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Mesh Denoising Using Filtering Coefficients Jointly Aware of
Noise and Geometry

ABSTRACT
Mesh denoising is a fundamental task in geometry processing, and
recent studies have demonstrated the remarkable superiority of
deep learning-based methods in this field. However, existing works
commonly rely on neural networks without explicit designs for
noise and geometry which are actually fundamental factors in mesh
denoising. In this paper, by jointly considering noise intensity and
geometric characteristics, a novel Filtering Coefficient Learner (FCL
for short) for mesh denoising is developed, which delicately gener-
ates coefficients to filter face normals. Specifically, FCL produces
filtering coefficients consisting of a noise-aware component and
a geometry-aware component. The first component is inversely
proportional to the noise intensity of each face, resulting in smaller
coefficients for faces with stronger noise. For the effective assess-
ment of the noise intensity, a noise intensity estimation module
is designed, which predicts the angle between paired noisy-clean
normals based on a mean filtering angle. The second component
is derived based on two types of geometric features, namely the
category feature and face-wise features. The category feature pro-
vides a global description of the input patch, while the face-wise
features complement the perception of local textures. Extensive
experiments have validated the superior performance of FCL over
state-of-the-art works in both noise removal and feature preserva-
tion.

CCS CONCEPTS
• Computing methodologies→Mesh models; Shape represen-
tations; Shape analysis.

KEYWORDS
Mesh denoising, filtering, noise intensity, geometric characteristics.

1 INTRODUCTION
In recent years, the acquisition of meshes from real-world objects
has become increasingly accessible thanks to advancements of 3D
scanning equipment and reconstruction algorithms [7, 13, 16, 32].
However, even with advanced techniques, meshes obtained from
real-world objects are inevitably contaminated by noise, which
can cause inefficiencies or even failures in downstream geometric
tasks. Consequently, mesh denoising has emerged as a fundamental
research topic in geometry processing [4, 18, 21, 33, 38].

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The workflow of the proposed method. P stands for
a local patch. W denotes the learned filtering coefficients.

Mesh denoising aims to smooth a noisy surface while simulta-
neously preserving the underlying geometric features, which is an
ill-posed inverse problem [23, 36]. Overcoming this, conventional
methods [6, 12, 30, 34, 37] usually rely on some assumptions about
underlying features and noise patterns. But these assumptions are
difficult to generalize across various meshes and noise [26], limiting
the performance of conventional methods. Recently, deep-learning-
based methods [11, 14, 23, 27, 29, 36] have been proposed to predict
noise-free face normals for mesh denoising. These methods typ-
ically take a local mesh patch as input to predict the noise-free
normal. Since meshes are irregular, general convolutional networks
are not directly applicable to meshes. Previous works have ele-
gantly addressed this issue through ingenious representation of
meshes. For example, Zhao et al. [36] employ 3D convolutions to
regress noise-free normals from the voxel-based representation of
local mesh patches. Li et al. [11] apply a network similar to Point-
Net++ [20] to regress the denoised normal from a patch of face
normals. Shen et al. [23] infer denoised normals through graph con-
volutions which accept a graph representation on the dual space of
mesh faces as input. However, although deep learning-based meth-
ods have achieved remarkable performance without relying on
specific assumptions, none of these networks incorporate explicit
designs for noise and geometry which are actually fundamental
factors in mesh denoising

In this paper, we propose a novel Filtering Coefficient Learner
(FCL for short), which delicately produces filtering coefficients
aware of noise and geometry for mesh denoising. Inspired by the
success of combining deep learning with filtering in denoising
tasks [17, 28], FCL is designed to output filtering coefficients in-
stead of denoised normals. The complete mesh denoising procedure
contains three steps: coefficient learning, filtering, and vertex updat-
ing, as depicted in Fig. 1. The coefficients consist of a noise-aware
component and a geometry-aware component. The noise-aware

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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component is inversely proportional to the noise intensity of each
face. The stronger the noise on a face, the smaller the corresponding
coefficient for its normal. For the effective assessment of the noise
intensity, a noise intensity estimation module (M𝑛) is designed,
which predicts the angle between paired noisy-clean normals based
on a mean filtering angle. The geometry-aware component is de-
rived by a geometry describing module (M𝑔) based on two types
of geometric features, namely the category feature and face-wise
features. The category feature is extracted through a classifier that
categorizes faces into four groups, providing a global description
of the input patch. On the other hand, the face-wise features are
automatically captured by graph convolutions, complementing the
perception of local textures.

The main contributions of this paper can be summarized as
follows:

• By jointly considering noise intensity and geometric charac-
teristics, a novel Filtering Coefficient Learner (FCL for short)
is proposed, which delicately generates coefficients to filter
face normals.

• A noise intensity estimation module is designed to derive
the noise-aware component of filtering coefficients through
predicting the angle between paired noisy-clean normals.
The generated coefficients are inversely proportional to the
noise intensity of each face.

• A geometry describing module is developed to capture com-
prehensive geometric features for producing the geometry-
aware component of filtering coefficients. The geometric
features contain the category feature which offers a global
description of the input patch, and face-wise features that
complement the perception of local textures.

2 RELATEDWORKS
Mesh denoising has been a fundamental research topic in geometry
processing for many years, leading to the development of various
denoising methods. In this section, we provide a comprehensive
analysis and review of filter-based and deep-learning-based mesh
denoising methods that are most relevant to the proposed approach.

2.1 Filter-based Methods
Filter-based methods are widely used in feature-preserving mesh
denoising due to their effectiveness and simplicity. The pioneer-
ing works [1, 2, 5, 6, 8, 22, 31] in this area are heavily inspired by
2D image denoising techniques [3, 25] and applied directly to ver-
tices. For example, Fleishman et al. [6] and Jones et al. [8] employ
bilateral filters to adjust vertex positions directly. However, the
vertex-filtering mode is found to be limited by the fact that face
normals are better at revealing local geometry than vertices [9, 37].
In light of this, a series of works [10, 34, 35, 37] that first denoise
face normals and then update vertex positions achieve better de-
noising performance. Zhang et al. [34] propose a joint bilateral filter
that takes the averaged normal of a most consistent local patch
as the guidance information. Li et al. [10] apply the corner-aware
neighborhood to derive the guidance normals, which do better in
adapting to complex features than [34]. Zhao et al. [35] propose to
compute a guidance normal field with the graph-cut algorithm, and
then use the guidance field to filter normals.

In summary, filter-based methods have been the dominant ap-
proach in feature-preserving mesh denoising methods. However,
the common limitation is that the coefficients are derived based on
assumptions which are difficult to generalize across various meshes
and noise. In contrast, the proposed FCL learns coefficients dynam-
ically according to noise intensity and geometric characteristics.
It does not rely on any specific assumptions, realizing improved
performance and more robust denoising results.

2.2 Deep-learning-based Methods
3D meshes are irregular, which makes general convolutional neural
networks not directly applicable [11, 14, 23]. Therefore, designing
appropriate networks to elegantly learn mesh features has always
been the focus of deep-learning-based mesh denoising techniques.
Pioneering works adopt hand-crafted features or voxel represen-
tations for feature learning. Wang et al. [27] introduce a filtered
face normal descriptor (FND) based on the bilateral filter with mul-
tiple kernels. FND is then fed into simple multi-layer perceptrons
for noise-free normal regression. Li et al. [14] propose to repre-
sent mesh patches using non-local patch-group normal matrices
(NPNMs). They first learn low-rank NPNMs, and then feed the fine-
tuned NPNMs into a 2D convolutional network to predict noise-free
normals. Zhao et al. [36] develop a voxel-based representation for
local mesh patch, enabling the use of 3D convolutions to regress
noise-free normals. These methods with hand-crafted features or
voxel representations inevitably suffer from insufficient or redun-
dant information. To address this drawback, subsequent works
prefer end-to-end networks. Li et al. [11] apply a network similar
to PointNet++ [20] to estimate the denoised normal with a patch
of face normals as input. This is the first end-to-end network for
mesh denoising. Shen et al. [23] represent mesh patches in a graph
form, which naturally captures the geometry features. The patch
graphs are fed into a graph convolution network to infer denoised
normals. This scheme is not only end-to-end, but also preserves
complete geometric information.

Previous works have elegantly addressed the issue caused by
the irregularity of meshes, achieving superior performance over
conventional methods. However, all these methods apply networks
without explicit designs for noise and geometry which are actually
fundamental factors in mesh denoising. In contrast, FCL is designed
by jointly considering noise intensity and geometric characteristics.

3 METHODOLOGY
The proposed FCL is utilized for mesh denoising following a three-
step paradigm. For each face in a noisy mesh, FCL takes its local
patch as input to learn filtering coefficients first. The learned co-
efficients are then used to derive the denoised normal for each
face. Once all the denoised normals have been obtained, the ver-
tex positions are accordingly updated using a well-studied scheme
[23, 24, 37].

As shown in Fig. 2, FCL is composed of a noise intensity es-
timation module (M𝑛) and a geometry describing module (M𝑔).
M𝑛 generates the noise-aware component of filtering coefficients,
while M𝑔 produces the geometry-aware component. This section
begins with a problem statement regarding normal denoising and
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Figure 2: The structure of FCL. The arrows serve as visual indicators for different processes. The green arrow (↑) depicts the
filtering process. The blue arrow (↑) represents the generation process of the noise-aware component. The brown arrow (↑)
indicates the process of capturing the category feature. The red arrow (↑) signifies the production process of the geometry-aware
component.

then provides detailed explanations ofM𝑛 andM𝑔 , respectively.
Finally, the vertex updating scheme is briefly introduced.

3.1 Normal Denoising Problem Statement
A mesh containing 𝑁𝑣 vertices and 𝑁𝑓 faces is expressed asM =

{V, F}, where V = {v𝑖 }𝑁𝑣

1 is the set of vertices while F = {𝑓𝑖 }
𝑁𝑓

1 is
the set of faces. For each face 𝑓𝑖 ∈ F, its normal is denoted as n𝑖
and its centroid is c𝑖 . FCL takes the 𝑟 -ring patch of 𝑓𝑖 as input to
learn the filtering coefficients:

W𝑖 = FCL(P𝑖 ) . (1)

Here, P𝑖 is the 𝑟 -ring patch of 𝑓𝑖 , and W𝑖 = [𝑤1,𝑤2, ...,𝑤 |P𝑖 | ]𝑇 is
the filtering coefficient vector. The denoised normal is generated
by filtering the normals of faces in P𝑖 :

n′𝑖 =
1
|P𝑖 |

∑︁
𝑓𝑗 ∈P𝑖

𝑤 𝑗 ∗ n𝑗 . (2)

For a face 𝑓𝑖 , its patch P𝑖 is initialized to {𝑓𝑖 }, and is generated
by iteratively adding all the faces that share at least one vertex with
the faces in P𝑖 for 𝑟 times [36]. For clarity, 𝑟 is set to 3 in this paper.
To remove unnecessary degrees of freedom from the input patch,
we translate P𝑖 to the origin, scale it into a unit bounding box, and
rotate it to the direction where the mean normal of P𝑖 is [0, 0, 1].

3.2 Noise Intensity Estimation Module
The noise intensity estimation module (M𝑛) produces the noise-
aware component (denoted as W𝑛), which is related to the noise
intensity of each face. This subsection explains the ground truth,
input, and structure of M𝑛 successively

Ground Truth. The noise intensity of a face can be effectively
assessed by the angle between its normal and the corresponding

Figure 3: The relationship between 𝑎𝑀 and 𝑎.

ground truth normal:
𝑎𝑖 = acos(n𝑖 · n̂𝑖 ), (3)

where 𝑎𝑖 is the angle and n̂𝑖 is the ground truth normal. Larger
angle suggests stronger noise. The ground truth counterpart ofW𝑛

is calculated as:
Ŵ𝑛

= [�̂�𝑛
1 , �̂�

𝑛
2 , ..., �̂�

𝑛
|P | ]

𝑇

= [1 − 𝑎1
𝜋
, 1 − 𝑎2

𝜋
, ..., 1 −

𝑎 |P |
𝜋

]𝑇 .
(4)

In this way, every �̂�𝑛 is between 0 and 1. The stronger the noise of
𝑓𝑖 , the smaller the �̂�𝑛

𝑖
.M𝑛 is trained to estimate Ŵ𝑛 .

Input. The input of M𝑛 includes a novel mean filtering angle
(𝑎𝑀 ) proposed in this paper. Fig. 3 shows the relation between 𝑎

and 𝑎𝑀 . With the x-axis representing 𝑎 and the y-axis being 𝑎𝑀 , we
can clearly see that 𝑎𝑀 and 𝑎 are approximately linear with each
other. In light of this, we take advantage of 𝑎𝑀 to estimate �̂�𝑛 that
is calculated based on 𝑎. As a result, the normals (N𝑖 ) and centroids
(C𝑖 ) of faces in a patch are concatenated with the mean filtering
angles (A𝑀

𝑖
) as the input ofM𝑛 .

For each face 𝑓𝑖 , its 𝑎𝑀𝑖 is the angle between n𝑖 and a filtered
normal. The filtered normals are face normals of the mesh (denoted
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Figure 4: Example meshes with categorized faces.

asM𝑀 ) obtained by performing a simple mean filter onM.M𝑀

is generated through iterative normal filtering and vertex updating.
For each face 𝑓𝑖 , the normal filtering is conducted as:

n𝑘+1𝑖 =
1

|P𝑓
𝑖
|

∑︁
𝑓𝑗 ∈P𝑓𝑖

n𝑘𝑗 . (5)

Here, P𝑓
𝑖
contains all faces that share an edge with 𝑓𝑖 . 𝑘 denotes the

𝑘-th iteration. Subsequently, vertex positions are updated according
to the obtained normals. In our method,M𝑀 is obtained through 20
iterations. Finally, the mean filtering angle is calculated as follows:

𝑎𝑀𝑖 = acos(ni · nMi ). (6)

Structure ofM𝑛 . As show in Fig. 2,M𝑛 follows a simple struc-
ture. First, three static graph convolutional layers ([128, 128, 256])
are employed to capture face-wise features from the input. Then, a
max-pooling and an average-pooling are used to capture global fea-
tures. Finally, a multi-layer perceptron ([512, 512, 128, 1]) regresses
W𝑛 from the multi-scale features composed of face-wise features
and global features. Like in [11, 19, 20], the multi-layer perceptron
acts separately on each face with shared parameters to solve the
problem of face disorder.

3.3 Geometry Describing Module
The geometry describing module (M𝑔) produces the geometry-
aware component of filtering coefficients based on a category fea-
ture and face-wise features. In this subsection, we first elaborate on
the extraction of the category feature, and then explain the structure
ofM𝑔 , which involves the capturing of face-wise features.

Category feature. During the training of a mesh denoising
network, a common challenge arises due to the imbalanced distri-
bution of data among different categories of patches, such as flat,
edge, and corner patches. To address this issue, previous works
[23, 36] typically divide all faces into four categories and randomly
select an equal number of samples from each category for training.
It is intuitive to consider that the filtering coefficients for patches
of different categories should be different as well. Therefore, we
employ a classifier to extract the category feature and integrate
it into the learning of the geometry-aware component. For each
face 𝑓𝑖 , its category label is generated based on the maximum angle
difference within its 2-ring patch, following a similar approach as
in [36]. Denoting the maximum angle difference as 𝐴, all the faces
in F are divided into four categories:

category 1: 0◦ < 𝐴 ≤ 20◦, smooth region

category 2: 20◦ < 𝐴 ≤ 50◦, curved region
category 3: 50◦ < 𝐴 ≤ 80◦, small edge region
category 4: 80◦ < 𝐴 ≤ 180◦, large edge region

Three example meshes with classified faces are shown in Fig. 4. It
is worth mentioning that we conducted experiments with more
than four categories, but unfortunately, we did not observe any
additional benefits from increasing the number of categories. The
corresponding experiments are available in Subsection 5.4.

The classifier is indicated by brown arrows in Fig. 2. It utilizes
three graph convolutional layers ([128, 128, 256]) along with sym-
metric pooling operations to capture global features, following a
similar structure asM𝑛 . Subsequently, three fully connected layers
([256, 256, 4]) are employed to regress the category probability. The
first two FC layers in the classifier capture the category feature,
while the last layer outputs the category probability only used for
training.

Structure of M𝑔 . As show in the bottom part of Fig. 2, the
normals (N𝑖 ) and centroids (C𝑖 ) of faces in a patch are fed intoM𝑔 .
The face-wise features captured by GCN are concatenated with
the category feature to obtain comprehensive description of the
input patch. Then, the comprehensive features are fused through
a multi-layer perceptron ([512, 512]). The first row of the fused
feature map corresponds to the face in processing, which is called
as the central feature. All features in the patch are multiplied by the
central feature to obtain the similarity between each face and the
central face. Finally, three fully connected layers ([128, 128, 128])
take the similarity vector as input and outputW𝑔

𝑖
.

3.4 Vertex Updating
The vertex updating scheme employed in our method follows the
approach outlined in [23, 37]. To compute the updated position
v′
𝑖
, we consider the neighboring faces of vertex v𝑖 , denoted by the

set Pv
𝑖
. This set includes all faces that contain v𝑖 as one vertex.

Mathematically, it is expressed as:

v′𝑖 = v𝑖 +
1

|Pv
𝑖
|
∑︁
𝑓𝑗 ∈Pv𝑖

n′𝑗 (n
′
𝑗 · (c𝑗 − v𝑖 )). (7)

n′
𝑗
is the denoised normal of 𝑓𝑗 , and c𝑗 is the centriod of 𝑓𝑗 . The

equation computes the updated vertex position v′
𝑖
by summing up

the contribution from each neighboring face. The contribution is
determined by the dot product between the denoised normal n′

𝑗

and the vector (c𝑗 − v𝑖 ), which measures the displacement from
the vertex v𝑖 to the centroid c𝑗 of the face 𝑓𝑗 . The resulting sum is
then averaged by the number of neighboring faces |Pv

𝑖
|.

4 TRAINING
The training of FCL is guided by three loss functions in three stages.
In this section, we introduce the loss functions first, and then explain
the training scheme.

4.1 Loss Function
For each face 𝑓𝑖 , the input patch is denoted as P𝑖 . The first loss
function guides the parameter optimization ofM𝑛 . Since the pro-
duction ofW𝑛 is a regression problem, we choose the mean square
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Figure 5: The triangle meshes in SynData.

error as the loss function:

𝐿M𝑛
=

1
|P𝑖 |

∑︁
𝑓𝑗 ∈P𝑖

(𝑤𝑛
𝑗 − �̂�𝑛

𝑗 )
2 . (8)

Here, P𝑖 represents the input patch, 𝑤𝑛
𝑗
denotes the predicted fil-

tering coefficient for face 𝑓𝑗 , and �̂�𝑛
𝑗
is the corresponding ground

truth value. The second loss function is a cross entropy loss func-
tion used for training the classifier. This loss function ensures that
the predicted category labels are consistent with the ground truth
labels. Mathematically, it is expressed as:

𝐿𝑐𝑙𝑠 = − 1
|P𝑖 |

∑︁
𝑓𝑗 ∈P𝑖

4∑︁
𝑘=1

𝑝 𝑗,𝑘 log(𝑞 𝑗,𝑘 ). (9)

Here, 𝑝 𝑗,𝑘 is the predicted probability that 𝑓𝑗 belongs to category 𝑘 ,
while𝑞 𝑗,𝑘 is the corresponding label. The last loss functionmeasures
the cosine distance between the denoised normal n′

𝑖
and the ground

truth normal n̂𝑖 . The purpose of this loss function is to ensure that
the denoised normals accurately represent the true geometry. It is
defined as:

𝐿𝑛𝑜𝑟𝑚𝑎𝑙 = 1 − cos(n′𝑖 , n̂𝑖 ) (10)

4.2 Training Scheme
During the training process,M𝑛 is trained in the first stage using
the loss function 𝐿M𝑛 , followed by training the category classifier
in the second stage using 𝐿𝑐𝑙𝑠 . In the last stage, the entire FCL is
trained using the weighted sum of all three loss functions:

𝐿 = (1 − 𝜆) ∗ 𝐿𝑛𝑜𝑟𝑚𝑎𝑙 + 𝜆 ∗ (𝐿M𝑛
+ 𝐿𝑐𝑙𝑠 ) . (11)

Here, the parameter 𝜆 controls the relative importance of the nor-
mal loss (𝐿𝑛𝑜𝑟𝑚𝑎𝑙 ) compared to the combination of the M𝑛 loss
(𝐿M𝑛) and the category classifier loss (𝐿𝑐𝑙𝑠 ). The setting of 𝜆 is
experimentally conducted and the experimental results are put in
Subsection 5.4. For clarity, there is no parameter freezing operation
during the entire training process. This allows for the joint opti-
mization of the network and ensures that all components effectively
contribute to the denoising performance.

5 EXPERIMENTS
In this section, we present the experimental setup, comparison
studies, ablation studies, and investigations on hyper-parameters.

Table 1: The experimental results on SynData.

Methods Simple meshes Complex meshes
𝐸𝑎 𝐸𝑣 (×10−3) 𝐸𝑎 𝐸𝑣 (×10−4)

Noisy 24.51 3.62 24.74 12.77
BMF [6] 7.15 2.91 7.23 9.95
BNF [37] 4.94 2.32 6.96 8.69
GNF [34] 4.76 2.34 6.85 9.14
TGV [15] 3.84 3.01 5.43 10.95
GCN [23] 4.86 2.41 5.25 8.21
Ours 4.57 2.29 4.84 8.11

5.1 Experimental Setup
Dataset. FCL is evaluated on both synthetic and real-scanned
datasets. The synthetic dataset (denoted as SynData) is composed of
3D trianglemeshes collected from [23], [15], and an online 3Dmodel
repository (3dmag.org). SynData consists of 14 training meshes and
10 test meshes (5 simple geometric meshes and 5 complex object
meshes), as shown in Fig. 5. Noisy meshes for training are gener-
ated by adding Gaussian noise (the standard deviations are 0.1, 0.2,
and 0.3 of the mesh average edge length) and impulsive noise (the
numbers of impulsive vertices are 10%, 20%, and 30% of the mesh
vertex numbers). The test set only covers Gaussian noise.

The real-scanned datasets encompass the Kinect series datasets
[27], as well as meshes obtained from the internet. The Kinect
series datasets (Kv1Data, Kv2Data, and K-FData) are obtained by
scanning six objects (big girl, cone, girl, boy, David, and pyramid)
using Microsoft Kinect v1 and v2. The meshes from the internet
include angel, eagle, gargoyle 1, gargoyle 2, Lucy, and rabbit.

Implementation details. In the training of FCL, the truncated
normal distribution is used to initialize the weights. The optimizer
is Adam with the default parameter settings (𝛽1 = 0.9, 𝛽2 = 0.9, 𝜖 =

10−8) in PyTorch. We set the batch size to 512. The first two training
stage are conducted for 500 epochs, while the last stage is for 1000
epochs The learning rate starts at 0.01 and decays by half after the
300th, 700th, 800th, 900th epochs. The training process is executed
on a computer equipped with an AMD Ryzen 9 5900HX CPU and
an NVIDIA GeForce RTX 3080 Laptop GPU. On the SynData, 10000
faces are randomly selected from each noisy mesh to participate in
training in every epoch. On the three Kinect datasets, 1000 faces
are randomly selected from each noisy point cloud in every epoch.

Error metric. Two commonly adopted metrics are used in our
experiments. 𝐸𝑎 measures the average normal angular difference
between a denoised mesh and the ground truth noise-free mesh:

𝐸𝑎 =
1
𝑁𝑓

∑︁
𝑓𝑖 ∈F

acos(n′𝑖 · n̂𝑖 ) . (12)

Here, F is the set of faces, while 𝑁𝑓 is the number of faces in F.
n′
𝑖
and n̂𝑖 are the denoised normal and ground truth normal of 𝑓𝑖 ,

respectively. 𝐸𝑣 is the normalized average Hausdorff distance from
the denoised mesh to the corresponding ground-truth mesh [27]:

𝐸𝑣 =
1
𝑁𝑣

∑︁
v′
𝑖
∈V′

min
v̂𝑖 ∈V̂

| |v′𝑖 − v̂𝑖 | |. (13)
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Figure 6: Representative denoised meshes on SynData. The distance from each denoised vertex to the ground truth mesh is
color-coded as shown in the bar.

Figure 7: The results of compared methods on Kinect series
datasets.

Here, V′ and V̂ are the sets of denoised vertices and ground truth
vertices. The smaller the 𝐸𝑎 and 𝐸𝑣 , the better the performance.

5.2 Comparison Study
To evaluate the performance of FCL, we conduct qualitative and
quantitative comparisons with state-of-the-art mesh denoising
methods, including bilateral mesh filtering (BMF) [6], bilateral
normal filtering (BNF) [37], guided normal filtering (GNF) [34],

Table 2: The results of ablation experiments.

Variants Simple meshes Complex meshes
𝐸𝑎 𝐸𝑣 (×10−3) 𝐸𝑎 𝐸𝑣 (×10−4)

w/o filtering 5.15 2.52 6.21 9.13
w/oW𝑁 5.44 2.43 5.79 8.48

w/o classifier 4.74 2.31 4.91 8.32
w/o multiply 4.66 2.34 4.89 8.14

Ours 4.57 2.29 4.84 8.11

mesh total generalized variation (TGV) [15], and GCN-Denoiser
(GCN) [23]. To ensure fair comparisons, we carefully select the best
results obtained with fine-tuned parameters for BMF, BNF, GNF,
and TGV as our competitors. For GCN, we train it using the same
training data as FCL.

Synthetic dataset. In order to make the Hausdorff distances of
different 3D meshes comparable, all meshes in SynData are scale-
normalized through being divided by the diagonals of shape bound-
ing boxes.

The experimental results are presented in Table 1. In this bench-
mark, our method achieves the smallest 𝐸𝑎 and 𝐸𝑣 values on com-
plex meshes, indicating superior performance. For simple meshes,
TGV achieves the best 𝐸𝑎 value, while our method performs better
in terms of 𝐸𝑣 . Overall, both TGV and our method demonstrate the
best performance. Our method excels in handling complex meshes
and remains competitive with TGV for simple meshes.
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Figure 8: The denoising results of boy and pyramid, which are two representative meshes on the Kinect series datasets.

Two representative denoised meshes with color-coded errors are
showcased in Fig. 6. In this test, the performances of BMF, BNF, and
GNF are relatively similar, with GNF slightly outperforming the
other two methods. TGV and GCN outperform these three methods,
with TGV achieving impressive denoising results for the simple
mesh in the top row. However, TGV tends to lose some texture
features when processing complex meshes. GCN excels in handling
complex meshes but struggles to recover sharp features. In contrast,
FCL demonstrates the ability to recover sharp features in the top
row and preserve fine-scale features in the bottom row, highlighting
its efficacy.

Real-scanned dataset. The quantitative comparisons on the
Kinect series datasets are presented in Fig. 7. It is evident that our
method consistently outperforms the compared methods in all the
datasets, including Kv1Data, Kv2Data, and K-FData. Two repre-
sentative denoised meshes are displayed in Fig. 8, which suggests
consistent conclusion with the results on synthetic data.

The results of the collected meshes are displayed in Fig. 9. It
can be observed that all the compared methods effectively remove
noise. However, our method performs better in preserving features,
as demonstrated in the eye region of the angel mesh.

5.3 Ablation studies
To investigate the contribution of each component in FCL, we con-
duct four ablation experiments on the SynData dataset. The first
variant, referred to as "w/o filtering", directly outputs the denoised
normal instead of the filtering coefficients. This variant is imple-
mented by adding two fully connected layers at the end of FCL.
The purpose of this experiment is to verify the superiority of the
filtering mechanism. The second variant, denoted as "w/o W𝑛",
excludes the first coefficient vector from the final coefficients. The
purpose of this experiment is to investigate the importance of the
noise-aware component in filtering coefficients. The third variant,
referred to as "w/o classifier", eliminates the classifier, meaning
that the category feature is not used in M𝑔 . The purpose of this
experiment is to examine the importance of the category feature.

Table 3: The results of hyper-parameter selection experi-
ments. 𝑟1 denotes the number of rings for the input patch. 𝑟2
is the number of rings for the patch used to label categories
of faces. 𝐼 is the iteration number for generatingM𝑀 . 𝑛𝑐 rep-
resents the category number. 𝜆 is applied in 𝐿.

Settings 𝑟1 𝑟2 𝐼 𝑛𝑐 𝜆
Simple Complex
𝐸𝑎 𝐸𝑣 𝐸𝑎 𝐸𝑣

Best 3 2 20 4 0.001 4.57 2.29 4.84 8.11
𝑉1 2 2 20 4 0.001 4.98 2.62 5.73 10.38
𝑉2 4 2 20 4 0.001 4.61 2.16 5.13 9.34
𝑉3 3 1 20 4 0.001 4.88 2.54 5.17 8.61
𝑉4 3 3 20 4 0.001 4.63 2.48 4.96 8.33
𝑉5 3 2 10 4 0.001 4.72 2.35 4.91 8.27
𝑉6 3 2 30 4 0.001 4.64 2.38 4.94 8.39
𝑉7 3 2 20 3 0.001 4.68 2.33 4.89 8.23
𝑉8 3 2 20 5 0.001 4.61 2.36 4.90 8.26
𝑉9 3 2 20 4 0.01 4.77 2.46 5.18 8.47
𝑉10 3 2 20 4 0.0001 4.61 2.36 4.89 8.15

The last variant, represented as "w/o multiply", replaces the ma-
trix multiply operation inM𝑔 with a multi-layer perceptron. The
results of these experiments are provided in Table 2. We can see
that all of the variants performed worse than FCL, confirming the
positive role played by each component in our method.

5.4 Studies on Hyper-parameters
In our proposed FCL, there are five hyper-parameters that need
to be set: the size of the input patch (Subsection 3.1), the patch
size for category labels (Subsection 3.3), the category number (Sub-
section 3.3), the iteration number for generating M𝑀 (Subsection
3.2), and the 𝜆 (Subsection 4.2) in the final loss function. These
hyper-parameters are selected experimentally, and all experiments
are conducted on the SynData dataset. Table 3 lists all of the ex-
perimented parameter settings. Each row represents a different
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Figure 9: The denoising results of meshes collected from the internet.

parameter setting, with the first row indicating the best configura-
tion. To facilitate the selection of each parameter, each setting only
changes one parameter, and the changed parameter in each setting
is highlighted in bold. From the results, the size of input patches has
a significant impact on the denoising performance. Overall, our ex-
perimental results demonstrate that FCL is an effective method for
mesh denoising, and that careful parameter selection is important
for achieving optimal denoising performance.

6 CONCLUSION
In this paper, we propose a novel Filtering Coefficient Learner (FCL
for short) for mesh denoising by jointly considering noise intensity
and geometric characteristics,. FCL produces filtering coefficients

consisting of a noise-aware component and a geometry-aware com-
ponent. The first component is inversely proportional to the noise
intensity of each face, resulting in smaller coefficients for faces with
stronger noise. The second component is derived based on two types
of geometric features, where the category feature provides a global
description of the input patch and the face-wise features comple-
ment the perception of local textures. Extensive experiments have
validated the superior performance of FCL over state-of-the-art
works in both noise removal and feature preservation. However,
deep learning-based methods, including FCL, inherently encounter
disadvantages when it comes to restoring sharp textures, in con-
trast to conventional methods. Additionally, the training of FCL is
a meticulous and challenging process. These limitations warrant
dedicated attention and efforts in the future to address.
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