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ABSTRACT

This paper presents a universal method for integrating detectors and evaluates
various approaches for addressing data distribution shifts and detecting out-of-
distribution data. We achieve this by normalizing detector scores into p-values
using quantile normalization, effectively transforming the problem into a multi-
variate hypothesis test. We then combine these tests using established meta-
analysis tools, resulting in a more effective detector with consolidated decision
boundaries. Additionally, we can create a fully interpretable criterion by adjusting
the final statistics of the in-distribution scores. Our framework is highly adapt-
able for future developments in detection scores. Through a meticulous empirical
investigation, we analyze different types of shifts with varying degrees of impact
on data, demonstrating that our approach significantly enhances overall robust-
ness and performance across various domains, shift types, and out-of-distribution
detection scenarios.

1 INTRODUCTION

Deploying AI systems in real-world applications is not without its challenges. Although these sys-
tems are evaluated in static scenarios, in practice, they encounter a dynamic and evolving environ-
ment. One of the most pressing issues is preventing and reacting to data shift (Quionero-Candela
et al., 2009). It occurs when the data distribution used to train an AI model no longer matches the
data required to process. It can happen gradually or suddenly and can be caused by various factors,
e.g., changes in user behavior or degradation in operating conditions, which can have severe con-
sequences in safety-critical applications (Amodei et al., 2016) such as autonomous vehicle control
(Bojarski et al., 2016) and medical diagnosis (Subbaswamy & Saria, 2020).

As modern machine learning models can be difficult and expensive to adapt, an appropriate de-
tection of drifts may reduce the need for retraining. Even though shifts in distributions can result
in significant performance declines, in reality, distributions also undergo shifts that are harmless
(Gemaque et al., 2020). As a result, professionals should focus on discerning detrimental shifts
that harm predictive performance from unimportant shifts that have little impact. In other words,
detecting harmful drifts may lead to a discriminating method to decide when retraining is necessary.

This paper explores ways to improve the detection of performance-degrading shifts by ensembling
existing detectors in an unsupervised manner. Each detector can be formalized as a test of equiva-
lence of the source distribution (from which training data is sampled) and target distribution (from
which real-world data is sampled) through the lens of a predictive model. Our approach is motivated
by the fact that different detection algorithms may make trivial mistakes in different parts of the data
space without any assumptions on the test data distribution (Birnbaum, 1954). The challenge is to
develop a widely applicable method for combining detectors to alleviate catastrophic errors.

We make the following contributions:

1. A simple and convenient ensembling algorithm for existing detectors leading to better gen-
eralizability by incorporating effects that may not be apparent in individual detectors;

2. A framework to adapt any single example detector to a window-based data shift detector;
3. A comprehensive empirical validation encompassing single example out-of-distribution de-

tection and window-based data distribution shift detection.
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2 RELATED WORKS

Window-based data shift detection. This line of work proposes methods for detecting shifts in
data distribution using multiple samples. Lipton et al. (2018) presents a technique for detecting
prior probability shift. Rabanser et al. (2019) studies two-sample tests with high dimensional inputs
through dimensionality reduction techniques from the input space to a projected space. Cobb &
Looveren (2022) explores two sample conditional distributional shift detection based on maximum
conditional mean discrepancies to segment relevant contexts in which data drift is diminishing.

Misclassification detection. Misclassification detection aims to reject in-distribution samples mis-
classified in test time with roots in rejection option (Chow, 1957) and uncertainty quantification
(Abdar et al., 2021). A natural baseline is the classification model’s maximum softmax output
(Hendrycks & Gimpel, 2017; Geifman & El-Yaniv, 2017). Granese et al. (2021) introduce a simple
framework that considers the entire probability vector output. Gal & Ghahramani (2016); Lakshmi-
narayanan et al. (2016) are popular approaches for estimating uncertainty from a Bayesian inference
perspective. Even though this line of work focuses mainly on detecting problematic in-distribution
samples while we focus on distributional drifts, our framework could be extended to it.

Novelty and out-of-distribution detection. Out-of-distribution (OOD) detection is also referred
to xtin the literature as open-set recognition (Geng et al., 2021), one-class novelty detection (Pi-
mentel et al., 2014), or semantic anomaly detection (Wang et al., 2020). Haroush et al. (2022) also
frames OOD detection as a statistical hypothesis testing problem and aggregates p-values on mul-
tiple layers channels of the network in a hierarchical fashion. Their final method relies heavily on
the architecture of convolutional neural networks, reduction functions, and they do not adjust for
correlation between the test statistics as they point out in Section 4.2 therein. Overall, methods are
taxonomized into confidence-based Hein et al. (2019); Hendrycks & Gimpel (2017); Liang et al.
(2018); Hsu et al. (2020); Liu et al. (2020); Hendrycks et al. (2022); Sun & Li (2022), which rely on
the logits and softmax outputs; feature-based (Sastry & Oore, 2020; Quintanilha et al., 2019; Sun
et al., 2021; Huang et al., 2021; Zhu et al., 2022; Colombo et al., 2022; Dong et al., 2021; Sun et al.,
2022a; Song et al., 2022; Lin et al., 2021; Djurisic et al., 2023; Lee et al., 2018; Ren et al., 2021;
Sun et al., 2022b), which explores latent representations; mixed feature-logits (Gomes et al., 2022;
Wang et al., 2022); training, likelihood estimation and reconstruction based (Schlegl et al., 2017;
Vernekar et al., 2019; Xiao et al., 2020; Ren et al., 2019; Zhang et al., 2021; Kirichenko et al., 2020)
methods. We consider these methods to be complementary to our work as they focus on developing
single discriminative OOD scores. By analyzing the results from a recent benchmark (Zhang et al.,
2023), it is evident that there is no single winner, which empirically motivates this work.

3 METHODOLOGY

This section digs into the methodology for detecting distribution shifts in data streams inputted to
deep neural networks. We define data stream in Section 3.1, we recall the various types of shifts in
Section 3.2, and we formalize single sample and window-based detection in Section 3.3.

3.1 BACKGROUND

Let X ⊆ Rd be a continuous feature space, and let Y = {1, . . . , C} denote the label space re-
lated to some task of interest. We denote by pXY and qXY the underlying source and target
probability density functions (pdf) associated with the distributions P and Q on X × Y , respec-
tively. We assume that a machine learning model f : X → Y is trained on some training set
Dn = {(x1, y1) , . . . , (xn, yn)} ∼ pXY , which yields a model that, given an input x ∈ X , outputs
a prediction on Y , i.e., f(x) = argmaxy∈Y pŶ |X(y | x). At test time, an unlabeled sequence of
inputs or data stream is expected, sampled from the marginal target distribution qX .

Definition 3.1 (Data stream). A data stream S is a finite or infinite sequence of not necessarily
independent observations typically grouped into windows (i.e., sets Wm

j = {xj , . . . , xj+m−1} ∼
qX ) of same size m,

S = {x1, . . . ,xm, . . . } =

∞⋃
j=1

Wm
j . (1)
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3.2 DATA-SHIFT

In real-world applications, data streams usually suffer from a well-studied phenomenon known as
data distribution shift1 (or data shift for short). Data shift occurs when the test data joint probability
distribution differs from the distribution a model expects, i.e., pXY (x, y) ̸= qXY (x, y). Due to
this mismatch, the model’s response may suffer a drop in accuracy. Let β ∈ [0, 1] be a mixture
coefficient, we will write the true joint test pdf qXY as a mixture of pdfs p and υ2:

qXY (x, y) = (1− β) · pXY (x, y) + β · υXY (x, y). (2)

Remark. When β = 0, the test distribution matches the training distribution, i.e., there is no shift.
Conversely, when β = 1, we have the largest shift between training and testing environments.

By decomposing the joint pdfs into

q(X,Y ) = Q(Y |X)︸ ︷︷ ︸
concept

q(X)︸ ︷︷ ︸
covariate

= q(X|Y )Q(Y )︸ ︷︷ ︸
prior

, (3)

we can categorize three kinds of shifts that may happen. Each decomposed type of shift happens
under the condition that the accompanying decomposed probability remains unchanged. Briefly, the
concept drift is usually attributed to the presence of novel classes or concepts with covariates follow-
ing the same known distribution. Covariate shift often happens because the input data comes from
different domains, e.g., drawing of concepts while the training features are real pictures. Finally, a
prior shift or label shift usually occurs when the test condition has a bias towards some classes. All
of these shifts may have negative impacts on the model.

3.3 DETECTION FRAMEWORK

Predictions can be made sample by sample or window by window in a data stream.

On a single sample level (equivalent to OOD detection), let s : (x, f) 7→ R be a confidence-aware
score function that measures how adapted the input is to the model. A low score indicates the
sample is untrustworthy, and a high value indicates otherwise. This score can be simply converted
to a binary detector through a threshold γ ∈ R, i.e., d(·) = 1 [s(·, f) ≤ γ]. Finally, the role of the
system (d, f) is only to keep a prediction if the input sample x is not rejected by the detector d, i.e.,
if d(x) = 0. This setup is identical to novelty, anomaly, or OOD detection. Formally, the null and
alternative hypothesis writes:

H0 : (X, Ŷ ) ∼ pXY and HA : (X, Ŷ ) ∼ qXY . (4)

We assume that the score functions are confidence oriented, i.e., greater values indicate more con-
fidence in prediction. So, we frame the statistical hypothesis test as a left-tailed test (Lehmann &
Romano, 2005). Even though single-sample detection is adapted for anomaly detection, it is not
well adapted for detecting distribution shifts.

In a window based detection scenario, we make the assumptions that 1.) there are available multiple
reference samples, 2.) the instance’s class label are not available right after prediction, and 3.) the
model is not updated. So, given a reference window Wr

1 ∼ pXY with r samples and test window
Wm

2 = {x′
1, . . . ,x

′
m} ∼ qX with sample size m, our task is to determine whether they are both

sampled from the source distribution or, equivalently, whether pXY (x, y) equals qXŶ (x′, ŷ′) where
ŷ′ = f(x′). The null and alternative hypothesis of the two-sample test of homogeneity writes:

H0 : pXY (x, y) = qXŶ (x′, ŷ′) and HA : pXY (x, y) ̸= qXŶ (x′, ŷ′) . (5)

In this case, the null hypothesis is that the two distributions are identical for all (x, y); the alter-
native is that they are not identical, which is a two-sided test. As testing this null hypothesis on a
continuous and high dimensional space is unfeasible, we will compute a univariate score on each
sample of the windows. With a slight abuse of notation let s (Wm, f) = {s(x1, f), . . . , s(xm, f)}
be a multivariate proxy variable to derive a unified large-scale window-based data shift detector. To

1Also referred to in the literature as data distribution drift.
2We assume that υ is unknown and differs significantly from p, i.e., 1

2

∫
X×Y |p(z)− υ(z)|dz ≥ δ.
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compute the final window score, we rely on the Kolmogorov-Smirnov (Massey, 1951) two-sample
hypothesis test over the proxy variable. The test statistic writes:

KS(Wm
1 ,Wr

2 ) = sup
w

|F2,m(w)− F1,r(w)| , (6)

where F1,r and F2,m are the empirical cumulative distribution functions (ecdf) of the scores of each
sample of the first and the second widows, respectively. Finally, The KS statistic is compared to a
threshold, i.e., the window-based binary detector writes D(·) = 1 [KS(·,Wr

1 ) ≤ γ].

4 MAIN CONTRIBUTION: ARBITRARY SCORES COMBINATION

This section explains in detail the core contribution of the paper. We present an algorithm to ef-
fectively combine arbitrary detection score functions inspired by meta-analysis (Glass, 1976), a sta-
tistical technique that combines the results of multiple studies to produce a single overall estimate.
The first step is to transform the scores into p-values through a quantile normalization (Conover &
Iman, 1981) (cf. Section 4.1). Then, with multiple detectors, the p-values can be combined us-
ing a p-value combination method (cf. Section 4.2). Finally, we introduce an additional statistical
treatment, since the p-values of the multiple tests over the same sample are not independent, to ob-
tain better-calibrated statistics through the Brown’s method (Brown, 1975) (cf. Section 4.3) for the
Fisher’s statistic. Haroush et al. (2022) treated the first step similarly and proposed a few combina-
tion methods for the second step. However, to the best of our knowledge, we are the first to propose
correcting for correlated tests in the context of OOD and data shift detection.
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Figure 1: Illustration of the three steps of the proposed algorithm on an example with three score
functions on in-distribution data. Our main experiments combine 15 scores.

4.1 QUANTILE NORMALIZATION: MANAGING DISPARATE SCORE DISTRIBUTION

Each detector’s score r.v. Si = si(X, f) follows very different distributions depending on the
model’s architecture, the dataset it was trained on, and, of course, the score function si. In order to
combine them effectively, we propose to first apply a quantile transformation. Let Si : Ω 7→ R be a
continuous univariate r.v. captured by a cumulative density function (cdf) Fi(δ) = Pr(Si ≤ δ) for
i ∈ {1, . . . , k} and δ ∈ R. Its empirical cumulative density function F̂i : R 7→ [0, 1] is defined by

F̂ r
i (δ) =

1

r

r∑
i=1

1 [Si ≤ δ] , (7)

which converges almost surely to the true cdf for every δ by the Dvoret-
zky–Kiefer–Wolfowitz–Massart inequality (Massart, 1990). We are going to estimate this
function using a subsample of size r of the training or validation set if available. The resulting r.v.
is uniformly distributed in the interval [0, 1]. As a result, for each detector i and sample x, we can
obtain a p-value:

pi(x) = PH0 (Si ≤ si(x, f)) = Pr (Si ≤ si(x, f) | H0) ≈ F̂ r
i (si(x, f)) . (8)

A decision is made by comparing the p-value to a desired significance level α. If p < α, then the null
hypothesis H0 is rejected, and the sample is believed to be OOD. Even though we derived everything
for the single sample case, this formulation can be extended to the window-based scenario.
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4.2 COMBINING MULTIPLE P-VALUES

Our objective is to aggregate a set of k ≥ 2 scores (or p-values) in such a way that their synthesis
exhibits better properties, such as improved robustness or detection performance by consolidating
each method’s decision boundaries. Unfortunately, since q is not known and p is hard to estimate,
designing an optimal test is unfeasible according to the Neyman–Pearson’s Fundamental Lemma
(Lehmann & Romano, 2005). However, there are several possible empirical combination meth-
ods, such as Tippett (1931) mini pi, Neyman & Pearson (1933) 2

∑k
i ln(1− pi), Wilkinson (1951)

maxi pi, Edgington (1972)
∑k

i=1 pi, and Simes (1986) mini
k
i pi for sorted p-values. We are going

to explain in detail Fisher’s method (Fisher, 1925; Mosteller & Fisher, 1948) in the main manuscript,
also referred to as the chi-squared method, and Stouffer’s method (Stouffer et al., 1949) in the ap-
pendix Appendix A.1, as they exhibit good properties that will be explored in the following.

If the p-values are the independent realizations of a uniform distribution, i.e., for in-distribution data,
−2
∑k

i=1 ln pi ∼ χ2
2k follows a chi-squared distribution with 2k degrees of freedom. Finally, for a

test input x, Fisher’s detector score function can be defined as

sF (x, f) = −2

k∑
i=1

ln F̂i(si(x, f)). (9)

Fisher’s test has interesting qualitative properties, such as sensitivity to the smallest p-value, and it
is generally more appropriate for combining positive-valued data (Heard & Rubin-Delanchy, 2017)
with matches the properties of most OOD scores.

4.3 CORRECTING FOR CORRELATED P-VALUES

It should be noted that Fisher’s method depends on the assumption of independence and uniform
distribution of the p-values. However, the p-values for the same input sample are not independent.
Brown (1975) proposes modeling the r.v sF (·) using a scaled chi-squared distribution, i.e.,

sF (·) ∼ cχ2(k′), with c = Var(SF )/(2E[SF ]) and k′ = 2(E[SF ])
2/Var(SF ). (10)

With this simple trick, we approach more interpretable results, as we know in advance the distribu-
tion followed by the in-distribution data under our combined score. As so, we can leverage calibrated
confidence values given by the true cdf and leverage more powerful single-sample statistical tests
for window-based data shift detection.

Remark. Commonly, the binary detection threshold γ for a score is set based on a certain quantile
of the score’s value on an in-distribution validation set. Usually, this value is set to have 95% of enti-
ties correctly classified. By combining p-values with Fisher’s method and correcting for correlation
with Brown’s method, we relax the need of a validation set to find γ, i.e., γ = F−1

cχ2(k′)(α).

5 EXPERIMENTAL SETUP

In this section, we present and detail the experimental setup from a conceptual point of view. For
all our main experiments, we set as in-distribution dataset ImageNet-1K (=ILSVRC2012; Deng
et al., 2009) on ResNet (He et al., 2016) and Vision Transformers (Dosovitskiy et al., 2021) models.
Our experiments encompass a full-spectrum setting on i.) classic OOD detection (Section 5.1), ii.)
concept shift via independent window-based detection (Section 5.2; Par. 1), iii.) covariate shift via
independent window-based detection (Section 5.2; Par. 2), and iv.) sequential shift detection via
sequential window-based detection (Section 5.3).

5.1 CLASSIC OUT-OF-DISTRIBUTION DETECTION

We evaluate OOD detection performance on the curated datasets from Bitterwolf et al. (2023) that
contain a clean subset of the far-OOD datasets: SSB-Easy (Vaze et al., 2022), OpenImage-O (Wang
et al., 2022), Places (Zhou et al., 2017), iNaturalist (Horn et al., 2017), and Textures (Cimpoi et al.,
2014); and the near-OOD datasets: SSB-Hard (Vaze et al., 2022), Species (Hendrycks et al., 2022),
and NINCO (Bitterwolf et al., 2023). For the evaluation metrics, we consider the Area Under
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the Receiver Operating Characteristic curve (AUROC), which measures how well the OOD score
distinguishes between out- and in-distribution data in a threshold-independent manner (higher is
better). For the baselines, we consider the following post-hoc detection methods: MSP (Hendrycks
& Gimpel, 2017), Energy (Liu et al., 2020), Maha (Lee et al., 2018), Igeood (Gomes et al., 2022),
MaxCos (Techapanurak et al., 2020), ReAct (Sun et al., 2021), ODIN (Liang et al., 2018), DICE
(Sun & Li, 2022), VIM (Wang et al., 2022), KL-M (Hendrycks et al., 2022), Doctor (Granese et al.,
2021), RMD (Ren et al., 2021), KNN (Sun et al., 2022b), GradN (Huang et al., 2021). When
needed, we followed the hyperparameter selection procedure suggested in the original papers. New
methods can be easily integrated into our universal framework and should improve the robustness
and, potentially, the performance of the group detector.

5.2 INDEPENDENT WINDOW-BASED DETECTION

Concept shift. We suppose that full ID and corrupted windows formed by ID and OOD data from
the OpenImage-O (OI-O) (Wang et al., 2022) dataset with mixing parameter β (Equation (2)) are
available. The objective of the detectors is to classify each test window as being corrupted or not by
comparing it to a fixed reference window of size r = 1000 extracted from a validation set. We ran
experiments with β ∈ [0, 1] and with window sizes |W| ∈ {1, . . . , 1000}. We use the KS two sample
test described in Section 3.3 as window-based test statistics. Evaluation metrics and baselines are
the same as described in Section 5.1. Figure 2 shows Fisher’s ensembled test statistic in different
scenarios of mixture amount and window sizes. Figure 2a shows the distribution of the test statistics
for different mixture values from β = 0 (fully ID window) to β = 1 (fully OOD window). Figure 2b
displays how the distribution on the test statistic changes from flatter to peaky as we increase the
window size (better seen in color). Finally, Figure 2c demonstrates how the detection performance
is affected by window sizes increase mixture coefficient. Note an AUROC of 0.5 for the case with
β = 0, as expected. With a window size as low as 8, we can already perfectly distinguish fully
corrupted from normal ones. Similar qualitative behavior is observed on all detectors.

0.2 0.4 0.6 0.8
Test Statistic

0

5

10

15

D
en

si
ty

0.00
0.33

0.66
1.00

(a) From ID to OOD window.

0.0 0.2 0.4 0.6 0.8 1.0
Test Statistic

0

2

4

6

8

D
en

si
ty

| |, 
010, 0
100, 0
200, 0
010, 1
100, 1
200, 1

(b) Flat to peaky windows.

1 10 100 1000
Window Size

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C 0.0
0.2
0.4
0.6
0.8
1.0

(c) Detection performance.

Figure 2: Test statistic distributional behavior and detection performance as a function of the concept
shift intensity and window size. Experiments ran for Fisher’s method on a ResNet-50.

Model Train Val. IN-R IN-R (m)

RN-50 87.5 76.1 1.33 36.2
RN-101 90.0 77.4 1.67 39.3
RN-152 90.2 78.3 0.67 41.4

ViT-S-16 88.0 81.4 1.33 46.0
ViT-B-16 90.5 84.5 3.33 56.8
ViT-L-16 92.3 85.8 1.67 64.3

Table 1: Top-1 accuracies in percentage on the
training and validation sets and on the domain
drift on all and (m)asked classes outputs.

Covariate shift. We ran experiments with
the ImageNet-R (IN-R) (Hendrycks et al., 2021)
dataset providing domain shift to 200 ID classes.
Similarly to the novelty setup described in the pre-
vious paragraph, we suppose that the windows ar-
rive independently from one another. We use the
same reference window to compute metrics and
we vary the mix parameter and the window size
in the same way. Figure 8 is similar to Figure 2
and shows the behavior of the combined p-values
for detecting covariate shift in windows of a data
stream. Similar qualitative observations are drawn.
Table 1 display the accuracy of each model studied
on the new domain. We can see that without masking only the classes present on IN-R, the drift is
severe, with a top-1 accuracy of around 1% only. However, as we compute the top accuracy only on
the 200 classes by masking the other 800, we can observe an amelioration in performance. In our
experiments, we simulate the more realistic scenario by supposing that this mask is not available.
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5.3 SEQUENTIAL DRIFT DETECTION
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Figure 3: Data stream monitor-
ing with correlation ρ = 0.98.

In this setup, differently from the independent window-based de-
tection setting, we implement a sliding window of size 64 with a
stride of one. We assume that the samples arrive sequentially and
labels are unavailable to compute the true accuracy of the model
on the current or past test windows. The objective is to see how
well the moving average of the detection score will correlate with
the moving accuracy of the model. By having a high correlation
with accuracy, a machine learning practitioner can use the val-
ues of the score as an indicator if the system is suffering from
any degrading data distribution shift. We ran experiments with
the corrupted ImageNet (IN-C) (Hendrycks & Dietterich, 2019)
dataset. The intensity of the drift increases over time from in-
tensity 0 (training warmup set and part of the validation set without corruptions) to 5. Figure 3
illustrates the monitoring pipeline with the moving accuracy on the left y-axis and the score’s mov-
ing average on the right y-axis. The score’s moving average can effectively follow the accuracy
(hidden variable).

6 RESULTS AND DISCUSSION

Out-of-distribution Detection. Table 2 displays the experimental result on classic OOD detection
for a ResNet-50 model on the setup described in Section 5.1. Fisher’s method achieves state-of-
the-art results on average AUROC, surpassing the previous SOTA by 1.4% (MaxCos). Also, the
other six standard p-value combination strategies also achieve great results, validating our proposed
meta-framework of Section 4. Similar tables for FPR and other architectures are available in the
Appendix A. Apart from achieving overall great performance capabilities, the most compelling ob-
served property is the robustness compared to individual detection metrics. Figure 4 shows the
ranking per dataset and on average for selected methods. We can observe that, even though sev-
eral detectors achieve top-1 performance in a few cases, there are several datasets in which they
underperform, sometimes catastrophically. This is not true for the group methods, which can effec-
tively combine the existing detectors to obtain a final score that successfully combines the multiple
decision regions, keeping top-4 performance in all cases (Fisher).

Table 2: Numerical results in terms of AUROC (values in percentage) comparing p-value combi-
nation methods against literature for a ResNet-50 model trained on ImageNet. The left-hand side
shows results on out-of-distribution detection and the right-hand side shows results on concept (OI-
O) and covariate (IN-R) shift detection with |W| = 3 and β = 1.

Out-of-Distribution Detection Data Shift Detection
Method Avg. SSB-H NINCO Spec. SSB-E OI-O Places iNat. Text. IN-R OI-O

Fisher 89.8 75.8 84.3 88.7 91.0 93.0 93.1 95.9 96.4 94.3 (0.2) 95.7 (0.4)
Stouffer 89.6 75.5 84.6 89.0 90.9 92.8 92.7 95.8 95.5 92.8 (0.2) 95.5 (0.4)

Edgington 89.3 75.2 84.6 89.0 91.0 92.5 92.1 95.5 94.4 92.5 (0.2) 95.3 (0.3)
Pearson 89.2 74.6 84.9 89.4 90.9 92.4 91.8 95.5 94.1 92.2 (0.3) 93.9 (0.4)
Simes 89.2 75.0 83.0 87.6 89.5 92.3 93.1 95.7 97.0 83.6 (0.5) 86.6 (0.7)
Tippet 88.5 74.8 80.9 86.7 87.3 91.7 93.5 95.9 97.2 82.0 (1.0) 81.5 (0.7)
Wilkinson 86.5 68.7 83.3 89.0 88.1 89.5 86.3 93.6 93.1 71.2 (1.8) 77.4 (0.9)

MaxCos 88.4 69.6 82.7 88.2 89.9 92.2 89.7 96.1 98.4 92.2 (0.3) 95.5 (0.4)
ReAct 87.4 75.0 80.1 87.2 82.3 90.4 95.8 96.6 91.6 92.2 (0.3) 94.5 (0.4)
ODIN 85.4 72.9 80.3 83.9 87.7 88.8 90.0 91.4 88.3 92.2 (0.5) 93.6 (0.4)
DICE 85.1 70.2 77.4 84.1 82.5 88.6 91.6 94.4 91.9 85.5 (0.3) 90.1 (0.4)
Energy 85.0 72.1 79.6 83.1 87.2 88.7 90.0 90.7 88.4 91.9 (0.3) 93.4 (0.4)
Igeood 84.7 71.4 80.1 83.0 88.8 88.0 88.8 90.2 87.6 91.0 (0.3) 93.3 (0.3)
VIM 84.3 66.4 78.9 80.7 89.3 90.3 83.7 87.9 97.5 92.2 (0.5) 95.4 (0.4)
KL-M 84.3 73.9 80.7 86.1 87.3 85.7 85.2 90.0 85.3 86.9 (0.6) 91.4 (0.9)
Doctor 84.2 75.9 80.6 85.1 87.0 85.1 86.7 89.7 83.8 85.2 (0.6) 89.9 (0.4)
RMD 83.5 78.2 82.7 87.7 82.9 84.9 81.3 87.6 82.7 89.9 (0.3) 93.1 (0.6)
MSP 83.5 75.5 79.9 84.5 86.1 84.1 85.9 88.7 83.0 83.6 (0.5) 89.0 (0.4)
KNN 83.4 64.3 79.6 83.3 88.0 87.2 83.0 84.1 97.6 84.6 (0.5) 89.2 (0.8)
GradN 82.6 63.3 74.4 83.1 76.2 84.4 91.1 96.0 92.5 49.7 (1.0) 67.4 (1.2)
Maha 69.6 55.3 65.7 70.3 70.6 73.9 60.0 72.7 88.4 71.2 (1.8) 77.6 (1.8)
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Figure 4: Ranking in terms of AUROC for a few selected methods for the ResNet-50 model. Note
that the two displayed methods to combining tests obtain a top-5 ranking in every dataset, while
state-of-the-art individual detectors vary significantly in performance.
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Figure 5: Concept shift (OpenImage-O) detection performance on a ResNet-50 model (ImageNet).

Independent Window-Based Detection. Figure 5 displays results on concept shift detection.
Figure 5a) shows the detectors’ performance with the window size, showcasing a small edge in
performance for Vim, Fisher’s, and Stouffer’s methods. Figure 5b displays the impact of the mix-
ture parameter. Figure 5c shows that model size does mildly impact detection performance, with
registered improvements for ResNet-152 over ResNet-50 on Fisher’s method. The confidence in-
terval bounds are computed over 10 different seeds and are quite narrow for all methods. Similar
observations are drawn in the covariate shift results displayed in Figure 10, except for the network
scale impact, where we obtained more or less the same results for all sizes. On the right-hand
side of Table 2, we showed that for both shifts, we demonstrated improved performance by com-
bining p-values, especially with Fisher’s method. We also observe from the table that the concept
shift benchmark is slightly easier than the covariate shift benchmark, probably biased because most
OOD detectors were developed for the novel class scenario. Additional results are available in the
Appendix A.

Results in a sequential stream. Table 3 displays the average results for the ImageNet-C dataset,
including 19 kinds of covariate drifts. We can observe that the most performing methods are the
scores function based on the softmax and logit outputs and that Fisher’s method is on par with
top-performing methods. We emphasize that, even though MSP and Doctor works well in this
benchmark, they demonstrated poor performance on other benchmarks, notably on Table 2. This
supports our claim that combining scores is the most effective approach for improving robustness
and performance in general data shift detection.

Table 3: Average Pearson’s correlation coefficient with the hidden accuracy with one standard devi-
ation in parenthesis for top and bottom performing detection methods across 19 different corruptions
on the sequential data shift detection scenario on a ResNet-50 model.

Fisher Doctor MSP Igeood ... KNN RMD GradN Maha

Avg. 0.96 (0.03) 0.96 (0.03) 0.96 (0.03) 0.95 (0.03) ... 0.92 (0.07) 0.92 (0.03) 0.91 (0.07) 0.81 (0.21)
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On the distillation of the best subset of detectors. We provide a supervised study to showcase
the potential impact of finding an optimal subset of detectors. We computed the performance of
all possible subsets of j < k methods, and we report our results in Figure 6. We found out that
1.) surprisingly, removing the least performant detector from the pool does not necessarily increase
performance; 2.) increasing the size of the subset improves probable detection on average and
on worst performance; 3.) best subset selection benefits harder to find OOD samples; and 4.) not
surprisingly, the best combination for the easy benchmark may be very different from the best subset
on the harder one. We also list the best subset of four methods on average performance: {GradN,
ReAct, MaxCos, RMD}, on an easy dataset (SSB-Easy): {DICE, MaxCos, KL-M, VIM}, and on
a hard dataset (SSB-Hard): {MSP, GradN, ReAct, RMD}. Their AUROC and relative gain w.r.t all
methods combined together are equal to 91.4 (+1.8%), 92.0 (+1.1)%, and 79.7 (+4.9%), respectively.
These observations support the main claim of the paper that in a data-free scenario with specialized
methods, combining all of them should greatly improve the safety of the underlying system.
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Figure 6: Evaluation of all possible subsets of detectors on the OOD detection benchmark. The
dashed red line indicates the performance combining all detectors.

Limitations. Our study acknowledges that there not a one-size-fits-all detector or a universally
superior combination method, a finding supported by previous research (Heard & Rubin-Delanchy,
2017; Fang et al., 2022). This recognition underlines the inherent complexity of real-world ML
applications. Additionally, we recognize that the empirical cumulative distribution function may
be susceptible to estimation errors, and the effectiveness of individual detector score functions can
influence the performance of the aggregated score. It is also important to note that, although our
investigation primarily focused on computer vision applications, similar techniques can be applied
to diverse scenarios and application domains.

Future Directions. We believe several directions for future research are left open. A promising
path involves exploring the pattern in the performance of detectors across different kinds of drifts to
enable subset selection, leading to enhanced detection accuracy. However, it might need validation
on held-out labeled data or domain expertise to reflect the prior importance of the p-values. Further-
more, our proposed algorithm could be integrated into incremental and online learning algorithms,
thereby enhancing their adaptability to evolving data streams, representing an exciting avenue for
advancing machine learning applications.

7 CONCLUSION

This paper introduces a highly adaptable and efficient approach to combining detectors while ef-
fectively addressing data distribution shifts. By converting arbitrary scores into p-values and incor-
porating meta-analysis tools, we have demonstrated consolidated decision boundaries that prevent
catastrophic collapses observed on individual detectors. We also showed that Fisher’s method cor-
rected for correlated p-values demonstrates great properties, being a fully interpretable detection cri-
terion. Through a meticulous empirical investigation, we have thoroughly validated our approach,
assessing both single-example out-of-distribution detection and window-based data distribution shift
detection, gaining significant robustness and detection performance across various domains. Look-
ing ahead, our framework offers a robust foundation for enhancing the safety of AI systems.
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A APPENDIX

A.1 COMBINING MULTIPLE P-VALUES WITH STOUFFER’S METHOD

The Stouffer et al. (1949) test statistics for combining p-values is given by:

sS(·) =
k∑

i=1

Φ−1(pi(·)) (11)

where Φ−1 is the probit, i.e., Φ−1(α) =
√
2 erf−1(2α − 1), where erf is the Gauss error function.

If the p-values are independent, sS(·) ∼ N (0, 1), where N (µ, σ2) is the normal distribution with
mean µ and standard deviation σ.

A.2 CORRECTING FOR CORRELATED P-VALUES WITH HARTUNG’S METHOD

Hartung (1999) method aims to correct Stouffer’s test for correlated p-values. The group statistics
writes:

sH(·;w, ρ) =

∑k
i=1 wiΦ

−1(pi(·))√
(1− ρ)

∑k
i=1 wi

2 + ρ
(∑k

i=1 wi

)2 ∼
H0

N (0, 1) (12)

with ρ a real-valued parameter and
∑k

i=1 wi ̸= 0. Hartung showed that an unbiased estimator of ρ
based on pi under H0 is given by:

ρ̂ = 1− E

 1

k − 1

k∑
i=1

(
Φ−1(pi)−

1

k

k∑
i=1

Φ−1(pi)

)2
 . (13)

Assuming equal weights, we repeated a similar experiment as the one of Figure 1, replacing the chi-
squared with a standard normal to see how well the correction works. We can observe in Figure 7
that the corrected statistic indeed approximates a standard normal distribution. Unlike Brown’s
method, Hartung’s method corrects the statistics directly instead of correcting the parameters of the
underlying distribution.
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Figure 7: Stouffer’s method corrected for correlated p-values with Hartung’s method to obtain a
standard normal distribution when evaluated on in-distribution data (null hypothesis), also obtaining
interpretable results.
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A.3 ADDITIONAL PLOTS
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(b) ID vs. OOD windows.
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(c) Detection performance.

Figure 8: Test statistic behavior and detection performance in function of the covariate shift intensity
and window size. Experiments ran on a ResNet-50.
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(b) ID vs. OOD windows.
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(c) Detection performance.

Figure 9: Test statistic behavior and detection performance in function of the covariate shift intensity
and window size. Experiments ran on a ViT-L-16.
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(a) |W| impact with β = 0.8.
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(b) β impact with |W| = 10.
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(c) Model size impact (β = 0.8).

Figure 10: Covariate shift (ImageNet-R) detection performance on a ResNet-50 model (ImageNet).
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(a) |W| impact with β = 0.8.
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(b) β impact with |W| = 10.
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Figure 11: Covariate shift (ImageNet-R) detection performance on a ViT-L-16 model (ImageNet).
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Figure 12: Evaluation of all possible subsets of detectors on the OOD detection benchmark for a
ViT-L-16 model. The dashed red line indicates the performance combining all detectors.

A.4 ADDITIONAL TABLES

Table 4: Numerical results in terms of AUROC (values in percentage) comparing p-value combina-
tion methods against literature for a ViT-L-16 model trained on ImageNet.

Method Avg. SSB-H NINCO Spec. SSB-E OI-O Places iNat. Text.

Maha 96.8 92.7 94.8 96.6 97.4 98.6 96.9 99.8 97.6
VIM 96.6 92.1 93.9 95.6 97.7 98.5 96.7 99.7 98.2
RMD 96.1 92.4 94.8 96.2 96.3 97.9 95.7 99.5 95.6
Fisher 96.1 91.8 93.4 94.6 97.3 98.0 96.8 99.5 97.1
Vovk 96.1 91.8 93.4 94.6 97.3 98.0 96.8 99.5 97.1
Simes 96.0 91.7 93.4 94.6 97.1 98.0 97.0 99.5 97.0
Stouffer 96.0 91.5 93.3 94.4 97.3 97.9 96.7 99.4 97.1
ReAct 95.9 93.9 94.7 96.9 96.6 97.8 91.1 99.5 96.3
Edgington 95.7 90.9 92.8 93.9 97.1 97.7 96.8 99.2 97.1
Energy 95.6 91.0 92.5 93.2 97.3 97.8 96.4 99.3 97.1
Tippet 95.5 90.9 92.3 94.6 96.4 97.6 96.9 99.3 96.2
Pearson 95.5 90.4 92.4 93.6 97.1 97.6 96.8 99.0 97.0
MaxL 95.5 91.2 92.6 93.2 97.0 97.6 96.1 99.3 96.8
ODIN 95.5 91.2 92.6 93.2 97.0 97.6 96.1 99.3 96.8
Igeood 95.4 90.8 92.6 93.2 97.1 97.6 96.0 99.2 96.7
MaxCos 94.9 89.7 91.2 92.9 97.0 96.9 96.2 98.2 97.1
GradN 94.9 90.1 91.4 91.8 96.6 97.3 96.1 99.2 96.3
KNN 93.4 85.4 89.2 91.9 96.3 96.1 94.3 97.6 96.4
Doctor 93.1 88.9 90.3 91.8 94.1 94.8 93.2 98.4 93.7
MSP 92.5 88.2 89.5 91.3 93.5 94.0 92.4 98.0 93.0
KL-M 92.1 85.4 89.0 90.6 93.5 94.2 92.5 98.0 93.7
Wilkinson 91.2 81.6 85.0 87.1 94.2 94.7 96.3 95.7 95.2
DICE 76.3 60.2 63.6 67.0 79.8 80.8 94.3 81.9 82.5
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