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Abstract

Large language models show compelling per-001
formance on reasoning tasks but they tend to002
perform much worse in languages other than003
English. This is unsurprising given that their004
training data largely consists of English text005
and instructions. A typical solution is to trans-006
late instruction data into all languages of in-007
terest, and then train on the resulting multi-008
lingual data, which is called translate-training.009
This approach not only incurs high cost, but010
also results in poorly translated data due to011
the non-standard formatting of mathematical012
chain-of-thought. In this paper, we explore the013
benefits of question alignment, where we train014
the model to translate reasoning questions into015
English by finetuning on X-English parallel016
question data. In this way we perform targeted,017
in-domain language alignment which makes018
best use of English instruction data to unlock019
the LLMs’ multilingual reasoning abilities. Ex-020
perimental results on LLaMA2-13B show that021
question alignment leads to consistent improve-022
ments over the translate-training approach: an023
average improvement of 11.3% and 16.1% ac-024
curacy across ten languages on the MGSM and025
MSVAMP multilingual reasoning benchmarks.026

1 Introduction027

Large language models have recently shown a028

strong ability to reason in English, but performance029

in other languages, especially more distant lan-030

guages, still trails far behind (Shi et al., 2022;031

Huang et al., 2023). It is unsurprising, considering032

that their training data is predominantly composed033

of English text and instructions (Blevins and Zettle-034

moyer, 2022; Touvron et al., 2023; Wang et al.,035

2023). To elicit LLM’s multilingual performance,036

previous approach typically follows the translate-037

training paradigm (Chen et al., 2023), which first038

translates English instruction data into non-English039

with a translation engine and then uses the multi-040

lingual data for instruction-tuning.041

However, the translate-training has the follow- 042

ing drawbacks: (1) translating English training 043

data to numerous non-English languages incurs 044

significant translation cost, especially consider- 045

ing the constant addition of large and complex in- 046

struction tuning sets (Yuan et al., 2023; Yu et al., 047

2023). (2) Additionaly, it is hard for the transla- 048

tion engine to accurately translate lengthy, logical 049

texts containing mathematical symbols in chain- 050

of-thought responses, which can compromise the 051

quality of translated data (evidence are shown in 052

Appendix A). Consequently, we explore the fol- 053

lowing research question in this paper: Can we 054

unlock the LLM’s multilingual reasoning ability by 055

teaching it to translate reasoning questions into 056

English? 057

In this paper, we focus on the multilingual math- 058

ematical reasoning task and explore the benefits of 059

question alignment (QAlign), where we fine-tune 060

the pre-trained LLM to translate reasoning ques- 061

tions into English with X-English parallel question 062

data. This targeted, in-domain language alignment 063

enables the subsequent effective utilization of En- 064

glish instruction data to unlock LLMs’ multilin- 065

gual reasoning abilities. Following question align- 066

ment, we implement response alignment by further 067

fine-tuning the language-aligned LLM with cutting- 068

edge English instruction data. Even though we 069

use English-only supervised data, our alignment- 070

enhanced LLM can achieve superior performance 071

on non-English tasks with its transferable English 072

expertise. 073

To demonstrate the advantages of question align- 074

ment, we conduct experiments on challenging 075

multilingual mathematical reasoning benchmarks, 076

MGSM (Shi et al., 2022) and MSVAMP (Chen 077

et al., 2023). We use two of the most advanced 078

open-source LLMs, LLaMA2-7B and LLaMA2- 079

13B (Touvron et al., 2023), as base models. Exper- 080

iment results show that the inclusion of the ques- 081

tion alignment stage brings an average improve- 082
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ment of up to 13.2% in multilingual performance.083

The performance improvement on low-recourse084

languages, e.g. Thai and Swahili, can be 30%-40%.085

Compared to the translate-training baseline, Math-086

Octopus (Chen et al., 2023), which tuned with087

a multilingual version of GSM8K dataset , our088

alignment-enhanced LLMs achieves average per-089

formance improvement of 9.6% (7B) and 11.3%090

(13B) on MGSM. On the out-of-domain test set091

MSVAMP, our fine-tuned LLMs achieve 13.1%092

(7B) and 16.1% (13B) average accuracy improve-093

ment, also demonstrating our approach is robust094

to domain shift. In general, we observe that in-095

corporating translated instruction data does benefit096

multilingual performance, but our question align-097

ment strategy provides a more efficient and effec-098

tive choice. In our analysis, we also present the099

effects of other implementations for performing100

language alignment and illustrate the importance101

of choosing the appropriate translation direction102

and domain during this phase of training.103

The main contributions of this paper can be sum-104

marized as:105

• We present a novel X-English question align-106

ment finetuning step which performs targeted107

language alignment for best use of the LLMs108

English reasoning abilities.109

• We fine-tune open-source LLMs, LLaMA2-110

7B/13B, into strong multilingual reasoners,111

which beat the translate-training baseline by112

9.6% (7B) and 11.3% (13B) on MGSM, by113

13.1% (7B) and 16.1% (13B) on MSVAMP.114

• We explore language alignment with other115

language directions (English-X), and types116

and domains of data, e.g. CoT responses and117

FLORES, and confirm our intuition that in118

fact X-English questions perform best.119

2 Related Work120

Large language model With a large number121

of parameters pre-trained on a large-scale cor-122

pora, large language models can memorize vast123

amounts of knowledge (Roberts et al., 2020) and124

acquire emergent abilitie, such as in-context learn-125

ing (Brown et al., 2020), chain-of-thought (CoT)126

generation (Wei et al., 2022b). Then, to better align127

the behavior of LLMs with human expectations,128

Wei et al. (2022a) propose instruction-tuning, train-129

ing LLM to generate desired response based on130

the given instruction. Subsequently, many efforts131

are put into creating effective instruction data to 132

further unlock LLM’s potential (Wang et al., 2022; 133

Taori et al., 2023; Longpre et al., 2023; Wang et al., 134

2023). However, since the proposed instruction 135

datasets consist mainly of English, the directly fine- 136

tuned LLMs struggle on non-English languages, 137

especially on those languages that are dissimilar to 138

English (Huang et al., 2023; Zhu et al., 2023; Chen 139

et al., 2023). 140

Multilingual mathematical reasoning Math- 141

ematical reasoning is a challenging and repre- 142

sentative task for evaluating the intelligence of 143

LLMs (Ahn et al., 2024), where LLMs need to 144

understand the given math question and produce a 145

numerical answer through step-by-step reasoning. 146

Shi et al. (2022) expanded the scope to a multilin- 147

gual context by translating English math questions 148

from the GSM8K test set (Cobbe et al., 2021) into 149

non-English languages, thereby creating a multilin- 150

gual benchmark called MGSM. 151

Subsequently, many efforts are put into en- 152

hancing LLM’s multilingual reasoning capabili- 153

ties, which can be categorized into two approaches: 154

prompting close-source LLMs and instruction- 155

tuning open-source LLMs. In the first approach, 156

Qin et al. (2023) and Huang et al. (2023) care- 157

fully craft prompts for close-source LLMs like 158

ChatGPT (OpenAI, 2022). Their strategy involves 159

first prompting the LLM to explicitly translate non- 160

English questions into English, then ask the model 161

to solve the translated problem instead. How- 162

ever, the effectiveness of these prompting meth- 163

ods are not well-examined on open-source LLMs. 164

And it remains an open challenge to equip open- 165

sourced LLMs with strong multilingual mathemati- 166

cal problem-solving skills. 167

In the second approach, Chen et al. (2023) fol- 168

low the translate-training method (Artetxe et al., 169

2023). Initially, they translate English instruc- 170

tion data in GSM8K into non-English with Chat- 171

GPT, followed by employing multilingual data for 172

instruction-tuning. Moreover, Chen et al. (2023) 173

investigate cross-lingual training strategies such as 174

mixing questions and CoT responses in different 175

languages, but fail to achieve consistent improve- 176

ment. Although the translate-training approach is 177

effective, it incurs high translation cost and is error- 178

prone1. It also becomes increasingly impractical 179

1We analyze the errors in the translated dataset from Chen
et al. (2023) and present both quantitative and qualitative
results in Appendix A.
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Training Stage I: Question Alignment Training Stage II: Response Alignment

[German Question] Randy hat 60 Mangobäume auf seiner Farm. Er 
hat auch 5 weniger als die Hälfte so viele Kokosnussbäume wie 
Mangobäume. Wie viele Bäume hat Randy insgesamt auf seiner Farm?

[Japanese Question] ランディーさんは農場にマンゴーの⽊を60本
持っています。また、彼はマンゴーの⽊の半分から5本少ないコ
コナッツの⽊を持っています。彼の農場には合計で何本の⽊があ
りますか？

[Chinese Question] 兰迪在他的农场上有60棵芒果树。他还有比芒
果树数量的⼀半少5棵椰⼦树。兰迪⼀共有多少棵树？

[English Question] Randy has 60 mango trees on his farm. He also 
has 5 less than half as many coconut trees as mango trees. How many 
trees does Randy have in all on his farm?

[Question] Randy has 60 mango trees on his farm. He also has 5 less 
than half as many coconut trees as mango trees. How many trees 
does Randy have in all on his farm?

[Response] Half of the number of Randy's mango trees is 
60/2 = <<60/2=30>>30 trees. So Randy has 30 - 5 = 
<<30-5=25>>25 coconut trees. Therefore, Randy has 60 + 25 
= <<60+25=85>>85 trees on his farm.

[Question] What is the total amount that James paid when he 
purchased 5 packs of beef, each weighing 4 pounds, at a price of $5.50 
per pound?

[Response] James buys 5 packs of beef that are 4 pounds 
each, so he buys a total of 5 * 4 = 20 pounds of beef. The price 
of beef is $5.50 per pound, so he pays 20 * $5.50 = $110. The 
answer is: 110.

tuning the base model  to translate non-English questions to Englishθ tuning stage I model  with cutting-edge English-only instruction dataϕ

arg min
θ ∑

l∈L

− log pθ(Ze |Zl) arg min
ϕ ∑

{X,Y}∈D

− log pϕ(Y |X)non-English Question Zl
English Question Ze

Question X
Response Y

Figure 1: Illustration of our devised two-step training framework. At training stage I, we use a set of multilingual
questions for translation training. At training stage II, we use cutting-edge English-only supervised data for fine-
tuning. Due to the established language alignment in stage I, the LLM’s proficiency in English can be transferred to
non-English tasks.

to translate vast quantities of augmented data into180

numerous languages, especially considering recent181

findings that augmented training data, e.g., META-182

MATHQA (Yu et al., 2023)—which is 50 times183

larger than GSM8K—greatly enhances LLM’s rea-184

soning skills. Without relying on translated CoT re-185

sponses, in this paper, we present a novel question186

alignment technique to utilize cutting-edge English-187

only supervised data to boost open-source LLM’s188

performance on multilingual reasoning tasks.189

3 Methodology190

An illustration of our devised method is shown in191

Figure 1. The key idea of our approach is strength-192

ening language alignment within LLM before ex-193

posing it to English instruction-response pairs. By194

doing so, we can utilize LLM’s expertise in En-195

glish to enhance its performance on non-English196

tasks. Below we introduce the two training stages197

of our framework: question alignment (§3.1) and198

response alignment (§3.2).199

3.1 Stage I: Question Alignment200

It has been find that directly fine-tuning LLMs with201

English instruction data does not help to improve202

their performance on non-English tasks (Chen et al.,203

2023). We suggest that this issue may arise from204

the insufficient alignment of multiple languages205

within the LLM. Ideally, in a well-aligned LLM,206

proficiency in one language, like English, could207

easily transfer to other languages. 208

To improve the alignment of non-English lan- 209

guages with English, we devise a translation task 210

QAlign: training LLM on translating questions 211

from non-English into English. Specifically, given 212

a group of multilingual questions, the optimization 213

objective can be written as: 214

argmin
θ

∑
l∈L

− log pθ(Ze|Zl) 215

where θ denotes the parameters of the base model. 216

Zl and Ze denote non-English and English ques- 217

tions respectively and L is the set of considered 218

non-English languages. With this training objec- 219

tive, we equip the LLM with an implicit bias to re- 220

late non-English questions with their English coun- 221

terparts when performing non-English tasks. 222

Note that this stage only relies on multilingual 223

questions rather than translated CoT responses. Ba- 224

sically, acquiring multilingual questions is more 225

feasible than obtaining accurate multilingual CoT 226

responses, because translation engines often strug- 227

gle to precisely translate lengthy, logical texts con- 228

taining mathematical symbols (Appendix A). 229

In this translation task, the domain of translation 230

data is also an important factor to consider. In sub- 231

sequent experiments, we demonstrate that using 232

multilingual questions as translation data is more 233

effective than employing commonly-used transla- 234

tion corpora. 235
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3.2 Stage II: Response Alignment236

After question alignment, we train LLM with spe-237

cialized instruction-response pairs to unlock its238

potential on multilingual mathematical reasoning239

tasks. Specifically, we consider two data scenar-240

ios: monolingual supervision setting and mixed241

supervision setting.242

Monolingual supervision setting In this setting,243

we employ English-only instruction data for re-244

sponse alignment, because the cutting-edge instruc-245

tion datasets are often available only in English.246

During training, we follow the standard implemen-247

tation (Wei et al., 2022a) and finetune the language-248

aligned LLM to maximize the generetive probabil-249

ity of the response Y given the question X :250

argmin
ϕ

∑
{X ,Y}∈D

− log pϕ(Y|X )251

Where ϕ denotes the parameters of the stage I252

model and D denotes the instruction dataset. Al-253

though the training only utilizes English supervi-254

sion, the previously established language alignment255

enables the transfer of the LLM’s proficiency in En-256

glish to other languages.257

Mixed supervision setting While our framework258

is primarily designed for utilizing English super-259

vised data, it can also leverage additional multi-260

lingual supervision, when available, to achieve a261

higher ceiling in multilingual performance. For262

instance, this multilingual dataset could be a trans-263

lated version of a subset of large-scale English data.264

In this scenario, given a set of additional multilin-265

gual superivsed data M, we sequentially fine-tune266

the stage I model on M and then on the English267

instruction data D. Subsequent experiment results268

show that this training recipe can further improve269

the LLM’s multilingual reasoning capabilities.270

4 Experiment Setting271

Base LLM In our experiments, we use two of the272

most advanced open-source LLMs, LLaMA2-7B273

and LLaMA2-13B as the base model.274

Training Dataset In the question alignment275

stage, we utilize multilingual questions from276

GSM8KINSTRUCT2 (Chen et al., 2023). Dur-277

ing the response alignment stage, we employ the278

2GSM8KINSTRUCT is a multilingual dataset that extends
the English instruction dataset GSM8K by translating En-
glish instructions and CoT responses into nine non-English
languages with ChatGPT.

Dataset Usage # Lang # Sample

METAMATHQA Training 1 395,000
GSM8KINSTRUCT Training 10 73,559

MGSM Evaluation 10 2,500
MSVAMP Evaluation 10 10,000

Table 1: Statistics of involved datasets. “# Lang” de-
notes the number of languages covered by the dataset
and “# Sample” refers to the total number of samples it
contains.

cutting-edge English-only dataset METAMATHQA 279

as monolingual supervision, which is built upon 280

English dataset GSM8K (Cobbe et al., 2021) and 281

MATH (Hendrycks et al., 2021) by performing 282

data augmentation, such as rephrasing questions 283

and enriching answers. In the mixed supervi- 284

sion setting, we employ both METAMATHQA and 285

GSM8KINSTRUCT. Dataset statistics are reported 286

in Table 1. 287

Training Details We use stanford_alpaca3 as 288

our code base. We use consistent training hyper- 289

parameters across two stages of training. At each 290

stage, we fine-tune LLM’s full parameters for 3 291

epoch on eight NVIDIA A100 GPUs. The learning 292

rate is set to 2e-5, with a batch size of 128. 293

Baseline Systems For comparison, we consider 294

following systems which are instruction-tuned 295

from LLaMA2 with diverse training recipes: 296

• SFT (Touvron et al., 2023), which is 297

instruction-tuned with basic GSM8K. 298

• RFT (Yuan et al., 2023), which is instruction- 299

tuned with an augmented GSM8K training 300

dataset, using rejection sampling techniques. 301

• MAmmoTH (Yue et al., 2023), which is 302

instruction-tuned with GSM8K and a collec- 303

tion of math instruction datasets. 304

• WizardMath (Luo et al., 2023), which is 305

constructed using reinforcement learning on 306

GSM8K and MATH. 307

• MathOctopus (Chen et al., 2023), which is 308

instruction-tuned with a multilingual version 309

of GSM8K dataset, representing a standard 310

implementation of translate-training approach. 311

We also reproduce this model in our experi- 312

ments, denoted as MultiReason. 313

3https://github.com/tatsu-lab/stanford_alpaca
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System (7B) Bn Th Sw Ja Zh De Fr Ru Es En Avg.
SFT† (Touvron et al., 2023) 3.2 4.8 5.2 15.2 22.4 37.2 34.4 28.0 32.4 43.2 22.6
RFT† (Yuan et al., 2023) 2.4 2.0 2.8 6.8 16.8 33.6 34.0 29.2 34.0 44.8 20.6
MAmmoTH† (Yue et al., 2023) 3.6 4.8 2.4 10.8 17.2 33.2 32.8 26.0 32.4 49.6 21.3
WizardMath† (Luo et al., 2023) 2.0 4.0 3.4 24.0 22.4 30.4 30.4 30.8 34.8 47.6 23.0
MathOctopus† (Chen et al., 2023) 28.8 34.4 39.2 36.0 38.4 44.8 43.6 39.6 42.4 52.4 40.0
MetaMath (Yu et al., 2023) 6.4 4.0 3.2 39.2 38.8 56.8 52.8 47.2 58.0 63.2 37.0
MultiReason 26.8 36.0 36.8 33.2 42.4 42.8 40.8 42.4 42.8 47.2 39.1
MonoReason 7.6 5.6 5.2 34.0 45.2 54.0 56.8 51.6 58.8 65.5 38.4
QAlign + MonoReason (Ours) 32.4 39.6 40.4 44.0 48.4 54.8 56.8 52.4 59.6 68.0 49.6

System (13B) Bn Th Sw Ja Zh De Fr Ru Es En Avg.
SFT† (Touvron et al., 2023) 6.0 6.8 7.6 25.2 32.8 42.8 40.8 39.2 45.2 50.4 29.7
RFT† (Yuan et al., 2023) 3.2 4.4 3.6 26.4 33.6 38.4 44.8 41.6 46.8 52.0 29.5
MAmmoTH† (Yue et al., 2023) 3.6 5.2 1.6 19.2 31.2 45.6 39.6 36.8 50.0 56.4 28.9
WizardMath† (Luo et al., 2023) 6.4 5.6 5.6 22.0 28.0 40.4 42.0 34.4 45.6 52.8 28.3
MathOctopus† (Chen et al., 2023) 35.2 46.8 42.8 43.2 48.8 44.4 48.4 47.6 48.0 53.2 45.8
MetaMath (Yu et al., 2023) 11.6 6.4 7.6 42.8 49.2 64.8 65.2 63.6 65.2 67.2 44.4
MultiReason 37.6 42.2 44.0 43.2 53.6 47.6 54.0 48.0 54.8 56.4 48.1
MonoReason 12.4 11.2 6.4 42.0 46.0 64.0 62.4 61.6 64.8 68.4 43.9
QAlign+ MonoReason (Ours) 38.4 49.6 46.0 52.4 59.2 62.0 62.4 64.4 67.2 69.2 57.1

Table 2: Results on MGSM dataset. “Avg.” represents the average multilingual performance and bold text denotes
the highest score among systems of the same size. The dagger symbol denotes that the results for these models are
taken from the published results of Chen et al. (2023).

• MetaMath, which is instruction-tuned with314

METAMATHQA (Yu et al., 2023). It is cur-315

rently the most powerful English instruction316

data for mathematical reasoning. We also re-317

produce this model in our experiments, de-318

noted as MonoReason.319

Among these baseline systems, most models are320

tuned with English data and only MathOctopus and321

MultiReason are tuned with multilingual data.322

Evaluation Dataset To assess LLMs’ perfor-323

mance on multilingual mathematical reasoning4,324

we employ the benchmark dataset MGSM (Shi325

et al., 2022). We also evaluate the robust-326

ness of LLMs using an out-of-domain test set327

MSVAMP (Chen et al., 2023). In our experiments,328

we report LLM’s answer accuracy in a zero-shot329

setting. Specifically, we use evaluation scripts 5330

provided by Chen et al. (2023) and measure answer331

accuracy by comparing the last numerical number332

that appears in the LLM-generated response with333

the gold answer.334

4In this paper, we evaluate LLMs’ reasoning performance
on ten languages: Bengali (Bn), Thai (Th), Swahili (Sw),
Japanese (Ja), Chinese (Zh), German (De), French (Fr), Rus-
sian (Ru), Spanish (Es) and English (En).

5https://github.com/microsoft/MathOctopus

5 Main Results 335

In this section, we report our experiment results 336

and introduce our main findings. 337

5.1 Monolingual Supervision Setting 338

Question alignment stage enables LLM’s pro- 339

ficiency in English to be transferred to non- 340

English tasks. Experiment results on the MGSM 341

dataset are presented in Table 2. We can see 342

that LLMs trained with augmented English data 343

(RFT, MAmmoTH, WizardMath, MetaMath and 344

MonoReason) typically underperform on non- 345

English tasks, despite showing improved perfor- 346

mance in English compared to SFT model. The 347

multilingual MathOctopus outperforms existing 348

open-source models in terms of multilingual per- 349

formance. However, we argue that the translated 350

dataset can be out-dated quickly and keeping trans- 351

lating cutting-edge English instuction can also be 352

prohibitive due to the high translation cost. 353

Unlike the translate-training approach, our 354

framework can easily utilize the most advanced 355

English instruction data, e.g., METAMATHQA. 356

With the question alignment stage (QAlign), we 357

successfully transfer model’s proficiency in En- 358

glish to non-English languages. On average, this 359

leads to a 11.2% increase in accuracy for the 7B 360

model and a 13.2% increase in accuracy for the 361

5
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System (7B) Bn Th Sw Ja Zh De Fr Ru Es En Avg.
SFT† (Touvron et al., 2023) 11.5 18.2 17.2 31.6 35.2 39.0 39.1 39.1 39.2 38.8 30.9
RFT† (Yuan et al., 2023) 7.7 16.9 14.9 33.9 34.9 40.8 41.5 39.5 42.5 42.7 31.3
MAmmoTH† (Yue et al., 2023) 4.3 6.3 4.2 26.7 26.8 39.6 39.9 33.7 42.9 45.1 26.3
WizardMath† (Luo et al., 2023) 16.1 17.0 10.3 37.9 36.3 39.2 37.7 37.4 44.8 48.5 32.5
MathOctopus† (Chen et al., 2023) 31.8 39.3 43.4 41.1 42.6 48.4 50.6 46.9 49.4 50.7 44.1
MetaMath (Yu et al., 2023) 14.2 17.8 16.5 53.2 53.1 61.4 60.7 58.9 61.2 65.5 46.3
MultiReason 27.6 36.5 42.4 40.9 43.2 44.3 46.7 42.3 45.5 48.0 41.3
MonoReason 15.0 17.1 15.4 51.9 54.4 60.9 62.2 59.3 63.3 65.5 46.2
QAlign + MonoReason (Ours) 41.7 47.7 54.8 58.0 55.7 62.8 63.2 61.1 63.3 65.3 57.2

System (13B) Bn Th Sw Ja Zh De Fr Ru Es En Avg.
SFT† (Touvron et al., 2023) 13.9 23.4 19.8 41.8 43.3 46.2 47.8 47.8 46.1 50.9 38.1
RFT† (Yuan et al., 2023) 12.2 24.8 19.4 42.4 42.3 45.1 45.2 46.5 45.6 47.1 37.1
MAmmoTH† (Yue et al., 2023) 5.0 13.7 12.9 42.2 47.7 52.3 53.8 50.7 53.9 53.4 38.6
WizardMath† (Luo et al., 2023) 13.7 16.3 12.5 29.5 37.0 48.7 49.4 43.8 49.4 56.3 35.7
MathOctopus† (Chen et al., 2023) 35.2 41.2 46.8 39.2 52.0 47.2 48.0 45.6 53.2 56.4 46.5
MetaMath (Yu et al., 2023) 14.6 15.7 17.4 57.0 56.6 67.3 64.7 63.7 65.9 67.7 49.1
MultiReason 35.0 41.3 44.6 49.9 48.1 53.3 53.2 51.6 52.5 54.5 48.4
MonoReason 20.6 20.5 19.1 57.0 58.8 68.4 68.1 67.5 68.9 68.9 51.8
QAlign + MonoReason (Ours) 49.2 55.5 55.2 64.3 63.8 69.5 68.1 66.4 66.4 67.6 62.6

Table 3: Results on MSVAMP dataset. “Avg.” represents the average multilingual performance and bold text
denotes the highest score among systems of the same size. The dagger symbol denotes that the results for these
models are taken from the published results of Chen et al. (2023).

13B model. These substantial improvements on362

non-English languages significantly reduce LLM’s363

performance gap between non-English and English364

tasks, thereby demonstrating the effectiveness of365

our devised method.366

After question alignment, our fine-tuned LLM367

surpasses the translate-training baseline by a368

large margin More importantly, we observe that369

after question alignment, our fine-tuned LLM sur-370

passes the translate-training baseline (MathOcto-371

pus) by a large margin. By transferring the model’s372

expertise in English to non-English scenarios, our373

approach outperforms MathOctopus by an average374

margin of +9.6% for the 7B model and +11.3% for375

the 13B model. These results again demonstrate376

the superiority of our method.377

Our fine-tuned LLMs also exhibit better robust-378

ness on the out-of-domain test set Apart from379

evaluating on MGSM, we further assess the ro-380

bustness of our LLMs on the out-of-domain test381

set MSVAMP (Table 3). The findings are gen-382

erally consistent with those from MGSM dataset.383

Notably, compared to MonoReason, the alignment-384

enhanced model (QAlign + MonoReason) achieves385

significant improvement in average multilingual386

performance, with gains of 11.0% for the 7B model387

and 10.8% for the 13B model. Our method outper-388

forms the translate-training approach (MathOcto-389

pus) by an even larger margin here, showing in- 390

creases of 13.1% for the 7B model and 16.1% for 391

the 13B model, which shows its more generalized 392

and robust performance. 393

5.2 Mixed Supervision Setting 394

Incorporating multilingual supervised data into 395

our framework can achieve a higher ceiling for 396

multilingual performance Although our frame- 397

work does not rely on the multilingual supervised 398

data, we can utilize such data to attain a higher 399

level of multilingual performance if a multilingual 400

dataset is available. In this mixed supervision set- 401

ting, we first tune the stage I model (7B) with mul- 402

tilingual GSM8KINSTRUCT and then tune it with 403

English data METAMATHQA. The experiment re- 404

sults on MGSM are depicted in Figure 2. We find 405

that incorporating additional multilingual supervi- 406

sion further leads to an average performance gain 407

of 6.6% on multilingual tasks. 408

6 Analysis 409

6.1 Ablation study 410

Impact of using different translation train- 411

ing data During the question alignment stage, 412

we implement the translation task by training 413

LLMs on translating questions from non-English 414

6



Figure 2: Effects of tuning language-aligned LLM with mixed supervised data. Generally, incoporating multilingual
supervised data into our framework can achieve a higher ceiling for average multilingual performance.

Data Direction MGSM MSVAMP
Non-En En Non-En En

Question X→En 47.6 68.0 56.5 65.3
Question En→X 36.2 68.0 48.3 64.4
Response X→En 46.4 67.2 52.1 64.9
Response En→X 42.8 68.0 49.0 63.9

Flores-101 X→En 36.3 68.0 46.8 65.4

Table 4: Effects of using different translation training
data for stage I training. “X→En” and “En→X” repre-
sents translating from non-English to English and trans-
lating English to non-English respectively. “Non-En”
denotes LLM’s average performance on non-English
languages. Among these implementations, training
LLM to translate non-English questions to English is
the best one.

to English. Now we present the ablation study415

to show the effects of alternative implementa-416

tions (Table 4). while different implementations417

yield similar performance in English, their impact418

on non-English peformance varies significantly.419

For instance, training LLMs on reverse transla-420

tion tasks greatly degenerates non-English perfor-421

mance (Question:En→X, Response:En→X). Train-422

ing LLM on translating CoT responses from non-423

English to English (Response:X→En) also results424

in lower performance compared to our original425

implementation. We suggest that this is because426

noises in the translated CoT responses compromise427

the data quality. Training the LLM with translation428

data from commonly-used corpora, such as FLO-429

RES6, does not work as well, indicating that the430

domain of the translation data is another crucial431

factor in establishing language alignment.432

Impact of manipulating training order We also433

conduct the ablation study to demonstrate the sig-434

nificance of the training sequence within our pro-435

posed framework. As shown in Table 5, reversing436

6In this ablation study, we take the translation data in the
development and test set of FLORES-101 dataset (Goyal et al.,
2022) for fine-tuning.

Implementation MGSM MSVAMP
Non-En En Non-En En

our implementation 47.6 68.0 56.5 65.3
↪→ reversing training order 2.0 2.8 2.0 2.0
↪→ single-stage training 3.7 68.0 2.6 65.2

Table 5: Effects of reversing training order and per-
forming single-stage multi-task training. Among these
implementations, our original implementation, i.e., per-
forming question alignment at first and then perform
response alignment, is the best one.

the order of the two training stages results in the 437

LLM performing poorly in both English and non- 438

English languages. We observed that an LLM fine- 439

tuned in this manner tends to repeat the question in 440

English when presented with questions in various 441

languages. 442

When we merge the training datasets from both 443

stages and perform a single-stage, multi-task train- 444

ing, there is a significant drop in non-English per- 445

formance as well. Although capable of respond- 446

ing to questions in English, the fine-tuned LLM 447

is prone to translating the given non-English ques- 448

tions rather than answering them. These analy- 449

sis results demonstrate that our design of two-step 450

training framework is non-trivial. 451

6.2 Prediction Consistency 452

Another advantage of establishing question align- 453

ment is the improvement it brings to the consis- 454

tency 7 of predicted answers against multilingual 455

queries. This means a higher degree of agree- 456

ment in answers to the same question posed in 457

different languages. Figure 3 displays the quan- 458

tified results. In contrast to their unaligned coun- 459

terparts (MonoReason), our alignment-enhanced 460

LLM (QAlign+MonoReason) usually demonstrate 461

7Supposing the set of correct predictions in two languages
is U and V respectively, we compute the consistency score as
|U∩V |
|U| .
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Figure 3: Comparing the prediction consistency of different systems. Darker blue denotes higher level of prediction
consistency. Question alignment stage always brings improvement to the consistency of predicted answers.

higher answer consistency. This improvement is

Method MGSM MSVAMP
Non-En En Non-En En

MonoReason (7B)
Direct Inference 35.4 65.5 47.6 68.9

Translate-test 30.8 - 42.3 -

QAlign+MonoReason (7B)
Direct Inference 47.6 68.0 56.5 65.3

Translate-test 46.6 - 56.6 -

Table 6: Comparison between direct inference and
translate-test inference.

462
particularly notable for distant languages, such463

as Bengali, Thai, Swahili, Japanese, and Chinese.464

This results can serve as another strong evidence465

of our successful transfer of LLM’s proficiency in466

English to non-English languages. Appendix B467

presents some cases to further illustrate the advan-468

tages of achieving higher multilingual consistency.469

6.3 Question Alignment vs Translate-Test470

In our training framework, we implicitly endow the471

LLM with a bias that associates non-English ques-472

tions with their English equivalents, sharing simi-473

lar philosophy with translate-test approach. Thus474

we discuss the difference between these two ap-475

proaches here. Experiment results are reported in476

Table 6. For the MonoReason model, the translate-477

test approach does not yield any improvement, sug-478

gesting that this approach may not be universally479

applicable solution for open-source LLMs. For our480

aligned MonoReason model, direct inference and481

translate-test achieves similar performance. But482

considering our approach does not rely on explic-483

itly translating the questions during inference, it484

will have a more efficient inference process.485

Supervision QAlign MGSM MSVAMP
Non-En En Non-En En

GSM8K % 18.8 43.6 33.6 47.2
GSM8K ! 26.3 41.6 36.8 47.0

METAMATHQA % 35.4 65.6 44.4 65.3
METAMATHQA ! 47.6 68.0 56.5 65.3

Table 7: Effects of tuning the stage I model (7B) with
different English insrtruction data.

6.4 Effects of tuning LLM with different 486

English instruction data 487

To demonstrate the universal effectiveness of ques- 488

tion alignment, we also employ English GSM8K 489

dataset as monolingual supervison and show the 490

results in Table 7. Under different English instruc- 491

tion data, the incorporation of a question align- 492

ment stage always boost LLM’s non-English per- 493

formance. These results also highlight the impor- 494

tance of using advanced English instruction data, 495

because achieving better performance in English 496

usually means an improved non-English perfor- 497

mance with the help of inner language alignment. 498

7 Conclusion 499

In this paper, we introduce a novel question align- 500

ment method to empower LLMs on multilingual 501

mathematical reasoning tasks. Experiment results 502

on benchmark datasets MGSM and MSVAMP 503

show that our proposed question alignment stage 504

brings an average improvement of up to 13.2% 505

in multilingual performance. Our alignment- 506

enhanced LLM outperforms the translate-training 507

baseline by a large margin and shows a more ro- 508

bust performance. Generally, our devised method 509

successfully narrows the gap between LLM’s per- 510

formance between English and non-English lan- 511

guages, showing a new possibility to unlock LLM’s 512

capabilities to solve multilingual tasks. 513
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Limitation514

Below we discuss potential limitations of our work:515

• Chain-of-Thought in English: When receiving516

non-English questions, our language-aligned517

LLM typically produces a Chain-of-Thought518

in English before giving the final numerical519

answer. While the language used for the CoT520

is not explicitly specified as a requirement for521

the multilingual mathematical reasoning task,522

providing a CoT consistent with the query’s523

language could enhance the model’s utility.524

• Scale of the Pre-trained LLM: Our experiment525

is constrained by available computational re-526

sources, leading us to utilize the LLaMA2-7B527

and LLaMA2-13B models. Should resources528

allow in the future, we aim to broaden our529

research to include larger-scale models, such530

as LLaMA2-70B.531
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A Analyzing the Quality of the Translated 670

Dataset 671

In the work of (Chen et al., 2023), the authors em- 672

ploy ChatGPT to translate GSM8K into several 673

non-English languages, resulting in the creation 674

of the multilingual dataset GSM8KINSTRUCT. 675

Below we analyze the translation quality of this 676

dataset and highlight the challenges associated 677

with translating complex CoT responses. We 678

evaluate the translation quality of both questions 679

and responses in a reference-free condition with 680

COMETKiwi8 (Rei et al., 2022). The evaluation 681

results in Table 8 show that the quality of the trans- 682

lated responses is significantly inferior to that of 683

the translated questions. This gap demonstrates the 684

difficulties inherent in translating CoT content. 685

Table 9 provides some examples of typical trans- 686

lation errors. Based on this analysis, we sug- 687

gest that constructing a multilingual CoT dataset 688

through a translation engine is fraught with errors 689

and cannot ensure the quality of the dataset. In 690

constrast, our devised framework provides a more 691

effective and efficient solution, which does not re- 692

quire translated multilingual CoT. 693

B Benefits of Achieving Higher 694

Multilingual Consistency 695

Table 10 presents some examples to illustrate the 696

advantages of achieving higher multilingual consis- 697

tency. In this case, both MonoReason model and 698

QAlign+MonoReason model predict correctly on 699

the English question. However, when presented 700

with the same question expressed in Chinese, our 701

LLM generate a similar reasoning path and still 702

give the right answer, but the unaligned model fails. 703

C Used Scientific Artifacts 704

Below lists scientific artifacts that are used in our 705

work. For the sake of ethic, our use of these arti- 706

facts is consistent with their intended use. 707

• Stanford Alpaca (Apache-2.0 license), a 708

project that aims to build and share an 709

instruction-following LLaMA model. 710

• Transformers (Apache-2.0 license), a frame- 711

work that provides thousands of pretrained 712

models to perform tasks on different modali- 713

ties such as text, vision, and audio. 714

8Specifically, we employ wmt22-cometkiwi-da as the
evaluation model: https://huggingface.co/Unbabel/
wmt22-cometkiwi-da.
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Analyzed Data
COMETKiwi (En-X)

Bn Th Sw Ja Zh De Fr Ru Es

Question Translation 82.22 79.61 82.60 86.64 82.95 83.56 82.29 84.53 85.59
Response Translation 79.92 76.99 76.84 83.34 79.30 78.34 79.98 79.85 79.83

Table 8: Evaluation results of the translation quality of GSM8KINSTRUCT dataset.

Example I: missing certain reasoning step in the translated response

[English CoT Response]
Half of the wallet’s price is $99 / 2 = $50.
Betty’s grandparents gave her $15 * 2 = $30.
In total, Betty has $50 + $15 + $30 = $95.
So she still needs $100 – $95 = $5 which her parents plan to give her for her birthday.

[Translated Chinese CoT Response]
钱包价格的一半是100美元/ 2 = 50美元。
(Half the wallet price is $100/2=$50.)
贝蒂的祖父母给了她15美元* 2 = 30美元。
(Betty’s grandparents gave her $15*2=$30.)
这意味着，贝蒂还需要50美元- 30美元- 15美元= 5美元。
(This means that Betty still needs $50 - $30 - $15 = $5.)

Example II: distinct reasoning paths exist between responses in English and the translated version

[English CoT Response]
The total time he takes to walk to work 3 times a week is 2*3 = 6 hours
The total time he takes to walk to and from work 3 times a week is 6+6 = 12 hours
The total time he takes to bike to work 2 times a week is 2*1 = 2 hours
The total time he takes to bike to and from work 2 times a week is 2+2 = 4 hours
The total time he takes to go to and from work in a week is 12+4 = 16 hours
[Translated Chinese CoT Response]
Roque每周走路去上班需要2*3=6小时。
(It takes Roque 2*3=6 hours to walk to work every week.)
Roque每周骑自行车去上班需要1*2=2小时。
(It takes Roque 1*2=2 hours to ride a bicycle to work every week.)
他每周去上班的总时间是6+2=8小时。
(The total time he goes to work every week is 6+2=8 hours.)
他每周回家的总时间也是8小时。
(The total time he spends home every week is also 8 hours.)
因此，Roque每周去上班和回家总共需要8+8=16小时。
(Therefore, it takes Roque a total of 8+8=16 hours per week to get to work and back home.)

Table 9: Examples of failing to accurately translating English CoT response. For illustration, the gray text is the
English meaning of the corresponding Chinese sentence.
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Question (English) Gold
Answer

There are 27 unicorns left in the world. One third of them are in the Scottish Highlands. Two
thirds of the Scottish unicorns are female. How many female Scottish unicorns are there?

6

Chain-of-Thought Response Prediction

[MonoReason]
One third of the unicorns are in the Scottish Highlands, so there are 27/3 = 9 unicorns in the
Highlands.
Two thirds of the Scottish unicorns are female, so there are 9 * 2/3 = 6 female Scottish
unicorns.
The answer is: 6

6 ✓

[QAlign + MonoReason]
One third of the unicorns are in the Scottish Highlands, so there are 27/3 = 9 unicorns in the
Highlands.
Two thirds of the unicorns in the Highlands are female, so there are 9 * 2/3 = 6 female
unicorns in the Highlands.
Therefore, there are 6 female Scottish unicorns.
The answer is: 6

6 ✓

Question (Chinese) Gold
Answer

世界上剩下27只独角兽，其中三分之一在苏格兰高地。
苏格兰高地的独角兽的三分之二是雌性。苏格兰雌性独角兽有多少只？

6

Chain-of-Thought Response Prediction

[MonoReason]
If three-fourths of the remaining 27 one-horned animals are in the Scottish Highlands, then
there are 27 * 3/4 = 21 one-horned animals in the Scottish Highlands.
If two-thirds of the one-horned animals in the Scottish Highlands are female, then there are
21 * 2/3 = 14 female one-horned animals in the Scottish Highlands.
Therefore, there are 14 female one-horned animals in the Scottish Highlands.
The answer is: 14

14 ✗

[QAlign + MonoReason]
If there are 27 remaining unicorns in the world, and one-third of them are in the Scottish
Highlands, then there are 27/3 = 9 unicorns in the Scottish Highlands.
If two-thirds of the unicorns in the Scottish Highlands are female, then there are 9 * 2/3 = 6
female unicorns in the Scottish Highlands.
Therefore, there are 6 female unicorns in the Scottish Highlands.
The answer is: 6

6 ✓

Table 10: With this case we illustrate the advantages of achieving higher prediction consistency. Given the same
question expressed in different languages, our alignment-enhanced model (QAlign + MonoReason) can generate a
similar reasoning path and give the right answer consistently.
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