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Abstract

In this work, we introduce the Learnable Re-001
sponse Scoring Function (LARS) for Uncer-002
tainty Estimation (UE) in generative Large Lan-003
guage Models (LLMs). Current scoring func-004
tions for probability-based UE, such as length-005
normalized scoring and semantic contribution-006
based weighting, are designed to solve specific007
aspects of the problem but exhibit limitations,008
including the inability to handle biased proba-009
bilities and under-performance in low-resource010
languages like Turkish. To address these is-011
sues, we propose LARS, a scoring function that012
leverages supervised data to capture complex013
dependencies between tokens and probabilities,014
thereby producing more reliable and calibrated015
response scores in computing the uncertainty of016
generations. Our extensive experiments across017
multiple datasets show that LARS substantially018
outperforms existing scoring functions consid-019
ering various probability-based UE methods.020

1 Introduction021

Recent years have seen a transformative shift in022

AI due to the emergence of generative Large Lan-023

guage Models (LLMs). Their near-human capabili-024

ties in understanding, generating, and processing025

information have revolutionized human-machine026

interactions and facilitated their integration across027

various industries such as healthcare, law, finance,028

and marketing (Ye et al., 2023; OpenAI, 2023; Tou-029

vron et al., 2023; Huang et al., 2023). Given that030

LLMs can sometimes generate misleading or erro-031

neous outputs, it is crucial to evaluate how much032

reliance should be placed on their responses. Tools033

such as hallucination detection (Li et al., 2023),034

fact verification (Wang et al., 2024), and Uncer-035

tainty Estimation (UE) (Malinin and Gales, 2021)036

are essential for assessing the correctness of model037

responses. The field of Uncertainty Estimation,038

well-established in classification tasks, has recently039

been adapted to generative LLMs. Recent studies040

(Kuhn et al., 2023) demonstrate that these adapta- 041

tions can effectively predict incorrect LLM outputs 042

without the need for external feedback. 043

UE methods can be broadly categorized into two 044

approaches. Probability-based methods (Malinin 045

and Gales, 2021; Kuhn et al., 2023) utilize token 046

probabilities externally to predict uncertainty. In 047

contrast, non-probability-based methods (Lyu et al., 048

2024; Chen et al., 2024) employ heuristics that do 049

not rely on token probabilities. This work focuses 050

exclusively on probability-based methods, with a 051

discussion of related works presented in Section 2. 052

A fundamental challenge in UE of LLMs with 053

probability-based methods is the necessity to aggre- 054

gate multiple token probabilities into a single score. 055

To this end, existing methods typically employ a 056

scoring function. A common scoring function is 057

Length-Normalized Scoring (LNS), which calcu- 058

lates the mean of log probabilities, as employed 059

by (Malinin and Gales, 2021; Kuhn et al., 2023), 060

to mitigate bias in longer generations. Subsequent 061

approaches by (Bakman et al., 2024; Duan et al., 062

2024) introduce heuristics that prioritize semanti- 063

cally important tokens by assigning higher weights 064

to them, rather than simply averaging as in LNS. 065

However, these scoring functions, largely heuristic 066

in design, often overlook potential pitfalls. In this 067

work, we critically analyze the weaknesses of the 068

existing scoring functions and introduce Learnable 069

Response Scoring Function (LARS), which learns a 070

scoring function from supervised data. 071

We summarize our main contributions as fol- 072

lows: 1. We experimentally demonstrate the limita- 073

tions of existing scoring functions in terms of their 074

calibration and performance in low-resource lan- 075

guages. 2. We introduce a novel off-the-shelf scor- 076

ing function, LARS, which is learned directly from 077

supervised data. 3. We validate the superiority of 078

LARS over existing baselines across three different 079

datasets and provide an analysis of its components 080

to rationalize the effectiveness of LARS. 081
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Figure 1: (Left) Answer generation process using a generative LLM. (Mid Left) LARS overview. It utilizes the
question, answer tokens, and token probabilities. Token probabilities are fed to LARS model as special probability
tokens. (Mid Right) Illustration of few-hot represented embedding vectors of probability tokens. (Right) Summary
of probability-based UE methods where they take different sampled answer scores and output a single UE value.

2 Background082

Uncertainty Estimation (UE). Uncertainty Esti-083

mation (or Quantification) in generative Large Lan-084

guage Models (LLMs) addresses the challenge of085

predicting a model’s uncertainty regarding a given086

sequence or question. An effective UE method as-087

signs a lower score (indicating less uncertainty) to088

questions where the model is likely to provide the089

correct answer, and a higher score otherwise. Math-090

ematically, we have UE(θ, x1) < UE(θ, x2) if the091

most probable generation of model θ for question092

x1 is more likely to be correct than for question093

x2. Previous works formulate this approach for094

closed-ended questions with well-defined ground095

truths (Malinin and Gales, 2021; Kuhn et al., 2023;096

Bakman et al., 2024; Duan et al., 2024).097

Related Works. UE has recently become a topic098

of significant interest, leading to the proposal of099

various methods. These methods can be broadly100

categorized into four types: 1. Self-checking meth-101

ods: The model evaluates its own generation cor-102

rectness using different strategies (Kadavath et al.,103

2022; Manakul et al., 2023; Li et al., 2024; Luo104

et al., 2023; Zhao et al., 2023). 2. Output con-105

sistency methods: Uncertainty is predicted by ex-106

amining the consistency of various outputs for a107

given question (Lyu et al., 2024; Lin et al., 2023;108

Zhang et al., 2024; Ulmer et al., 2024; Elaraby109

et al., 2023). 3. Internal state examination meth-110

ods: The activations of the model are analyzed to111

predict the model errors (Chen et al., 2024). 4.112

Token probability-based methods: These methods113

utilize token probabilities to estimate uncertainty114

(Malinin and Gales, 2021; Kuhn et al., 2023; Bak-115

man et al., 2024; Duan et al., 2024). These methods116

can be used in conformal prediction frameworks,117

which offer theoretical guarantees for model cor-118

rectness (Deutschmann et al., 2024; Quach et al.,119

2023; Yadkori et al., 2024). In this work, we focus 120

on improving token probability-based methods by 121

proposing a learnable scoring function. 122

Token Probability-based Methods. (Malinin 123

and Gales, 2021) formally proposes using sequence 124

probability as the generation’s probability for a 125

given question x and a model parameterized by θ. 126

This is mathematically defined as follows: 127

P (s|x, θ) =
L∏
l=1

P (sl|s<l,x; θ), (1) 128

where P (s|x, θ) is the sequence probability 129

for the generated sequence s, and s<l ≜ 130

{s1, s2, . . . , sl−1} represents the tokens generated 131

before sl. This sequence probability is used in 132

entropy calculation H(x, θ) by making a Monte 133

Carlo approximation, which requires multiple an- 134

swer sampling for the given question: 135

H(x, θ) ≈ − 1

B

B∑
b=1

lnP (sb|x, θ), (2) 136

where sb is a sampled generation to the question 137

x. Later (Kuhn et al., 2023) improves the entropy 138

by utilizing the semantic meaning of the sampled 139

generations. They cluster the generations with the 140

same meaning and calculate entropy using the gen- 141

eration probabilities associated with each cluster: 142

SE(x, θ) = − 1

|C|

|C|∑
i=1

lnP (ci|x, θ), (3) 143

where ci refers to each semantic cluster and C is the 144

set of all clusters. Notably, (Aichberger et al., 2024) 145

enhances semantic entropy by enabling the model 146

to generate semantically more diverse outputs. 147

Both (Malinin and Gales, 2021) and (Kuhn et al., 148

2023) observe that sequence probability in (1) is 149
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biased against longer generations. To address this,150

they use length-normalized scoring as follows:151

P̃ (s|x, θ) =
L∏
l=1

P (sl|s<l,x; θ)
1
L , (4)152

where L is the sequence length. Later (Bakman153

et al., 2024) and (Duan et al., 2024) improve this154

scoring function by incorporating the meaning con-155

tribution of the tokens. Their scoring functions,156

MARS and TokenSAR, respectively, adopt differ-157

ent approaches in integrating token meaning but158

can be generalized with the following formulation:159

P̄ (s|x, θ) =
L∏
l=1

P (sl|s<l,x; θ)
w(s,x,L,l), (5)160

where w(s,x, L, l) is the weight of the lth token161

assigned by MARS or TokenSAR. These scoring162

functions aim to give more weight to tokens that163

directly answer the question and are calibrated such164

that if a generation is likely to be incorrect, they165

yield a lower score, and vice versa. Our goal in this166

work is to enhance this calibration by learning the167

scoring function directly from the data.168

3 Shortcomings of Existing Scoring169

Functions170

In this section, we critically and empirically an-171

alyze the shortcomings of existing scoring func-172

tions, namely Length-Normalized Scoring (LNS),173

MARS, and TokenSAR.174

Manually Crafted Design Choices. Existing175

scoring functions are designed to address partic-176

ular challenges within the UE problem domain.177

For instance, LNS mitigates length bias, whereas178

MARS and TokenSAR focus on reducing the im-179

pact of non-essential token probabilities. However,180

the complexities of designing an optimal scoring181

function may not be immediately evident. Typi-182

cally, scoring functions involve a dot product of log183

probabilities and assigned weights, but alternative184

formulations could provide more finely calibrated185

estimations. Additionally, these existing functions186

may not adequately capture complex dependen-187

cies between tokens, such as grammatical and se-188

mantic interactions (De Marneffe and Nivre, 2019).189

While MARS attempts to address this by weighting190

phrases rather than individual tokens, it only par-191

tially solves the problem and fails to capture deeper192

dependencies. Lastly, both MARS and TokenSAR193

Figure 2: Average accuracy and probability assignments
of LLama2-7b model to specific entities in TriviaQA.

apply normalization on their weights w(s,x, L, l), 194

through methods like sum-normalization (Token- 195

Sar) or softmax (MARS). These design choices 196

directly impact the model’s output, potentially mak- 197

ing the model converge to sub-optimal points. 198

Biased Probabilities. Existing scoring functions 199

often directly utilize token probabilities, which can 200

exhibit biases against specific types of entities. To 201

explore this issue, we conducted an experiment 202

with Llama2-7b (Touvron et al., 2023) using the 203

TriviaQA dataset (Joshi et al., 2017). We posed 204

questions from TriviaQA to the model and ana- 205

lyzed the probabilities assigned to tokens in the 206

answer representing different entity types such as 207

person names, organizations, and dates. Addition- 208

ally, we assessed the accuracy of the model across 209

these categories. As presented in Figure 2, although 210

the model shows comparable accuracy for date and 211

person entities, it assigns higher probabilities to to- 212

kens associated with dates. This finding suggests a 213

notable positive bias towards date entities. Similar 214

patterns can be observed in other entities. Such 215

differences in probability assignment highlight the 216

need for recalibration across entities, a feature that 217

current scoring functions fail to adequately address. 218

Low-Resource Language Challenges. MARS 219

and TokenSAR are dependent on existing NLP 220

tools for implementation. Specifically, TokenSAR 221

uses a sentence similarity model (Duan et al., 2024), 222

and MARS relies on a QA evaluator model (Bulian 223

et al., 2022). These models may not be readily 224

available for some low-resource languages. More- 225

over, the design of MARS and TokenSAR is primar- 226

ily oriented towards English. This orientation can 227

be challenging when these tools are applied to lan- 228

guages that are morphologically distinct from En- 229

glish, such as Turkish (Göksel and Kerslake, 2005). 230

In Section 5.4, we experimentally demonstrate that 231

existing methods do not yield comparable improve- 232

ments in Turkish (compared to English). 233
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4 LARS: Learnable Response Scoring234

Let f denote the scoring function, which ac-235

cepts three arguments: the input prompt x =236

{x1, x2, . . . , xN}, the generated sequence s =237

{s1, s2, . . . , sL}, and the corresponding probabil-238

ity vector p = {p1, p2, . . . , pL}, where pi repre-239

sents the probability of token si. The function f240

outputs a real number o. In token probability-based241

methods, it is desirable for o to be lower when242

the generation s is more likely to be incorrect, im-243

proving the model’s uncertainty estimation. As244

discussed in Section 3, manually designing an ef-245

fective scoring function is a challenging endeavor.246

Thus, we propose making the scoring function f247

directly learnable through supervised data.248

We construct a calibration set to train our scoring249

function, fw, which is parameterized by w. This250

calibration set comprises 4-tuples: input prompt251

x, generated sequence s, probability vector p, and252

binary ground truth label g. The label g indicates253

whether s is a correct response to x. To optimize254

the parameters of fw, we employ the binary cross-255

entropy loss, denoted by L, applied as follows:256

L(fw(x, s,p), g).257

To train the scoring function fw, we start with the258

pre-trained RoBERTa model (Liu et al., 2019) and259

augment it by adding a linear layer that outputs a260

single logit. The input format for the LARS model261

is structured as follows: initial prompt x, followed262

by a series of response tokens s = {s1, s2, . . . , sL}.263

Each response token si is immediately succeeded264

by a special probability token p̃i. This probability265

token p̃i is associated with the probability pi.266

The model incorporates a total of k distinct prob-267

ability tokens, each corresponding to a specific268

partition of the [0, 1] probability range. These269

partitions are mutually exclusive, cover the entire270

probability range, and are determined based on271

the quantiles of the probabilities in the calibration272

dataset. The probability token p̃i for pi is selected273

according to the partition into which pi falls.274

The embedding vectors of probability tokens are275

structured by few-hot encoding approach. Assum-276

ing the pretrained model has an input dimension d,277

r-th probability token will be represented by set-278

ting the vector positions from (r− 1)× d
k to r× d

k279

to 1, while all other positions are set to 0. To ensure280

consistency with the pretrained model’s token em-281

bedding norms, we scale these probability vectors282

by a fixed divisor. fw is visualized in Figure 1.283

With this architecture and input strategy, we en- 284

able our scoring function to accurately associate 285

each probability pi with its corresponding token si. 286

By representing pi using a few-hot vector format, 287

the scoring function effectively utilizes probability 288

information in a manner analogous to conditional 289

image generation tasks (van den Oord et al., 2016). 290

Additionally, using a pretrained model allows the 291

scoring function to grasp the linguistic dependen- 292

cies and semantic nuances of the tokens. This capa- 293

bility may be crucial in yielding a well-calibrated 294

scoring function to properly employ the probabili- 295

ties of certain entities, as discussed in Section 3. 296

5 Experiments 297

5.1 Experimental Setup 298

Test Datasets. To test the performance of UE 299

methods, we employ 3 different closed-ended QA 300

datasets. Following (Kuhn et al., 2023), we use a 301

subset of the validation set of TriviaQA (Joshi et al., 302

2017). Second, we test on the entire validation split 303

of NaturalQA (Kwiatkowski et al., 2019). Lastly, 304

we combine train and validation splits of Web Ques- 305

tions, shortly WebQA (Berant et al., 2013). 306

LARS Calibration Datasets. To train the model 307

of the proposed method LARS, we employ subsets 308

of the train splits of TriviaQA (Joshi et al., 2017) 309

and NaturalQA (Kwiatkowski et al., 2019). We 310

randomly select ∼13k questions from each dataset 311

and sample six generations per question, ensuring 312

the most likely generation is included, for each 313

model mentioned below. From these generations, 314

we curate unique QA pairs for calibration data. 315

Typically, we train distinct LARS models for each 316

model-dataset combination. In some experiments, 317

we merge TriviaQA and NaturalQA for each model 318

and train accordingly, which we specify when used. 319

To obtain binary ground truths for QA pairs, we 320

utilize GPT-3.5-turbo as in (Bakman et al., 2024; 321

Lin et al., 2023; Chen and Mueller, 2023). Please 322

refer to Appendix D for details and prompt. 323

Models. We test UE methods on 4 popular mod- 324

els. Llama2-7b-chat (Touvron et al., 2023) and 325

Llama3-8b-instruct (AI@Meta, 2024) are opti- 326

mized for dialogue use cases. Mistral-7b-instruct 327

(Jiang et al., 2023) and Gemma-7b-it (Team et al., 328

2024) are instruction tuned versions of the corre- 329

sponding base models. For the sake of simplicity, 330

we do not use instruction indicator words of the 331

models in the rest of the paper. 332
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Dataset UE Method Scoring Function Llama2-7b Llama3-8b Mistral-7b Gemma-7b

TriviaQA

Lexical Similarity - 0.647 0.683 0.720 0.594
# Semantic Groups - 0.792 0.819 0.757 0.728

p(True) - 0.616 0.842 0.808 0.713

Confidence
LNS 0.697 0.748 0.722 0.604
MARS 0.751 0.799 0.745 0.602
TokenSAR 0.747 0.792 0.747 0.604
LARS 0.851 0.872 0.844 0.835

Entropy
LNS 0.692 0.747 0.738 0.596
MARS 0.736 0.801 0.755 0.600
TokenSAR 0.734 0.793 0.763 0.605
LARS 0.842 0.864 0.849 0.830

SE
LNS 0.795 0.835 0.810 0.732
MARS 0.797 0.845 0.810 0.729
TokenSAR 0.796 0.839 0.813 0.729
LARS 0.849 0.866 0.854 0.828

NaturalQA

Lexical Similarity - 0.600 0.651 0.637 0.546
# Semantic Groups - 0.705 0.736 0.675 0.656

p(True) - 0.561 0.761 0.730 0.683

Confidence
LNS 0.677 0.697 0.666 0.608
MARS 0.714 0.717 0.692 0.645
TokenSAR 0.703 0.717 0.682 0.637
LARS 0.780 0.812 0.782 0.784

Entropy
LNS 0.661 0.698 0.679 0.597
MARS 0.707 0.707 0.701 0.646
TokenSAR 0.683 0.714 0.694 0.633
LARS 0.775 0.805 0.781 0.779

SE
LNS 0.721 0.759 0.727 0.667
MARS 0.730 0.750 0.735 0.670
TokenSAR 0.721 0.756 0.726 0.669
LARS 0.772 0.794 0.778 0.785

Table 1: AUROC performance of UE methods.

Metrics. Following previous works, we calcu-333

late AUROC (Area Under the Receiver Operating334

Characteristic) score, a commonly used metric used335

to evaluate the performance of a binary classifier336

(Kuhn et al., 2023; Bakman et al., 2024; Duan et al.,337

2024). The ROC curve plots the true positive rate338

against the false positive rate at various thresholds.339

AUROC score is the area under this curve, and340

it provides a single number that summarizes the341

model’s ability to discriminate between the posi-342

tive and negative classes regardless of the threshold.343

An AUROC score of 1.0 represents a perfect classi-344

fier, while 0.5 is equivalent to random guessing.345

Baselines. We use three probability-based UE346

methods following (Bakman et al., 2024). Con-347

fidence is the negative of the response score. It348

is calculated as the negative score of the most349

likely generation to a given question. The other350

UE methods are Entropy as in (2) and Semantic351

Entropy (SE) (3). Each method uses a scoring352

function to assign a score to a model generation.353

We compare LARS with 3 SOTA scoring func-354

tions for this purpose: Length-normalized scoring355

(LNS)(Malinin and Gales, 2021), MARS (Bakman356

et al., 2024) and TokenSAR (Duan et al., 2024).357

Our proposal LARS is a scoring function, com-358

pared with other baseline scoring functions com- 359

bined with all probability-based UE methods. 360

Further, We add three non-probability-based UE 361

approaches to our baseline set. Lexical Similar- 362

ity (Fomicheva et al., 2020), is the average of the 363

Rouge-L scores between unique sampled genera- 364

tion pairs to a given question. p(True) (Kadavath 365

et al., 2022), a self-check method, asks the model 366

itself if the most likely answer is correct by pro- 367

viding the question, sampled generations, and the 368

answer. Lastly, following (Kuhn et al., 2023), we 369

compare with # Semantic Groups, the number of se- 370

mantic clusters, as in SE. In all of our experiments, 371

number of sampled generations is 5. 372

5.2 Main Results 373

We present the results of our method alongside 374

other baselines in Table 1. Notably, LARS sig- 375

nificantly enhances the performance of all exist- 376

ing scoring functions across each probability-based 377

UE method, with improvements reaching up to 378

0.231 points over LNS. Additionally, LARS boosts 379

the confidence metric to levels comparable with 380

Semantic Entropy (SE) and Entropy. This is par- 381

ticularly important considering the inference cost: 382

Entropy-based methods require multiple output 383

samples (5 in our experiments), which can be com- 384
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UE Method Scoring Function Llama2-7b Llama3-8b Mistral-7b Gemma-7b

Lexical Similarity - 0.643 0.640 0.645 0.607
# Semantic Groups - 0.612 0.599 0.601 0.594

p(True) - 0.558 0.636 0.668 0.677

Confidence

LNS 0.656 0.645 0.634 0.608
MARS 0.669 0.659 0.637 0.607
TokenSAR 0.664 0.656 0.640 0.607
LARS (TriviaQA only) 0.718 0.704 0.681 0.739
LARS (NaturalQA only) 0.701 0.690 0.682 0.756
LARS (TriviaQA+NaturalQA) 0.715 0.713 0.686 0.739

Entropy

LNS 0.656 0.650 0.647 0.610
MARS 0.675 0.664 0.647 0.616
TokenSAR 0.668 0.661 0.649 0.610
LARS (TriviaQA only) 0.719 0.704 0.690 0.730
LARS (NaturalQA only) 0.712 0.690 0.691 0.748
LARS (TriviaQA+NaturalQA) 0.714 0.703 0.693 0.733

SE

LNS 0.672 0.664 0.665 0.629
MARS 0.679 0.669 0.665 0.629
TokenSAR 0.674 0.667 0.663 0.625
LARS (TriviaQA only) 0.716 0.697 0.689 0.732
LARS (NaturalQA only) 0.709 0.685 0.693 0.745
LARS (TriviaQA+NaturalQA) 0.711 0.694 0.697 0.729

Table 2: AUROC performance of UE methods with different scoring functions on WebQA dataset. LARS models
are trained with TriviaQA and/or NaturalQA.

putationally expensive in the context of LLMs. Fur-385

ther, SE necessitates O(N2) model passes for se-386

mantic clustering, where N is the number of sam-387

pled outputs. In contrast, LARS operates with a sin-388

gle pass using a RoBERTa-based model with 125M389

parameters—a computation level that is negligible390

compared to models with capacities of 7B param-391

eters or more. Lastly, the LARS scoring function392

demonstrates that probability-based UE methods393

outperform response clustering methods, including394

Lexical Similarity, the number of Semantic Groups,395

and the self-checking method p(True).396

5.3 Out-of-Distribution (OOD) Experiments397

We train LARS using a calibration dataset, which is398

curated from a set of questions and the correspond-399

ing responses of a chat model. It is crucial to assess400

the out-of-distribution capabilities of LARS, which401

we analyze from two perspectives in this section.402

OOD Data Generalization. First, we investigate403

how the performance of LARS is affected when404

the model encounters questions which have a dis-405

tribution deviating from that of the calibration set.406

To this end, we conduct tests using WebQA, with407

LARS models trained on TriviaQA and/or Natu-408

ralQA for each distinct chat model. The results are409

presented in Table 2, and additional results on out-410

of-distribution (OOD) data generalization are avail-411

able in Appendix C.2. Impressively, LARS, despite412

being trained on different datasets, outperforms all413

other scoring functions across all probability-based414

UE methods, achieving an average improvement of415

approximately ∼ 0.04 points.416

OOD Model Generalization. Next, we analyze 417

how LARS performs when the responses in the 418

calibration set are derived from a different chat 419

model than the one used at test time. Due to space 420

limitations, we provide a subset of the results in 421

Table 3; however, comprehensive results are pre- 422

sented in Appendix C.1. Notably, optimal LARS 423

performance is achieved when the same chat model 424

is used for both training and testing. Nevertheless, 425

OOD model scores still surpass those of baseline 426

scoring functions (see Table 1 for baselines), con- 427

firming the effectiveness of LARS. 428

UE
Method

Calib
Model

Llama2
7b

Llama3
8b

Mistral
7b

Confidence
Llama2-7b 0.858 0.852 0.835
Llama3-8b 0.836 0.874 0.833
Mistral-7b 0.831 0.850 0.852

Entropy
Llama2-7b 0.842 0.852 0.841
Llama3-8b 0.823 0.864 0.841
Mistral-7b 0.827 0.850 0.849

SE
Llama2-7b 0.850 0.863 0.850
Llama3-8b 0.836 0.872 0.849
Mistral-7b 0.840 0.862 0.859

Table 3: AUROC scores of UE methods with LARS
models trained with answers from various chat models.

5.4 Turkish TriviQA Experiment 429

To experimentally support our claims regarding 430

the limitations of existing scoring functions in low- 431

resource languages discussed in Section 3, we trans- 432

lated the TriviaQA test and calibration datasets into 433

Turkish using the Googletrans 1. As illustrated in 434

Table 4, the performance gains of MARS and To- 435

kenSAR over the LNS baseline are diminished in 436

1https://py-googletrans.readthedocs.io
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Figure 3: AUROC scores of two different probability association methods for LARS on 2 datasets and 4 models.

the Turkish dataset. This decline is particularly437

notable for MARS, which incorporates language-438

specific assumptions in its design, such as phrase439

separation. In contrast, LARS continues to demon-440

strate a significant advantage, maintaining its su-441

periority even though the RoBERTa model is pre-442

trained in English. This indicates that calibration443

training enables LARS to adapt effectively to dif-444

ferent languages.445

Scoring
Function English Turkish

LNS 0.747 0.692
MARS 0.791 (+0.044) 0.695 (+0.003)
TokenSAR 0.793 (+0.046) 0.720 (+0.028)
LARS 0.864 (+0.117) 0.814 (+0.122)

Table 4: AUROC performance of Entropy with differ-
ent scoring functions on Llama3-8B for the TriviaQA
dataset in different languages.

5.5 LARS without Labeled Data446

In this section, we explore the performance of447

LARS in the absence of labeled data. For this,448

for each question in the calibration dataset, we449

first use Llama3-8b to generate answers. To as-450

sess the correctness of these answers, we employ451

a teacher LLM (either Llama3-70b or Llama3-8b)452

and prompt it to evaluate the correctness of the gen-453

erated answers. This method produces noisy labels,454

some of which are incorrect.455

Despite these noisy labels, training LARS with456

them yields a good performance, surpassing both457

other baselines and the self-evaluation of the LLM458

(see Table 5). This finding is promising and sug-459

gests that the pre-trained nature of the RoBERTa460

model, which already possesses some understand-461

ing of textual inputs, enables it to understand key462

features from the noisy and partial feedback pro-463

vided by the teacher LLM. This capability con-464

tributes to getting a better scoring function than465

asking the LLM itself. Such effectiveness of pre-466

trained models in handling noisy labels supports467

previous research (Kim et al., 2021), underscoring 468

the potential of LARS for further investigation in 469

such environments. 470

Teacher Model

UE Method Llama3-70b Llama3-8b

Ask LLM 0.746 0.635
LARS (No Labeled Data) 0.837 0.809

Table 5: Results for LARS trained without labeled data
on TriviaQA. The Confidence method is used for UE.

6 Ablation Studies 471

6.1 Probability Association Strategies 472

In Section 4, we explain a sequential approach to 473

associate tokens of the response with their proba- 474

bilities, where special probability tokens are placed 475

after each response token in the input to LARS. As 476

an alternative, we explore an additive approach. In 477

this method, the embedding vectors of the proba- 478

bility tokens are added to the embedding vectors of 479

their corresponding response tokens. This strategy 480

effectively reduces the input sequence length for 481

the LARS model. Results (see Figure 3) demon- 482

strate that the sequential approach is, on average, 483

0.15 points better when used with Confidence, al- 484

though the gap narrows for Entropy and SE. Com- 485

paring the additive approach with other baselines 486

from Table 1, we observe that it still significantly 487

outperforms the baselines. Overall, these two prob- 488

ability association approaches highlight a possible 489

trade-off between shortened input length (to the 490

LARS model) and improved UE performance. 491

6.2 Size of the Calibration Dataset 492

To evaluate the scalability of LARS, we calibrate 493

it using different amounts of labeled data. The 494

results, depicted in Figure 4, show that even with 495

as few as 1,000 labeled question-ground truth pairs, 496

LARS outperforms the best-performing baseline. 497

More notably, LARS demonstrates good scalability 498
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Figure 4: AUROC scores of LARS for different amount of questions in calibration data on TriviaQA. For each UE
method, the best score across baseline scoring functions is provided for each model.

Figure 5: AUROC scores for varying number of probability tokens for LARS on 2 models and 2 datasets.

with calibration data size. Exploring the scaling499

of LARS with even more data remains as a future500

direction.501

6.3 Importance of LARS Input Components502

In this section, we assess the impact of individual503

input components of LARS on UE.504

Number of Probability Tokens. Figure 5 shows505

the impact of varying the number of probability to-506

kens, k during LARS training. Probabilities are di-507

vided into k quantiles, each represented by a unique508

few-hot vector, as described in Section 4. The509

choice of k directly influences the bias-variance510

trade-off of the model. With a high number of511

probability tokens, the model may overfit, reflect-512

ing minor fluctuations in probability within the in-513

puts. Conversely, a small number of tokens might514

hinder the model’s ability to distinguish between515

significantly different probabilities, as they are rep-516

resented by identical tokens. Our results indicate517

that using 8 quantiles for the probability vectors518

generally yields the best generalization.519

Effect of Probability Information. To assess the520

importance of probability information for LARS,521

we train a version of the model using only textual522

inputs: the question and the generated answer. The523

results (Table 6) indicate that excluding probability524

information leads to a decrease in the performance525

of LARS by up to 0.101 points. This significant526

drop underscores the critical role that probability527

information plays in the efficacy of LARS.528

Effect of Textual Information. To assess the529

impact of textual and semantic information in the530

input, we conduct an experiment using only the531

probability information. Specifically, we train a532

Multilayer Perceptron (MLP) with two hidden lay- 533

ers, which accepts only the probability vector as 534

input. As presented in Table 6, the probability-only 535

model achieves an AUROC of 0.721 with the Con- 536

fidence metric, significantly underperforming com- 537

pared to MARS (0.751), TokenSAR (0.747), and 538

LARS (0.851). These results highlight the crucial 539

role of integrating textual and probability informa- 540

tion in enhancing the performance of LARS. 541

UE Method Scoring Function AUROC

Confidence
Only text 0.750
Only probs 0.721
LARS 0.851

Entropy
Only text 0.754
Only probs 0.733
LARS 0.842

SE
Only text 0.817
Only probs 0.799
LARS 0.849

Table 6: Comparison of AUROC performance for the
Llama2-7b model on the TriviaQA Dataset across differ-
ent input modalities: text-only, probabilities-only, and
combined text and probabilities.

7 Conclusion 542

In this study, we demonstrated the shortcomings of 543

existing scoring functions and introduced LARS, 544

an off-the-shelf scoring function directly learned 545

from data. We demonstrated that LARS signifi- 546

cantly outperforms existing baselines across three 547

different QA datasets with low computational cost. 548

Additionally, we showed that LARS can be effec- 549

tively trained even without labeled data, by using 550

a teacher labeling model, and still surpasses the 551

performance of the teacher model. Furthermore, 552

our results indicate that LARS’ performance scales 553

well with increased data. 554
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8 Limitations555

One limitation of LARS is its reliance on labeled556

data, which is not a requirement for other scoring557

functions. While LARS shows promise in envi-558

ronments without labeled data, this aspect requires559

further investigation to enhance its performance.560

Further, LARS depends on a pretrained RoBERTa561

model, which has a limited sequence length ca-562

pability. This may necessitate the pre-training of563

Bert-like models that can handle longer sequences.564

Lastly, training LARS with a transformer model565

reduces the interpretability of the features. Tradi-566

tional scoring functions modify the weighting of567

probabilities and compute a dot product between568

log probabilities and weights, offering a level of569

interpretability that LARS, with its more complex570

function (despite its superior performance), lacks.571

9 Ethics Statement572

Although LARS demonstrates superior perfor-573

mance compared to existing scoring functions, it574

is important to remember that these methods still575

fall short of perfection. Consequently, the results576

from UE methods should still be taken with a grain577

of salt, especially in critical domains such as law578

and medicine. Additionally, LARS may propagate579

any biases that may be present in its training data580

into the scoring function, potentially introducing581

biases in UE related to gender, ethnicity, age, and582

so on. Such risks must be carefully managed in583

real-world applications.584
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A Details of Turkish Experiment833

We translate the same 13k question-ground truth834

pairs from the train split of TriviaQA to Turkish835

using Googletrans library2. Then, we apply the836

same procedure as for English: Make the LLM837

generate 6 answers to the question, ensuring the838

most likely generation is included. To train LARS,839

we utilize unique question-response pairs. The840

labels for training are again obtained by using GPT-841

3.5-turbo for each QA pair.842

To test the performance of varying scoring func-843

tions in Turkish, we also translate the question-844

ground truth pairs of the same test samples of Triv-845

iaQA. The same multiple-generation procedure is846

performed for this set as well and the label is ob-847

tained for the most likely generation. After having848

the translated test set, the Entropy UE metric is849

calculated by using various scoring functions.850

Lastly, the prompts for the LLM are also trans-851

lated into Turkish to make sure it provides answers852

in Turkish. Prompts are provided below.853

For Llama3-8b to generate answers: 3854

System: Sen yardımcı, saygılı ve dürüst855

bir asistansın. Sorularımı Türkçe olacak856

şekilde net, kısa ve öz cevapla.857

User: {question}858

For GPT-3.5-turbo to obtain labels:859

You will behave as a question answer860

evaluator. I will give you a question,861

the ground truth of the question, and862

a generated answer by a language model863

in Turkish. You will output "correct"864

if the generated answer is correct865

regarding question and ground truth.866

Otherwise, output "false".867

Question: {question},868

Ground Truth: {gt_answer},869

Generated Answer: {generation}870

B Details of LARS training871

We use the pre-trained RoBERTa-base model with872

a single logit fully-connected layer added at the873

end. Binary cross entropy loss is used, while the874

optimizer is AdamW with a learning rate of 5e− 6.875

The model is trained for 5 epochs. We did a search876

for batch size in the set of {4, 8, 16, 32} and found877

2https://py-googletrans.readthedocs.io
3English translation: You are a helpful, respectful and

honest assistant. Give short and precise answers to given
questions.

the optimal batch size as 8 and used it in all of the 878

experiments. The search set for learning rate was 879

{1e−6, 5e−6, 1e−5, 5e−4, 1e−4, 5e−4}. Lastly, 880

we explored training the model for more epochs 881

(up to 10); however, after epoch 5, we observed 882

overfitting. 883

The embedding vectors of probability tokens are 884

initialized as few-hot as explained in Section 4 and 885

kept frozen during the training of the model. We 886

also experimented with training those vectors as 887

well as initializing them as fully non-zero random 888

vectors. We observed that the mentioned few-hot 889

strategy gives superior and more stable results. On 890

the other hand, for the additive probability associa- 891

tion approach explained in Section 6.1, initializing 892

the embedding vectors as few-hot while keeping 893

them trainable gave the best performance. 894

C Additional Experiments 895

C.1 OOD Model Experiments - LARS 896

In this section, we present extensive OOD Model 897

experiments for LARS. The results are detailed 898

in Table 7, with interpretations similar to those in 899

Table 3. Training LARS on outputs from different 900

LLMs results in an expected performance drop. 901

Nonetheless, LARS continues to outperform other 902

scoring functions, demonstrating its robustness and 903

potential. 904

In this experiment, for each LLM we use, we 905

train a LARS model using all of the TriviaQA and 906

NaturalQA samples we created for training. 907

C.2 OOD Data Experiments - LARS 908

Table 8 details OOD data experiments on Natu- 909

ralQA, and Table 9 covers OOD data experiments 910

on TriviaQA. Training LARS with data from dif- 911

ferent distributions results in a performance drop. 912

However, when we integrate the original calibra- 913

tion data with OOD data, LARS achieves better 914

results in NaturalQA experiments. This suggests 915

that increasing the dataset size, even with data from 916

other distributions, might enhance the performance 917

of LARS depending on the dataset. 918

D Experimental Details 919

Datasets. To train the LARS model, for each Triv- 920

iaQA and NaturalQA training split, we randomly 921

select ∼13k samples resulting in ∼60k sampled 922

unique QA pairs. To evaluate the UE methods we 923

use 3 datasets: ∼9k samples from the TriviaQA 924

validation split, the validation set of NaturalQA 925

12



Dataset UE Method Scoring Function Llama2-7b Llama3-8b Mistral-7b Gemma-7b

TriviaQA

Confidence
Best Score of Baselines 0.7510 0.7994 0.7468 0.6043
Llama2-7b 0.8577 0.8519 0.8352 0.7932
Llama3-8b 0.8355 0.8737 0.8327 0.7745
Mistral-7b 0.8309 0.8499 0.8518 0.7860
Gemma-7b 0.7997 0.8118 0.8093 0.8399

Entropy
Best Score of Baselines 0.7356 0.8012 0.7634 0.6053
Llama2-7b 0.8416 0.8520 0.8410 0.7973
Llama3-8b 0.8298 0.8642 0.8407 0.7851
Mistral-7b 0.8271 0.8501 0.8488 0.7926
Gemma-7b 0.8014 0.8139 0.8216 0.8295

SE
Best Score of Baselines 0.7973 0.8451 0.8132 0.7318
Llama2-7b 0.8497 0.8625 0.8496 0.8084
Llama3-8b 0.8358 0.8719 0.8490 0.7978
Mistral-7b 0.8402 0.8623 0.8591 0.8057
Gemma-7b 0.8281 0.8454 0.8400 0.8310

NaturalQA

Confidence
Best Score of Baselines 0.7137 0.7166 0.6923 0.6453
Llama2-7b 0.7886 0.7732 0.7538 0.7232
Llama3-8b 0.7546 0.8113 0.7543 0.7158
Mistral-7b 0.7512 0.7679 0.7868 0.7165
Gemma-7b 0.7455 0.7552 0.7351 0.8091

Entropy
Best Score of Baselines 0.7071 0.7144 0.7014 0.6459
Llama2-7b 0.7756 0.7734 0.7569 0.7332
Llama3-8b 0.7582 0.8103 0.7642 0.7367
Mistral-7b 0.7550 0.7767 0.7877 0.7317
Gemma-7b 0.7447 0.7577 0.7403 0.7982

SE
Best Score of Baselines 0.7301 0.7591 0.7352 0.6701
Llama2-7b 0.7695 0.7767 0.7627 0.7581
Llama3-8b 0.7590 0.8038 0.7681 0.7430
Mistral-7b 0.7574 0.7820 0.7826 0.7458
Gemma-7b 0.7500 0.7691 0.7489 0.7901

Table 7: OOD Model Experiments on TriviaQA and NaturalQA datasets.

UE Method Scoring Function Llama2-7b Llama3-8b Mistral-7b Gemma-7b

Confidence

Best Score of Baselines 0.7137 0.7166 0.6923 0.6453
LARS (NaturalQA only) 0.7685 0.7940 0.7765 0.7846
LARS (TriviaQA only) 0.7455 0.7689 0.7365 0.7456
LARS (TriviaQA+NaturalQA) 0.7731 0.7997 0.7774 0.7818

Entropy

Best Score of Baselines 0.7071 0.7144 0.7014 0.6459
LARS (NaturalQA only) 0.7655 0.7936 0.7781 0.7786
LARS (TriviaQA only) 0.7434 0.7736 0.7392 0.7468
LARS (TriviaQA+NaturalQA) 0.7629 0.7918 0.7761 0.7814

SE

Best Score of Baselines 0.7301 0.7591 0.7352 0.6701
LARS (NaturalQA only) 0.7665 0.7873 0.7770 0.7758
LARS (TriviaQA only) 0.7511 0.7750 0.7497 0.7572
LARS (TriviaQA+NaturalQA) 0.7635 0.7849 0.7766 0.7760

Table 8: OOD data experiments on NaturalQA dataset
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UE Method Scoring Function Llama2-7b Llama3-8b Mistral-7b Gemma-7b

Confidence

Best Score of Baselines 0.7510 0.7994 0.7468 0.6043
LARS (TriviaQA only) 0.8505 0.8721 0.8443 0.8350
LARS (NaturalQA only) 0.7780 0.8243 0.7893 0.7720
LARS (TriviaQA+NaturalQA) 0.8414 0.8620 0.8305 0.8152

Entropy

Best Score of Baselines 0.7356 0.8012 0.7634 0.6053
LARS (TriviaQA only) 0.8381 0.8514 0.8213 0.8415
LARS (NaturalQA only) 0.7852 0.8348 0.8090 0.7775
LARS (TriviaQA+NaturalQA) 0.8354 0.8602 0.8373 0.8145

SE

Best Score of Baselines 0.7973 0.8451 0.8132 0.7318
LARS (TriviaQA only) 0.8488 0.8662 0.8541 0.8281
LARS (NaturalQA only) 0.8181 0.8515 0.8349 0.7911
LARS (TriviaQA+NaturalQA) 0.8457 0.8621 0.8493 0.8184

Table 9: OOD data Experiments on TriviaQA dataset

Question Ground Truth

Tr
iv

ia
Q

A

David Lloyd George was British Prime Minister during
the reign of which monarch?

King George V

How many symphonies did Jean Sibelius compose? Seven

The capital of Brazil was moved from Rio de Janeiro to
the purpose-built capital city of Brasilia in what year?

1960

N
at

ur
al

Q
A when was the last time anyone was on the moon December 1972

who wrote he ain’t heavy he’s my brother lyrics Bobby Scott, Bob Russell

how many seasons of the bastard executioner are there one

W
eb

Q
A

what is the name of justin bieber brother? Jazmyn Bieber

what character did natalie portman play in star wars? Padmé Amidala

what character did john noble play in lord of the rings? Denethor II

Table 10: Data samples from the datasets we use to evaluate UE methods: TriviaQA, NaturalQA, and WebQA.
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consisting of ∼3500 samples, and ∼6k samples926

coming from the train and validation sets of We-927

bQA combined.928

Example Samples from Datasets. We provide929

samples from the datasets we use for the evaluation930

of UE methods in Table 10.931

Generation Configurations. We utilize Hugging-932

face library and its built-in generate() function933

to obtain answers. We use num_beams=1. For the934

most likely responses we set do_sample=False935

while for the set of sampled generations, it is True.936

We set the default LLMs’ eos token as end of sen-937

tence token to stop the generation.938

Computational Cost. We use 40 GB Nvidia A-939

100 GPUs for all the experiments. The total GPU-940

hours for training a LARS model with a calibra-941

tion dataset generated from ∼13k questions is ap-942

proximately 4. Labeling of the calibration data943

for one dataset and one model takes approximately944

30 GPU-hours. Getting all the results in Table 1945

compromises ∼230 GPU-hours excluding LARS946

training. All presented results are obtained with a947

single run.948

Prompts. The prompts for the LLM models to949

generate answers to questions are given below.950

For LLama2-7b and Llama3-8b:951

System:You are a helpful, respectful952

and honest assistant. Give precise,953

short, one sentence answers to given954

questions. Do not use emojis.955

User:{question}956

For Mistral-7b:957

User: Give precise, short, one958

sentence answers to given959

questions. {question}960

For Gemma-7b:961

User: {question}962

The prompt used for GPT-3.5-turbo to obtain963

labels:964

You will behave as a question answer965

evaluator. I will give you a question,966

the ground truth of the question, and967

a generated answer by a language model.968

You will output "correct" if the969

generated answer is correct regarding970

question and ground truth. 971

Otherwise, output "false". 972

Question: {question}, 973

Ground Truth: {gt_answer}, 974

Generated Answer: {generation} 975

The prompt for the teacher models explained in 976

Section 5.5 is as follows: 977

System: You are a helpful, respectful 978

and honest question-answer evaluator. 979

You will be given a question and a 980

possible answer. Evaluate the 981

possible answer as true or false 982

considering the question. Output 983

"true" if the answer is correct. 984

Otherwise, output "false". Do not 985

make any explanation. 986

User: Question:{question} 987

Possible answer:{answer} 988

The prompts for the LLM models to self-check 989

their answers for p(True) evaluation is provided 990

below. 991

For Llama2-7b and Llama3-8b: 992

System: You are a helpful, respectful 993

and honest question-answer evaluator. 994

You will be given a question, some 995

brainstormed ideas and a possible 996

answer. Evaluate the possible answer 997

as True or False considering the 998

question and brainstormed ideas. 999

Output only True or False. 1000

User: Question:{few_shot_q1} 1001

Here are some ideas that were 1002

brainstormed:{few_shot_samples1} 1003

Possible answer:{few_shot_ans1} 1004

The possible answer is: 1005

Assistant: True 1006

User: Question:{few_shot_q2} 1007

Here are some ideas that were 1008

brainstormed:{few_shot_samples2} 1009

Possible answer:{few_shot_ans2} 1010

The possible answer is: 1011

Assistant: False 1012

User: Question:{question} 1013

Here are some ideas that were 1014

brainstormed:{sampled_generation} 1015

Possible answer:{most_likelt_gen} 1016

The possible answer is: 1017
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For Mistral-7b and Gemma-7b:1018

User: You are a helpful, respectful1019

and honest question-answer evaluator.1020

You will be given a question, some1021

brainstormed ideas and a possible1022

answer. Evaluate the possible answer1023

as True or False considering the1024

question and brainstormed ideas.1025

Output only True or False.1026

Question:{few_shot_q1}1027

Here are some ideas that were1028

brainstormed:{few_shot_samples1}1029

Possible answer:{few_shot_ans1}1030

The possible answer is:1031

Assistant: True1032

User: Question:{few_shot_q2}1033

Here are some ideas that were1034

brainstormed:{few_shot_samples2}1035

Possible answer:{few_shot_ans2}1036

The possible answer is:1037

Assistant: False1038

User: Question:{question}1039

Here are some ideas that were1040

brainstormed:{sampled_generation}1041

Possible answer:{most_likelt_gen}1042

The possible answer is:1043
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