
Under review as a conference paper at ICLR 2021

CONSTRAINT-DRIVEN EXPLANATIONS OF BLACK-
BOX ML MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern machine learning techniques have enjoyed widespread success, but are
plagued by lack of transparency in their decision making, which has led to the
emergence of the field of explainable AI. One popular approach called LIME, seeks
to explain an opaque model’s behavior, by training a surrogate interpretable model
to be locally faithful on perturbed instances. Despite being model-agnostic and easy-
to-use, it is known that LIME’s explanations can be unstable and are susceptible
to adversarial attacks as a result of Out-Of-Distribution (OOD) sampling. The
quality of explanations is also calculated heuristically, and lacks a strong theoretical
foundation. In spite of numerous attempts to remedy some of these issues, making
the LIME framework more trustworthy and reliable remains an open problem.
In this work, we demonstrate that the OOD sampling problem stems from rigidity of
the perturbation procedure. To resolve this issue, we propose a theoretically sound
framework based on uniform sampling of user-defined subspaces. Through logical
constraints, we afford the end-user the flexibility to delineate the precise subspace
of the input domain to be explained. This not only helps mitigate the problem of
OOD sampling, but also allow experts to drill down and uncover bugs and biases
hidden deep inside the model. For testing the quality of generated explanations,
we develop an efficient estimation algorithm that is able to certifiably measure the
true value of metrics such as fidelity up to any desired degree of accuracy, which
can help in building trust in the generated explanations. Our framework called
CLIME can be applied to any ML model, and extensive experiments demonstrate
its versatility on real-world problems.

1 INTRODUCTION

Advances in Machine Learning (ML) in the last decade have resulted in new applications to safety-
critical and human-sensitive domains such as driver-less cars, health, finance, education and the like
(c.f. (Lipton, 2018)). In order to build trust in automated ML decision processes, it is not sufficient
to only verify properties of the model; the concerned human authority also needs to understand the
reasoning behind predictions (DARPA, 2016; Goodman & Flaxman, 2017; Lipton, 2018). Highly
successful models such as Neural Networks and ensembles, however, are often complex, and even
experts find it hard to decipher their inner workings. Such opaque decision processes are unacceptable
for safety-critical domains where a wrong decision can have serious consequences. This has led to
the emergence of the field of eXplainable AI (XAI), which targets development of both naturally
interpretable models (e.g. decision trees, lists, or sets) (Hu et al., 2019; Angelino et al., 2018; Rudin,
2019; Avellaneda, 2020) as well as post-hoc explanations for opaque models (Ribeiro et al., 2016;
Lundberg & Lee, 2017). Although interpretable models have been gaining traction, state-of-the-art
approaches in most domains are uninterpretable and therefore necessitate post-hoc explanations.

One popular post-hoc approach is the Locally Interpretable Model-agnostic Explanation (LIME)
framework (Ribeiro et al., 2016), which seeks to explain individual predictions by capturing the
local behaviour of the opaque model in an approximate but interpretable way. To do so, it trains a
surrogate interpretable classifier to be faithful to the opaque model in a small neighborhood around a
user-provided data instance. Specifically, the given data instance is perturbed to generate a synthetic
data set on which an interpretable classifier such as a linear model is trained with the objective of
having high fidelity to the original model. The human decision-maker can inspect the coefficients of
the linear model to understand which features contributed positively or negatively to the prediction.

1

Under review as a conference paper at ICLR 2021

LIME is model-agnostic as it treats the opaque model as a black-box. It is applicable to a wide variety
of data such as text, tabular and image, and is easy to use. Nevertheless, it suffers from sensitivity to
out-of-distribution sampling, which undermines trust in the explanations and makes them susceptible
to adversarial attacks (Slack et al., 2020). Post-hoc explanation techniques are increasingly being
used by ML experts to debug their models. In this setting, LIME does not provide the user with the
flexibility to refine explanations by drilling down to bug-prone corners of the input domain. Further,
LIME has limited capabilities for measuring explanation quality accurately. For instance, checking
whether the generated explanation is faithful to the original model can only be done on a heuristically
defined number of samples, which can be unreliable. While later works such as Anchor (Ribeiro
et al., 2018) and SHAP (Lundberg & Lee, 2017) mitigate some of these issues, LIME remains a
popular framework and making it more robust and reliable remains an open problem.

Towards this goal, we first demonstrate that LIME’s rigid perturbation procedure is at the root of
many of these problems, due to its inability to capture the original data distribution. We craft concrete
examples which clearly show LIME generating misleading explanations due to OOD sampling.
Further, LIME affords the end-user limited control over the sub-space to be explained; since the
notions of ‘locality’ and ‘neighborhood’ are defined implicitly by LIME’s perturbation procedure.
XAI, however, is inherently human-centric and one-size-fits-all approaches are not powerful enough to
handle all user-needs and application domains (Sokol et al., 2019). Instead, we propose to generalize
the LIME framework by letting the user define the specific subspace of the input domain to be
explained, through the use of logical constraints. Boolean constraints can capture a wide variety of
distributions and recent advances in SAT solving and hashing technology have enabled fast solution
sampling from large complex formulas (Soos et al., 2020). Making LIME’s neighborhood generation
flexible in this way resolves both limitations of LIME. First, our approach helps in mitigating the
problem of OOD sampling. Second, it allows the user to drill down and refine explanations. For
instance, it might be not sufficient for doctors to simply know which test results contributed to
a model’s prediction of cancer; it is also important to understand the prediction in the context of
the patient’s specific age group, ethnicity etc. Such requirements can be naturally represented as
constraints. In the same vein, constraints can also be used to zoom in to bug-prone corners of the
input space to uncover potential problems in the model. This is especially useful for model debugging
which is a recent direction for ML research (Kang et al., 2020). Letting users define sub-spaces to
be explained also necessitates a theoretically grounded method of measuring explanation quality,
as a poor quality score can indicate to the user, the need for refining constraints. Existing works
compute these metrics heuristically without formal guarantees of accuracy. In this light, we propose
a theoretical framework and an efficient estimation algorithm that enables measurement of the true
value of metrics like fidelity, up to any desired accuracy, in a model-agnostic way. Through extensive
experiments, we demonstrate the scalability of our estimation framework, as well as applications of
CLIME to real world problems such as uncovering model biases and detecting adversarial attacks.

In summary, our contributions are as follows:

1. Framework for precisely crafting explanations for specific subspaces of the input domain
through logical constraints

2. A theoretical framework and an efficient algorithm for estimating the ‘true’ value of metrics
like fidelity up to any desired accuracy

3. Empirical study which demonstrates the efficacy of constraints in

• Mitigating problem of OOD sampling
• Detecting adversarial attacks
• Zooming in and refining explanations for uncovering hidden biases

2 PRELIMINARIES

Problem formulation. We follow notations from Ribeiro et al. (2016). Let D = (X, y) =
{(x1, y1), (x2, y2), . . . , (xn, yn)} denote the input dataset from some distributionD where , xi ∈ Rd
is a vector that captures the feature values of the ith sample, and yi ∈ {C0, C1} is the corresponding
class label1. We use subscripts, i.e. xj , to denote the jth feature of the vector x.

1We focus on binary classification; extension to multi-class classification follows by 1-vs-rest approach

2

Under review as a conference paper at ICLR 2021

Let f : Rd → [0, 1] denote the opaque classifier that takes a data point xi as input and returns the
probability of xi belonging to C1. We assume that an instance x is assigned label lf (x) = C1 if
f(x) ≥ 0.5 and lf (x) = C0 otherwise. Given a classifier f , the task is to learn an explainer model
g such that g mimics the behavior of f in the neighborhood of some given point x. The type of
classifier g is chosen to be visually or textually interpretable, so that it can serve as an explanation for
f ’s behavior in the neighborhood of x.

Overview of LIME. LIME builds the explainer function g on an ‘interpretable domain’ of inputs
rather than the original domain. To do so, it maps original features (that can be continuous or
categorical) to Boolean features. While x ∈ Rd represents an instance in the original domain, we use
prime-notation, i.e. x′ ∈ {0, 1}d′ to represent an instance in the interpretable domain. Using Boolean
features is a natural choice for ‘interpretable domain’, as we can understand explanations in terms of
a presence/absence of a feature’s value. Thus g operates in the interpretable domain {0, 1}d′ .
LIME randomly perturbs the given instance x to generate neighbors z1, z2, . . . with corresponding
interpretable versions z′1, z′2, The set of sampled neighbors i.e., the neighborhood of x, is
denoted by Z (Z ′ in the interpretable space) . Additionally, we denote the universe of all possible
neighbors of x (not just the ones sampled) by UZ and UZ′

.

Let the complexity of an explanation g be denoted as Ω(g) (complexity of a linear model can be
the number of non-zero weights), and let πx(z) denote the proximity measure between inputs x and
z ∈ Z (πx(z) can be defined using cosine or L2 distance). The objective function for training g is
crafted to ensure that g: (1) approximates the behavior of f accurately in the vicinity of x where
the proximity measure is high, and (2) achieves low complexity and is thereby interpretable. The
explanation is obtained as g∗ = argming∈G L(πx, g, f) + Ω(g) where G is the set of all linear
classifiers and the loss function L is defined as: L(f, h, πx) =

∑
z∈Z,z′∈Z′ [f(z) − g(z′)]2πx(z).

These are heuristically defined functions. Intuitively, the loss function captures how unfaithful g is to
f in the neighborhood of x.

Boolean (logical) constraints and uniform sampling. We use notation standard in the area of
Boolean Satisfiability (SAT). A Boolean formula over n variables φ : {0, 1}n → {0, 1} assigns a
truth value 0/1 or false/true to each of the 2n assignments to it’s variables and is constructed using
logical operators like AND (∧), OR(∨), NOT (¬), XOR (⊕) etc. An assignment of truth values to
variables denoted s ∈ {0, 1}n is said to satisfy φ (denoted s |= φ) iff φ(s) = 1. The total number
of assignments that satisfy φ is denoted as #φ =

∑
s∈{0,1}n φ(s). An algorithm is said to be a

(perfectly) uniform sampler if it takes as input an arbitrary formula φ and returns an assignment
s∗ such that ∀s |= φ, we have Pr[s∗ = s] = 1

#φ . An almost-uniform sampler is an algorithm
that takes, along with φ, a parameter ε > 0 as input and returns s∗ such that ∀s |= φ, we have

1
(1+ε)#φ ≤ Pr[s

∗ = s] ≤ 1+ε
#φ . The tools WAPS (Gupta et al., 2019) and Unigen3 (Soos et al., 2020)

are state-of-the-art perfectly uniform and almost-uniform samplers respectively.

Fidelity. The fidelity ρ of the explainer model g is a measure of how closely the predictions made by
g match those of f in the neighborhood around the given point x (Ribeiro et al., 2016). It is calculated
as the fraction of the sampled neighbors where the output class of f and g agree, i.e.

ρ̂ =

∑
z∈Z I[lf (z) == lg(z

′)]

|Z|
(1)

where I is the indicator function.

3 ANALYSIS OF LIME

LIME sampling procedure. LIME generates the neighborhood of the data point under explanation
differently for text, image and tabular datasets. We consider tabular data here (see Appendix B for
omitted details, examples, etc.). For tabular data, LIME samples points zi ∈ Z in the neighborhood
of x (continuous features are discretized) and then maps them to the interpretable (binary) domain as
z′
i ∈ Z ′ . The distance function π is defined on the binarized space to measure distance between the

original x′ and sampled instances z′. Given (Z ′,Z, π) LIME builds a linear regression model g to fit

3

Under review as a conference paper at ICLR 2021

these data, where the distance measure π defines weights of samples.

g(z′) =

T∑
i=1

ciz
′
i + d. (2)

Framework characteristics. The underlying assumption of LIME is that it is possible to approx-
imate the behavior of the black box classifier accurately around x, so that g can faithfully mimic
f in x’s neighbourhood. To fulfill this assumption, LIME presumes that it is possible to produce a
representation of the neighbourhood Z of x that adheres to the true distribution of the data D (i.e.
Z ∼ D), through its fixed sampling procedure. However, this assumption is quite strong. Even if
the classifier f behaves linearly in the neighbourhood of x, the correct distribution of instances can
vary depending on the problem being solved, which may not be accounted for by a fixed sampling
procedure. Therefore, the key question is does LIME’s sampling procedure produce a neighbour-
hood Z s.t. Z ∼ D?. Another more practical question is does OOD sampling lead to unreliable
explanations? In fact, Slack et al. (2020) already gamed LIME’s out-of-distribution (OOD) samples
using an additional scaffolded classifier that behaves exactly like f on samples from the distribution
and produces arbitrary decisions for other samples. We show that even without wrapping a classifier,
LIME’s explanations suffer dramatically from OOD sampling.

To do so, we introduce a simple metric that measures the severity of OOD sampling. The metric is
based on the observation that if Z ∼ D (i.e. no OOD sampling occurs), then the fraction of instances
with ‘true’ label C1 should be roughly the same for both Z and D. Let WQ be the fraction of intances
q ∈ Q that have true label l(q) = C1, i.e. WQ =

∑
q∈Q I(l(q) == C1)/|Q|. Then if Z ∼ D, we

should have WZ/WD ≈ 1. By construction of the binary space Z ′, we know that WZ = WZ′ .
Therefore, we should also get WZ′/WD ≈ 1. For an explainer E, we define

SQ(E) = WZ′/WD (3)

If the value of SQ(E) is far from 1, it is indicative of OOD sampling. However, computing SQ(E)
directly is infeasible in practice, as we generally do not have access to the true labels of instances
generated through sampling. Therefore we craft a few classification tasks where a perfect classifier
f can be trained such that f(x) ≥ 0.5 for ∀x, x ∼ D such that x belongs to C1. This allows us to
obtain the true labels for computing WZ′ and WD. We show such an example in Fig.1, called ‘Hit
or miss example’. In Fig.1, the squares S0 and S1 represent the areas of the input space that are
in-distribution, while points outside the squares (white regions) are OOD. Intuitively, when perturbing
the point with coordinates (8, 8), for example, LIME’s distribution-unaware sampling procedure
is likely to generate a lot of OOD samples, as the neighborhood of (8, 8) is largely OOD (white).
In Example B.1 in Appendix B, we precisely define the classification task in this example. We
found SQ(LIME) = 0.75 which is much less than 1, and clearly indicates that LIME’s sampling
procedure does not satisfy the main underlying assumption Z ∼ D.
Framework capabilities. The other limitation of LIME is that the fixed perturbation procedure
gives users very little flexibility in tailoring explanations to their needs. Users can only control
the data point x to be explained, which can be insufficient for different use-cases. It is natural to
ask: Can we generate explanations using a specific subspace of inputs? Namely, can we formally
define Z instead of having LIME define it for us? The need for customizing Z arises naturally
in the process of refining explanations, or when debugging models. For example, regulators may
want to know how insurance applications are decided for people with specific preexisting conditions.
Traders may need to understand the reason behind a decision to sell, in the context of the prevailing
market conditions. Answering such queries is challenging in the existing LIME setting as it requires
sampling capabilities from a constrained subspace. In our proposed framework, the user can naturally
enforce such requirements through constraints such as ordering relations, arithmetic expressions over
bounded integers, Boolean expressions or any logical combinations of these.

4 GENERATING AND CERTIFYING CONSTRAINT-DRIVEN EXPLANATIONS

From the preceding discussion, it is clear that the limitations of the LIME framework that remain
unaddressed are (a) OOD sampling, (b) ability to work in constrained spaces and (c) providing
verifiable guarantees on fidelity. Towards the goal of remedying this, we first present our constraint-
driven explanation generation framework called CLIME. Then, we show how we can obtain certifiably
accurate measurements of an explanation’s quality through a novel estimation algorithm.

4

Under review as a conference paper at ICLR 2021

S0

S1

0 7 12

7

12

(8,8)

Figure 1: Hit or miss example Figure 2: Scalability of Alg. 2,3 vs. ApproxMC

4.1 CLIME EXPLANATION FRAMEWORK

The CLIME framework generates explanations on instances sampled (almost) uniformly from user-
defined subspaces which are defined through constraints. Boolean constraints are powerful enough to
represent log-linear family of distributions (Chavira & Darwiche, 2008), yet allow fast sampling of
solutions either uniformly or with a user-provided bias (Gupta et al., 2019), thanks to advances in SAT
technology. In this work, we focus on explanations based on (almost) uniformly sampling solutions
of constraints, but we note that the extension to biased (weighted) sampling is straightforward.

The pseudo-code of the constrained explanation framework is presented in Alg. 1. The key difference
with respect to LIME is that along with the input instance x CLIME also takes as input a Boolean
formula φ. The variables of φ are exactly the Boolean features of the interpretable domain Z ′. As
an example, assume that φ represents the constraint that at least ‘c’ variables must be true for some
user-defined ‘c’. For image data this constraint enforces the requirement that at least ‘c’ superpixels
must be ‘on’, while for text it forces at least ‘c’ words from x to be present in each z. This blocks out
very sparse data ensuring that only informative instances are used for training the explainer model.

We assume access to a procedure getSamples that returns N independent samples satisfying φ. The
algorithm takes as input a parameter ε, which represents the tolerance to deviation from perfectly-
uniform sampling. If ε = 0, then the call to getSamples in line 1 must be to a perfectly uniform
sampler like WAPS (Gupta et al., 2019), otherwise an almost-uniform sampler like Unigen3 (Soos
et al., 2020) suffices. The rest of the algorithm is similar to LIME: samples z′i are mapped back
to the original domain, and the output of f on each zi and the distance of each zi to x are used for
training g in line 6, where at most K coefficients are allowed to be non-zero to ensure interpretability.

In Appendix C, we consider two classes of crafted examples to demonstrate (a) undesired conse-
quences of OOD sampling for LIME which are resolved in CLIME (Example C.1 and C.2) and (b)
CLIME’s capabilities to incorporate user-defined constraints (Example C.3).

Our first set of examples highlight that LIME does suffer from OOD sampling, leading to poor quality
of explanations. In particular, SQ(LIME) can be very low and LIME’s explanations significantly
differ from the true explanations. In contrast, giving the user the ability to define Zφ ∼ D using
constraints as in CLIME, mitigates OOD sampling; SQ(CLIME) is almost 1 and CLIME produces
correct explanations (we recall that the ground truth is known in these examples).

Our second class of crafted examples illustrates the explanation debugging process, where we allow
the user to specify the subspace Zφ to obtain an explanation from, e.g. to know how decisions are
made for specific classes of people such as those with alcohol dependency. We show that CLIME can
naturally handle these constrained user-spaces, which may be challenging for LIME.

5

Under review as a conference paper at ICLR 2021

Algorithm 1 explain_with_CLIME

Input: f : Opaque classifier
φ: Boolean constraints
ε: Tolerance N : Number of samples
πx: Similarity kernel
K: Length of explanation

Output: g: Interpretable linear classifier
1: Z ′ ← getSamples(φ, ε,N);
2: Z ← {}
3: for z′ ∈ Z ′ do
4: Z ← Z ∪ {z′, f(z), πx(z)}
5: end for
6: g ← K-LASSO(Z,K)

Algorithm 2 computeEstimate(ε, δ, γ)

Input: ε: Tolerance δ: Confidence
γ: Threshold

Output: ρ̂: Estimate of ρ (see Thm. 1)
1: if checkThreshold(ε, δ, γ) == True then
2: return ⊥
3: end if
4: ρ̂← AA′(0.4 ∗ ε, 0.4 ∗ ε, δ)
5: return ρ̂

Algorithm 3 checkThreshold(ε, δ, γ)

Input: ε: Tolerance
δ: Confidence
γ: Threshold

Output: True whp if ρ ≤ γ − ε
1: ν ← min(ε+ε2/2−γε/2, (ε−γε/2)/(1+
ε/2))

2: N ← 1
2ν2 log(1

δ)
3: S ← getSamples(φ, ε/2, N)
4: C ← 0
5: for s ∈ S do
6: c← checkProperty(s)
7: C ← C + c/N
8: end for
9: if C ≤ γ then

10: return True
11: else
12: return False
13: end if

4.2 CERTIFYING EXPLANATION QUALITY

For increasing user trust, it is necessary to provide a measure of the quality of explanations generated.
This is especially important for explanations of user defined sub-spaces, as it may be possible that
no simple explanation exists for a large subspace, and further refinements to the constraints may be
required to get a high quality explanation. The fidelity metric, as defined in Eqn. 1 measures quality
in terms of the fraction of samples on which the prediction made by the explainer model, matches the
prediction of the opaque model. A high fidelity score indicates that the explainer model is faithful to
the opaque model in Z . A low fidelity score can occur if, for instance, a linear classifier is used for
explaining a highly non-linear decision boundary, making the explainer unreliable.

Two parameters influence the accuracy of the fidelity score: the number of samples in Zφ and
the quality of these samples, i.e. their uniformity in UZ . Both of these parameters were chosen
heuristically in prior works including LIME, which makes the explanations harder to trust. Intuitively,
a score measured on 10 samples will not be as stable as one measured on 10000 due to randomness
inherent in any sampling procedure. Ideally one would want to compute the fidelity on all possible
instances belonging to a user-defined subspace of inputs.

Note that Eqn. 1 computes an estimate or sample mean of the ‘true’ population mean defined by

ρ =

∑
z∈UZφ I[lf (z) == lg(z

′)]

|UZφ |
(4)

This observation allows us to compute the estimate ρ̂ in theoretically grounded way, so as to statisti-
cally guarantee its closeness to ρ. Such guarantees can be indispensable in safety-critical areas such
as healthcare, to show adherence to regulatory requirements for AI, for instance.

Computing ρ exactly is usually intractable, as the constraint φ is likely to have tens of hundreds
of variables and exponentially many solutions. Approximating ρ can be faster, but requires formal
guarantees to be meaningful. A good approximation of ρ is one that is within user-defined tolerance
of the true value with high confidence. Specifically, ρ̂ is a good approximation of ρ if

Pr[(1− ε)ρ ≤ ρ̂ ≤ (1 + ε)ρ] ≥ (1− δ) (5)

where ε > 0, δ > 0 are user-defined tolerance and confidence.

6

Under review as a conference paper at ICLR 2021

To the best of our knowledge, no existing approach is directly applicable for finding a good approxi-
mation of ρ, in a model-agnostic way. The technique presented by (Narodytska et al., 2019), requires
the opaque model to be encoded as a Boolean formula, severely limiting types of models that can be
explained. On the other hand, algorithms based on Monte Carlo sampling such as the AA algorithm
by (Dagum et al., 2000), are known to be fast when ρ is high, but require far too many samples
when ρ is low (Meel et al., 2019). They also require perfectly uniform samples, while it may only be
feasible to generate almost-uniform samples from the universe UZφ .

In this section, we describe an efficient estimation algorithm based on (Dagum et al., 2000), that
is able to work with almost-uniform samples and also terminates quickly if the quantity being
approximated is small. Two key insights inform the design of our approach: we first observe that
ε-almost uniform sampling can change the value of ρ at most by a factor of (1 + ε). Secondly, in
typical scenarios, users are interested in two-sided bounds on fidelity (as given by Eqn. 5) only if it is
high enough. If the fidelity is lower than some threshold, say 0.1, then it doesn’t matter if it is 0.05
or 0.01, since the explanation will be unacceptable in either case. In other words, below a certain
threshold, one-sided bounds suffice.

We present our estimation framework in Algs. 2 and 3. Our technique is abstract in the sense that it
can estimate the density of samples satisfying any property (not just fidelity), in any given domain (not
just Boolean), so long as it is possible to sample (almost) uniformly from the domain (encapsulated in
the procedure getSamples). We assume access to a procedure checkProperty, that given a sample
s, returns 1 if the property of interest is satisfied by s and 0 otherwise. In practice, for measuring
fidelity of an explainer model on a subspace defined by some φ, getSamples can invoke WAPS or
Unigen3 on φ, while checkProperty is simply the indicator function I[lf (z) == lg(z

′)].

Procedure computeEstimate first invokes checkThreshold which returns True with high probabil-
ity (1− δ) if the population mean is less than the prescribed threshold γ with tolerance ε. If the check
fails, then computeEstimate makes a call to procedure AA′ (line 4), which is an adaptation of the
algorithm by (Dagum et al., 2000) that provides guarantees similar to Eqn. 5 with almost-uniform
samples (see Appendix D.1). Theorem 1 captures the guarantees and the behavior of the framework.

Theorem 1. If ρ ≤ γ − ε, then computeEstimate returns ⊥ with high probability (i.e. at least
1− δ). If ρ ≥ γ+ ε, w.h.p., it returns an estimate ρ̂ such that Pr[(1− ε)ρ ≤ ρ̂ ≤ (1 + ε)ρ] ≥ (1− δ).

The benefit of leveraging the algorithm by (Dagum et al., 2000) is that it was proven to have close-to-
optimal sample complexity. We demonstrate that this yields a fast certification tool in practice. We
implemented and ran Alg. 2, 3 on 150 benchmarks used in Narodytska et al. (2019). The benchmarks
are CNF formulas that encode the Anchor (Ribeiro et al., 2018) explanations of Binarized Neural
Networks trained on Adult, Recidivism and Lending datasets. The true fidelity of an explanation can
be computed from the count of the number of solutions of the corresponding formula. We compared
the running-time of our tool to the time taken by the approach of (Narodytska et al., 2019), which
utilizes the state-of-the-art approximate model-counting tool called ApproxMC (Soos et al., 2020).
Note that both ApproxMC and our tool provide the same probabilistic guarantees on the returned
estimate. The results are shown as a scatter-plot in Fig. 2. The x-coordinate of a point in blue
represents the time taken by ApproxMC on a benchmark, while the y-coordinate represents the time
taken by our approach. As all the points are far below the diagonal dotted red line, we can infer
that ApproxMC takes significantly longer than our tool to compute the same estimate. In fact, on
average (geometric mean), our tool is 7.5× faster than ApproxMC. It is clear from Fig. 2 that our
algorithm scales far better than the alternative, despite being more general and model-agnostic. We
also experimentally compared the scalability of our tool to ApproxMC for different values of input
tolerance ε and confidence δ. We found that our tool scales significantly better than ApproxMC for
tighter tolerance and confidence values. Thus, our experiments demonstrate that our tool is efficient
in practice. We provide more details and results in Appendix D.4.

5 EXPERIMENTS

We experimentally demonstrate how CLIME can be used for obtaining more meaningful explanations
on synthetic and real-world datasets, i.e. adult (Kohavi, 1996) and recidivism (Schmidt & Witte,
1988). We also evaluate its ability to detect adversarial attacks. We focus on tabular data, but
emphasize that CLIME is readily applicable to text and image data as well. Here we present results
for recidivism (see extended version of results in Appendix E).

7

Under review as a conference paper at ICLR 2021

(a) LIME (b) CLIME

Figure 3: Explanations for the recidivism dataset on female and male spaces.

Recidivism Dataset. The Recidivism dataset was used to predict recidivism for individuals
released from North Carolina prisons. We used the discretized version of dataset as in (Ribeiro et al.,
2018). We trained a small Multilayer Perceptron model that gives 69.1% accuracy on the test set. We
consider two constrained spaces:

• ‘female space’: (JUNKY OR ALCOHOL) AND (CRIMEPROPERTY) AND GENDER = FEMALE

• ‘male space’: (JUNKY OR ALCOHOL) AND (CRIMEPROPERTY) AND GENDER = MALE.

We compute explanations for 50 samples within the corresponding constrained space. Figure 3 shows
results for LIME (a) and CLIME (b), respectively, for both constrained spaces. At each plot, the blue
histogram shows results for ‘female space’ and the orange histogram shows results for ‘male space’,
respectively. Each bar shows the average rank of a feature in explanations, e.g. if the height of the bar
is 1 the corresponding feature is mostly top ranked in all explanations.

First, we observe that the ‘Gender’ (‘Gndr’) and ‘Crimeproperty’ (‘CrPr’) features are fixed in
these sub-spaces. Hence, these features are always ranked last by CLIME demonstrating the correct
behaviour (any feature with a constant value cannot influence the decision so it should have the zero
coefficient in the explainer model g defined by Eqn. 2). Note that LIME is not informative enough
for distinguishing between these constrained spaces. However, results of CLIME are very interesting.
We observe that ‘Race’ is one of the top feature to make decision for female prisoners (the ‘Race’
blue bar has a small height) and only 4th (on average) for males. On the other hand, whether a male
prisoner is ‘Married’ (‘Mard’) make the most difference which is also an interesting potential bias
that we reveal.

Detecting Adversarial Attacks. (Slack et al., 2020) presented a way to craft an adversarial attack
that seeks to hide the biased predictions made by a ‘bad’ classifier (ex: one that decides credit card
applications solely on a sensitive feature like race) from detection by post-hoc explainers like LIME.
Given a biased classifier, their idea was to construct an adversarial classifier that outputs the biased
classifier’s prediction if an input instance is detected to be in-distribution, and outputs a prediction
based on an innocuous feature if the input instance is OOD. When LIME is used for explaining a
prediction made by the adversarial classifier, almost all of LIME’s perturbed samples are detected to
be OOD, resulting in the innocuous feature appearing as the top explanation. In this way, the sensitive
feature used for deciding in-distribution instances is successfully hidden. The attack crucially relies
on the ability to train a classifier to distinguish between LIME’s perturbed samples and instances

8

Under review as a conference paper at ICLR 2021

(a) Adversarial Classifier (b) Non-Adversarial Classifier

Figure 4: Recidivism: Top CLIME explanation distribution vs. Hamming Distance

from the original distribution with high accuracy. In this experiment, we explore how CLIME can be
used for detecting such attacks.

We hypothesized that for discrete data, the distinguishing classifier should have trouble differentiating
between instances from the original dataset and instances with low Hamming distances to points
in the original dataset. For a given Hamming distance h and a set of instances S, it is possible to
construct a formula φh such that the solutions of φh are exactly those instances that are at most at a
distance h from each instance in S. We took S to be the set of 3 nearest neighbors of the instance
being explained. If our hypothesis is correct, the adversarial classifier should have trouble hiding the
sensitive features in the subspace Zφh for low values of h. Thus, sensitive features should appear in
the top CLIME explanations when h is small, while innocuous features should dominate for larger h.

To test our hypothesis, we generated 200 CLIME explanations using discretized versions of the three
datasets used by (Slack et al., 2020). We computed the relative frequency of a feature appearing as
the top explanation for different values of h. The results for the Recidivism dataset with 1 innocuous
feature are depicted in Figure 4a (we defer results on other datasets and an extended discussion to
Appendix E.3 for lack of space). We plot the hamming distance h on the X-axis and the frequency
of seeing a feature as the top explanation on the Y-axis. We see the sensitive feature ‘race’ appears
as the top explanation for 60% of the instances explained when h = 2. The innocuous feature (1st
Unrelated Feature), appears almost exclusively as the top explanation when h ≥ 5. For comparison,
we depict results on CLIME explanations for a non-adversarial classifier in Fig. 4b. We see that the
relative frequency with which a feature appears as the top explanation changes very little for different
hamming distances. Note that for LIME explanations (not shown), the innocuous feature appears as
the top explanation for all of the instances explained. While it may be possible to craft even more
sophisticated attacks, these results clearly demonstrates CLIME’s ability to detect adversarial attacks
that exploit OOD sampling.

6 CONCLUSIONS AND FUTURE WORK

We presented a model-agnostic explanation framework CLIME that is able to operate on constrained
subspaces of inputs. We introduced a new metric for quantifying the severity of the OOD sampling
problem and empirically demonstrated CLIME’s ability to mitigate it. Additionally, our new estima-
tion algorithm enables computation of an explanation’s quality up to any desired accuracy. The need
for making XAI more rigorous and evidence-based has been highlighted in the past (Doshi-Velez &
Kim, 2017), and we believe our framework takes a concrete step in this direction. CLIME can also be
readily extended in numerous ways. Helping the user with defining relevant subspaces by mining
constraints from data is an interesting direction. Once sampling tools improve, richer constraint
languages like SMT (Barrett & Tinelli, 2018) can provide even more flexibility. Construction of
CLIME’s explainer model can also incorporate Shapley values as in (Lundberg & Lee, 2017).

9

Under review as a conference paper at ICLR 2021

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access, 6:52138–52160, 2018. doi: 10.1109/ACCESS.2018.
2870052.

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. Fairsquare: probabilistic ver-
ification of program fairness. Proceedings of the ACM on Programming Languages, 1(OOPSLA):
1–30, 2017.

David Alvarez-Melis and Tommi S. Jaakkola. On the robustness of interpretability methods. CoRR,
abs/1806.08049, 2018. URL http://arxiv.org/abs/1806.08049.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning
certifiably optimal rule lists for categorical data. Journal of Machine Learning Research, 18:
234:1–234:78, 2018.

Florent Avellaneda. Efficient inference of optimal decision trees. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 3195–
3202. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/article/
view/5717.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model Checking, pp.
305–343. Springer, 2018.

Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. Probabilistic verification of fairness
properties via concentration. Proceedings of the ACM on Programming Languages, 3(OOPSLA):
1–27, 2019.

Anton Björklund, Andreas Henelius, Emilia Oikarinen, Kimmo Kallonen, and Kai Puolamäki. Sparse
robust regression for explaining classifiers. In International Conference on Discovery Science, pp.
351–366. Springer, 2019.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6-7):772–799, 2008.

P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte Carlo estimation. SIAM
Journal on Computing, 29(5):1484–1496, 2000.

DARPA. DARPA explainable Artificial Intelligence (XAI) program, 2016.

Adnan Darwiche. Three modern roles for logic in AI. CoRR, abs/2004.08599, 2020. URL https:
//arxiv.org/abs/2004.08599.

Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. CoRR, abs/2002.09284, 2020.
URL https://arxiv.org/abs/2002.09284.

Finale Doshi-Velez and Been Kim. A roadmap for a rigorous science of interpretability. CoRR,
abs/1702.08608, 2017. URL http://arxiv.org/abs/1702.08608.

Amirata Ghorbani, Abubakar Abid, and James Y. Zou. Interpretation of neural networks is fragile. In
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pp. 3681–3688. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33013681. URL
https://doi.org/10.1609/aaai.v33i01.33013681.

Bryce Goodman and Seth R. Flaxman. European Union regulations on algorithmic decision-making
and a "right to explanation". AI Magazine, 38(3):50–57, 2017.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM Comput. Surv., 51(5):
93:1–93:42, 2019. doi: 10.1145/3236009.

10

http://arxiv.org/abs/1806.08049
https://aaai.org/ojs/index.php/AAAI/article/view/5717
https://aaai.org/ojs/index.php/AAAI/article/view/5717
https://arxiv.org/abs/2004.08599
https://arxiv.org/abs/2004.08599
https://arxiv.org/abs/2002.09284
http://arxiv.org/abs/1702.08608
https://doi.org/10.1609/aaai.v33i01.33013681

Under review as a conference paper at ICLR 2021

Rahul Gupta, Shubham Sharma, Subhajit Roy, and Kuldeep S. Meel. WAPS: Weighted and projected
sampling. In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 4 2019.

Robert R. Hoffman and Gary Klein. Explaining explanation, part 1: Theoretical foundations. IEEE
Intelligent Systems, 32(3):68–73, 2017. doi: 10.1109/MIS.2017.54.

Robert R. Hoffman, Shane T. Mueller, and Gary Klein. Explaining explanation, part 2: Empirical
foundations. IEEE Intelligent Systems, 32(4):78–86, 2017. doi: 10.1109/MIS.2017.3121544.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In Advances in Neural
Information Processing Systems 32, pp. 7267–7275. Curran Associates, Inc., 2019. URL http:
//papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf.

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for
machine learning models. In AAAI, pp. 1511–1519, 2019.

Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. Model assertions for monitoring
and improving ML models. In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze
(eds.), Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March
2-4, 2020. mlsys.org, 2020. URL https://proceedings.mlsys.org/book/319.pdf.

Ron Kohavi. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In KDD, pp.
202–207, 1996.

Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Faithful and customizable
explanations of black box models. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 131–138, 2019.

Himabindu Lakkaraju, Nino Arsov, and Osbert Bastani. Robust and stable black box explanations.
ICML 2020, 2020.

Zachary C Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In NIPS, pp.
4765–4774, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=
rJzIBfZAb.

Kuldeep S Meel, Aditya A Shrotri, and Moshe Y Vardi. Not all FPRASs are equal: demystifying
FPRASs for DNF-counting. Constraints, 24(3-4):211–233, 2019.

Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and João Marques-Silva.
Assessing heuristic machine learning explanations with model counting. In Mikolás Janota and
Inês Lynce (eds.), Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture
Notes in Computer Science, pp. 267–278. Springer, 2019. doi: 10.1007/978-3-030-24258-9_19.
URL https://doi.org/10.1007/978-3-030-24258-9_19.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?": Explaining the
predictions of any classifier. In KDD, pp. 1135–1144, 2016.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI, 2018.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead, 2019.

Peter Schmidt and Ann D. Witte. Predicting recidivism in North Carolina, 1978 and 1980. Inter-
University Consortium for Political and Social Research, 1988. URL https://www.ncjrs.
gov/App/Publications/abstract.aspx?ID=115306.

11

http://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf
http://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf
https://proceedings.mlsys.org/book/319.pdf
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1007/978-3-030-24258-9_19
https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=115306
https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=115306

Under review as a conference paper at ICLR 2021

Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under
uncertainty. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems 32, pp. 10220–10230. Curran
Associates, Inc., 2019.

Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining Bayesian network
classifiers. In IJCAI, pp. 5103–5111, 2018.

Andy Shih, Arthur Choi, and Adnan Darwiche. Compiling Bayesian network classifiers into decision
graphs. In AAAI, pp. 7966–7974, 2019.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 3145–3153. PMLR,
2017. URL http://proceedings.mlr.press/v70/shrikumar17a.html.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling LIME
and SHAP: Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’20, pp. 180–186, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450371100. doi: 10.1145/3375627.3375830.
URL https://doi.org/10.1145/3375627.3375830.

Kacper Sokol, Alexander Hepburn, Raul Santos-Rodriguez, and Peter Flach. bLIMEy: surrogate
prediction explanations beyond LIME. arXiv preprint arXiv:1910.13016, 2019.

Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached, and lazy CNF-XOR solving
and its applications to counting and sampling. In Proceedings of International Conference on
Computer-Aided Verification (CAV), 7 2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pp. 3319–3328. PMLR, 2017. URL http://proceedings.
mlr.press/v70/sundararajan17a.html.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision - ECCV
2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I,
volume 8689 of Lecture Notes in Computer Science, pp. 818–833. Springer, 2014. doi: 10.1007/
978-3-319-10590-1_53. URL https://doi.org/10.1007/978-3-319-10590-1_
53.

Yujia Zhang, Kuangyan Song, Yiming Sun, Sarah Tan, and Madeleine Udell. " why should you trust
my explanation?" understanding uncertainty in lime explanations. arXiv preprint arXiv:1904.12991,
2019.

12

http://proceedings.mlr.press/v70/shrikumar17a.html
https://doi.org/10.1145/3375627.3375830
http://proceedings.mlr.press/v70/sundararajan17a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

Under review as a conference paper at ICLR 2021

A RELATED WORK

Model explainability is one of the most important problems in machine learning. Therefore, there are
a large number of recent surveys on the topic, e.g. Hoffman & Klein (2017); Hoffman et al. (2017);
Lipton (2018); Adadi & Berrada (2018); Guidotti et al. (2019); Rudin (2019). To overview, we
partition approaches to generate explanations for ML models into two groups based on whether they
provide theoretical guarantees on the quality of the generated explanations.

Explanations without theoretical guarantees. There were a number of approaches proposed to
compute (model-agnostic) local explanations. We have overviewed LIME (Ribeiro et al., 2016) in
Section 2. Anchor is a successor of LIME (Ribeiro et al., 2018). The main contribution of Anchor is
to produce explanations that hold globally, for the entire distribution of inputs. SHAP (Lundberg &
Lee, 2017) is another popular model-agnostic explainer to produce local explanations. Similar to
other explainers, SHAP does not provide any theoretical justification for the sampling procedure.
However, SHAP employs game theoretic principles to produce an explainable model. Our work
focuses on model-agnostic, local explanations, however, we produce explanations with provable
guarantees. CXPlain proposes to train an additional ‘explanation model’ to provide explanations for a
given ML model (Schwab & Karlen, 2019). Learning of the explanation model involves an estimation
of feature importance using a causal objective. The causal objective captures how input features
cause a marginal improvement in the predictive performance of the ML model. In our work, we do
not consider each feature individually and reason about the space of features as a whole. Moreover,
our framework allows us to work with constrained spaces. Finally, works such as (Lakkaraju et al.,
2019) provide limited capabilities for customizing global explanations by letting the user supply a set
of features that the they deem important. Similar to (Björklund et al., 2019), they avoid sampling a
neighbourhood around a given point by using original data points to construct an explainer. While
avoiding sampling helps scalability, it also undermines applicability. For instance, dealing with
user-defined constraints, as well as unbalanced or skewed input datasets can be problematic. In both
cases, the input data may be too sparse to yield meaningful explanations. Recently, Lakkaraju et al.
(2020) demonstrated that these explanations are less robust compared to LIME, for example.

Another line of work in on gradient-based explainers, for example, saliency maps (Zeiler & Fergus,
2014), Integrated Gradient (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., 2017). Gradient-
based methods assume full knowledge about the ML model and, also, require these models to be
differentiable. While these methods are very efficient, they do not provide theoretical guarantees on
the produced explanations. On top of that these approaches are not model-agnostic.

Explanations with theoretical guarantees. Recently, a formal approach to analyze explanation of
ML models was proposed. If an ML model allows a formal representation in restricted fragment of the
first order logic, then one can (a) define a formal notion of an explanation and (b) design an algorithm
to produce these explanations (Shih et al., 2018; 2019; Ignatiev et al., 2019; Darwiche & Hirth,
2020; Darwiche, 2020). One of the formal approaches is built on powerful knowledge compilation
techniques, e.g. (Shih et al., 2018; 2019). The other approach employees very efficient formal
reasoners, like SAT, SMT or ILP solvers, as a part of explanation generation algorithms (Ignatiev
et al., 2019; Narodytska et al., 2019). If the process of ML model compilation into a tractable structure
is feasible then the first approach is very effective and allows the user to analyse the ML model
efficiently. However, the compilation can be computationally expensive and resource demanding,
so the second approach is more efficient in some applications. There are some limitations of these
approaches. First, similar to gradient-based methods, they require full knowledge of the original ML
model. Second, in practice, these approaches face scalability issues as reasoning about ML models
formally is computationally expensive.

Quality of the explanations. Finally, we consider a recent line of work on analysis of the quality
of explanations. Ribeiro et al. (2018) proposed several heuristic measures to evaluate quality of
explanations including fidelity and coverage, but do not provide a way to estimate the true value
of these metrics. In (Ghorbani et al., 2019; Alvarez-Melis & Jaakkola, 2018), it was shown using
perturbation-based methods that explanations are susceptible to adversarial attacks and lack robustness
property. For example, Zhang et al. (2019) investigated several sources of uncertainty in LIME, like
sampling variance in explaining a sample. The authors experimentally demonstrated that LIME often
fails to capture the most important features locally. However, the paper does not propose a solution to

13

Under review as a conference paper at ICLR 2021

remedy identified issues. Moreover, Slack et al. (2020) showed that it is easy to fool an explainer,
like LIME and SHAP, as we discussed in detail in Section 5. Narodytska et al. (2019) presented a
technique for evaluation quality of explanations based on model counting, but their approach suffers
from scalability issues (as shown in Sec. 4.2) and is only applicable to BNNs. Lakkaraju et al. (2020)
proposed to use adversarial training (Madry et al., 2018) to improve robustness of the explanations.
While the proposed approach improves robustness to adversarial attacks it cannot be easily extended
to work in constraint environments and does not provide theoretical guarantees on the fidelity of the
explanations. A related line of work on probabilistic verification of ML models has seen a surge in
interest. (Albarghouthi et al., 2017) encoded the underlying model and fairness properties as formulas
in SMT over real arithmentic, and relied on symbolic integration techniques. However, this approach
is known not to scale, eg. it can only handle neural networks with a single hidden layer containing
just three hidden units. (Bastani et al., 2019) present an alternative approach that uses Monte Carlo
sampling and adaptive concentration inequalities. However, unlike Alg. 2, their method only returns
a yes/no answer and does not provide a quantitative estimate. Further, their algorithm may fail to
terminate on some inputs, and the sample complexity is not proven to be close-to-optimal.

B ANALYSIS OF LIME (ADDITIONAL MATERIALS)

B.1 PERTURBATION PROCEDURE

LIME generates the neighborhood of the data point under explanation differently, depending on
whether the given dataset is text, image or tabular. For text and images, LIME first maps a given
point x ∈ Rd to x′ ∈ {0, 1}d′ and then samples z′ ∈ {0, 1}d′ in the neighborhood of x′. For tabular
data, LIME first samples points zi in the neighborhood of x and then maps them to the interpretable
domain as z′i. The distance function is also defined on the binarized space instead of the original
space.

Text and Images For text and image data, the given point x is first mapped to the Boolean domain.
For text, the Boolean domain is simply the presence or absence of each word in x, while for images,
x is first divided into superpixels, and the Boolean domain is represented by the presence or absence
of each superpixel. Points z′ in the neighborhood of x′ are sampled by flipping a few 1s to 0s where
both the number and positions of 1s to flip are chosen randomly. Each z′i is mapped back to the
original domain to obtain zi which are then input to f for obtaining the ‘true’ labels. Interestingly,
LIME’s sampling procedure for text and images does not depend on the training set which is not the
case for tabular data.

Tabular Tabular data can consist of both continuous and categorical features. Although LIME can
work with continuous data natively, the recommended way is to perform quantization first using
statistics of the original dataset. We denote Ij = ∪Mj

k=1{I
j
k} the set of all intervals that we obtain

due to discretization of the jth feature. To construct a neighborhood Z LIME uniformly samples
features values from each interval in Ii for the ith feature. For categorical features, LIME builds a
distribution of feature values and samples values for each feature in proportion to their frequencies.

Construction of an interpretable domain. Next, we consider how an interpretable binary domain is
produced. For each sample z in the neighborhood Z , the corresponding z′ is constructed as

Discretized features: z′j := bin(zj) =

{
1, if

(
zj ∈ Ijk

)
∧
(
xj ∈ Ijk

)
0, otherwise

(6)

Categorical features: z′j := bin(zj) =

{
1, if z′j = xj
0, otherwise

(7)

We denote bin(z) the mapping function from the original feature vector z to a binary vector z′,
z′ = bin(z). Thus Z ′ = bin(Z). As this mapping is many-to-one, we denote pre-image(z′) the set
of samples that are mapped to z′:

pre-imageZ(z′) = {z|bin(z) = z′, z ∈ Z}. (8)

14

Under review as a conference paper at ICLR 2021

Interpretation of an explanation. We recall the meaning of explanation for a vector z given a linear
regression model g defined by Eqn. 2. Suppose the ith coefficient is great than zero, ci > 0. Then the
value ci is interpreted as a contribution toward the class 1. Namely, if the ith feature fi is not equal
to zi then on average the value of g(z) decreases by ci. To see why it is so, we consider the binary
space z′ = bin(z). If fi 6= zi then z′i = 0. Hence, contribution of the term ciz

′
i to the value of g(z′)

is decreased by ci. Similarly, if ci < 0 then the value ci is interpreted as a contribution to the class 0.
If fi 6= zi than the value of g(z′) is increased by ci.

B.2 DISCUSSION ON THE QUALITY OF THE PERTURBATION PROCEDURE

The quality of explanations depends on the closeness of samples Z to samples from the original
distribution D. In Section 3, we introduce a simple metric SQ(E) = WZ′/WD (see Eqn. 3) to
measure the quality of Z . Please note that the SQ metric might look similar to the fidelity metric
that is defined in Eqn. 1. However, these metrics are different. SQ measures quality of the sampling
procedure based on the behavior of an ideal classifier on the generated samples, while ρ̂ evaluates the
closeness of two models g and f .

We recall that if the sampling procedure is correct then SQ(E) should be close to 1 for a perfect
classifier. While we can always experimentally measure WZ′ , the value WD cannot be compute in
general. However, we will use few crafted classification tasks where WD can be computed exactly to
highlight the difference in behaviour of LIME and our proposed procedure.

The following crafted example is designed to highlight that OOD sampling occurs and our SQ(E)
metric is able to detect it. Moreover, we show that the quality as explanations suffer due to the OOD
sampling.

Example B.1 (‘Hit or miss’). We define the classification problem to illustrate issues with the OOD
sampling. This problem models a situation when the classifier relies on seeing specific feature values
in the input sample to make its decision. As we mentioned above, the reason we work with a crafted
problem is that we can compute the value WD exactly, which is not possible for real world datasets.

Definition of a task. We consider two areas S0 and S1 on the 2D plane (see Figure 1(a)). A sample
x, x ∼ D, represents integer coordinates of three points p1, p2 and p3 drawn from S0 ∪ S1. Hence,
we have six features vector x = [x1, x2, . . . , x6], where pi = (x2i−1, x2i), i = 1, 2, 3, is a 2D point,
or x = [p1, p2, p3] = [(x1, x2), (x3, x4), (x5, x6)]. If there is pi ∈ x s.t. pi /∈ S0 ∩ S1 then x is an
out-of-distribution sample. For example, [(7, 7), (7, 7), (10, 10)] is an in-distribution sample, while
[(1, 10), (7, 7), (10, 10)] is an out-of-distribution sample as the first point (1, 10) /∈ S0 ∩ S1.

Given a sample x ∼ D, we say that x belongs to C1 iff there exists i s.t. pi ∈ S1, i ∈ [1, 3],
and belongs to C0 otherwise. For example, [(7, 7), (7, 7), (10, 10)] belongs to C1 as the third point
(10, 10) ∈ S1. So, if one of three points in x hits S1 then x is classified as C1. In this example, an
explanation for a sample x is well-defined as points in the S0 (resp. S1) area contribute to the C0

(resp. C1) class, respectively.

LIME performance. We train an almost perfect neural network-based classifier for this simple
example (See more in Section E.1). We compute our metric SQ for LIME and get that SQ(LIME) =
0.75 which is less than 1 hinting that the sampling procedure is biased.

To see how SQ affects explanations, we generate LIME explanations for a samples x =
[(7, 7), (7, 7), (7, 7)] that is close to the corner (8, 8). As all points in x are in S0, x belongs to
class C0. Table 1 shows explanations for this point in the column ‘Balanced dataset’. The first row
shows explanations produced by LIME. The red horizontal bar indicates that the corresponding
feature has a negative coefficient in g and it contributes toward C0. Symmetrically, the green bar
indicates that the feature contributes toward C1. We can see that an explanation of x is incorrect
as some features with values less than 8 have positive contributions, e.g. features x4 and x5 have
green bars, so they contribute toward the wrong class C1. In our experimental evaluation we sampled
instances around the corner (8,8) with pi ∈ S0, i ∈ [1, 3]. So, all these samples belong to the class
C0, hence, all features should have negative coefficients the liner model g. We found that LIME
explanations have 25% of features with positive coefficients in g that contribute to the wrong class
C1 which is an incorrect behaviour.

15

Under review as a conference paper at ICLR 2021

Hit or miss Projected explanations
Explainer / Balanced dataset Unbalanced dataset (Example C.3)

(Examples B.1, C.1) (Example C.2)
sample x = [7, . . . , 7] x = [7, . . . , 7] x = [1, 1, 1, 1, 12 . . . , 12]

LIME

CLIME

Table 1: LIME and CLIME explanations Examples B.1, C.1, C.2 and C.3.

C GENERATING CONSTRAINT-DRIVEN EXPLANATIONS (ADDITIONAL
MATERIALS)

In this section we consider several examples to demonstrate undesired consequences of OOD sampling
for LIME and how these are resolved by CLIME. Each of these examples is designed to model an
abstraction of the real user-case. Moreover, for these simplified tasks, we can estimate quality of the
sampling procedure using our metric SQ as we can compute WD analytically.
Example C.1 (‘Hit and miss continued’). We come back to Example B.1 to evaluate performance of
CLIME. First, we estimate our metric SQ: SQ(CLIME) = 0.999. As it is close to 1, we conclude
that CLIME samples from the true distribution. Then we generated explanations produced by CLIME
for the same sample x = [(7, 7), (7, 7), (7, 7)]. The second row (Table 1, ‘Balanced dataset’ column)
shows explanations produced by CLIME. Note that CLIME produces valid explanations – all features
with non-negligible coefficients have negative contributions (the corresponding horizontal bars are
red). The same holds for all samples x = [p1, p2, p3] with pi ∈ S0 that are in near the corner (8,8).
We recall that these samples were problematic for LIME to produce correct explanations.
Example C.2 (‘Hit and miss’. Sensitivity to the training set). As we described in Example B.1, LIME
is sensitive to OOD samples even if we have a near to perfect classifier f . Moreover, we observed
that the choice of the dataset can severely impact explanations. We created a new dataset for the
same classification task as in Example B.1 (Figure 1). The only difference is that we have twice
more C0 samples compared to C1 samples in the training set. Unbalanced datasets are often occur
in practice if samples for one class are much cheaper to obtained compared to the other class. We
compute SQ: SQ(LIME) = 0.43, which is much less than 1, and SQ(CLIME) = 0.998. Table 1
(‘Unbalanced dataset’) shows our results for x in the second column . Based on our metrics, it is
expected that CLIME produces better explanations as almost all features contribute to C0 which is
not the case for LIME.

Example C.3 (‘Projected explanations’). Let us consider a scenario where the user asks for an
explanation constrained on a subspace of the original distribution D. For example, for the recidivism
dataset, a user might want to know how decisions are made for the subgroup of people who are junkie
or have problems with alcohol. Here, we craft a synthetic example to show how projecting on such
subsets of features can affect explanations.

Definition of a task. We consider two areas S0 and S1 on the 2D plane (see Figure 5). A sample
x from D represents five 2D integer points from S0 ∪ S1. Hence, we have ten features vector
x = [p1, . . . , p5] = [(x1, x2), . . . , (x9, x10)], where (x2i−1, x2i)), i = 1, . . . , 5 is a 2D point. Given
a sample x = [p1, . . . , p5], we say that x belongs to C1 iff there exist i, j ∈ [1, 5] s.t. pi, pj ∈ S1 and
to C0 otherwise. So, if two out of five points in x are in S1 then x is classified as 1. As in Example B.1
points in the area S0 (resp. S1) contribute to the C0 (resp. C1) class, respectively.

16

Under review as a conference paper at ICLR 2021

S0

S1

0 4 12

4

12

(4,4)

Figure 5: Projected explanations example.

Projection constraints. Next, we assume that the user adds constraints that the first two points must
be in S0: p1, p2 ∈ S0. As we have a constrained distribution, namely, p0, p1 ∈ S0, we know that
the first four features, x1, x2, x3, and x4, should not appear in any explanation as no matter how we
vary these features values in the constrained space, the corresponding points p1, p2 are always in S0.
Hence, the corresponding coefficients of features x1, . . . , x4, should be close to zero as changing
these features in the constrained space does not have an effect on the prediction.

Explainers performance. We train an almost perfect neural network-based classifier for this simple
task . We consider explanations of length six. We compute our sampling quality metric SQ. We get
that SQ(LIME) = 1.38 and SQ(CLIME) = 0.97. Hence, these estimates signal that LIME’s
sampling procedure does not sample from the true distribution.

Table 1 shows results for LIME and CLIME in the third column (‘Projected explanations’) for
another sample x = [(1, 1), (1, 1), (12, 12), (12, 12), (12, 12)]. As you can see, x3 and x4 occur in
the explanation for LIME which is incorrect. CLIME produces correct explanations as constrained
features x1, x2, x3, and x4 do not occur in CLIME’s explanations. (See more in Section E.1).

D CERTIFYING CONSTRAINT-DRIVEN EXPLANATIONS (ADDITIONAL
MATERIALS)

D.1 AA’ ALGORITHM

For completeness, we present theAA′ algorithm in full, which is a simple adaptation ofAA algorithm
by (Dagum et al., 2000) which uses almost-uniform samples instead of perfectly uniform. AA′, takes
as input 3 parameters, ε1,ε2 and δ. It uses ε2 as the tolerance parameter in calls to an almost-uniform
sampler (encapsulated in procedure getSamples). For ease of exposition, we use φ to denote the
subspace that getSamples generates samples from. We emphasize that the estimation algorithm is
not limited to Boolean domains; it is applicable to any population so long as it is possible to sample
(almost) uniformly from that population. As before, we assume access to a procedure checkProperty
which returns 1 if the property of interest is satisfied by the sample and 0 otherwise.

Pr[
(1− ε1)

1 + ε2
ρ ≤ ρ̂ ≤ (1 + ε1)(1 + ε2)ρ] ≥ (1− δ) (9)

The guarantees provided by AA′ are similar to Eqn. 5 and are precisely captured in Eqn. 9. See
Lemmas 1 and 4 for the proof.

D.2 PROOF OF THEOREM 1

Mean deviation due to almost uniform sampling
Lemma 1. Let ρ be the density of instances that satisfy some property P in a universe UZ , that is,

ρ =

∑
z∈UZ I[P (z)]

|UZ |

17

Under review as a conference paper at ICLR 2021

Algorithm 4 AA′(ε1, ε2, δ)
Output: ρ̂: Estimate of ρ satisfying Eqn. 9

1: τ ← 4(e− 2) ln(2/δ)/ε21
2: τ2 ← 1.1τ
3: ρ̊← stoppingRule(1/2, ε2, δ/3, τ)
4: N ← τ2 · ε1/ρ̊
5: a← 0
6: for i ∈ {1, . . . , N} do
7: s1 ← getSamples(φ, ε2, 1)
8: c1 ← checkProperty(s1)
9: s2 ← getSamples(φ, ε2, 1)

10: c2 ← checkProperty(s2)
11: a← a+ (c1 − c2)2/2
12: end for
13: ξ ← max(a/N, ρ̊ · ε1)
14: N ← τ2 · ξ/ρ̊2
15: a← 0
16: for i ∈ {1, . . . , N} do
17: s← getSamples(φ, ε2, 1)
18: c← checkProperty(s)
19: a← a+ c
20: end for
21: ρ̂← a/N
22: return ρ̂

Algorithm 5 stoppingRule(ε1, ε2, δ, τ)

Output: ρ̊ (weak estimate)
1: τ1 ← 1 + (1 + ε1)τ
2: N ← 0
3: a← 0
4: while a < τ1 do
5: s← getSamples(φ, ε2, 1)
6: a← a+ checkProperty(s)
7: end while
8: ρ̊← τ1/N
9: return ρ̊

Suppose we sample each instance z ∈ UZ almost-uniformly, that is

1

(1 + ε)|UZ |
≤ Pr[z∗ = z] ≤ 1 + ε

|UZ |
Then we have

ρ

(1 + ε)
≤
∑
z∈UZ

I[P (z)] · Pr[z∗ = z] ≤ (1 + ε) · ρ

Proof. In the worst cases, each sample z s.t. I[P (z)] = 1 will be sampled with

1. probability 1+ε
|UZ | , in which case

∑
z∈UZ I[P (z)] · Pr[z∗ = z] = (1 + ε) · ρ

2. probability 1
(1+ε)|UZ | in which case

∑
z∈UZ I[P (z)] · Pr[z∗ = z] = ρ

(1+ε)

Lemma 2. Let ρ ≤ γ − ε. Then the probability that checkThreshold returns True is at-least 1− δ.

Proof. Note that µC ≤ (1 + ε/2)ρ as getSamples may return almost uniformly distributed samples
in line 3 of checkThreshold. We will first prove that µC + ν ≤ γ. We have

γ ≤ γ
=⇒ γ (1 + ε/2− ε/2) ≤ γ

=⇒ γ (1 + ε/2)− γε/2 ≤ γ
But we have γ ≥ ρ+ ε. Therefore,

(ρ+ ε) (1 + ε/2)− γε/2 ≤ γ
=⇒ ρ+ ρε/2 + ε+ ε2/2− γε/2 ≤ γ

=⇒ µC + ν ≤ γ

18

Under review as a conference paper at ICLR 2021

The last equation follows from the fact that µC ≤ (1+ε/2)ρ and ν ≤ ε+ε2/2−γε/2 from line 1 of
checkThreshold. Now since µC + ν ≤ γ, we have Pr[C ≤ γ] ≥ Pr[C ≤ µC + ν] = 1− Pr[C ≥
µC + ν]. C is the average of N independent 0/1 random variables c (line 6). Therefore applying
Chernoff bound,

Pr[C ≥ µC + ν] ≤ exp{−2ν2N} (10)
ButN = 1

2ν2 log(1
δ). Therefore, Pr[C ≥ µC+ν] ≤ δ. Substituting back, we get Pr[C ≤ γ] ≥ 1−δ.

Therefore, in line 8, the probability that checkThreshold returns True, is at least 1− δ.

Lemma 3. Let ρ ≥ γ + ε. Then the probability that checkThreshold returns False is at-least 1− δ.

Proof. Similar to preceding Lemma.

Lemma 4. AlgorithmAA′ returns an estimate ρ̂ such that Pr[(1−ε)ρψ ≤ ρ̂ψ ≤ (1+ε)ρψ] ≥ (1−δ)

Proof. Algorithm AA′ takes as input 3 parameters, ε1, ε2 and δ. It invokes the AA Algorithm
by Dagum et al. with parameters ε1 and δ on samples generated by an almost-uniform sampler
with parameter ε2. By Lemma 1, the population mean can shift at most by a factor of (1 + ε2)
due to almost-uniform sampling (instead of perfectly uniform). Combined with the approximation
guarantees of AA algorithm, the resulting tolerance has an upper-bound of (1 + ε1) × (1 + ε2)
and a lower bound of (1 − ε1)/(1 + ε2). In line 4 of Alg. 2, the AA′ algorithm is invoked with
ε1 = ε2 = 0.4 ∗ ε. Substituting these values in the expressions for the upper and lower bounds on
tolerance, we get the result.

Theorem 1. If ρ ≤ γ − ε, then computeEstimate returns ⊥ with high probability (i.e. at least
1− δ). If ρ ≥ γ+ ε, w.h.p., it returns an estimate ρ̂ such that Pr[(1− ε)ρ ≤ ρ̂ ≤ (1 + ε)ρ] ≥ (1− δ).

Proof. Follows from preceding lemmas.

Note that the bounds and number of samples used for proving the preceding theorem were computed
assuming we only have access to Almost-Uniform samples. The bounds can be made significantly
tighter or the number of samples can be reduced, if we have access to perfectly uniform samples.

D.3 APPLICABILITY OF THE ESTIMATION FRAMEWORK

We emphasize that our estimation framework is general enough to compute any metric for any
universe (so long as one can sample from it almost uniformly) according to the guarantees provided
by Thm. 1 in any setting (not just explainability). Further, for the specific application explainability,
our estimation framework can be used for measuring properties like fidelity of any explainer model
(not just the ones crafted by CLIME), and on any subspace of inputs (not just the one that the explainer
was trained on). For example, the fidelity of a CLIME explainer model trained on a subspace defined
by one set of constraints (say φ) maybe evaluated on another subspace defined by ψ. If the fidelity on
ψ is found to be high enough, it can save the cost of having to generate a separate explanation for ψ.
This can be especially useful in model debugging where users may refine constraints frequently.

D.4 EMPIRICAL EVALUATION OF ESTIMATION ALGORITHM

In order to test the scalability of our estimation algorithm (Algs. 2, we evaluated its performance on
the same set of benchmarks used by (Narodytska et al., 2019).

Benchmarks The benchmarks are CNF formulas that encode fidelity of Anchor (Ribeiro et al.,
2018) explanations for Binarized Neural Networks with upto 3 hidden layers and 100 neurons in
total, and are generated from Adult, Recidivism and Lending datasets. There were 50 CNF formulas
from each dataset, for a total of 150 benchmarks, with number of variables ranging between 20,000
to 80,000 and number of clauses ranging between 80,000 and 290,000. The projected model count
of each formula represents the number of inputs on which the class-label for Anchor’s explanation
matches the true label of the instance being explained. The fidelity of an explanation can thus be
computed as the ratio of the solution-count of the formula, to the size of the universe.

19

Under review as a conference paper at ICLR 2021

Parameters We used the same tolerance (ε = 0.8) and confidence (δ = 0.2) used in (Narodytska
et al., 2019), for the main experiment. Additionally, we set the threshold to γ = 0.05. We also
compared the running times for tighter tolerance and confidence (see Discussion below).

Experimental Setup We set a time out of 3 minutes (180 seconds), and ran each experiment on
Intel Xeon E5-2650 CPU running at 2.20GHz, with 4GB main memory. We compiled our code using
GCC 6.4 with O3 flag enabled. For ApproxMC we used the latest publicly available version (4.01).

Results The results are presented in Fig. 2. Each point in blue corresponds to one benchmark,
and the x-coordinate represents the time taken by ApproxMC while the y-coordinate represents the
time taken by our approach. It can be seen that our approach completes all benchmarks in under 25
seconds with majority taking less than 10 seconds. In contrast, ApproxMC is able to finish only 10
benchmarks out of 150 in under 25 seconds, with a majority taking around 75 seconds. The average
(geometric mean) speedup factor offered by our tool relative to ApproxMC was 7.5.

Discussion Fig. 2 conclusively demonstrates the efficiency of our approach as compared to hashing
and SAT based approaches like ApproxMC. Our tool was able to return estimates with two-sided
bounds for all benchmarks. Our tool offers an average (geometric mean) speedup by a factor of 7.5
relative to ApproxMC. In addition, our approach is able to scale far better than ApproxMC for tighter
tolerance and confidence parameters. For a representative benchmark, we evaluated the time taken
by our tool and ApproxMC for the default tolerance (ε = 0.8) and confidence (δ = 0.2). We then
computed the slow-down in both tools after setting ε = 0.05 and confidence δ = 0.1. We found that
our tool slowed down by a factor of 10 while ApproxMC slowed down by a factor of 30. Lastly, we
computed the error in the estimate returned by our algorithm (with default tolerance and confidence)
on small benchmarks where it was possible to compute the true count. We consistently observed
that the error was less than 0.1, which is much smaller than the specified tolerance of 0.8. Thus our
approach is both sound and efficient in practice.

E EXPERIMENTS(ADDITIONAL EXPERIMENTS)

We perform an extensive evaluation of our explainer CLIME. First, we consider explanations for
a classification task using synthetic and real-world datasets. Second, we demonstrate how our
framework can be used to detect adversarial attacks on an explainer.

E.1 SYNTHETIC EXPERIMENTS

For each synthetic dataset, we generated train and test datasets with 1000 samples per class. We
trained a MLP with three internal layers of fifty neurons that gives 99.9% on the test set. So, we have
an almost perfect classifier.

E.1.1 ’HIT OR MISS’ (EXAMPLE B.1)

We consider a binary classification task from Example B.1. We recall that a sample x, x ∼ D,
represents integer coordinates of three points p1, p2 and p3 drawn from S0 ∪ S1. Hence, we have six
features vector x = [x1, x2, . . . , x6], where pi = (x2i−1, x2i), i = 1, 2, 3, is a 2D point.

Computation of SQ. As we know the true distribution, we can compute WD. Let hit(x) =
|{pi|pi ∈ S1, pi ∈ x}| be a function that computes the number of points pi ∈ x ∩ S1. For
example, hit([(1, 1), (10, 10), (10, 9)]) = 2 as (10, 10) ∈ S1 and (10, 9) ∈ S1. We have that
P (pi ∈ S1) = |S1|

|S0|+|S1| = 25/(25 + 49) = 0.34. Hence,

WD = 3P (hit(x) = 1) + 3P (hit(x) = 2) + P (hit(x) = 3) = 3× 0.15 + 3× 0.07 + 0.04 = 0.7.

We generate 100 samples such that xi ∈ [5, 7], i = [1, 6]. Therefore, each sample consists of
points that are close to the corner (8,8) and it is classified as C0. We compute explanations by
LIME and CLIME on these samples. We empirically compute WLIME

Z′ and WCLIME
Z′ for the

neighborhood Z ′. We found that WLIME
Z′ ≈ 0.53 and WCLIME

Z′ ≈ 0.71 So, SQ(LIME) ≈

20

Under review as a conference paper at ICLR 2021

0.75 < 1 and SQ(CLIME) ≈ 1. These results hint that LIME may produce invalid explanations.
We experimentally verify this hypothesis next.

Explainers performance. We recall that each sample consist of points that are close to the corner (8,8)
and it is classified as C0. Hence, we expect that coefficients in the explanations are less than 0 as all
features contribute to C0. To evaluate this expected behavior, we computed

C+ =

∑6
i=1,ci>0 ci∑6
i=1 |ci|

,

where ci is the ith normalised (between 0 and 1) coefficient in an explanation (Eqn. 2). We average
results over 100 samples. Ideally, C+ has to be equal to zero, as we should not have positive
coefficients in an explanation in any of these samples. We get that C+

LIME = 0.18 and C+
CLIME =

0.01. As you can see, C+
LIME is significantly greater than zero showing that many explanations

are incorrect. Therefore, explanations produced by LIME suffer from ODD sampling and result in
incorrect explanations.

E.1.2 PROJECTED EXPLANATIONS (EXAMPLE C.3)

We consider a binary classification task from Example C.3. We recall that a sample x from D
represents five 2D integer points from S0∪S1. Hence, we have ten features vector x = [p1, . . . , p5] =
[(x1, x2), . . . , (x9, x10)], where pi = (x2i−1, x2i)), i = 1, . . . , 5 is a 2D point. We recall that the
user constraint is that p1, p2 ∈ S0.

Computation of SQ. We define hit(x) the same way as above. We have that P (pi ∈ S1) =
|S1|

|S0|+|S1| = 64/144 = 0.44 for this task. Hence,

WD∩{p1,p2∈S0} = 3× P (hit(x) = 2) + P (hit(x) = 3) = 0.33 + 0.08 = 0.41.

We compute explanations by LIME and CLIME on 100 samples that satisfy the user constraint. We ask
explainers to give us the top six features per sample. Moreover, to help LIME to capture constraints,
we provide it with a dataset where p1, p2 ∈ S0 for all samples. Then we run LIME and CLIME
sampling procedures and compute WLIME

Z′ and WCLIME
Z′ for the neighborhood Z ′. We found that

WLIME
Z′ ≈ 0.56 and WCLIME

Z′ ≈ 0.40 So, SQ(LIME) ≈ 1.38 > 1 and SQ(CLIME) ≈ 1.
Again, we can see that SQ(LIME) is significantly differ from 1 indicating ODD sampling.

Explainers performance. We run LIME and CLIME on 100 samples and compute the number of
times each feature occurs in an explanation (an explanation contains 6 features). Figure 6 shows our
results. For each feature, we show the number of occurrences of this feature in produced explanations.
Namely, the blue histogram shows results for LIME and the orange histogram shows results for
CLIME. As we discussed before, as p1 and p2 are in S0, so the first 4 features should not appear in
the explanation as changing their values never affects the prediction. Indeed, CLIME almost never
choose features x1, . . . , x4 in the explanation (almost zero height orange bars for these features).
However, LIME often picks these constrained features in its explanations.

E.2 ADULT DATASET

The Adult dataset (Kohavi, 1996) is originally taken from the Census bureau and targets predicting
whether or not a given adult person earns more than $50K a year depending on various attributes, e.g.
race, sex, education, hours of work, etc. We pre-processed columns with continuous features, e.g.
the pre-processor discretizes the capital gain and capital loss features into categorical features, e.g.
’Unknown’, ’Low’ and ’High’(Ribeiro et al., 2018). We trained a MLP with three internal layers of
64, 32, and 32 neurons that achieves 84.2% on the test set. We consider the two constrained spaces:

• ‘female space’ := (CAPITAL LOSS = ‘UNKNOWN’) AND (CAPITAL GAIN = ‘UNKNOWN’)
AND (EDUCATION = 10TH OR 11TH GRADE) AND (SEX = FEMALE)

• ‘male space’ := (CAPITAL LOSS = ‘UNKNOWN’) AND (CAPITAL GAIN = ‘UNKNOWN’)
AND (EDUCATION = 10TH OR 11TH GRADE) AND (SEX = MALE).

21

Under review as a conference paper at ICLR 2021

Figure 6: Occurrences of features in explanations (Example C.3).

We compute explanations for 100 samples within the corresponding constrained space. Figure 7
shows results for LIME (a) and CLIME (b), respectively, for both constrained spaces. At each plot,
the blue histogram shows results for ‘female space’ and the orange histogram shows results for
‘male space’. Each bar shows the average rank of a feature in explanations, e.g. if the height of
the bar is 0.1 than the corresponding feature is mostly top ranked in all explanations. We used the
following shortcuts of features names in Figure 7 : ‘Age’ (‘Age’), ‘Workclass’ (‘WrkC’), ‘Education’
(‘Edu’), ‘Marital Status’ (‘Mard’), ‘Occupation’ (‘Occp’), ‘Relationship’ (‘Relp’), ‘Race’ (‘Race’),
‘Sex’ (‘Sex’), ‘Capital Gain’ (‘CapG’), ‘Capital Loss’ (‘CapL’), ‘Hours/week’ (‘Hrs’), and ‘Country’
(‘Cntr’). First, we observe that as features Capital Loss, Capital Gain and Sex are fixed in both
constrained sub-spaces so their values should not influence the outcome. Note that these features are
always ranked among last by CLIME. However, this is not the case for LIME. We observed exactly
the same behavior in our synthetic example from Example C.3. Second, we can see that LIME
explanations are not so much different for both spaces. While we do not have the ground truth to
check against in this example, we can contrast LIME results with CLIME results. CLIME shows that
‘Education’ is more important for males than for females (see in Figure 7(b), the orange bar is lower
than the blue bar for the ‘Education’ feature). ‘Relationship’ seems to be more important for females
than for males (see in Figure 7(b), the orange bar is higher than the blue bar for the ‘Relationship’
feature). These results indicate that there might be a potential bias in these spaces.

E.3 DETECTING ADVERSARIAL ATTACKS(EXTENDED)

Suppose a biased classifier makes decisions solely based on some sensitive feature; for ex: a classifier
for accepting / rejecting loan applications that decides purely based on an individual’s race. LIME’s
explanations for the predictions made by such a classifier would clearly indicate race to be a major
deciding factor. (Slack et al., 2020) devised a technique that takes such an arbitrary biased classifier
and constructs another classifier that closely mimics the biased classifier on in-distribution data,
yet is able to evade bias-detection by preventing the sensitive feature from appearing in post-hoc
explanations. Note that accurately measuring the fidelity of the explainer model alone is not sufficient
to detect such an attack as the problem lies in the way the opaque classifier is constructed and not in
the resulting explanation. We first discuss the construction of the adversarial classifier, and then see
how constraints can help in foiling it.

E.3.1 BACKGROUND

The attack makes use of the fact that LIME’s perturbation procedure creates samples that are
distinguishable from those of the original distribution. The first step is to train a classifier such as a
Random Forest to detect whether a given sample is in or out of distribution. This classifier is trained
on a synthetic data-set consisting of instances from the original data-set labeled as in-distribution
and LIMEs perturbations of each of those instances as OOD. This OOD detecting classifier is able to
achieve very good accuracy, which is a testament to the severity of the OOD problem of LIME.

22

Under review as a conference paper at ICLR 2021

(a) LIME (b) CLIME

Figure 7: Explanations for the adult dataset on female and male spaces.

The next step in the adversarial attack is to create an innocuous classifier that makes decisions based
on some unrelated feature. For example, in case of credit card applications, the innocuous classifier
could make decisions based on either an existing unimportant feature such as card number or on a
new feature added to the dataset whose values are randomly sampled. This unrelated feature will be
made to appear in place of the sensitive feature in explanations.

The last step of the attack is construct the adversarial classifier which first applies the OOD-detecting
classifier on a given instance x. If the OOD-detecting classifier predicts x to be in-distribution, the
the adversarial classifier outputs the prediction of the biased classifier on x. If x is predicted to be
OOD, then the adversarial classifier outputs the prediction of the innocuous classifier on x.

Clearly, the predictions made by the adversarial classifier on in-distribution instances are biased, as
the adversarial classifier simply outputs the biased classifiers prediction. Suppose LIME is used for
explaining the prediction made by the adversarial classifier on some in-distribution instance x. LIME
first perturbs x. However, due to LIME’s OOD sampling problem, most of the perturbed samples
are OOD and are detected by the OOD-detecting classifier as such. Therefore, the output of the
adversarial model on the perturbed samples is that of the innocuous classifier. Thus for vast majority
of the samples on which LIME’s explainer model is trained, the unrelated feature appears as the
deciding factor for the adversarial model’s prediction, whereas the sensitive feature is successfully
hidden.

Experimentally, the authors generated explanations for the adversarial model on multiple test instances
belonging to Recidivism, Communities and Crime and German datasets. They showed that the
sensitive features appeared with very low frequency among the top 3 explanations for all the test
points, which indicates that the attack was successful.

E.3.2 EXPERIMENTAL SETUP

We hypothesized that for discrete data, instances with low Hamming distance to points in the given
dataset should tend to be in-distribution, whereas instances with a high hamming distance should tend
to be OOD. Note that the recommended way for using LIME is on data which is discretized. LIME
itself uses Hamming distance as a distance metric for weighting the samples it generates. However,
it is unable to specifically sample proportionately from high-weight regions which leads to a lot of
samples with low weights. With CLIME one can, however, use constraints to generate samples that
would be weighted highly by LIME. For a given Hamming distance h and a set of instances S, a

23

Under review as a conference paper at ICLR 2021

formula φh can be constructed such that the the solutions of φh are exactly those instances that are
at most at a distance h from each instance in S. If our hypothesis is correct, the sensitive features
should appear as the top CLIME explanation of the adversarial classifier for low values of h, while
innocuous features should dominate for larger h.

Note that the Hamming distance between two instances doesn’t take into account the degree to which
the value of a feature in one instance differs from the other. Specifically, for discrete features that are
the quantized versions of continuous features, values of adjacent quantiles are clearly ‘closer’ that
those of non-adjacent quantiles. This is also true for natively discrete features like the star rating of a
product. One can design metrics smarter than the hamming distance, that also take into account these
differences in values and are even more robust against adversarial attacks. In this work however, we
focus on the Hamming distance as a proof of concept and leave experimentation with other metrics to
future work.

E.4 PRACTICAL CONSIDERATIONS

The tool by (Slack et al., 2020), as of the time of writing this paper, was only able to create an
adversarial attack on continuous features (for LIME), and did not have the ability to train the OOD-
detecting classifier on discrete data. For our experiments, we augmented their tool to handle purely
discrete data by using LIME’s native perturbation procedure for generating training data for the
OOD-detecting classifier. For discrete data, the parameter ‘perturbation_multiplier’ in their tool plays
an important role. Its default value of 30 creates a very imbalanced dataset and the accuracy of the
OOD-detector is dramatically affected and it classifies most instances as OOD. We found that a value
of 2 led to the best test accuracy for the OOD-detector.

With discrete data, we also observed that the efficacy of the adversarial attack on LIME was drastically
reduced. The sensitive feature appeared as the 2nd from top explanation almost 100% of the time.
Additionally, for attacks that used 2 uncorrelated features, the sensitive feature also appeared as
the top explanation with a considerable frequency. However, for attacks that used 1 uncorrelated
feature, the top explanation was the uncorrelated feature with almost 100% frequency. Hence in our
experiments, we focus on the top explanation ((Slack et al., 2020) considered top 3 explanations)
and use only one unrelated feature. For CC and German experiments, we selected the top 12 most
important features of the 3 datasets using scikit-learn’s Random Forest classifier, as there were far
too many features in the original datasets (100 for CC and 28 for German). The test accuracy of the
Random Forest with 100 estimators was 0.83 and 0.75 for CC and German respectively even after
restriction to 12 features, down from 0.875 and 0.82, respectively, before removing features.

E.5 RESULTS

The results for the Recidivism dataset were depicted in Figure 4. The results for CC dataset are
depicted in Fig. 8 and those for German in Fig. 9. It can be seen that the sensitive feature appears
prominently for low hamming distance while the unrelated feature dominates higher for higher
distance, which confirms the efficacy of CLIME.

In general, it is harder to craft attacks similar to (Slack et al., 2020) against CLIME explanations,
as the sampling procedure is dependent on user-provided constraints and is not fixed like LIME.
However, for the current experiment, an adversary could conceivably train the OOD-detector on
instances with low hamming distance from the original dataset to specifically foil our method. We
tested whether the sensitive feature still appeared in the top CLIME explanation when the OOD-
detector was trained in this manner (instead of being trained on LIME generated perturbations). We
compare the frequency of seeing the sensitive feature as the top CLIME explanation of the adversarial
classifier in the two scenarios in Table 2. While the frequency of seeing the sensitive feature drops as
compared to the case when the OOD detector is trained on LIME perturbations, the drop is not very
steep and the sensitive feature still figures prominently as the top explanation. This shows that our
hamming distance based technique is not only able to detect attacks, but is also robust against attacks
itself.

24

Under review as a conference paper at ICLR 2021

(a) Adversarial Classifier (b) Non-Adversarial Classifier

Figure 8: CC Dataset: Top CLIME explanation vs. Hamming Distance

(a) Adversarial Classifier (b) Non-Adversarial Classifier

Figure 9: German Dataset: Top CLIME explanation vs. Hamming Distance

Recidivism CC German
OOD detector trained on
LIME’s samples 0.635 0.32 0.42

OOD detector trained on samples
from Hamming-constraints 0.63 0.1 0.42

Table 2: Frequency of sensitive feature in top explanation

25

	Introduction
	Preliminaries
	Analysis of LIME
	Generating and Certifying Constraint-Driven Explanations
	CLIME Explanation Framework
	Certifying Explanation Quality

	Experiments
	Conclusions and Future Work
	Related work
	Analysis of LIME (Additional materials)
	Perturbation Procedure
	Discussion on the quality of the perturbation procedure

	Generating Constraint-Driven Explanations (Additional materials)
	Certifying Constraint-Driven Explanations (Additional materials)
	AA' Algorithm
	Proof of Theorem 1
	Applicability of the Estimation framework
	Empirical Evaluation of Estimation Algorithm

	Experiments(Additional experiments)
	Synthetic experiments
	'Hit or miss' (Example B.1)
	Projected explanations (Example C.3)

	Adult dataset
	Detecting Adversarial Attacks(Extended)
	Background
	Experimental Setup

	Practical Considerations
	Results

