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Identifying and Manipulating the Psychological Personality Traits of
Language Models

Abstract
Psychology research has long explored aspects
of human personality such as extroversion,
agreeableness and emotional stability. Catego-
rizations like the ‘Big Five’ personality traits
are commonly used to assess and diagnose per-
sonality types. In this work, we explore the
question of whether language models exhibit
consistent personalities in their language gen-
eration. For example, is a language model
such as GPT2 likely to respond in a consis-
tent way if asked to go out to a party? We
also investigate whether such personality traits
can be controlled. We show that when pro-
vided different types of contexts (such as per-
sonality descriptions, or answers to diagnostic
questions about personality traits), language
models such as BERT and GPT2 can consis-
tently identify and reflect personality markers
in those contexts. This behavior illustrates
an ability to be manipulated in a highly pre-
dictable way, and frames them as tools for
identifying personality traits and controlling
personas in applications such as dialog sys-
tems. We also contribute a crowd-sourced
data-set of personality descriptions of human
subjects paired with their ‘Big Five’ personal-
ity assessment data, and a data-set of personal-
ity descriptions collated from Reddit.

1 Introduction

With the rise of AI systems built around emergent
technologies like language models, there is an in-
creasing need to understand the ‘personalities’ of
these models. While today people regularly com-
municate with AI systems such as Alexa and Siri,
the personality traits of such systems remain yet
to be examined in depth. If the traits exhibited
by these models could be better understood, their
behavior could potentially be better tailored for
specific applications. For instance, in the case of
suggesting email auto-completes, it would be use-
ful for the model to mirror the personality of the

Figure 1: We explore measuring and manipulating per-
sonality traits in language models. The top frame
shows an example of how a personality trait (here,
openness to experience) might be expressed by a lan-
guage model. Such traits can be assessed by analyzing
the model’s response to questions like the one shown.
In the bottom frame, those responses are influenced
by making additional context available to the language
model. We show that such contexts can control ‘Big
Five’ personality traits in a highly predictable way.

user based on previous input to improve communi-
cation accuracy. In contrast, in a dialog agent in a
clinical setting, it may be desirable to manipulate a
model interacting with a depressed individual such
that it does not reinforce depressive behavior.

In recent years, research has looked at other
forms of bias (i.e., racial, gender) in language
models (Bordia and Bowman, 2019; Huang et al.,
2020; Abid et al., 2021). However, there is an
absence of research that analyzes biases in per-
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sonality. The personality traits of language mod-
els may be subject to similar biases based on the
data they are trained on. A substantial body of
research has explored the ways language models
can be used to predict personality traits of humans.
Mehta et al. (2020) and Christian et al. (2021) apply
language modeling to such personality prediction
tasks. However, they do not examine the personal-
ity traits demonstrated by the models themselves.

Language-based questionnaires have long been
used in psychological assessments for measuring
personality traits in humans (John et al., 2008). We
apply the same principle to language models and
investigate the personality traits of these models
through the lens of the text that they generate in
response to such questions. Since language models
are subject to influence from the context they see
(O’Connor and Andreas, 2021), we also explore
how specific context could be used to manipulate
the personality of the models. Figure 1 shows an
example illustrating our approach.

Our analysis reveals that personality traits of
language models are surprisingly influenced by am-
bient context and that this behavior can be manip-
ulated in a highly predictable way. In general, we
observe high correlations (median correlations of
up to 0.84 and 0.81 for BERT and GPT2) between
the expected and observed changes in personality
traits across different contexts1. The models’ affin-
ity to be affected by context positions them as a
potential tool for characterizing personality traits in
humans. In further experiments, we find that when
using context from self-reported text descriptions
of human subjects, language models can predict the
subject’s personality traits to a surprising degree
(correlation up to 0.48 between the model person-
ality scores with context and the human subject
scores). Together, these results frame language
models as tools for identifying personality traits
and controlling personas in applications such as di-
alog systems, as illustrated in further experiments.
Our contributions are:
• We introduce a method for using psychometric

questionnaires for probing personality traits of
language models.
• We empirically demonstrate results showing that

the personality traits of two common language
models can be controlled using context and that
there is a potential for such context to be used in

1Code and data for reproducing the experiments will be
released on first publication.

a language modeling based approach to charac-
terizing personality in humans.
• We contribute two data-sets: 1) self-reported per-

sonality descriptions of human subjects paired
with their ‘Big Five’ personality assessment data,
2) personality descriptions collated from Reddit.

2 ‘Big Five’ Preliminaries

The ‘Big Five’ personality traits is a seminal group-
ing of personality traits in psychological trait theory
Goldberg, 1990, 1993. There are variations over
the names of the ‘Big Five’ traits, but they are often
referred to as extroversion, agreeableness, consci-
entiousness, emotional stability (also referred to
by its reverse, neuroticism) and openness to experi-
ence (John and Srivastava, 1999; Pureur and Erder,
2016).
• Extroversion (E): People with a strong tendency

in this trait are outgoing and energetic. They
obtain energy from the company of others and
are defined as being assertive and enthusiastic.
• Agreeableness (A): People with a strong ten-

dency in this trait are compassionate, kind, and
trustworthy. They value getting along with other
people and are tolerant.
• Conscientiousness (C): People with a strong ten-

dency in this trait are goal focused and organized
and have self-discipline. They follow rules and
plan their actions.
• Emotional Stability (ES): People with a strong

tendency in this trait are less anxious, self-
conscious, impulsive, and pessimistic. They ex-
perience negative emotions less easily.
• Openness to Experience (OE): People with a

strong tendency in this trait are imaginative and
creative. They are willing to try new things and
are open to ideas.

3 Experiment Design

Our experiments use two language models, BERT-
base (Devlin et al., 2019) and GPT2 (Radford
et al., 2019), to answer questions from a standard
50-item ‘Big Five’ personality assessment (IPIP,
2022). Each item consists of a statement beginning
with the prefix “I” or “I am” (e.g., I am the life
of the party). Acceptable answers lie on a 5-point
Likert scale where the answer choices disagree,
slightly disagree, neutral, slightly agree, and agree
correspond to numerical scores of 1, 2, 3, 4, and 5,
respectively.
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To make the questionnaire more amenable to be-
ing answered by language models, they were modi-
fied to a sentence completion format. For instance,
the item “I am the life of the party” was changed
to “I am {blank} the life of the party”, where the
model is expected to select the answer choice that
best fits the blank (see Appendix B for a complete
list of items). To avoid complexity due to variable
number of tokens, the answer choices were modi-
fied to the adverbs never, rarely, sometimes, often,
and always, corresponding to numerical values 1,
2, 3, 4, and 5 respectively. It is noteworthy that in
this framing, an imbalance in the number of occur-
rences of each answer choice in the pretraining data
might cause natural biases toward certain answer
choices. However, while this factor might affect
the absolute scores of the models, this is unlikely
to affect the consistent overall patterns of changes
in scores that we observe in our experiments by
incorporating different contexts.

For assessment with BERT, the answer choice
with the highest probability in place of the masked
blank token was selected as the response. For as-
sessment with GPT2, the procedure was modified
since GPT2 is an autoregressive model, and hence
not directly amenable to fill-in-the-blank tasks. In
this case, the probability of the entire sentence with
each candidate answer choice was evaluated, and
the answer choice with the highest probability for
the sentence was selected as the response.

Finally, for each questionnaire (consisting of
model responses to 50 questions), personality
scores for each of the five ‘Big Five’ personality
traits were calculated according to a standard scor-
ing procedure (IPIP, 2022). Specifically, each of
the five personality traits is associated with ten
questions in the questionnaire. The numerical val-
ues associated with the response for these items
were entered into a formula for the trait in which
the item was assigned. The numerical response was
added to or subtracted from a base value, depend-
ing on the question, leading to an overall integer
score for each trait (maximum score can be 40).
To interpret model scores in the following experi-
ments, we estimated the distribution of ‘Big Five’
personality traits in the human population. For
this, we used data from a large-scale survey of ‘Big
Five’ personality scores in about 1,015,000 individ-
uals (Open-Psychometrics, 2018). In the following
sections, we report model scores in percentile terms
of these human population distributions. Statistics

Trait Xbase Pbase (%)
BERT

E 18 42
A 27 39
C 25 54
ES 22 60
OE 25 24

GPT2
E 21 54
A 24 25
C 29 73
ES 25 71
OE 28 39

Table 1: Base model evaluation scores out of 40
(Xbase) and percentile (Pbase) of these scores in the
human population.

and plots for the human distributions and details
of the IPIP scoring procedure are reported in Ap-
pendix B.

4 Base Model Trait Evaluation

Table 1 shows the results of the base personality
assessment for GPT2 and BERT for each of the five
traits in terms of numeric values and correspond-
ing human population percentiles. In the table, E
stands for extroversion, A for agreeableness, C for
conscientiousness, ES for emotional stability and
OE for openness to experience. None of the base
scores from BERT or GPT2, which we refer to as
Xbase, lie outside the spread of the population dis-
tributions, and all scores were within 26 percentile
points of the human population medians. This sug-
gests that the pretraining data reflected the popula-
tion distribution of the personality markers to some
extent and that the models picked up on these mark-
ers, mirroring them via item responses. However,
we note that percentiles for BERT’s openness to
experience (24) and GPT2’s agreeableness (25) are
substantially lower and GPT2’s conscientiousness
(73) and emotional stability (71) are significantly
higher than the population median.

5 Manipulating Personality Traits

In this section, we explore manipulating the base
personality traits of language models. Our explo-
ration focuses on using prefix contexts to influence
the personas of language models. For example,
if we include a context where the first person is
seen to engage in extroverted behavior, the idea
is that language models might pick on such cues
to also modify their language generation (e.g., to
generate language that also reflects extrovert behav-
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Trait Context/Modifier +/-
BERT

E I am never the life of the party. -
A I never make people feel at ease. -
C I am always prepared. +
ES I never get stressed out easily. +
OE I never have a rich vocabulary. -

GPT2
E I am never the life of the party. -
A I never have a soft heart. -
C I am never prepared. -
ES I always get stressed out easily. -
OE I never have a rich vocabulary. -

Table 2: List of context item & modifier, along with the
direction of change, which caused to the largest magni-
tude of change, ∆cm, for each personality trait.

ior). We investigate using three types of context:
(1) answers to personality assessment items, (2)
descriptions of personality from Reddit, and (3)
self-reported personality descriptions from human
users. In the following subsections, we describe
these experiments in detail.

5.1 Analysis With Assessment Item Context
To investigate whether the personality traits of mod-
els can be manipulated predictably, the models are
first evaluated on the ‘Big Five’ assessment (§3)
with individual questionnaire items serving as con-
text. When used as context, we refer to the answer
choices as modifiers and the items themselves as
context items. For example, for extroversion, the
context item “I am {blank} the life of the party"
paired with the modifier always results in the con-
text “I am always the life of the party" preceding
each extroversion questionnaire item.

To calculate the model scores, Xcm, for each
trait, the models are evaluated on all ten items as-
signed to the trait, with each item serving as context
once. This is done for each of the five modifiers,
resulting in 10 (context items per trait) × 5 (modi-
fiers) × 10 (questionnaire items to be answered by
the model) = 500 responses per trait and 10 (con-
text items per trait)× 10 (questionnaire items) = 50
scores (Xcm) per trait (one for each context). Con-
text/modifier ratings (rcm) are calculated to quan-
tify the models’ expected behavior in response to
context. First, each modifier is assigned a modifier
rating between -2 and 2 with -2 = never, -1 = rarely,
0 = sometimes, 1 = often and 2 = always. Context
items are given a context rating of -1 if the item
negatively affected the trait score based on the IPIP
scoring procedure, and 1 otherwise. The context
ratings are multiplied by the modifier ratings to get

Figure 2: BERT & GPT2 ∆cm vs rcm plots for data
from all traits. We observe a consistent change in
personality scores (∆cm) across context items as the
strength of quantifiers change.

the rcm. This value represents the expected relative
change in trait score (expected behavior) when the
corresponding context/modifier pair was used as
context.

Next, the differences, ∆cm, between Xcm and
Xbase values are calculated and the correlation with
the rcm ratings measured (see Figure 2 for the con-
text/modifier pairs with the largest ∆cm). One
would expect Xcm evaluated on more positive rcm
to increase relative to Xbase and vice versa. This is
what we observe in Figure 2, where we note that
both BERT and GPT2 show significant correlations
(0.40 and 0.54) between ∆cm and rcm.

Further, to look at the influence of individual con-
text items as the strength of the modifier changes,
we compute the correlation, ρ, between ∆cm and
rcm for individual context items (correlation com-
puted from 5 data points per context item, one for
each modifier). Table 3 reports the mean and me-
dian values of these correlations. These results
indicate a strong relationship between ∆cm and
rcm. The mean values are significantly less than
the medians, suggesting a left skew. For further
analysis, the data was broken down by trait. The
histograms in Figure 3 depict ρ by trait and include
summary statistics for this data.

Mean and median ρ from Figure 3 plots suggest
a positive linear correlation between ∆cm and rcm
amongst context item plots, with conscientiousness
and emotional stability having the strongest corre-
lation for both BERT and GPT2. Groupings of ρ
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Figure 3: Histograms of ρ by trait for ∆cm vs rcm context item plots. Across all ten scenarios, a plurality of context
items show a strong correlation (peak close to 1) between observed changes in personality traits and strengths of
quantifiers in the context items.

BERT GPT2
Mean ρ 0.42 0.55
Med ρ 0.84 0.81

Table 3: Mean & median ρ from ∆cm vs rcm plots by
context item

around 1 in conscientiousness and emotional stabil-
ity plots from Figure 3 demonstrate this correlation.

GPT2 extroversion, BERT & GPT2 agreeable-
ness and BERT openness to experience were sub-
ject to larger left skews and lower mean ρ; their
respective histograms show heavier groupings of ρ
further left of the median. While BERT extrover-
sion didn’t have a clear skew, it did have the lowest
mean and median ρ. It is possible that the effect
of the five modifiers on ∆cm for a specific context
item, such as BERT extroversion, may follow a
non-linear trend, resulting in lower correlations.

A possible explanation for the larger skew in
GPT2 extroversion, BERT & GPT2 agreeableness
and BERT openness to experience histograms is
that models may have had difficulty distinguish-
ing between the double negative statements created
by some context/modifier pairs (i.e. item 36 with
modifier never: “I never don’t like to draw atten-
tion to myself."). This may have caused ∆cm to
be negatively correlated with rcm, leading to an
accumulation of ρ values near -1 for those traits.

It is important to note a possible weakness
with our approach of using questionnaire items
as context. Since our evaluation also includes the
same item during scoring, a language model could
achieve a spurious correlation simply by copying
the modifier choice mentioned in the context item.
We experimented with adjustments that would ac-
count for this issue and saw similar trends, with
slightly lower but consistent correlation numbers.

Context
Subdued until I really get to know someone.
I am polite but not friendly. I do not feel the need
to hang around with others and spend most of my time
reading, listening to music, gaming or watching films.
Getting to know me well is quite a challenge I suppose,
but my few friends and I have a lot of fun when we
meet (usually at university or online, rarely elsewhere
irl). I’d say I am patient, rational and a guy with a
big heart for the ones I care for.

Table 4: Examples of Reddit data context.

5.2 Analysis With Reddit Context

In this component, we attempt to qualitatively ana-
lyze how personality traits of language models re-
act to user-specific contexts. To acquire this type of
context data, we curated data from Reddit threads
asking individuals about their personality (see Ap-
pendix D for a list of sources). 1119 responses
were collected, the majority of which were first
person. Table 4 lists two examples of such contexts.
Because GPT2 & BERT tokenizers can’t accept
more than 512 tokens, responses longer than this
were truncated. The models were evaluated on the
‘Big Five’ assessment (§3) using each of the 1119
responses as context (Reddit context). For each
Reddit context, scores, Xreddit, were calculated for
all 5 traits. The difference between Xreddit and
Xbase was calculated as ∆reddit.

To broadly interpret what words or phrases in the
contexts affect the language models’ personality
traits, we train regression models on bag-of-words
and n-gram (with n = 2 and n = 3) representa-
tions of the Reddit contexts as input, and ∆reddit

values as labels. Since the goal was to analyze
attributes in the contexts that caused substantial
shifts in trait scores, we only consider contexts with
‖∆reddit‖ ≥ 1. Next, we extracted the top ten most
positive and top ten most negative feature weights
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for each trait, and performed a qualitative analysis
of these features. We note that for extroversion,
phrases such as ‘friendly’, ‘great’ and ‘no prob-
lem’ are among the highest positively weighted
phrases, whereas phrases such as ‘stubborn’ and
‘don’t like people’ are among the most negatively
weighted. For agreeableness, phrases like ‘love’
and ‘loyal’ are more positively weighted, whereas
phrases such as ‘lazy’, ‘asshole’ and expletives
are weighted highly negative. On the whole, our
qualitative analysis revealed that the changes in
personality scores for most traits conformed with a
human understanding of the most highly weighted
positive/negative features. As further examples,
phrases such as ‘hang out with’ caused a positive
shift in trait score for openness to experience, while
‘lack of motivation’ is among the most negatively
weighted features for conscientiousness. However,
some other strongly weighted phrases appeared to
have little relation to the trait definition or expected
connotation or they caused shifts in a direction
opposite what was expected. There were fewer
phrases for GPT2 openness to experience, GPT2
negatively weighted agreeableness, and GPT2 neg-
atively weighted extroversion that caused shifts in
the expected direction. This was consistent with
results from §5.1, where these traits exhibited the
weakest relative positive correlations. Appendix D
contains the full lists of highly weighted features
for each trait.

5.3 Analysis With Psychometric Survey Data

The previous sections indicate that language mod-
els can pick up on personality traits from context.
This suggests the following question: can these
models be used to estimate an individual’s person-
ality? In theory, this would be done by evaluat-
ing on the ‘Big Five’ personality assessment using
context describing the individual. This can aid in
personality characterization in cases where it is not
feasible for a subject to manually undergo a per-
sonality assessment. We investigate this through
the following experiment.

Using Amazon Mechanical Turk, subjects were
asked to complete the 50-item ‘Big Five’ personal-
ity assessment outlined in §3 (the assessment was
not modified to a sentence completion format as
was done for model testing) and provide a 75-150
word description of their personality (see Appendix
E for survey instructions). Responses were man-
ually filtered and low effort attempts discarded,

Context
Undirected Response

I am a very open-minded, polite person and always crave
new experiences. At work I manage a team of software
developers and we often have to come up with new ideas.
I went to college and majored in computer science, and
enjoyed the experience. I have met many like-minded
people and I enjoy speaking with them about a lot of
various topics. I am sometimes shy around people who I
don’t know well, but I try to be welcoming and warm to
everyone I meet. I try to do something fun every week,
even if I’m quite busy, like having a BBQ or watching a
movie. I have a wife whom I love and we live together in
a nice single-family home.

Directed Response
I consider myself to be someone that is quiet and
reserved. I do not like to talk that much unless I have
to. I am fine with being by myself and enjoying the peace
and quiet. I usually agree with people more often than
not. I am a polite and kind person. I am mostly honest,
but I will lie if I feel it is necessary or if it benefits me
in a huge way. I am easily irritated by things and I have
anxiety issues. I like to be open minded and learn about
new things. I am a curious person. I enjoy having a plan
and following it.

Table 5: Examples of survey data contexts.

resulting in 404 retained responses. Two variations
of the study were adopted: the subjects for 199
of the responses were provided a brief summary
of the ‘Big Five’ personality traits and asked to
consider, but not specifically reference, these traits
in writing their descriptions. We refer to these re-
sponses as the Directed Responses data set. The
remaining 205 subjects were not provided with this
summary and their responses make up the Undi-
rected Responses data set. Table 5 shows examples
of collected descriptions. Despite the survey asking
for personality descriptions upwards of 75 words,
around a fourth of the responses fell below this
limit. The concern was that data with low word
counts may not have enough context. Thus, we ex-
periment with filtering the responses by removing
outliers (based on the interquartile ranges) as well
as including minimum thresholds on the descrip-
tion length (75 and 100).

Human subject scores, Xsubject, were calculated
for each assessment, using the same scoring pro-
cedure as previously described in §3. The models
were subsequently evaluated on the ‘Big Five’ per-
sonality assessment using the subjects’ personality
descriptions as context, yielding Xsurvey scores
corresponding to each subject. Figure 4 shows a
plot of Xsurvey against Xsubject for individual sub-
jects, and indicates strong correlations (0.48 for
GPT2 and 0.44 for BERT) between predicted per-
sonality traits of human subjects based on their
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Figure 4: BERT & GPT2 Xsurvey vs Xsubject plots
(Directed Responses with outliers removed). Regres-
sion lines and correlation coefficients (ρ) are shown.

Figure 5: The plot compares ρ from model evalua-
tion with item context (§5.1) and survey context (§5.3).
Survey context ρ shown here are from Undirected Re-
sponses (c≥ 100). In both cases, ρ measures the cor-
relation between trait scores with context and expected
behavior. The variables used to quantify expected be-
havior differ between experiments.

personality descriptions (Directed Responses) and
their actual psychometric assessment scores. Ta-
ble 6 shows a summary of the correlation statistics
for the two different data sets and different filters.
We note that there are only marginal differences
in correlations between the two datasets, inspite
of their different characteristics. While more spe-
cific testing is required to determine causal factors
that explain these observed correlation values, they
suggest the potential for using language models as
probes for personality traits in free text.

Figure 5 plots the correlations ρ (outliers re-
moved) for the individual personality traits, and
also includes correlation coefficients from §5.1.
While the correlations from both sections are mea-

Trait ρno−outlier ρc≥75 ρc≥100

Undirected Responses
BERT 0.40 0.39 0.41
GPT2 0.48 0.43 0.48

Directed Responses
BERT 0.44 0.42 0.39
GPT2 0.48 0.43 0.42

Table 6: ρ for Xsurvey vs Xsubject for data filtered by
removing outliers and enforcing word counts.

sured for different variables, they both represent a
general relationship between observed personality
traits of language models and the expected behav-
ior (from two different types of contexts). While
we note that there are positive correlations for all
ten scenarios, correlations from survey contexts are
smaller than those from item contexts. This is not
surprising since item contexts are specifically hand-
picked by domain experts to be relevant to specific
personality traits, while survey contexts are much
more open-ended. These promising results come
despite the data containing some low-effort free
responses, which might fail to adequately express
subject personalities.

5.4 Observed Ranges of Personality Traits

In the previous subsections, we investigated prim-
ing language models with different types of con-
texts to manipulate their personality traits. Figure
6 visually summarizes and compares the observed
ranges of personality trait scores for different con-
texts, grouped by context types. The four columns
for each trait represent the scores achieved by the
base model (no context), and the ranges of scores
achieved by the different types of contexts. The
minimum, median and maximum scores for each
context type are indicated by different shades on
each bar. We observe that the different contexts
lead to a remarkable range of scores for all five
personality traits. In particular, we note that for
two of the traits (conscientiousness and emotional
stability), the models actually achieve the full range
of human scores (nearly 0 to 100 percentile). Curi-
ously, for all five traits, different contexts are able
to achieve very low scores (< 10 percentile). How-
ever, the models particularly struggle with achiev-
ing high scores for agreeableness. For all traits, the
contexts lead to a substantial range of behaviors
compared with the base model scores.
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Figure 6: Chart showing observed ranges of person-
ality traits (in terms of human percentiles) exhibited
by BERT, when conditioned on different context types.
These include scores from the base model (Pbase) and
ranges of scores from the three context types: item
(Pcm), Reddit (Preddit) and survey (Psurvey). Bars for
context-based scores show the percentile of the mini-
mum, median, and maximum-scoring context, in as-
cending order. The lightest shade of each color indi-
cates the minimum, the darkest indicates the maximum
and the intermediate shade indicates the median.

6 Gender Differences in Personality

Previous research on personality traits has found
differences in the ranges of personality between
different populations of people. In particular, the
role of attributes such as age and gender have been
analyzed (Srivastava et al., 2003). Thus, we explore
whether personality traits of language models are
also influences to such attributes. For this experi-
ment, the ‘Big Five’ personality assessment from
§3 was modified to incorporate names in place of
the subject ‘I’. This required that verb tenses also
be modified in certain sentences. For instance, for
the name James, the item “I {blank} have excel-
lent ideas" was changed to “James {blank} has
excellent ideas". BERT & GPT2 were evaluated on
this modified assessment for each of the 20 most
common male and 20 most common female names
in the US over the last 100 years, according to
the US Social Security Administration, resulting
in 20 Xmale and 20 Xfemale scores. The mean
of these scores were calculated for each trait. The
human population percentiles (Pmale, Pfemale) cor-
responding to the mean scores are shown in Table
7. We note that mean female scores are higher
than mean male scores for agreeableness, consci-
entiousness, and emotional stability for both BERT
and GPT2. In fact, mean male scores are only
higher for GPT2’s extroversion and openness to ex-

Trait Pmale (%) Pfemale (%)
BERT

E 31 35
A 29 34
C 49 68
ES 47 56
OE 39 39

GPT2
E 50 42
A 16 19
C 59 64
ES 35 43
OE 33 28

Table 7: Human population percentile for mean Xmale

(Pmale) and mean Xfemale (Pfemale).

perience. While the sample sizes for these results
are too small to make significant inferences, they
agree with psychological research on higher levels
of agreeableness and conscientiousness in women
compared to men. On the other hand, literature
suggests that women show lower mean levels of
emotional stability (higher level of neuroticism),
which diverges from our model predictions. The
effect of gender biases in text that might influence
these findings remains to be explored.

7 Discussion

We have presented a simple and effective approach
for controlling the personality traits of language
models. Further, we show that if models could be
tuned to accurately reflect data in human-provided
context describing personality, they could be used
with language-based question answering to predict
personality traits of human users. This approach
could circumvent the need for personality assess-
ments in cases where quality participation is dif-
ficult to attain. Our exploration has some notable
limitations. The ‘Big Five’ personality traits are not
the only suggested personality taxonomy and are
subject to critiques regarding its scope, theoretical
status, validity, and the lack of a standardized mea-
suring procedure (Gurven et al., 2013; Feher and
Vernon, 2021). Future work can explore the use of
alternate personality taxonomies. Similarly, there
is a large and ever-growing variety of language
models apart from BERT and GPT2. It is unclear
to what extent our findings would generalize to
other language models, particularly those such as
GPT3 (Brown et al., 2020) and MT-NLG (Smith
et al., 2022) with a significantly larger number of
parameters. Finally, the role that pretraining data
plays on personality traits is an important question
for future exploration.
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Ethics and Broader Impact

The ‘Big Five’ assessment items and scoring pro-
cedure were drawn from free public resources and
open source implementations of BERT, GPT2 and
the logistic regression classifier were used (Hug-
gingFace, 2022; Scikit-Learn, 2022). Reddit data
was scraped from public threads and no usernames
or other identifiable markers were collated. The
crowd-sourced survey data was collected using
Amazon Mechanical Turk (AMT), with the permis-
sion of all participants. No personally identifiable
markers were stored and participants were compen-
sated fairly, with a payment rate ($2.00/task w/ est.
completion time of 15 min) significantly greater
than AMT averages (Hara et al., 2018). Partici-
pants were also informed that the data would be
used for academic purposes.

The overarching goal of this line of research is to
investigate aspects of personality in language mod-
els, which are increasingly being used in a number
of NLP applications. Since AI systems that use
these technologies are growing ever pervasive, and
as humans tend to anthropomorphize such systems
(such as Siri and Alexa), understanding and con-
trolling their personalities can have both broad and
deep consequences. This is especially true for ap-
plications in domains such as education and mental
health, where interactions with these systems can
have lasting personal impacts on their users.
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Appendix A Model Background

BERT, which stands for Bidirectional Encoder Rep-
resentations from Transformers, is a transformer-
based deep learning model for natural language
processing (Devlin et al., 2019). The model is
pre-trained on unlabeled data from the 800M word
BooksCorpus and 2500M word English Wikipedia
corpora. While BERT can be fine-tuned for autore-
gressive language modeling tasks, it is pretrained
for masked language modeling. This study uses
a BERT model from HuggingFaces’s Transformer
Python Library with a language model head for
masked language modeling. No fine-tuning was
done to the model. GPT2, which stands for Genera-
tive Pre-trained Transformer 2, is a general-purpose
learning transformer model developed by OpenAI
in 2018 (Radford et al., 2019). Like BERT, this
model is also pretrained on unlabeled data from the
800M word BooksCorpus. The study used Huggin-
face’s GPT2 model with a language model head for
autoregressive language modeling. As with BERT,
no fine-tuning took place.

Appendix B Experiment Design Items

Figure 7: Human distributions of ‘Big Five’ trait
scores.
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Item
I am {blank} the life of the party.
I {blank} feel little concern for others.
I am {blank} prepared.
I {blank} get stressed out easily.
I {blank} have a rich vocabulary.
I {blank} don’t talk a lot.
I am {blank} interested in people.
I {blank} leave my belongings around.
I am {blank} relaxed most of the time.
I {blank} have difficulty understanding abstract ideas.
I {blank} feel comfortable around people.
I {blank} insult people.
I {blank} pay attention to details.
I {blank} worry about things.
I {blank} have a vivid imagination.
I {blank} keep in the background.
I {blank} sympathize with others’ feelings.
I {blank} make a mess of things.
I {blank} seldom feel blue.
I am {blank} not interested in abstract ideas.
I {blank} start conversations.
I am {blank} not interested in other people’s problems.
I {blank} get chores done right away.
I am {blank} easily disturbed.
I {blank} have excellent ideas.
I {blank} have little to say.
I {blank} have a soft heart.
I {blank} forget to put things back in their proper place.
I {blank} get upset easily.
I {blank} do not have a good imagination.
I {blank} talk to a lot of different people at parties.
I am {blank} not really interested in others.
I {blank} like order.
I {blank} change my mood a lot.
I am {blank} quick to understand things.
I {blank} don’t like to draw attention to myself.
I {blank} take time out for others.
I {blank} shirk my duties.
I {blank} have frequent mood swings.
I {blank} use difficult words.
I {blank} don’t mind being the center of attention.
I {blank} feel others’ emotions.
I {blank} follow a schedule.
I {blank} get irritated easily.
I {blank} spend time reflecting on things.
I am {blank} quiet around strangers.
I {blank} make people feel at ease.
I am {blank} exacting in my work.
I {blank} feel blue.
I am {blank} full of ideas.

Table B.7: Adjusted ‘Big Five’ Personality Assessment Items.

Trait Median Mean (µ) SD (σ)
E 20 19.60 9.10
A 29 27.74 7.29
C 24 23.66 7.37
ES 19 19.33 8.59
OE 29 28.99 6.30

Table B.7: Human Population Distribution of ‘Big Five’ Personality Traits.
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Trait Base Value Positively Scored Item # Negatively Scored Item #
E 20 1, 11, 21, 31, 41 6, 16, 26, 36, 46
A 14 7, 17, 27, 37, 42, 47 2, 12, 22, 32
C 14 3, 13, 23, 33, 43, 48 8, 18, 28, 38
ES 38 9, 19 4, 14, 24, 29, 34, 39, 44, 49
OE 8 5, 15, 25, 35, 40, 45, 50 10, 20, 30

Table B.7: ‘Big Five’ Personality Item Scoring Procedure.

Appendix C Item Context Evaluation Tables

rcm Mean ∆cm Med ∆cm ∆cm SD Confidence Interval
BERT

-2 -3.36 -2.0 7.49 [-5.51, -1.21]
-1 -3.18 -3.50 4.81 [-4.56, -1.80]
0 -0.02 0.00 4.51 [-1.32, 1.28]
1 2.42 2.00 6.17 [0.648, 4.19]
2 3.96 3.00 8.33 [1.57, 6.35]

GPT2
-2 -7.34 -8.0 6.38 [-9.17, -5.51]
-1 -4.58 -4.0 4.32 [-5.82, -3.34]
0 -2.06 -1.0 4.24 [-3.28, -0.84]
1 0.0 0.0 3.13 [-0.90, 0.90]
2 1.56 1.0 5.78 [-0.10, 3.22]

Table C.7: Statistics from ∆cm vs rcm plots containing data from all traits. Statistics include mean, median,
standard deviation and a confidence interval for ∆cm at each rcm.

Appendix D Reddit Context Evaluation Tables

Reddit Context Sources
reddit.com/r/AskReddit/comments/k3dhnt/how_would_you_describe_your_personality/
reddit.com/r/AskReddit/comments/q4ga1j/redditors_what_is_your_personality/
reddit.com/r/AskReddit/comments/68jl8g/how_can_you_describe_your_personality/
reddit.com/r/AskReddit/comments/ayjgyz/whats_your_personality_like/
reddit.com/r/AskReddit/comments/9xjahw/how_would_you_describe_your_personality/
reddit.com/r/AskWomen/comments/c1gr4a/how_would_you_describe_your_personality/
reddit.com/r/AskWomen/comments/7x23zg/what_are_your_most_defining_personalitycharacter/
reddit.com/r/CasualConversation/comments/5xtckg/how_would_you_describe_your_personality/
reddit.com/r/AskReddit/comments/aewroe/how_would_you_describe_your_personality/
reddit.com/r/AskMen/comments/c0grgv/how_would_you_describe_your_personality/
reddit.com/r/AskReddit/comments/pzm3in/how_would_you_describe_your_personality/
reddit.com/r/AskReddit/comments/bem0ro/how_would_you_describe_your_personality/
reddit.com/r/AskReddit/comments/1w9yp0/what_is_your_best_personality_trait/
reddit.com/r/AskReddit/comments/a499ng/what_is_your_worst_personality_trait/
reddit.com/r/AskReddit/comments/6onwek/what_is_your_worst_personality_trait/
reddit.com/r/AskReddit/comments/2d7l2i/serious_reddit_what_is_your_worst_character_trait/
reddit.com/r/AskReddit/comments/449cu7/serious_how_would_you_describe_your_personality/

Table D.7: Domain names of threads that were scraped to collect Reddit context.

Trait Mean ∆reddit Med ∆reddit ∆reddit SD 5 Max ∆reddit 5 Min ∆reddit

BERT
E -2.28 -2 4.04 8, 7, 7, 6, 5 -14, -13, -13, -13, -13
A -2.02 -1 3.38 2, 2, 2, 2, 2 -19, -18, -15, -15, -15
C 3.77 4 5.17 15, 15, 15, 15, 13 -17, -17, -16, -14, -13
ES 1.71 2 2.29 14, 14, 13, 13, 12 -12, -10, -10, -10, -10
OE 1.74 1 2.17 9, 7, 7, 7, 7 -11, -11, -8, -8, -7

GPT2
E -3.73 -4 3.33 7, 5, 5, 4, 4 -14, -10, -10, -10, -10
A -0.98 -1 4.26 13, 10, 8, 7, 7 -17, -15, -15, -15, -14
C -0.27 0 4.27 11, 11, 11, 11, 9 -20, -16, -16, -16, -15
ES -3.83 -3 6.27 8, 8, 8, 8, 8 -21, -21, -21, -21, -21
OE -1.91 -2 3.21 4, 4, 4, 4, 4 -15, -12, -12, -12, -12

Table D.7: ∆reddit summary statistics. Statistics include mean, median and standard deviation, as well as 5 largest
and 5 smallest ∆reddit.
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BERT
Extroversion

• Notable Positively Weighted Phrases: ’friendly’, ’great’, ’good’, ’quite’, ’laugh’, ’please’, ’sense of’, ’thanks for’, ’really
good’, ’and friendly’, ’no problem’, ’to please’, ’my sense of’, ’finish everything start’, ’enthusiastic but sensitive’

• Notable Negatively Weighted Phrases: ’question’, ’stubborn’, ’why’, ’lack’, ’fuck’, ’fucking’, ’hate’, ’not’, ’lack of’, ’too
much’, ’don know’, ’don like’, ’too easily’, ’way too’, ’don like people’, ’you go out’, ’don know how’, ’don[’t] know
what’

Agreeableness

• Notable Positively Weighted Phrases: ’will’, ’friendly’, ’lol’, ’love’, ’loyal’, ’calm’, ’yup’, ’does’, ’honesty’, ’laid back’,
’go out’, ’thanks for’, ’really good’, ’out with me’, ’friendly polite and’, ’really good listener’, ’true to myself’, ’my sense
of’

• Notable Negatively Weighted Phrases: ’lack’, ’didn[’t]’, ’won[’t], ’lazy’, ’fucking’, ’self’, ’worst’, ’lack of’, ’too easily’,
’don like’, ’the worst’, ’being too’, ’have no’, ’don like people’, ’lack of motivation’, ’don know how’, ’my worst trait’,
’also my worst’, ’too honest sometimes’, ’doesn[’t] talk much’

Conscientiousness

• Notable Positively Weighted Phrases: ’am’, ’friendly’, ’just’, ’calm’, ’believe’, ’can be’, ’of people’, ’tend to’, ’feel like’,
’the most humble’, ’most humble person’, ’my sense of’, ’get to know’, ’friendly polite and’, ’get along with’, ’people like
me’

• Notable Negatively Weighted Phrases: ’lack’, ’no’, ’lazy’, ’inability’, ’fucks’, ’half’, ’lack of’, ’fuck off’, ’don like’,
’inability to’, ’don like people’, ’you go out’, ’lack of motivation’, ’don even know’, ’monotonous and impulsive’

Emotional Stability

• Notable Positively Weighted Phrases: ’will’, ’feel’, ’out with me’, ’go out with’, ’will you go’, ’the most humble’

• Notable Negatively Weighted Phrases: ’no’, ’off’, ’hypercritical’, ’overthinking’, ’lack of’, ’easily distracted’, ’doesn talk’,
’don even’, ’too easily distracted’, ’lack of motivation’, ’doesn talk much’, ’don even know’, ’unrelatable is strange’, ’is
strange one’, ’this said foreskin’

Openness to Experience

• Notable Positively Weighted Phrases: ’most’, ’like’, ’me to’, ’out with’, ’like me’, ’like to’, ’want to’, ’with me’, ’out with
me’, ’will you go’, ’want to be’, ’all the time’, ’for me to’, ’hang out with’

• Notable Negatively Weighted Phrases: ’lack’, ’never’, ’fucks’, ’sad’, ’nothing’, ’lack empathy’, ’the complainer’, ’no
confidence’, ’lack of’, ’easily distracted’, ’blame helicopter’, ’helicopter parents’, ’never say sorry’, ’blame helicopter
parents’, ’too easily distracted’, ’finish projects after’, ’never finish projects’, ’procrastination out of’, ’my lack of’, ’lack
of personality’, ’too many fucks’

Table D.7: Analysis of highest weighted phrases from BERT logistic regression.
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GPT2
Extroversion

• Notable Positively Weighted Phrases: ’believe’, ’loyal’, ’curious’, ’best’, ’passionate’, ’enjoy’, ’bright’, ’hard working’,
’no problem’, ’am nice’, ’my amazing modesty’, ’smooth bright epic’, ’patient and flexible’, ’great with children’, ’calm
cool collected’

• Notable Negatively Weighted Phrases: ’introverted’, ’lack of’, ’laid back’, ’don know how’

Agreeableness

• Notable Positively Weighted Phrases: ’friendly’, ’loyal’, ’honest’, ’gay’, ’humor’, ’like people’, ’thanks for’, ’to please’,
’and friendly’, ’no problem’, ’friendly polite and’, ’patient and flexible’, ’calm cool collected’, ’honesty being straightfor-
ward’

• Notable Negatively Weighted Phrases: ’too easily’, ’too much’, ’lack of’, ’you go out’, ’don know what’, ’self’, ’asshole’

Conscientiousness

• Notable Positively Weighted Phrases: ’smile’, ’thanks for’, ’no problem’, ’friendly polite and’, ’really good listener’, ’true
to myself’, ’patient and flexible’

• Notable Negatively Weighted Phrases: ’stop’, ’jealousy’, ’lazy’, ’hate’, ’lack’, ’fuck’, ’worst’, ’lack of’, ’too easily’, ’fuck
off’, ’too nice’, ’don know’, ’don know how’, ’lack of motivation’, ’don even know’, ’my worst trait’, ’damn it uncle’,
’depressed as shit’

Emotional Stability

• Notable Positively Weighted Phrases: ’friendly’, ’calm’, ’easy’, ’honesty’, ’laid back’, ’hard working’, ’calm and’, ’humble
am’, ’polite and’, ’no problem’, ’out with me’, ’the most humble’

• Notable Negatively Weighted Phrases: ’lack’, ’anxious’, ’lazy’, ’jealousy’, ’lack of’, ’don know’, ’too easily’, ’don like’,
’don like people’, ’don know how’, ’lack of motivation’, ’don even know’

Openness to Experience

• Notable Positively Weighted Phrases: ’understand’, ’having’, ’wanting’, ’thoughts’, ’thanks for’, ’too nice’, ’no problem’,
’can relate’, ’being too nice’, ’that just confidence’

• Notable Negatively Weighted Phrases: ’fuck’, ’myself’, ’cynical’, ’lack’, ’boring’, ’lack of’, ’don like people’

Table D.7: Analysis of highest weighted phrases from GPT2 logistic regression.

Appendix E Survey Context Evaluation Tables

Part 1 Instruction
There are two parts to this questionnaire. In the first part (on this page), you will be shown 50 questions,
and need to choose a response which best matches your personality. In the second part (on the next page),
you will be asked to write a short (75-150 word) description of your personality in free text. Participants
will only be compensated if they respond to all questions.

Part 2 Instruction
In between 75 and 150 words, please describe your personality [Directed responses: as it relates to the 5 personality traits
outlined above. Be sure not to use the name of the personality traits themselves in your response].

Table E.7: Data collection survey instructions.


