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Abstract

Negation is a common linguistic feature that is001
crucial in many language understanding tasks,002
yet it remains a hard problem due to diver-003
sity in its expression in different types of text.004
Recent works show that state-of-the-art NLP005
models underperform on samples containing006
negation in various tasks, and that negation007
detection models do not transfer well across008
domains. We propose a new negation-focused009
pre-training strategy, involving targeted data010
augmentation and negation masking, to better011
incorporate negation information into language012
models. Extensive experiments on common013
benchmarks show that our proposed approach014
improves negation detection performance and015
generalizability over the strong baseline Neg-016
BERT (Khandelwal and Sawant, 2020).017

1 Introduction018

Negation is an important linguistic phenomenon019

that appears commonly in natural language but020

is underrepresented in common NLP benchmarks021

(Hossain et al., 2020). Furthermore, the Checklist022

benchmark (Ribeiro et al., 2020) shows that most023

sentiment analyzers and machine comprehension024

models struggle with samples containing negation.025

Negation is even more important in biomedical026

domain text, where patients are carefully defined027

as having/not having specific characteristics. Even028

within the biomedical domain, there are many types029

of text such as clinical notes, lab reports, or re-030

search publications, each with particular character-031

istics in relation to the use of negation. A recent032

work on negation detection in English texts found033

that negation detection models do not transfer well034

across domains, due to variations in expression035

of negation (Khandelwal and Sawant, 2020). It036

remains a challenge to solve negation in general,037

even with state-of-the-art NLP models.038

Negation detection is typically defined as con-039

sisting of the two sub-tasks of: (1) cue detection,040

detecting the cue phrase that triggers the nega- 041

tion; and (2) scope resolution, determining the 042

affected spans that are negated. Three primary 043

datasets are used to evaluate negation; the BioScope 044

corpus (Vincze et al., 2008) includes full papers 045

and abstracts of biological papers, the SFU cor- 046

pus (Konstantinova et al., 2012) is a collection of 047

product reviews, and the Sherlock dataset (Morante 048

and Blanco, 2012) consists of short literary works. 049

There are differences in annotation schemes across 050

the datasets, such as whether or not the cues are 051

included inside scope annotation, and sub-optimal 052

cross-dataset results have been observed, provid- 053

ing clear indications that the datasets are highly 054

divergent in language use and negation types. 055

In this work, we aim to extend the transfer 056

learning capability of NegBERT (Khandelwal and 057

Sawant, 2020) through additional pre-training with 058

task-related augmented training data, and a new 059

masking objective. Our contributions are: 060

• We introduce an approach to augmenting data 061

to emphasize negation in pre-training. 062

• We propose a novel extension to the standard 063

random masked language model objective in 064

pre-training to explicitly mask negation cues, 065

to make the models more robust to negation. 066

• We conduct extensive experiments on differ- 067

ent benchmarks to evaluate cross-domain per- 068

formance of large pre-trained language mod- 069

els as well as the effectiveness of the pro- 070

posed pre-training strategies; code available 071

at http://ANONYMISED. 072

2 Related work 073

To date, negation detection has been heavily-reliant 074

on rule-based systems. Chapman et al. (2001) pro- 075

posed a simple system, NegEx, based on regular 076

expressions to detect negation cues in a sentence 077

given a concept of interest (the scope). NegEx 078

remains the most popular approach to negation de- 079

tection, especially in the clinical domain where 080
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target clinical concepts can be detected (e.g., with081

MetaMap (Aronson and Lang, 2010)). Further re-082

search has extended NegEx with syntactic infor-083

mation (Mehrabi et al., 2015; Peng et al., 2018),084

and shown that rule-based systems can achieve rel-085

atively good performance for detecting negation,086

especially in the biomedical domain, but do not087

generalize well to other domains or datasets.088

To approach negation cue and negation scope089

detection with supervised machine learning, two090

classification tasks are defined: finding negation091

tokens and classifying tokens as the first or last (or092

neither) token within the scope of negation. Most093

works follow a common scheme in extracting vari-094

ous features from the sentence, in using a classifier095

to classify each token as the beginning, inside, or096

outside of a negation cue or scope span (Morante097

and Daelemans, 2009; Ou and Patrick, 2015; Cruz098

et al., 2016). Recently, research has shifted to ap-099

plying deep learning methods to the task. Most100

approaches make use of RNN-based architectures101

to encode the input sentences, combined with a102

softmax layer for classification (Lazib et al., 2019;103

Chen, 2019). Despite the high performance on104

common benchmarks, results are biased by the fact105

that negation scope is often delimited by punctu-106

ation and other dataset artefacts (Fancellu et al.,107

2017). As such, they are potentially only learning108

domain-specific surface features rather than cap-109

turing the true semantics of negation. NegBERT110

applies a large pre-trained language model to the111

problem of negation detection, outperforming pre-112

vious deep learning methods on negation detection,113

with especially high gains on scope resolution.114

3 Method115

Our proposed pre-training strategy consists of two116

main components: (1) negation-focused data col-117

lection in which we first collect relevant data that118

contain negation; and (2) negation-focused pre-119

training that makes use of the negation-focused120

data to emphasize negation instances, and adopts a121

novel negation-specific masking strategy.122

3.1 Negation-focused data collection123

We aim to construct a dataset that is enriched124

for negation, to support negation-sensitized pre-125

training of large language models. To obtain sen-126

tences with negations, we extend the NegEx lexi-127

con with additional negation cues obtained from128

biomedical texts (Morante, 2010), and apply it to129

sentences extracted from a corpus using the SpaCy 130

English sentence tokenizer, keeping only those sen- 131

tences with at least one identified negation. 132

For the biomedical domain, we use texts in the 133

TREC-CDS 2021 snapshot1 of the clinical trials 134

registry.2 Clinical trials are documents describing 135

the protocols and relevant patient characteristics of 136

a clinical research study. Description of clinical 137

trials can be quite long, but a core aspect of the 138

trial description is the patient inclusion/exclusion 139

criteria, specifying what types of characteristics or 140

conditions a patient must have/not have in order 141

to be suitable for the trial. The reasons for choos- 142

ing this data are that: (1) it is in-domain for the 143

biomedical domain; (2) the texts are well-formed 144

sentences with proper grammatical structure; and 145

(3) the texts contain many negations, especially in 146

the inclusion/exclusion criteria sections. For the 147

general domain, we apply this approach to wikitext 148

(Merity et al., 2016), a set of verified articles in 149

Wikipedia. We sample the data equally from these 150

two sets, obtaining 1, 381, 948 negation sentences. 151

3.2 Negation-focused pre-training 152

Adaptive pre-training on target domain data has 153

been shown to be an effective strategy for domain 154

adaptation (Gururangan et al., 2020). We therefore 155

hypothesize that pre-training language models on 156

text with negations will help the model incorpo- 157

rate information about negation, and learn better 158

representation for sentences containing negation. 159

Using the negation-focused data, we first apply the 160

standard random word masking strategy (Devlin 161

et al., 2019) and train the model with the masked 162

language model objective. 163

As part of the collection of the negation-focused 164

data, we obtain predictions of negation cues in all 165

the sentences, which can be explicitly incorporated 166

to make the model more robust to negation. In- 167

spired by various works on entity and span mask- 168

ing (Joshi et al., 2020; Yamada et al., 2020), we 169

explore explicitly incorporating information about 170

negation cues into the model by masking these cues, 171

and targeting prediction of the masked cue in the 172

pre-training stage. Below is an example of how a 173

sentence is tokenized under our masking scheme: 174

No serious complications such as hypertension, di- 175

abetes. ⇒ [CUE] serious complications such as 176

[MASK], diabetes. 177

1http://www.trec-cds.org/2021.html
2http://ClinicalTrials.gov
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A new type of token [CUE] is introduced un-178

der this masking scheme, and the model needs179

to reconstruct the original sentence by predicting180

both the [CUE] token to be No, and the randomly-181

masked token [MASK] to be hypertension. By182

always masking negation cues in all the sentences,183

we force the model to focus more on this type of184

token, and thus, aim to learn better embeddings185

incorporating information of how a negation cue is186

represented in the context of the sentence. More-187

over, by using a different token to mask negation188

cues, we ensure that the model learns to distinguish189

between different types of tokens. In this work,190

we replace the BERT encoder of NegBERT with191

RoBERTa (Liu et al., 2019) and apply whole-word192

masking, meaning that all the sub-word tokens that193

constitute a word will be masked.194

4 Experiments195

4.1 Experimental settings196

Following the experiment settings in NegBERT, we197

use the three standard benchmarks for negation cue198

detection and scope resolution tasks, i.e. BioScope199

(Vincze et al., 2008) (separated into two subsets,200

sourced from abstracts and full-text papers, resp.),201

the SFU product reviews dataset (Konstantinova202

et al., 2012), and the Sherlock dataset (Morante and203

Blanco, 2012). In addition, we use the negation-204

annotated subset of VetCompass UK3 (Cheng et al.,205

2017), consisting of clinical notes in the veteri-206

nary domain, which are very informal compared to207

BioScope. It also contains abbreviations and short-208

ening of terms, as well as certain unique negation209

cues. To investigate the cross-domain performance,210

we perform cue detection and scope resolution for211

all 4 datasets, based on training on one dataset and212

evaluating on all datasets. Detailed statistics of213

these datasets are presented in Table 1.214

We formulate the two tasks as sequence labeling215

problems, where each token is tagged with a corre-216

sponding label. For cue detection, we use the an-217

notation scheme {0: Affix, 1: Normal Cue, 2: Part218

of multiword cue, 3: Not part of cue}. For scope219

resolution, we use gold cue information and two220

labels {0: Outside negation scope, 1: Part of nega-221

tion scope}. We adopt the same hyperparameters222

as NegBERT. Following the standard evaluation223

scheme in previous negation detection works, all224

systems are evaluated using token-level F1-score,225

based on whether it is inside or outside of any226

3https://www.rvc.ac.uk/VetCOMPASS

Dataset # sentences # negations # unique cues
BioScope-Abstract 11871 1719 28
BioScope-FullPaper 2670 376 18

SFU 17263 3527 53
Sherlock 5520 1421 30

VetCompass 6582 724 26

Table 1: Dataset statistics

negation cue or scope. Methods evaluated include: 227

(1) NegBERT; (2) AugNB: NegBERT plus pre- 228

training on negation-focused data; and (3) CueNB: 229

NegBERT plus pre-training on negation-focused 230

data and the negation cue masking objective. 231

4.2 Main results 232

Tables 2 and 3 report the performance of negation 233

cue detection and negation scope resolution, respec- 234

tively. Results reported are the average of 5 runs 235

with different random seeds. NegBERT results are 236

produced using the official implementation.4 237

We observe similar trends across all datasets 238

for both cue detection and scope resolution. Re- 239

garding the in-dataset setting (training and evaluat- 240

ing on the same dataset), AugNB outperforms the 241

baseline NegBERT on all datasets except for Sher- 242

lock. Gains are more noticeable in the biomedical 243

datasets (BioScope, VetCompass). For Sherlock, 244

however, we observe a slight degradation in per- 245

formance with the proposed pre-training scheme. 246

This is likely due to the fact that Sherlock has ma- 247

jor differences in annotation scheme compared to 248

other corpora, specifically including scopes to the 249

left of cues, while in BioScope and SFU, the scope 250

is usually annotated only to the right of cues. Also, 251

the cue itself is not considered to be part of the 252

scope in Sherlock or SFU, unlike in BioScope. 253

In the cross-dataset setting, we record gains 254

across all benchmarks. The largest cross-dataset 255

improvements over NegBERT are for SFU, per- 256

haps due to SFU being the largest dataset in size, 257

containing a relatively large number of unique 258

cues. CueNB further improves the performance 259

of AugNB, confirming our hypothesis that explic- 260

itly masking the cue will help the model learn better 261

representations for negation cues and thus, better 262

distinguish between cues and normal words. These 263

results show that our negation-focused pre-training 264

strategy is effective for improving the transfer learn- 265

ing performance of pre-trained language models on 266

the negation detection task. 267

4https://github.com/adityak6798/
Transformers-For-Negation-and-Speculation
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Dataset BioScope-Abstract BioScope-FullPaper SFU Sherlock VetCompass
Method NegBERT AugNB CueNB NegBERT AugNB CueNB NegBERT AugNB CueNB NegBERT AugNB CueNB NegBERT AugNB CueNB

BioScope-Abstract 95.29 +0.78 +1.80 92.58 -0.27 -0.25 83.86 +0.23 +0.47 70.67 +4.89 +6.62 75.49 +1.56 +2.73
BioScope-FullPaper 91.44 +0.68 +0.89 90.23 +0.04 +1.44 79.68 +0.11 +0.63 66.45 +1.07 +2.48 71.06 +1.17 +2.98

SFU 38.70 +3.55 +4.78 57.99 +3.72 +4.43 87.20 +0.38 +0.79 44.03 +11.37 +13.93 58.66 +0.67 +2.44
Sherlock 70.43 +2.86 +3.05 69.63 +4.54 +6.48 70.14 +1.26 1.79 92.28 -0.51 -1.11 64.45 +3.58 +3.99

VetCompass 70.58 +0.37 +1.91 69.75 +0.36 +2.39 75.18 +2.19 +3.42 71.34 +0.33 +1.07 87.77 +1.11 +3.77

Table 2: Cue detection results. Columns and rows correspond to training sets and test sets, respectively. Gray rows
denote the same-dataset setting, and a green cell indicates the highest score for each evaluation dataset.

Dataset BioScope-Abstract BioScope-FullPaper SFU Sherlock VetCompass
Method NegBERT AugNB CueNB NegBERT AugNB CueNB NegBERT AugNB CueNB NegBERT AugNB CueNB NegBERT AugNB CueNB

BioScope-Abstract 94.23 +0.84 +1.58 90.89 +0.7 +0.74 84.41 +0.15 +0.43 78.80 +0.63 +1.66 69.14 +1.57 +2.82
BioScope-FullPaper 91.63 +1.14 +1.83 88.42 +1.8 +4.14 79.90 +0.49 +0.83 79.42 +0.21 +1.28 64.45 +1.79 +2.27

SFU 85.28 +0.78 +1.03 84.57 +0.71 +1.05 90.44 +0.27 +0.59 74.61 +1.88 +3.28 63.32 +3.25 +3.59
Sherlock 72.60 +0.43 +2.17 70.10 +2.24 3.04 73.68 +0.11 +0.87 91.51 -1.2 -0.27 61.49 -0.03 +1.64

VetCompass 61.36 +0.86 +2.00 60.27 +1.06 +1.39 62.62 +0.32 +1.4 59.62 +0.61 +1.05 88.18 +1.23 +2.06

Table 3: Scope resolution results. Columns and rows correspond to training sets and test sets, respectively. Gray
rows denotes the same-dataset setting, and a green cell indicates the highest score for each evaluation dataset.

4.3 Discussion268

We conduct an error analysis on the VetCompass269

validation set to see what qualitative improvement270

CueNB makes over NegBERT. For cue detection,271

there are two main types of errors that CueNB helps272

alleviate. First, CueNB can detect more unique273

cues such as negative, won’t, and also multiword274

cues like no longer. Second, CueNB is able to275

recognize cases when the negations are actually276

just speculative. For example, in the sentence O277

reports has smelled for past week, not sure if anal278

glands ..., not is actually part of speculation phrase279

not sure, indicating that this is not a negation. For280

scope resolution, CueNB mostly helps in recogniz-281

ing the correct scope boundary. One common case282

is when the cue relates to multiple spans in a sen-283

tence. In the sentence Examination: QAR, thorac284

ausc and abdo palp NAD,5 NegBERT only recog-285

nizes the nearest span abdo palp NAD to be the286

scope, whereas CueNB recognizes the full correct287

span thorac ausc and abdo palp NAD. It also helps288

in cases where there are multiple separate negations289

in the same sentence. For instance, in the sentence290

No V+ or no D+., No V+ and no D+ are two inde-291

pendent negation scope spans, whereas NegBERT292

would recognize the whole sentence as one span.293

Another interesting case is when there are excep-294

tions in the sentence, e.g. the No. . . other than . . .295

construction. For No probs detected other than296

the skin lesions, CueNB is able to recognize the297

correct scope No probs detected while NegBERT298

considers the whole sentence to be the scope.299

We also conduct an ablation study to understand300

the impact of each component of the proposed pre-301

5NAD is the negation cue no abnormality detected

Model Cue detection Scope resolution
NegBERT 94.46 95.34

+ negation-focused data 95.36 95.94
+ explicit cue masking 95.58 96.03

CueNB 95.87 96.76

Table 4: Ablation study on BioScope validation set.

training strategy. Table 4 presents the results of 302

different variations of the proposed pre-training 303

scheme on the BioScope-Abstract validation split. 304

We consider two variations, pre-training with: (1) 305

only the negation-focused data (equivalent to the 306

AugNB model); and (2) only the cue masking ob- 307

jective. To model the latter variation, we explicitly 308

mask the cue in the BioScope training set, then pre- 309

train on this training set. From the results, we see 310

that both strategies help improve the baseline Neg- 311

BERT on cue detection and scope resolution, with 312

explicitly masking the cues being the most impor- 313

tant. Combining both strategies (CueNB) further 314

improves the overall results. 315

5 Conclusion 316

In this work, we propose a new negation-focused 317

pre-training strategy to explicitly incorporate nega- 318

tion information into pre-trained language models. 319

Empirical results on common benchmarks show 320

that the proposed strategy helps improve the perfor- 321

mance of pre-trained language models on the nega- 322

tion detection task when evaluating on the same 323

source dataset, as well as their transferability to 324

target data in different domains. Despite the gains 325

over previous methods, the sub-optimal results on 326

some benchmarks show that negation remains a big 327

challenge in NLP. 328
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