512 x 512)

UNet
Dense UNet
Deeplabv3+

Deep Learning
Models

Up-Sampling
(INTER NEAREST
Interpolation)

Up-sampled Image
(2592 x 1944)

Fig. 5. Image downsampling and upsampling in training and prediction. The ground truth masks were created from the original resolution images (2,595 x 1,944 pixels).
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Fig. 6. UNet architecture.

The path begins with an up-sampling of the output of the transition
layer. This is followed by a concatenation of the output of encoder
convolution steps with 64 channels, then these are then passed through
two 3 x 3 padded convolution layers of 64 channels. These three
operations are repeated, this time the convolution channels are halved
to 32. Finally, the output is passed through a 1 x 1 padded convolution
followed by a Leaky ReLU activation. The loss function used was
categorical cross entropy.

In the original UNet architecture, the encoder and decoder paths
consist of four down sampling and four up sampling operations, respec-
tively. The architecture in this research consists of two down sampling
operations in the encoder path and two up sampling operations in the
decoder path. The number of channels in each step of the encoder and
encoder paths in this article, Fig. 6, is also reduced compared to the
original architecture in Figure 1 in [16].

The total number of parameters of the UNet used here is 667,299
where 666,339 are trainable and 960 are non-trainable parameters
(fixed values). The model was trained for 86 epochs with a batch size
of 6 images. An early stopping strategy was applied to the training with
a patience of 20 epochs, i.e. if there were no improvement in validation
loss for 20 epochs, the training stopped and the best weights were saved
for each model. The model was implemented in Python 3.6 using Keras
2.2.4 and TensorFlow-GPU 1.10, running on a computer with an Intel
Core i7-8700 CPU and an NVIDIA TITAN Xp GPU. The training took
2.71 h.

2.2.2. Dense UNet
Dense UNet is a variation of the UNet architecture that has also been
successful in segmenting medical images [17]. It uses a Dense Block

(DB), described below, to make the architecture more robust to the
vanishing gradient problem. The encoder path starts with a 512 x 512
greyscale image which is input to a 3 x 3 padded convolution layer
with 32 channels followed by a Rectified Linear Unit (ReLU) activation
function. The output is then passed to a DB, which comprises two
3 x 3 padded convolution layers where each layer is connected to
the previous layers and shares the feature maps. The output of the
DB undergoes a 2 x 2 max-pooling operation which takes the input
(512%) and outputs filters with half the height and width (256%). The
DB followed by a max pooling operation is repeated twice, where the
convolution layer of the DB comprises 64 channels and each max pool
reduces the height and width of the input by half. The encoder part of
the architecture ends here and the output passes through a transition
layer comprising of a DB with 3 x 3 padded convolution layers and 64
channels. The decoder path starts by up-sampling the output from the
transition layer consisting of 64 64 filters, doubling the input’s height
and width of the filters to obtain 64 1282 filters, which are concatenated
with the encoder layer’s corresponding output (64 642 filters). This
results in 128 128 filters. This is then passed to a DB with 3 x 3 padded
convolution layers and 64 channels. The up-sampling (concatenation
with encoder output and DB operation) is repeated twice where the
number of channels in the convolutions for the two DB are 64 and 32
respectively. Every up-sampling step doubles the height and width of its
input. Finally, the output is passed through a 1 x 1 padded convolution
followed by a ReLU activation. The loss function used was categorical
cross entropy.

The Dense UNet architecture used in this research, Fig. 7, is also
different from the original architecture [21]. In the original architec-
ture, there are four down sampling and four up sampling operations
in the encoder and decoder paths. Whereas the architecture adopted in
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Fig. 7. Dense UNet architecture.

this research has three down sampling and up sampling operations in
each path. There are also slight differences in the Dense Block (DB): the
original architecture used four padded convolution blocks, however,
our employed architecture had two padded convolution blocks. The
number of channels in each step of the employed architecture was
also reduced compared to the original architecture. The architecture
reported in Figure 3 of [17] is also different from the one used in this
research. The work in [17] uses two transition down and two transition
up operations after DB, each consisting of Batch Normalizations, ReLU,
1 x 1 padded convolution and 3 x 3 average pooling for down or up
sampling. Our work uses max-pooling operations for down sampling
and convolutions 2D transpose for up sampling operations. The DB
in [17] is also significantly different from the one employed in our
work, which comprises three composite functions, each consisting of
BN, ReLU, and a 3 x 3 padded convolution. There are also a series of
skip connections that connect the output of one composite function to
the outputs of all previous composite functions.

The total number of parameters in this research is 587,747 where
585,891 are trainable and 1,856 are non-trainable parameters (fixed
values). The model was trained for 69 epochs with a batch size of 6
images. An early stopping strategy was applied to the training with a
patience of 20 epochs. The model was implemented in Python 3.6 using
Keras 2.2.4 and TensorFlow-GPU 1.10, running on a computer with an
Intel Core i7-8700 CPU and an NVIDIA TITAN Xp GPU. The training
took 1.76 h.

2.2.3. Modified DeepLabv3+

The third model applied in this research is a modified version of
the DeepLabv3+ architecture [18,22] developed by Google, Fig. 8. Like
UNet, the algorithm consists of an encoder and decoder architecture.
The key elements of the algorithms are a Convolution Block (CB), Fig.
9, and an Atrous Spatial Pyramid Pooling (ASPP), Fig. 10.

A CB consists of five 3 x 3 padded convolution layers with dilation
rates of 4,6,8,10 and 12 respectively. The number of channels, denoted
by x in Fig. 9, in each of these convolutions is the same and is an
input argument when the CB is called. The filter dimensions, y?, are the
same as the input filters. A Leaky ReLU activation function follows each
convolution. The input is passed through a 3 x 3 padded convolution
and the result of this is added to the output of the fifth convolution
layer. and it is passed through a Leaky ReLU activation function.

In an ASPP, the input simultaneously passes through three layers.
The first two layers are 3 x 3 padded convolution layers with dilation
rates of 1 and 6 respectively. a Leaky ReLU activation function follows
each convolution. The third layer is average pooling followed by 3 x 3
padded convolution transpose layers. The outputs of the three layers
are concatenated and passed through a Leaky ReLU activation function.
The specific places where DeepLabv3+ uses BBs and ASSPs are shown
in Fig. 8. The loss function used was categorical cross entropy.

In the original Deeplabv3+ architecture, modified aligned Xception
is used as a main feature extractor prior to ASPP, whereas in the
Deeplabv3+ architecture in this article, we have used a series of CBs
and max pooling layers before the ASPP layers. The architecture of the
employed model before the ASPP also has several skip connections that
concatenate the low-level features, which are then fed into the decoder
part of the architecture.

The total number of parameters in this research is 2,986,691 where
2,980,483 are trainable and 6,208 are non-trainable parameters (fixed
values). The model was trained for 34 epochs with a batch size of 6
images. An early stopping strategy was applied to the training with a
patience of 20 epochs. The model was implemented in Python 3.6 using
Keras 2.2.4 and TensorFlow-GPU 1.10, running on a computer with an
Intel Core i7-8700 CPU and an NVIDIA TITAN Xp GPU. The training
took 1.18 h.

2.3. Performance measures

We monitor pixel-wise accuracy, (TP+TN)/(TP+TN+FP+FN),
across epochs for both training and validation, where TP, TN, F P and
FN are true positives and negatives and false positives and negatives,
respectively. The performance of the segmentation methods is assessed
using two well-known and commonly used measures: the Sgrensen—
Dice (DICE) and the Intersection over Union (/oU) coefficients. They
are defined as,

DICE:L’ 1)
2TP + FP + FN
and
]oU:L. (2)
TP + FP + FN

Both measures score the overlap between the ground truth and
the predicted segmentation masks. If the two images coincide exactly,
FP = FN =0 and DICE = IoU = 1, while if the two images have no
overlap, TP = 0 and DICE = IoU = 0. IoU penalizes more FP and
FN than DICE.

2.4. Post-processing

The predicted FPA and BFA set union occasionally contains small
irregular patches in addition to the expected circular region. Post-
processing aims at removing these small patches. Post-processing cal-
culates the circularity and area of the connected components of the
predicted area. The circularity takes values between zero and one,
where a value of one corresponds to a perfect circle. Both circularity
and area were calculated using the Matlab function regionprops
from the image processing toolbox. The union of FPA and BFA is circu-
lar and would score a high circularity value. Post-processing is applied
to the 512 x 512 pixel predicted masks and to the predicted masks after
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upsampling. Post-processing selects regions with a circularity greater
than 0.6 and an area greater than 5,000 pixels for both original-
resolution images and 512 x 512 pixel images. The performance of the
CNNs is evaluated before and after post-processing for both resolution
images.

3. Results

A total of 1,703 512 x 512 pixel images were used in this study. A
data split of 72% : 8% : 20% (1227, 137 and 339 images) was employed
for training, validation and testing for the three algorithms (UNet,
Dense UNet and Modified DeepLabv3+). The estimated parameters
and models can be obtained from: github.com/LRCFS/Cartridge-Case-
Segmentation. Fig. 11 shows the algorithms’ training and validation
accuracy by epoch. It is evident from the figure that all the algorithms
reached around 98% accuracy in just 10 epochs and maintained a
steady state until the end of training. The steady-state behaviour of the
accuracy, coupled with its high value, suggests that the models have
achieved optimal performance. The training and validation accuracies
of the modified DeepLabv3+ started high (94% and 98%) and remained
largely consistent throughout training, with only a slight increase in
training accuracy. In contrast, the accuracies of both Dense UNet and
UNet showed a large increase at the beginning of training and plateau
at around 10 epochs.

Fig. 12 shows the training and validation loss by epoch. It is
clear from this figure that both the training and validation losses for
each algorithm decreased as the epoch number increased. However,
the pattern is different for each algorithm. The training loss for the
modified DeepLabv3+ reduced steadily from the beginning to the end
of the training, whereas the validation loss decreased only slightly in
the beginning and fluctuated by a small margin during the rest of the
training. Both training and validation losses for UNet followed a similar
trend where they rapidly decreased until approximately 10 epochs,
after which validation loss reaches a steady state and training loss
steadily decreased until the end of the training. Like UNet, the training
and validation loss for Dense UNet also decreased sharply until approx-
imately 8 epochs, after which the training loss decreased steadily until
the end of the training and the validation loss fluctuated by a noticeable
margin and only decreased very slightly. The training and validation
losses for Dense UNet and DeepLabV3+ showed a tendency to overfit.
This could be due to the limited number of training samples (n = 1,227)
and the fact that breech face and firing pin patterns are not particularly
complex. However, we employed early stopping with a patience of
20 and selected the final model based on the lowest validation loss.
The best validation losses and the corresponding number of epochs for
UNet, Dense UNet, and DeepLabV3+ were 0.032 at epoch 66, 0.4314
at epoch 49, and 0.0307 at epoch 14, respectively (Fig. 12).

The performance of the algorithms was evaluated on 339 512 x 512
pixel test images and their corresponding 339 original resolution
(2,529 x 1,944 pixel) images. The original-resolution segmentation was
performed by downsampling the image to 512 x 512 pixels and feeding
it to the network for prediction, then it was resized back to its original
size using inter-nearest interpolation with OpenCV image processing
toolbox (Fig. 5), followed by post-processing. The evaluation of the
algorithms for 512 x 512 pixel images is summarized in Table 2. The
classification performances are divided into three categories. In the first
and second categories, we assessed the performance of FPA and BFA
individually, and in the third category, we assessed the performance of
these two areas together. The performance metrics are DICE and IoU.
The post-processing effect on these metrics is reported in columns with
titles that include the suffix “-P”.

The results show that the algorithms perform very well in all the cat-
egories (DICE > 95.4% and IoU > 91.5%). The modified DeepLabv3+
outperformed UNet and Dense UNet. This may be because it uses
a dilated convolution operation at different rates which effectively
increase the receptive field of the filter without increasing the num-
ber of parameters. This enables more focus on specific regions of an
image, improving feature extraction efficiently. In our study, the per-
formance of the modified DeepLabv3+ model was only slightly better
than the other algorithms. The UNet also slightly outperformed Dense
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Fig. 12. Training and validation loss.

UNet. Dense UNet uses densely connected convolutional networks that
produce a deep network structure by allowing each layer to remain
connected to all preceding layers, improving feature reuse, deeper
feature learning and propagation. One explanation for the performance
of the Dense UNet in comparison to the UNet may be the simplicity
of the segmentation task in this study. The study involved only three
classification categories, and the greyscale input images all shared the
same resolution, with no significant variation in pixel values between
them. Performance differences between the algorithms are more likely
to emerge when the training objectives are challenging and the datasets
are diverse. It is interesting to observe that the result of each algorithm
is better for the combined region of FPA and BFA. This can be attributed
to the absence of misclassifications in the boundary of FPA and BFA.
This result is important because deep learning algorithms would use the
combined breech and firing pin area. It is also interesting to observe
that post-processing only improves the results by a very small margin
for UNet and Dense UNet. However, the removal of small misclassified
areas, may have an impact on features detected by deep learning
algorithms.

The evaluation of the algorithm for the original resolution images
is reported in Table 3. Their performance is almost identical to that
of 512 x 512 pixel images. However, the post-processing, in this case,
reduces the performance of FPA and BFA segmentation for UNet and
Dense UNet. For modified DeepLabv3+, the post-processing does not
improve the results.

Fig. 13 shows examples of the segmentation results of UNet, Dense
UNet and modified DeepLabv3+, with and without post-processing,
for 512 x 512 and 2,592 x 1,944 pixel resolution images. The grey,
white and black areas represent FPA, BFA and HSA respectively. The
second and fourth rows in the figure show the output of the three
CNNs and their upsampled versions, respectively. The third and fifth
rows highlight the resulting images when post-processing is applied.
The three CNNs perform well in this example, except for a small
patch on the top right-hand corner of the image. The post-processing
successfully removes misclassified patches and enhances the robustness
of classification.

Fig. 14 shows an example of the ground-truth and predicted masks
for the three regions and their corresponding IoU and DICE scores. The

Table 2

Algorithms performance using 512 x 512 images. DICE and IoU scores are averaged
over the 339 testing images. “-P” in a column title means that post-processing has
been applied.

Algorithm Area DICE DICE-P ToU IoU-P
DeepLabv3+ FPA 0.969 0.969 0.941 0.941
Dense UNet 0.959 0.961 0.922 0.925
UNet 0.963 0.964 0.930 0.931
" DeepLabv3+ ~ = "BFAT T T 0971 ~ ~ 0971 T ~ 0944 = T 0944
Dense UNet 0.963 0.963 0.929 0.930
UNet 0.970 0.970 0.942 0.943
" DeepLabv3+ ~ ~ "Both = ~ 0.992° © ~ 0.992° T~ 0985 ~ T 0.985 "
Dense UNet 0.990 0.990 0.980 0.981
UNet 0.992 0.993 0.985 0.985
Table 3

Algorithms performance using 2,592x 1,944 images. DICE and IoU scores are averaged
over the 339 testing images. “-P” in a column title means that post-processing has
been applied.

Algorithm Area DICE DICE-P ToU IoU-P
DeepLabv3+ FPA 0.969 0.969 0.940 0.941
Dense UNet 0.958 0.949 0.921 0.915
UNet 0.963 0.961 0.929 0.929
" DeepLabv3+ ~ = "BFAT T T 0971 ~ ~ 0971 T ~ 0944 = T 0944
Dense UNet 0.964 0.954 0.931 0.923
UNet 0.970 0.967 0.942 0.940
" DeepLabv3+ ~ ~ "Both = ~ 0.992° © ~ 0.992° T~ 0985 ~ T 0.985 "
Dense UNet 0.990 0.990 0.981 0.981
UNet 0.992 0.992 0.985 0.985

FPA and BFA together has the largest IoU and DICE scores. The FPA
has slightly smaller scores than the FPA and BFA together. The BFA
has smaller scores because it has two boundaries, one with FPA and
the other with HSA.

Fig. 15 shows the segmentation results for five examples of cartridge
case images at 512 x 512 pixel resolution using the best-performing
algorithm, Deeplabv3+. The predicted masks for all 339 images in the
test set at 512 x 12 resolution for the three CNNs, before and after
post-processing, are provided in [23]. The grey, white and black areas
represent FPA, BFA and HSA respectively. The predicted segmenta-
tion masks for the cartridge case image in the last column contain
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Fig. 13. Segmentation results for cartridge case CWRBF0950, from the NIST database, using UNet, Dense UNet and DeepLabv3+ with and without post-processing (Black: HSA,

White: BFA and Grey: FPA).

a small section attributed to the BFA but disconnected from it. The
post-processing algorithm rectified this: it is no longer present in the
post-processed image.

The predicted segmentation masks for the fourth image have a
small section attributed to the FPA which is part of the BFA. The
post-processing algorithm did not rectify this because the section is
connected to FPA. Only two of the 339 (0.6%) images tested had this
artefact. This highlights an important aspect of using an automated
system: diagnostics. One measure that can be used for this purpose
is the circularity of the segmentation masks. The circularity for all
FPA masks but the two images with this artefact is greater than 0.85,
while the circularities for the FPA predicted masks in the two images
with the artefact are 0.48 and 0.57. One method of dealing with
these images is highlighting them to an operator so that masks can
be produced manually. Another method is to develop an extra post-
processing step to remove the artefact. The method depends on the
number of images that are processed. We chose the former method
because of the small percentage of images with this artefact. There
are also a couple of predicted masks in the supplementary materials
that have small patches. These could be removed by extending the
post-processing algorithm or the diagnostics.

The FPA of the cartridge case image in the last column has a pro-
tuberance on the right side. The predicted FPA mask does not contain
the protuberance, however, the BFA does. This feature is distinctive
and, although it is not part of the FPA, it would be considered for
classification purposes in the BFA.

4. Discussion and conclusions

Firearm examiners use impressions on cartridge case bases, among
other information, to address whether the same firearm may have fired

two cartridge cases. The headstamp area contains information about
the make and calibre of the bullet. Once this information is taken into
consideration, a firearm examiner compares the breech face and firing
pin areas. There is a growing research interest in developing automated
methods for automated comparison based on features in these areas.
This requires removing the head stamp area from images of cartridge
case bases. This article aimed to segment high-resolution images into
three sections, headstamp, breech face and firing pin areas using deep
learning algorithms.

Three algorithms were tested: UNet with three encoder-decoder lay-
ers, Dense UNet and modified DeepLabv3+ on images with a 512 x 512
pixel resolution from the NIST cartridge case database. The algo-
rithms performed well, returning DICE scores over 95% where modified
DeepLabv3+ performed best of the three. A post-processing step was
added that removed small areas outside the regions of interest and
improved the robustness of the segmentation. Performance was also
calculated for the upsampled predicted masks with and without post-
processing, resulting in a performance similar to that of the 512 x 512
pixel resolution images.

A previous publication on segmentation of fired cartridge case
images [12] used a set of 1,195 lower resolution (256 x 256 pixel)
images. The data is proprietary and not publicly available. The data was
augmented using translations, rotations, flipping and noise introduction
to obtain a dataset of 3,945 images. The authors found that UNet
with five encoder decoder layers trained with this augmented dataset
performed very well. We aimed at a more computationally demanding
problem of segmenting higher-resolution images of 512 x 512 pixel
resolution so finer features can be extracted. The CNNs were trained
with 1,703 images and without data augmentation. We found that UNet
and Dense UNet performed well and that the modified DeepLabv3+
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Original Image

Fig. 14. Original image (CWRBF0005 from the NIST database), downsampled at 512 x 512 pixel resolution, and the superposition of ground-truth and predicted masks for the
FPA, BFA and FPA and BFA together, also at 512 X 512 pixel resolution. The blue pixels are in the ground truth mask but not in the predicted mask. The red pixels are in the
predicted mask but not in the ground-truth mask. The brown pixels are in both predicted and ground truth masks. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.).
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Fig. 15. Deeplabv3+ Segmentation masks for five cartridge case examples. The column names are the image names in the NIST database.
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performed better. A segmentation task is a pixel base classification
which means that each image contributes to 5122 = 262,144 data
points and the modified DeepLabv3+ has about 3 million trainable
parameters (in contrast with UNet and Dense UNet with about 0.7
and 0.6 million trainable parameters). This may be the reason why the
modified DeepLabv3+ performed better.

The accuracies obtained in this article are not directly comparable to
the accuracies reported in [12] because the datasets and methods are
different. However, a comparison is informative about the accuracies
that can be obtained for the methods and datasets. In our work, the
best overall accuracy was obtained using Deeplabv3+: IoU =94.1% and
DICE =96.9% for FPA, and IoU = 94.4% and DICE =97.1% for BFA. The
accuracy reported in [12] is slightly better than our work: IoU =95.9%
and DICE=99.5% for FPA and IoU=95.6% and DICE=99.3% for
BFA. We also calculated the accuracy for FPA and BFA combined:
DICE =99% and IoU =98%. The work reported in [12] does not address
the accuracy of the combined region. This is an important aspect
because deep learning feature extraction algorithms would be applied
to BFA and FPA combined region.

We are very satisfied with the performance achieved and expect
our method to be useful in the automated comparison of cartridge
cases. However, publicly available datasets are necessary to evaluate
the generalizability of our findings. We have made the ground-truth
segmentation masks database publicly available. The dataset is split
into training, validation and testing, to make it possible for other
researchers to use the data as a benchmark and to compare their results
with ours. We encourage researchers to share their data. Automated
comparison of forensic pattern evidence (e.g. shoemarks, fingerprints,
bullet striations) using machine learning is in its early stages. The
extraction of region of interest from pattern evidence images will be
required and a body of research in forensic image segmentation is
needed. This article contributes to the body of research in the area of
automated forensic pattern analysis.
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