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Abstract

Detection of statistical dependence between
random variables is an essential component
in many machine learning algorithms. We
propose a novel independence criterion for
two random variables with linear-time com-
plexity. We establish that our indepen-
dence criterion is an upper bound of the
Hirschfeld-Gebelein-Rényi maximum corre-
lation coefficient between tested variables.
A finite set of basis functions is employed
to approximate the mapping functions that
can achieve the maximal correlation. Using
classic benchmark experiments based on in-
dependent component analysis, we demon-
strate that our independence criterion per-
forms comparably with the state-of-the-art
quadratic-time kernel dependence measures
like the Hilbert-Schmidt Independence Cri-
terion, while being more efficient in compu-
tation. The experimental results also show
that our independence criterion outperforms
another contemporary linear-time kernel de-
pendence measure, the Finite Set Indepen-
dence Criterion. The potential application of
our criterion in deep neural networks is vali-
dated experimentally.

1 Introduction

Measures of dependence between random variables
have been extensively studied in statistics and in sci-
ence. Statistical quantities such as non-Gaussianity,
cross-cumulants and mutual information have been
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used for dependence detection in Independent Com-
ponent Analysis (ICA) (Hyvarinen, 1999; Bell and
Sejnowski, 1995; Cardoso and Souloumiac, 1993).
Among them, mutual information is the most popu-
lar dependence measure. It measures the Kullback-
Leibler divergence between the joint probability dis-
tribution of two random variables and the product of
their marginal distributions.

Mutual information can be difficult to measure and op-
timize with a finite sample (Bach and Jordan, 2002).
Alternative measurements in a Reproducing Kernel
Hilbert Space (RKHS) have shown superior perfor-
mance in detecting statistical dependence (Bach and
Jordan, 2002; Gretton et al., 2005a,b). Bach and Jor-
dan (2002) developed a kernel method to search for
mapping functions in an RKHS that can achieve the
maximal correlation, also known as the Hirschfeld-
Gebelein-Rényi (HGR) maximum correlation coeffi-
cient (Hirschfeld, 1935; Gebelein, 1941; Rényi, 1959),
between observed signals. This Kernel ICA approach
is robust to near-Gaussianity and outliers. The Hilbert
Schmidt Independence Criterion (HSIC) proposed by
Gretton et al. (2005a) exhibits the best performance to
date. It searches for RKHS functions that can max-
imize the norm of the cross-covariance operator. It
is robust under challenging environments and alert to
small deviations from independence.

The advantage of HSIC comes at a price. Its quadratic
computational time slows down the calculation. Ad-
ditionally, for input signals with a large sample size,
it is infeasible to use HSIC to compute the statistical
independence (Jitkrittum et al., 2017). This disadvan-
tage cannot be overlooked in an era of big data. It is
also observed that the stability of HSIC is not guaran-
teed as it is sensitive to the initial conditions. In ICA
experiments, when the initial demixing matrix is not
properly guessed, HSIC can suffer from local optima
and perform poorly (Shen et al., 2009).

To address the high computational expense of HSIC,
the Finite Set Independence Criterion (FSIC) was de-
veloped (Jitkrittum et al., 2017). Instead of construct-
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ing a Gram matrix that requires a computation be-
tween every single pair of signal observations, FSIC
selects a finite set of test locations to be compared
with input signals. Empirically it has been shown that
a small set of test locations is sufficient to provide test
power (Jitkrittum et al., 2017). This makes FSIC a
linear-time algorithm. By focusing on the key regions
captured by test locations that signify differences be-
tween two input signals, the estimation of the covari-
ance matrix can be made more efficient and accurate.

In order to search for key regions and tune parame-
ters for kernels, FSIC splits the data into training and
test sets. Only the training set is exploited for the
parameter tuning to avoid overfitting. The test set
alone is used for independence measurement. This ap-
proach has two problems. Firstly, the training stage
prevents FSIC from being an online algorithm. Sec-
ondly, the data splitting can be problematic. For ex-
ample, if the data distribution is not stationary, it is
quite likely that the training set will not reflect the
true properties of the test set. These disadvantages
make it cumbersome to integrate FSIC effectively into
machine learning algorithms like ICA.

Comparing different dependence measures in a fair
manner is not a trivial task. Given a finite sample,
no test of independence is reliable (Gretton et al.,
2005b). The universal limit on dependence tests af-
firms that the lower Type I error a dependence test
has, the higher Type II error it can suffer from (Gret-
ton et al., 2005b). In practical applications, one good
benchmark to evaluate dependence measures is linear
instantaneous ICA (Gretton et al., 2005a). In lin-
ear ICA, the aim is to extract original independent
source signals when the only available information is
a set of linearly mixed signal mixtures (Makino et al.,
2007). Performing the signal separation in ICA algo-
rithms depends on good measurement of dependence.
The linear instantaneous mixing creates a signal mix-
ture that can be demixed up to a indeterminacy of
scale and permutation (Comon, 1994). Thus, eval-
uating the estimated demixing matrix from the ICA
algorithm against the ground truth mixing matrix can
indicate the optimization efficacy of the dependence
measure employed. The ICA benchmark experiments
put forward by Bach and Jordan (2002) have become
a standard practice for evaluating many dependence
measures (Hyvarinen, 1999; Cardoso and Souloumiac,
1993; Bell and Sejnowski, 1995; Learned-Miller and
John III, 2003; Chen and Bickel, 2005; Bach and Jor-
dan, 2002; Gretton et al., 2003; Shen et al., 2009;
Pham, 2004).

We propose a new dependence measure called the
Finite Basis Independence Criterion (FBIC). It is a
linear-time independence measure derived from the

fact that the mapping functions attaining the max-
imal correlation can be approximated in a subspace
built by finite basis functions. It follows the spirit of
the HGR maximum correlation coefficient. Our ex-
perimental results have shown that FBIC can perform
similarly to HSIC and FSIC on various data distribu-
tions. FBIC is a direct application of Property (F)
in Rényi (1959): the maximal correlation between two
random variables is invariant with respect to all one-
to-one Borel measurable transformations.

Recently, Móri and Székely (2019) suggested that
the strong one-to-one invariance assumption of depen-
dence measures should be replaced by similarity in-
variance and weak continuity. This relaxation of in-
variance is claimed to be instrumental for distribution
robustness (Móri and Székely, 2019). They have shown
that certain pathological random variables artificially
constructed may confuse the maximal correlation mea-
surement. However, detailed examination of pros and
cons between different invariance assumptions of de-
pendence measures has not been tested experimen-
tally, and is outside of the scope of this paper.

Our contributions include:

• We develop a new framework for an upper bound
of independence criterion on the basis of the HGR
maximum correlation coefficient.

• We establish the effectiveness of four sets of ba-
sis functions, including three sets of RBFs and
one set of polynomial functions, both theoretically
and experimentally.

• We demonstrate the superior performance of
FBIC on dependence detection in a comprehen-
sive ICA benchmark, which shows the validity of
applying FBIC in machine learning loss functions
through gradient descent.

The remainder of the paper is organized as follows.
Section II introduces an evolution from HSIC to FSIC.
Section III describes the details of the proposed FBIC
algorithm. Section IV explains the experiment design.
Section V provides the conclusion and outlines future
work.

2 From HSIC to FSIC

Due to their high performance, kernel-based indepen-
dence measurements like HSIC and FSIC have been
studied extensively in recent years (Bach and Jordan,
2002; Gretton et al., 2005a,b; Jitkrittum et al., 2017;
Shen et al., 2009). They satisfy the framework intro-
duced by Rényi (1959), stating that the maximal cor-
relation (or cross-covariance) results from sufficiently
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rich function classes is zero if and only if the ran-
dom variables tested are independent. These methods
are related to a test statistic comparing distributions
called Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012). By using the unit ball of an RKHS, the
MMD between distributions can be detected.

HSIC is a robust kernel-based independence measure-
ment as it utilizes the sum of the squared singular
values in the cross-covariance operator instead of only
the largest singular value like the Constrained Covari-
ance (COCO) approach (Gretton et al., 2005b). The
summed up quantity is called the squared Hilbert-
Schmidt norm, which is the RKHS counterpart of the
squared Frobenius norm.

Let F and G be two RKHSs with corresponding posi-
tive definite kernels k : X ×X → R and l : Y×Y → R,
respectively. For all x ∈ X and y ∈ Y, the Re-
producing Property gives us k(x, x′) = 〈φ(x), φ(x′)〉
and l(y, y′) = 〈ψ(y), ψ(y′)〉, where φ : X → F and
ψ : Y → G are feature maps. The mean embeddings
of the probability distributions of x and y in F and G
are defined as µx and µy:

〈µx, f〉F := Ex[〈φ(x), f〉F ] = Ex[f(x)],

〈µy, g〉G := Ey [〈ψ(y), g〉G ] = Ey [g(y)],
(1)

where f ∈ F and g ∈ G. Given a ∈ F and b ∈ G, the
tensor product operator a⊗ b : G → F is defined as

(a⊗ b)g := a〈b, g〉G for all g ∈ G. (2)

Note that this reduces to a ⊗ b = abT for finite-
dimensional vector spaces. It follows that the cross-
covariance operator Cxy : G → F is denoted as

Cxy := Ex,y[(φ(x)− µx)⊗ (ψ(y)− µy)]
= Ex,y [φ(x)⊗ ψ(y)]− µx ⊗ µy. (3)

Denoting Ex,y[φ(x)⊗ψ(y)] by C̃xy and the joint distri-
bution over X × Y as Pxy. Let C : G → F be a linear
operator. The Hilbert-Schmidt norm of C is defined
as:

‖C‖HS :=

√∑
i,j

〈Cvj , ui〉2H, (4)

where ui and vj are orthonormal bases of F and G
respectively.

A linear operator C : G → F is called a Hilbert-
Schmidt operator if its Hilbert-Schmidt norm exists.
The set of Hilbert-Schmidt operators is a separable
Hilbert space with inner product

〈C,D〉HS =
∑
i,j

〈Cvj , ui〉H〈Dvj , ui〉H. (5)

We can now define HSIC as the squared Hilbert-
Schmidt norm of the associated cross-covariance op-

erator Cxy:

HSIC(Pxy,F,G) :=
∥∥Cxy∥∥2HS

=
∥∥∥C̃xy − µx ⊗ µy∥∥∥2

HS

= 〈C̃xy, C̃xy〉HS + 〈µx ⊗ µy, µx ⊗ µy〉HS − 2〈C̃xy, µx ⊗ µy〉HS

= Ex,yEx′,y′ [k(x, x
′
)l(y, y

′
)] + ExEyEx′Ey′ [k(x, x

′
)l(y, y

′
)]

− 2Ex,yEx′Ey′ [k(x, x
′
)l(y, y

′
)]. (6)

Denote the marginal distributions over X and Y as
Px and Py respectively. Let T be the unit ball in an
RKHS associated with a kernel v : F × G → R. HSIC
associated with Cxy is equivalent to the squared MMD
between the joint distribution Pxy and the product of
its marginal distributions PxPy (Bueno Larraz, 2015):

MMD
2
(T , Pxy, PxPy) = HSIC(Pxy,F,G). (7)

FSIC is related to MMD in the sense that it also
measures a difference between mean embeddings in
RKHSs. However, the maximum distance aspect is
not required in FSIC. Define the empirical measure

ν := 1
J

∑J
i=1 δ(vi,wi) over J test locations VJ :=

{(vi, wi)}Ji=1 ⊂ X × Y, where δt denotes the Dirac
measure centered on t. Let µxy, µx and µy represent
mean embeddings of Pxy, Px and Py. Define random
variables X ∈ X and Y ∈ Y. Using the L2(X × Y, ν)
to measure the distance between µxy and µxµy, FSIC
is defined by:

FSIC
2
[X,Y ] :=

∥∥µxy − µxµy∥∥2L2(X×Y,ν) (8)

=

∫
X

∫
Y
(µxy(x, y)− µx(x)µy(y))2dν(x, y) (9)

=
1

J

J∑
i=1

u(vi, wi)
2
,where (10)

u(v, w) := µxy(v, w)− µx(v)µy(w) (11)

= Ex,y [k(x, v)l(y, w)]− Ex[k(x, v)]Ey [l(y, w)] (12)

= covxy [k(x, v), l(y, w)]. (13)

FSIC is a good measure for independence testing pur-
pose, but it is not easy to employ it in machine learning
algorithms like ICA due to the training data require-
ment for the test location optimization. To design a
linear-time independence criterion that can be easily
integrated into a machine learning algorithm, we pro-
pose FBIC that requires no training data.

3 FBIC

Define nondegenerate univariate random variables X
and Y whose observations x = (x1, ..., xm)T and y =
(y1, ..., ym)T can represent signals of interest. Without
loss of generality, we can scale observed signals x and
y such that they are within the closed domain interval
[0, 1]. Let L2[0, 1] be the square-integrable function
space such that for f(t) ∈ L2[0, 1]

∥∥f(t)∥∥
2
=
(∫ 1

0

|f(t)|2dt
)1/2

<∞, (14)
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where t is a real value defined on the closed domain
interval [0, 1]. Let C[0, 1] be the function space of
real-valued continuous functions defined on the closed
interval [0, 1]. We now define a function space T =
L2[0, 1]∩C[0, 1], which is an equivalence class of func-
tions that are both square-integrable and continuous
almost everywhere on the closed domain interval [0, 1].
A finite dimensional subspace V ⊆ T can be built upon
a set of basis functions B = {pi : [0, 1] → R}, where
i ∈ {1, 2, ..., N} and N is a finite positive integer.

It has been shown in (Bach and Jordan, 2002) that
the maximal correlation can be used to measure in-
dependence between tested variables. The maximal
correlation between x and y is:

ρmax[x, y] = sup
f1,f2∈T

(
ρ[f1(x), f2(y)]

)
= sup
f1,f2∈T

cov(f1(x), f2(y))

σ(f1(x))σ(f2(y))
,

(15)

where ρ[·, ·] denotes the Pearson Correlation, and σ(·)
denotes the standard deviation.

We use the function space T for possible mapping
functions employed in the maximal correlation. This
is because the Pearson Correlation requires the cho-
sen functions to be square-integrable. The continuous
property implies that the chosen functions are Borel-
measurable. Define f∗1 and f∗2 such that ρmax[x, y] =
ρ[f∗1 (x), f∗2 (y)]. We want to use the best approxima-
tions q1 and q2 of f∗1 and f∗2 in V that minimize the
difference between ρ[f∗1 (x), f∗2 (y)] and ρ[q1(x), q2(y)].
From the definition of V , we can write q1(x) =∑N
i=1 aipi(x) and q2(y) =

∑N
j=1 bjpj(y). As the stan-

dard deviation can be scaled by a multiplication fac-
tor and it will be divided for normalization in Pearson
Correlation in the end, we can assume that all map-
ping functions in T have unit standard deviation when
applied to test variables.

3.1 Definition of FBIC

We propose that the Finite Basis Independence Crite-
rion (FBIC) can imply independence by measuring the
pair-wise correlations between the basis function map-
pings from tested variables. This can be expressed
with a set of basis functions {pi} from B:

FBIC(B, X, Y ) =

N∑
i=1

N∑
j=1

∣∣∣∣∣ρij [x, y]
∣∣∣∣∣

=
N∑
i=1

N∑
j=1

∣∣∣∣∣E[(pi(x)− E[pi(x)])(pj(y)− E[pj(y)])]

∣∣∣∣∣.
(16)

Let Qx and Qy be the probability density functions
of x and y respectively. Let X := {x1, ..., xm} and
Y := {y1, ..., ym} be observations independently and
identically drawn from Qx and Qy. The empirical

FBIC is:

F̂BIC(B, X, Y ) =
N∑
i=1

N∑
j=1

∣∣∣∣∣ 1m
m∑
k=1

[(pi(xk)

−
1

m

m∑
s=1

pi(xs))(pj(yk)−
1

m

m∑
t=1

pj(yt))]

∣∣∣∣∣. (17)

3.2 Basis Functions in FBIC

The choice of basis function sets is crucial for the good
performance of the FBIC. Our first category of basis
functions are inspired by the RBF neural networks,
which have the universal approximation capacity (Wu
et al., 2012). A RBF K(·) is a radially symmetric
function such that ‖x‖p = ‖y‖p implies K(x) = K(y)
(Park and Sandberg, 1991). Here we use a general
norm notation‖·‖p to include more than the Euclidean
norm for the construction of RBFs.

A finite set of RBFs can approximate any function
in T arbitrarily well. This can be corroborated by the
Theorem 1 of (Park and Sandberg, 1991), which states
that for functions that are integrable, bounded, con-
tinuous almost everywhere and has non-zero integral, a
finite sum of these functions with coefficients is dense
in p-integrable function spaces for every p ∈ [1,∞).
RBFs we choose should satisfy these properties and
are, hence dense in T , a subset of the square-integrable
function space.

Three sets of RBFs are tested in this paper. They are
Gaussian RBFs, Laplacian RBFs and Inverse Multi-
quadratic RBFs. They are listed below:


Gaussian: K(x) = e−ε(x−c)

2

Laplacian: K(x) = e−ε|x−c|

Inverse Multiquadratic: K(x) = 1√
1+ε(x−c)2

.

(18)

We define ε ∈ (0,∞) as the shape parameter and
c ∈ [0, 1] as the displacement parameter for the RBFs
in Equation 18. The smaller the ε, the flatter the
shape of RBFs is (Mongillo, 2011). RBFs of the
same category share the same shape parameter. The
displacement parameters are equally distanced grid
points. For example, when there are 10 RBFs in a
set, c = {0, 0.1, 0.2, · · · , 0.9}.

Another category of basis functions is the Shifted Leg-
endre Polynomials. They are orthogonal polynomials
that can play the role of orthogonal basis functions.
This is a natural choice for a finite set of basis func-
tions as orthogonality is numerically effective for func-
tion approximation (Powell, 1981).

Let Pn(x) be a polynomial of degree n. Legendre Poly-
nomials satisfy the condition that

∫ 1

−1

Pm(x)Pn(x)dx = 0, if n 6= m. (19)



Longfei Yan, W. Bastiaan Kleijn, Thushara D. Abhayapala

P0(x) is generally set to 1 for standardization. Shifted

Legendre Polynomials are defined as P̃n(x) = Pn(2x−
1). They satisfy the condition that∫ 1

0

P̃m(x)P̃n(x)dx = 0, if n 6= m. (20)

Shifted Legendre Polynomials are preferred as they are
orthogonal on the interval [0, 1], which corresponds to
our function space T . For one set of Shifted Legendre
Polynomial basis functions, they are distinguished by
different polynomial degrees n.

The Weierstrass’s theorem states that a continuous
function on a closed interval can be approximated arbi-
trarily well by polynomials (Jackson, 1934). Therefore,
Shifted Legendre Polynomials can be regarded as the
orthogonal basis for the construction of any continuous
function on a closed interval (Kolmogorov and Fomin,
1961). Since any polynomial can be decomposed into
Shifted Legendre Polynomials and there exists some
good polynomial approximation for any function in T ,
this suggests that Shifted Legendre Polynomials can
approximate any function in T arbitrarily well given a
sufficient number of degrees.

3.3 Justifications for FBIC

Theorem 1. Given a sufficient set of basis functions,
FBIC gives an upper bound to the maximal correla-
tion between tested variables with an arbitrarily small
positive error bound ∆.

Proof. Define γij = âib̂j . Let âi and b̂j be scaled co-
efficients ai and bj from the definitions of q1 and q2.

âi and b̂j are within [−1, 1]. The coefficients can be
scaled as the Pearson Correlation is scale invariant.
From the definition of FBIC in Equation 16, we can
derive an inequality as follows:

FBIC[B, X, Y ] =

N∑
i=1

N∑
j=1

∣∣∣∣∣E[(pi(x)− E[pi(x)])(pj(y)− E[pj(y)])]

∣∣∣∣∣
=

N∑
i=1

N∑
j=1

∣∣∣∣∣E[pi(x)pj(y)]− E[pi(x)]E[pj(y)]

∣∣∣∣∣
≥

N∑
i=1

N∑
j=1

|γij |

∣∣∣∣∣E[pi(x)pj(y)]− E[pi(x)]E[pj(y)]

∣∣∣∣∣ (21)

≥

∣∣∣∣∣
N∑
i=1

N∑
j=1

γij(E[pi(x)pj(y)]− E[pi(x)]E[pj(y)])

∣∣∣∣∣ (22)

=

∣∣∣∣∣ρ[q1(x), q2(y)]
∣∣∣∣∣. (23)

Equation 21 is obtained by multiplying each term with
|γij |. Equation 23 follows from definitions of q1, q2 and
the Pearson Correlation. By the universal approxima-
tion property of RBFs and polynomials, given a suffi-
cient set of basis functions, we have ||ρ[q1(x), q2(y)]| −
ρ[f∗1 (x), f∗2 (y)]| = ∆, where ∆ is arbitrarily close to
zero. This shows FBIC[B, X, Y ] + ∆ ≥ ρmax[x, y].

Theorem 2. Given a sufficient set of basis functions,
FBIC between tested variables is arbitrarily close to
zero if and only if X |= Y .

Proof. The sufficient condition of this theorem is triv-
ial as independent variables always have 0 correlation
no matter what basis functions are used for mapping.
The positive error bound ∆ reaches zero for indepen-
dent variables. The necessary condition can be proved
by using the upper bound property in Theorem 1.
Since the maximal correlation is non-negative, it is ar-
bitrarily close to zero if its upper bound is arbitrarily
close to 0.

Additionally, we can use properties of the Laplace
transform to prove the validity of FBIC with Gaus-
sian RBFs. Define a Borel probability measure µ :
X × Y → R+, where

∫∫
µ(x, y)dxdy = 1. We use

K(x) = e−ε(x−c)
2

for the Gaussian RBFs. Define

Ks(x) = e−ε(x−s)
2

= e−ε(x
2−2xs+s2) and Kt(y) =

e−ε(y−t)
2

= e−ε(y
2−2yt+t2), where s and t are displace-

ment parameters and s, t ∈ [0, 1]. Now we can es-
tablish a theorem that FBIC with Gaussian RBFs will
equate the Borel probability measure of the joint prob-
ability distribution of x and y to the product of the
marginal probability distributions of x and y if and
only if x and y and independent.

Theorem 3. ∀s, t
∫∫

Ks(x)Kt(y)µ(x, y)dxdy =∫∫
Ks(x)µ(x, y)dxdy

∫∫
Kt(y)µ(x, y)dxdy, if and only

if µ(x, y) =
∫
µ(x, s)ds

∫
µ(y, t)dt.

Proof. Let η(x, y) = µ(x, y) −
∫
µ(x, s)ds

∫
µ(y, t)dt.

We need to show ∀s, t
∫∫

Ks(x)Kt(y)η(x, y)dxdy =
0 ⇐⇒ x |= y. The necessary condition is triv-
ial to prove as independent variables have the prop-
erty that µ(x, y) =

∫
µ(x, s)ds

∫
µ(y, t)dt. The

sufficient condition is proved as follows. As-
sume ∀s, t

∫∫
Ks(x)Kt(y)η(x, y)dxdy = 0. We

have ∀s, t
∫∫

eε(2xs+2yt))e−ε(x
2+y2)η(x, y)dxdy = 0.

Let η1(x, y) = e−ε(x
2+y2)η(x, y). This gives us

∀s, t
∫∫

eε(2xs+2yt)η1(x, y)dxdy = 0. We can ob-
serve that this is exactly the Laplace transform
of η1(x, y) so that it satisfies the condition that
∀s, t [L(η1)](−2εs,−2εt) = 0 ⇐⇒ η1(x, y) = 0.

Complexity: The computational complexity of FBIC
is linear with respect to the number of data points.
The computation of the Pearson Correlation is O(n),
where n is the sample size. The dimensionality of
tested variables is 2. Let the number of basis functions
be k. We can express the computational complexity
of FBIC as:

O(FBIC) = O(k
2
n) ≈ O(n). (24)
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3.4 FBIC vs FSIC

FBIC and FSIC differ in some significant aspects:

• FBIC is inspired by the HGR maximum correla-
tion coefficient, whereas FSIC takes advantage of
constrained covariance on the basis of MMD.

• FBIC can use many different RBFs and even
orthogonal polynomials, whereas FSIC depends
on characteristic kernels (Sriperumbudur et al.,
2010) like Gaussian kernels.

• FBIC has evenly spaced RBFs, whereas FSIC em-
ploys randomly spaced kernels.

Yet FBIC and FSIC are related when we examine their
mathematical foundations. The HGR maximum cor-
relation coefficient and the MMD criterion have pos-
sibly different function classes, optimize for different
directions (one for maximal similarity, the other for
maximal difference) and measure different statistical
quantities. Nonetheless, the functions utilized in the
MMD criterion are Borel-measurable with constrained
variance in the Reproducing Kernel Hilbert Spaces.
This implies that the class of functions for the MMD
criterion is a subset of Borel-measurable functions that
can be used for the HGR maximum correlation coeffi-
cient. Different optimization directions are more like a
difference of optimization flavours leading to the same
result: yielding zero if and only if the tested variables
are independent. Both criteria measure covariance,
though one is normalized (i.e., correlation) and the
other is not normalized in the RKHSs.

Neither the HGR maximum correlation coefficient nor
the MMD criterion is superior to the other in theory.
Different independence criteria are preferable under
different circumstances. In circumstances where train-
ing before using is not feasible, FBIC is preferable to
FSIC. We will show how FBIC compares with FSIC in
Section 4.

4 Experimental Studies

We use the classic ICA benchmark experiments put
forward by (Bach and Jordan, 2002). The perfect
demixing matrix V is known in advance and the op-
timized demixing matrix W can be evaluated by the
Amari distance (Amari et al., 1996):

d(V,W ) =
1

2m(m− 1)

m∑
i=1

(∑m
j=1 |aij |

maxj |aij |
− 1

)

+
1

2m(m− 1)

m∑
j=1

(∑m
i=1 |aij |

maxi|aij |
− 1

)
, (25)

where aij = (V −1W )ij . This distance is ranged be-
tween 0 and 1. It is invariant to permutation and scal-
ing. When V = W , the Amari distance between them

is zero. In our experiments, the smaller the distance,
the better the result.

We submitted our experiments to a grid computing
computer cluster controlled by the Sun Grid Engine
to run them in parallel. The CPU model was Intel(R)
Core(TM) i7-8700 with 3.20GHz. There were 6 cores
on each computer.

4.1 Simulated Data

To test the applicability of FBIC in different scenar-
ios, source signals generated from a comprehensive set
of probability density functions were used for ICA ex-
periments. Both supergaussian and subgaussian distri-
butions were covered. Mode and symmetry variation
were also considered. All probability density functions
had zero mean and unit variance. The details of each
probability density function are demonstrated in Table
1 of Appendix.

In our experiment, two probability density functions
were randomly chosen from the set. Signal samples
S ∈ RJ×M were generated according to their prob-
ability density functions independently, where J is
the number of sources and M is the sample length.
They were then mixed by a random mixing matrix
A ∈ RJ×J with a bounded condition number between
1 and 2, which gave the observed signals X = AS.
The goal of the ICA experiment is to estimate the
demixing matrix W while only knowing that the orig-
inal unmixed signals are statistically independent and
they are linearly mixed.

As the source signals were generated randomly from
random distributions, it was a difficult task to perform
ICA algorithms on these signals. Unlike experiments
on speech or image processing, we cannot take advan-
tage of extra pattern information to separate the mix-
ture of random signals. The successful performance of
ICA algorithms in this dataset relied heavily on the
performance measure used, which made this bench-
mark dataset desirable for evaluating different depen-
dence measures.

Since the aim of our ICA experiments is to compare
different independence criteria, it is unnecessary to
test the robustness of different ICA algorithms when
outliers are present in the observed mixture. In scenar-
ios where noisy outliers occur, it is more appropriate to
apply outlier removal process before applying indepen-
dence criterion. We evaluate different independence
criteria through their performance on dependence de-
tection only.
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4.2 Preprocessing

We firstly prewhitened the observed signals to re-
duce the search space of the optimization process.
Prewhitening is a popular BSS technique that elim-
inates the linear dependency between tested signals.
It transformed the observed signals X to have unit co-
variance matrix. By multiplying a whitening matrix
Z, we got the transformed signals X̃ = ZX such that
X̃X̃T = I. The whitening matrix Z can be obtained by
first performing a singular value decomposition to the
mixing matrix and get A = UDQT (Golub and Rein-
sch, 1971). U and Q are orthonormal matrices and D
is a diagonal matrix containing singular values. The
whitening matrix can be thus defined as Z = D−1UT .

To make a fair comparison with the HSIC-based ICA
experiments, we used the Jade algorithm (Cardoso
and Souloumiac, 1993) to initialize the first guess of
the demixing matrix. This was also the initialization
set up in the HSIC-based ICA algorithm (Shen et al.,
2009).

4.3 Neural Network settings

A simple neural network was utilized to optimize the
demixing matrix. It consisted of two layers only: one
input layer and one output layer. In practice, each
neuron in the input layer was activated by a standard
sigmoid function S(x) = 1

1+exp(−x) , where x is the

input signal for the neuron. The output layer had the
identity activation function.

The number of neurons in the input layer and out-
put layer was equal to the number of original sources.
The input signals were observed mixed signals. The
output signals were supposed to be demixed signals
without considering the scale or order. The weight
matrix connecting the two layers thus played the role
of the demixing matrix.

The cost function was L = F + O, which was the
sum of FBIC measurement between output signals
and the orthogonality regularizer of the demixing ma-
trix. The orthogonality regularizer was calculated
by O = sum(|ATA|) − trace(ATA), where sum(·)
returned the total of all the entries in the matrix
given. The role of O was to ensure the demixing ma-
trix would not introduce any linear dependency after
prewhitening. An additional Pearson Correlation be-
tween tested variables x and y after sigmoid activation,
ρ[S(x),S(y)], was added to the cost function to aid the
optimization.

The Adam optimizer was used to perform the gradi-
ent descent. The learning rate was set to 0.0001. The
maximum epoch was 100000. If the loss did not de-
crease after 1000 epochs, the training of the neural

network would have an early stopping.

4.4 Parameter Choices for RBFs

The parameters of FBIC RBFs were selected by grid
search. They were fixed regardless of the number of
channels or the length of samples. For Gaussian RBFs,
we used shape parameter 200 and the step parame-
ter was increased by 0.1 stepwise from 0 to 0.9. For
Laplace RBFs, we used shape parameter 20 and the
step parameter was increased by 0.05 stepwise from
0 to 0.95. For Inverse Multiquadratic RBFs, we used
shape parameter 900 and the step parameter was in-
creased by 0.1 stepwise from 0 to 0.9.

The Shifted Legendre Polynomials did not require
shape or step parameters. We used polynomial de-
grees from 2 to 20. Degree 0 and 1 were not chosen
because they were either constant or identity mapping,
which would not contribute much to reveal the nonlin-
ear correlation between tested variables.

In FBIC, The number of basis functions does not al-
ways scale positively with the quality of approxima-
tion. Jitkrittum et al. (2017) observed a similar phe-
nomenon in FSIC as well. When there are not enough
basis functions, increasing the number of basis func-
tions will naturally improve the quality of approxima-
tion. However, too many redundant basis functions do
not contribute to a better quality of approximation.
It makes the upper bound of the maximal correlation
coefficient from FBIC unnecessarily high. The experi-
mental details are provided in Appendix.

4.5 Multi-Channel Extension of FBIC

By the definition of the maximal correlation, it is nat-
ural to apply FBIC to two random variables. For
dependence detection amongst multiple random vari-
ables, a simple extension of FBIC is to calculate all
the pairwise FBIC scores between variables and sum
them up. Although limiting FBIC to pairwise correla-
tion is suboptimal as multivariate dependence may not
be detected, we still found favorable results for multi-
channel ICA experiments as will be shown in Table
1.

4.6 Results and Discussions

As HSIC exhibited superior performance over other
dependence measures in the classic ICA benchmark
dataset (Gretton et al., 2005a; Shen et al., 2009), we
compared the performance of FBIC mainly with Fast-
KICA (Shen et al., 2009), a fast HSIC-based Kernel
ICA based on the incomplete Cholesky decomposition.
Its kernel width was set to 0.5 as suggested by the orig-
inal authors. Its maximum iteration number was set
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Table 1: The Amari distance of demixed signals from n sources based on different independence measures. The
sample length is m. Rep. represents the number of experiment replications. The Gaussian RBFs in FBIC are
denoted g. The Laplace RBFs in FBIC are denoted l. The Inverse Multiquadratic RBFs are denoted imq. The
Shifted Legendre Polynomials are denoted lp.

n m Rep. FBICg FBICl FBICimq FBIClp FKICA NFSIC FICA Jade

2 250 1000 5.8 5.7 6.4 6.6 6.3 6.5 12.3 9.1
2 1000 1000 2.4 2.1 2.7 2.5 2.8 2.5 6.2 4.3
4 1000 100 3.4 3.1 3.7 3.8 3.3 3.5 6.7 5.1
4 4000 100 1.7 1.5 1.8 1.8 1.5 4.6 3.2 2.7

to 20 and the convergence threshold was set to 1e-
6. Results from FastICA (Hyvarinen, 1999) and Jade
(Cardoso and Souloumiac, 1993) algorithms were also
included. In Table 1, we use FKICA to denote Fast-
KICA and FICA to denote FastICA. To compare FBIC
and FSIC directly, we implemented a novel ICA algo-
rithm based on Normalized FSIC, which is denoted
NFSIC in the table. The implementation details are
provided in Appendix.

From Table 1 we can observe that FBIC with Lapla-
cian RBFs performed the best in all the experiments.
This is consistent with the finding that the Lapla-
cian kernel in HSIC performed better than the Gaus-
sian kernel (Gretton et al., 2005a). FBIC with other
basis functions was also better than FKICA in two-
channel experiments. For four-channel experiments,
the performance of FBIC with Laplace RBFs was no
worse than FKICA, while the performance of FBIC
with other basis functions were acceptable. FBIC
with Inverse Multiquadratic RBFs and Shifted Legen-
dre Polynomials performed less well than Laplace and
Gaussian RBFs. In all experiments, the performance
of both FBIC-based and HSIC-based algorithms sur-
pass those of FICA and Jade by a large margin. The
FSIC-based algorithm performed well in all but the
four-channel experiments with long sequences. This
can be explained by the absence of optimization of
test locations. The deviation between random and op-
timal test locations becomes larger when the signals
are longer.

A smaller step parameter increment was beneficial for
FBIC with Laplacian RBFs, but FBIC with other
RBFs did not benefit. One explanation is that the
shape parameter we selected for other RBFs may not
be well suited for more fine-grained approximation.
Another possibility is that the sharp peak of Laplace
RBFs makes them more suited for smaller step size.
More experiments may shed light on the relationship
between the targeted distributions and the best FBIC
parameter settings.

We also discovered that all the shape parameters se-
lected for the three sets of RBFs were relatively large.

This indicates that sharper RBFs are more suitable for
approximating best mapping functions f∗1 (·) and f∗2 (·)
of the HGR maximum correlation coefficient. The jus-
tification is that f∗1 (·) and f∗2 (·) tend to be functions
that magnify areas where two probability density func-
tions of the tested variables differ the most. The mag-
nification can be accomplished by assigning a sharp
peak to the mapping function around the area to be
magnified. The sharper RBFs therefore are better can-
didates for f∗1 (·) and f∗2 (·) approximation.

Parameter selection has always been a challenge for
using RBFs or kernels. In HSIC, scale parameters for
kernels have to be decided. In FSIC, scale parameters
as well as test locations require careful tuning. Re-
garding FBIC, it is also vital to select the right shape
parameters for RBFs. Since the experiments we con-
ducted included 18 different distributions that could
represent a wide variety of real-life distributions, we
recommend using the shape parameters we found as
a starting point for more customized parameter tun-
ing. On the other hand, FBIC with Shifted Legendre
Polynomials could perform well without tuning param-
eters. Therefore, it can be used as a FBIC baseline.
The FBIC algorithms using RBFs should perform at
least as well as the FBIC baseline.

5 Conclusions

We have proposed the Finite Basis Independence Cri-
terion, a linear-time independence measurement that
can be optimized through gradient descent. By ap-
proximating the best mapping function with a fi-
nite set of basis functions, FBIC establishes an up-
per bound to the Hirschfeld-Gebelein-Rényi maximum
correlation coefficient. The ICA algorithm based on
FBIC outperforms the analogous ICA algorithm based
on the state-of-the-art kernel independence measure-
ments HSIC and FSIC in two-channel experiments.
For four-channel experiments, FBIC-based ICA can
still perform competitively against FKICA when the
Laplace RBFs are utilized, though only pairwise cor-
relations are calculated.
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