
Towards the Theory of Unsupervised Federated Learning: Non-asymptotic
Analysis of Federated EM Algorithms

Ye Tian 1 Haolei Weng 2 Yang Feng 3

Abstract

While supervised federated learning approaches
have enjoyed significant success, the domain
of unsupervised federated learning remains rel-
atively underexplored. Several federated EM
algorithms have gained popularity in practice,
however, their theoretical foundations are often
lacking. In this paper, we first introduce a fed-
erated gradient EM algorithm (FedGrEM) de-
signed for the unsupervised learning of mixture
models, which supplements the existing feder-
ated EM algorithms by considering task hetero-
geneity and potential adversarial attacks. We
present a comprehensive finite-sample theory
that holds for general mixture models, then apply
this general theory on specific statistical mod-
els to characterize the explicit estimation error
of model parameters and mixture proportions.
Our theory elucidates when and how FedGrEM
outperforms local single-task learning with in-
sights extending to existing federated EM algo-
rithms. This bridges the gap between their prac-
tical success and theoretical understanding. Our
numerical results validate our theory, and demon-
strate FedGrEM’s superiority over existing unsu-
pervised federated learning benchmarks.

1. Introduction
Federated learning (FDL) is a machine learning paradigm
that allows the training of statistical models by leveraging
data from various local tasks, while ensuring the data re-
mains decentralized to protect privacy (Li et al., 2020a).
Introduced a few years ago, notably by Google (Konečnỳ
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et al., 2016; McMahan et al., 2017), FDL has witnessed
remarkable success in a diverse range of applications, in-
cluding smartphones (Hard et al., 2018), healthcare (An-
tunes et al., 2022), and the internet of things (Nguyen et al.,
2021). However, it is important to note that a large por-
tion of current FDL research is centered around supervised
learning problems. In this paper, we delve into the realm of
unsupervised FDL, a scenario in which each task involves
a mixture of distributions.

Before proceeding further, we summarize the mathemati-
cal notations used in this paper here. P and E denote the
probability and expectation, respectively. For two positive
sequences {an} and {bn}, an ≪ bn or an = O(bn) means
an/bn → 0, an ≲ bn or an = O(bn) means an/bn ≤
C < ∞, and an ≍ bn means an/bn, bn/an ≤ C < ∞.
󰁨O(bn) is the same as an = O(bn) up to logarithmic fac-
tors. For a random variable xn and a positive sequence an,
xn = OP(an) means that for any 󰂃 > 0, there exists M > 0

such that supn P(|xn/an| > M) ≤ 󰂃. 󰁨OP(an) has a sim-
ilar meaning up to logarithmic factors in an. For a vector
x ∈ Rd, 󰀂x󰀂2 represents its Euclidean norm. For two num-
bers a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}.
For any positive integer K, 1 : K and [K] stand for the
set {1, 2, . . . ,K}. And for any set S, |S| denotes its car-
dinality and Sc denotes its complement. “w.p.” stands for
“with probability”. The absolute constants c and C may
vary from line to line.

2. Federated Learning on Mixture of
Distributions

2.1. Problem Setting

Consider K tasks, where for the k-th task, we observe data
{x(k)

i }ni=1 ⊆ Rd 1. There exists an unknown subset S ⊆
[K], such that each observation in task k ∈ S comes from
a mixture model with R components (R ≥ 2):

x
(k)
i

i.i.d.∼
R󰁛

r=1

w(k)∗
r · p(k)r ( · ;θ(k)∗

r ), (1)

1For simplicity, we assume all tasks share the same sample
size n. We can easily extend our analysis to the case of heteroge-
neous task sample sizes with similar theoretical results.
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where the mixture proportion {w(k)∗
r }Rr=1 ⊆ (0, 1) with󰁓R

r=1 w
(k)∗
r = 1 and p

(k)
r ( · ;θ(k)∗

r ) is a Radon-Nikodym
density w.r.t. a base measure σ. θ

(k)∗
r ∈ Rd 2 are the pa-

rameters that index the distribution p
(k)
r . This is equivalent

to

z
(k)
i

i.i.d.∼
R󰁛

r=1

w(k)∗
r ·δr, x

(k)
i |z(k)i = r

i.i.d.∼ p(k)r ( · ;θ(k)∗
r ),

(2)
for k ∈ S, where z

(k)
i is the unobserved latent cluster label

and δr is the point mass at r. Here S is the index of sim-
ilar tasks (unknown), where the parameters {θ(k)∗

r }k∈S of
different tasks are “similar” to each other, in the sense that

min
θ∈Rd

max
k∈S

󰀂θ(k)∗
r − θ󰀂2 ≤ h, ∀r ∈ [R],

where h is an unknown parameter controlling the task sim-
ilarity level. A small h implies that the tasks are more sim-
ilar. The data from tasks in set Sc = [K]\S can be ar-
bitrarily distributed, i.e., {x(k)

i }i∈[n],k∈Sc follow an arbi-
trary joint distribution QSc , and we denote the proportion
󰂃 := |Sc|/K ∈ [0, 1). Note that h, K, R and d can change
with single-task sample size n.

There are two different interpretations of this setting.
The first one is from the perspective of adversarial at-
tacks/contaminations, where there is an adversarial at-
tacker who can arbitrarily contaminate the data of tasks
in an index set Sc. The index set Sc and the distribution
QSc are picked by the attacker after we pick the estima-
tor (hence Sc and QSc are unknown to us). A similar set-
ting can be found in Qiao (2018), Konstantinov & Lampert
(2019), Konstantinov et al. (2020), and Tian et al. (2023).

Alternatively, aside from adversarial attacks, we can in-
terpret the presence of contaminated data sets as a result
of outlier tasks. In the era of big data, certain collected
data sets may exhibit distributions significantly different
from others, particularly when dealing with numerous tasks
(Zhang & Yang, 2021). These data sets within Sc can be
viewed as outlier tasks. In practice, detecting outlier tasks
is challenging.

In the rest of this paper, we may take the views of “adver-
sarial attacks” and “outlier tasks” interchangeably.

Note that in our unsupervised learning setting, similar to
Marfoq et al. (2021) and Wu et al. (2023), we avoid as-
suming that the mixture proportions {w(k)∗

r }k∈S are simi-
lar across tasks, which offers more flexibility in practice.

The goal is to develop an algorithm to estimate the
mixture proportions {w(k)∗

r }k∈S,r∈[R] and the parameters

2For simplicity, we assume parameters and observations are of
the same dimension, but our results can be generalized to the case
where the two dimensions are different.

{θ(k)∗
r }k∈S,r∈[R] simultaneously, which satisfies the fol-

lowing five desired properties:

(i) Adaptability to unknown similarity level h: The al-
gorithm should utilize the data from different sources
in an “optimal” way. When h is small, the output es-
timator should achieve a better convergence rate than
the local estimator (or single-task estimator of each
task). When h is large, the output estimator should
perform no worse than the local estimator.

(ii) Robustness against the adversarial attack on a small
fraction of sources: The output estimator should
maintain a good performance when the contaminated
proportion 󰂃 is small.

(iii) Privacy for local data: The algorithm should avoid
transferring raw data out of each task.

(iv) Computation efficiency on local servers: The local
computational cost should be low.

(v) Communication efficiency between local and global
servers: The communicational cost should be low.

2.2. Related Works

Federated learning (FDL): While there exists an exten-
sive body of literature on FDL, the majority of it centers
around the supervised learning paradigm. Notable frame-
works within supervised FDL include COCOA (Jaggi et al.,
2014), MOCHA (Smith et al., 2017), and FedAvg (McMa-
han et al., 2017). To accommodate varying task character-
istics, FedProx was introduced by Li et al. (2020b). See
Yang et al. (2019) and Li et al. (2020a) for a comprehen-
sive overview of supervised FDL. In contrast to supervised
FDL, much less attention has been given to unsupervised
FDL with mixture models. Marfoq et al. (2021) exam-
ined a similar FDL problem presented in this paper and
introduced a federated EM algorithm without exploring the
estimation error of the parameter estimators. Dieuleveut
et al. (2021) also proposed a federated EM algorithm that
supports communication compression and partial participa-
tion. Wu et al. (2023) adapted the EM algorithm to the sce-
nario where predictors are from Gaussian Mixture Models
(GMMs) and the regression models can encompass gen-
eral mixture models. Notably, none of these papers pro-
vided finite-sample results for their EM algorithm (which
is the key to interpreting their practical successes) nor dis-
cussed the adversarial attacks and outlier tasks. Our work
complements this line of research by explicitly accommo-
dating outlier tasks, providing comprehensive finite-sample
results, and applying the developed theory to illustrative
model examples. Our theory illustrates when and how
the aforementioned federated EM algorithms (Dieuleveut
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et al., 2021; Marfoq et al., 2021; Wu et al., 2023) outper-
form local single-task learning. Note that there exist works
on clustered FDL, wherein tasks are organized into several
groups with tasks within each group being identical (task-
level mixture) (Ghosh et al., 2020; Kong et al., 2020; Su
et al., 2022). This setting differs from ours, where each
task’s data originates from a mixture model at the sample
level.

Multi-task learning (MTL) and transfer learning (TL):
Problems related to federated learning but permitting raw
data sharing across tasks include multi-task learning and
transfer learning. Analogous to federated learning, a sub-
stantial proportion of research in MTL and TL centers
on supervised learning. In unsupervised MTL and TL,
there have been diverse approaches, including the kernel
k-means clustering (Gu et al., 2011), the spectral method
(Yang et al., 2014), and the penalized optimization (Dai
et al., 2008; Zhang & Zhang, 2011; Zhang et al., 2015;
2018). Specific mixture models such as Gaussian Mix-
ture Models (GMMs) have also been explored (Wang et al.,
2021; Tian et al., 2022). Discussions on outlier tasks, ad-
versarial attacks, and negative transfer in MTL and TL
have emerged in various model settings, for example,
Qiao (2018); Konstantinov & Lampert (2019); Hanneke &
Kpotufe (2020); Konstantinov et al. (2020); Li et al. (2021);
Duan & Wang (2022); Tian et al. (2023).

EM algorithm: The EM algorithm was formalized by
Dempster et al. (1977), and there have been intensive stud-
ies on the local convergence of the likelihood and the es-
timator to some stationary point (Wu, 1983; Redner &
Walker, 1984; Meng & Rubin, 1994; McLachlan & Kr-
ishnan, 2007). More recently, Xu et al. (2016) established
the global convergence of EM algorithm on binary GMMs.
Additionally, Balakrishnan et al. (2017), Yan et al. (2017),
Cai et al. (2019), Kwon & Caramanis (2020a), Kwon &
Caramanis (2020b), and Zhao et al. (2020) provided finite-
sample convergence results for EM and its variants under
certain initialization conditions.

2.3. A Federated Gradient EM: FedGrEM

Before delving into our main algorithm, we first introduce
some key notations and definitions. The posterior, i.e. the
probability of z(k) = r conditioned on the observation
x(k), given that (x(k), z(k)) is from the mixture model (2)
with parameters w(k) = {w(k)

r }Rr=1 and θ(k) = {θ(k)
r }Rr=1,

is defined as

P(z(k) = r|x(k);w(k),θ(k))

=
w

(k)
r × p

(k)
r (x(k);θ

(k)
r )

󰁓R
r=1 w

(k)
r × p

(k)
r (x(k);θ

(k)
r )

.

Based on this posterior, we define

Q(k)(θ|w′,θ′) = E

󰀥
R󰁛

r=1

P(z(k) = r|x(k);w′,θ′)

× log p(k)r (x(k);θr)

󰀦
,

where θ = {θr}Rr=1, w′ = {w′
r}Rr=1, and θ′ = {θ′

r}Rr=1.
By Jensen’s inequality, it can be shown that Q(k)(θ|w′,θ′)
is a lower bound of the complete population-level log-
likelihood E log

󰀅󰁓R
r=1 wrp

(k)
r (x(k);θr)

󰀆
. The latter one

is difficult to manage as the summation is within the loga-
rithm. The EM algorithm endeavors to maximize the sur-
rogate Q(k)(θ|w′,θ′) by iteratively alternating with the E-
step and M-step. Gradient EM does a one-step gradient as-
cent in M-step instead of finding the exact optimizer, which
can speed up the computation. In practice, we work on a
sample-based variant of Q(k)(θ|w′,θ′) as

󰁥Q(k)
󰀃
θ|w′,θ′󰀄

=
1

n

n󰁛

i=1

R󰁛

r=1

P(z(k) = r|x(k)
i ;w′,θ′)× log p(k)r (x

(k)
i ;θr).

Now, we are ready to introduce our core algorithm Fed-
GrEM in Algorithm 1. It executes the E-step and M-step
locally on each task, pooling the estimators of {θ(k)∗

r }Kk=1

obtained in M-step by penalizing the ℓ2-distance between
each estimator and a common center. This approach mir-
rors the penalization strategy used in other MTL and TL
literature, such as Evgeniou & Pontil (2004); Li & Bilmes
(2007); Lounici et al. (2011); Solnon et al. (2012); Jalali
et al. (2013); Kuzborskij & Orabona (2013; 2017); Denevi
et al. (2018); T Dinh et al. (2020); Li et al. (2021); Tian &
Feng (2023); He et al. (2024); Lin & Reimherr (2024a;b).
After several iterations of local and central updates, Fed-
GrEM yields the final estimators. Figure 1 provides an in-
tuitive illustration of the workflow of FedGrEM.

While the core idea of FedGrEM is akin to FedEM in Mar-
foq et al. (2021) and FedGMM in Wu et al. (2023), two
crucial distinctions set them apart. First, we employ gradi-
ent EM, while FedEM and FedGMM use the full EM. Sec-
ond, the central update of FedGrEM can adapt to the het-
erogeneity of θ(k)∗

r ’s across tasks and remain robust when
a small proportion of tasks is contaminated, which are not
present in FedEM or FedGMM. On the other hand, by set-
ting λ[t] = +∞, FedGrEM can be viewed as a simplified
gradient version of FedEM and FedGMM, therefore our
non-asymptotic theory in Section 3 can illustrate the em-
pirical success achieved by FedEM and FedGMM.

FedGrEM is computationally efficient on local servers as
it computes the gradient instead of explicitly solving the
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Algorithm 1 FedGrEM: A Federated Gradient EM Algorithm

Input: Initializations { 󰁥w(k)[0]}k∈[K] and {󰁥θ(k)[0]}k∈[K] ( 󰁥w(k)[0] = { 󰁥w(k)[0]
r }Rr=1, 󰁥θ(k)[0] = {󰁥θ(k)[0]

r }Rr=1), data
{x(k)

i }i∈[n],k∈[K], iteration number T , penalty parameters {λ[t]}Tt=1, step sizes {η(k)r }k∈[K],r∈[R]

for t = 1 to T do
Local update: For task k = 1 : K:

• E-step: 󰁥Q(k)(θ| 󰁥w(k)[t−1], 󰁥θ(k)[t−1]) := 1
n

󰁓n
i=1

󰁓R
r=1 P(z(k) = r|x(k)

i ; 󰁥w(k)[t−1], 󰁥θ(k)[t−1]) log p
(k)
r (x

(k)
i ;θr)

• M-step: ⋄ 󰁥w(k)[t]
r = 1

n

󰁓n
i=1 P(z(k) = r|x(k)

i ; 󰁥w(k)[t−1], 󰁥θ(k)[t−1])

⋄ 󰁨θ(k)[t]
r = 󰁥θ(k)[t−1]

r + η
(k)
r · ∂

∂θr

󰁥Q(k)(θ| 󰁥w(k)[t−1], 󰁥θ(k)[t−1])|θ=󰁥θ(k)[t−1]

Central update: {󰁥θ(k)[t]
r }Kk=1,θ

[t]

r = argmin
{ν(k)}K

k=1⊆Rd,ν∈Rd

󰁱󰁓K
k=1

󰀃
n
2 󰀂ν

(k)− 󰁨θ(k)[t]
r 󰀂22+

√
nλ[t] ·󰀂ν(k)−ν󰀂2

󰀄󰁲
, define

󰁥w(k)[t] = { 󰁥w(k)[t]
r }Rr=1, 󰁥θ(k)[t] = {󰁥θ(k)[t]

r }Rr=1

end for
Output: Final estimators { 󰁥w(k)[T ]

r }k∈[K],r∈[R] and {󰁥θ(k)[T ]
r }k∈[K],r∈[R]

Figure 1. An illustration of Algorithm 1 (the iteration round t).

maximizer of 󰁥Q(k). It is also communicationally efficient
because it only necessitates the exchange of parameter es-
timators between local and central servers. Therefore, Fed-
GrEM fulfills all five of the desired properties we outlined
in Section 2.1.

2.4. Our Contributions

Firstly, we introduced FedGrEM, a federated EM algorithm
that exhibits robustness against a small number of adversar-
ially contaminated tasks while maintaining computational
and communication efficiency. FedGrEM supplements the
existing federated EM algorithms in literature (Dieuleveut
et al., 2021; Marfoq et al., 2021; Wu et al., 2023) by con-
sidering the heterogeneity across tasks and adversarial con-
taminations.

Second, we provided an extensive non-asymptotic theory
for FedGrEM on general mixture models. We characterized
the estimation error of w(k)∗

r and θ
(k)∗
r for non-outlier tasks

by five main components:

• Iterative error, which vanishes as the number of itera-
tions goes to infinity;

• Aggregation rate, which depends on the combined
sample sizes of non-outlier tasks;

• Cost of heterogeneous mixture proportions;

• Cost of task heterogeneity;

• Cost of outlier tasks.

This analysis revealed that when the tasks exhibit sufficient
similarity and the proportion of outlier tasks is sufficiently
small, the estimation error of FedGrEM surpasses the rate
achieved by typical single-task algorithms such as the lo-
cal single-task EM. Since the setting of existing federated
EM papers can be seen as a special case (no model het-
erogeneity and contaminations) of the scenario we study,
our theory helps illustrate the empirical success of existing
federated EM algorithms (Dieuleveut et al., 2021; Marfoq
et al., 2021; Wu et al., 2023) and offers new theoretical in-
sights for unsupervised federated learning.

Thirdly, we addressed the often overlooked issue of cluster
label permutation in federated EMs. While label permuta-
tion is not a concern for single-task EM, most federated EM
algorithms require all non-outlier tasks to share the same
permutation as they take an average over the parameter es-
timators for the same cluster in the M-step. Failure to align
the label permutations across non-outlier tasks can lead to
the failure of federated EM algorithms. Due to space limit,
we leave this part to Section C of the appendix.
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3. Theory
In this section, we introduce a generic non-asymptotic up-
per bound for the estimation error of FedGrEM and ap-
ply this theory to two statistical examples: Gaussian Mix-
ture Models (GMMs) and Mixture of Regressions (MoRs).
Our theoretical findings offer a clear interpretation, shed-
ding light on the conditions under which existing federated
EM algorithms, including FedGrEM, can outperform lo-
cal single-task learning. To streamline the presentation, we
provide simplified versions of most theoretical results here,
with formal details available in Section A of the appendix.

3.1. Generic Analysis

For simplicity, denote q(k)(θ) = Q(k)(θ|w(k)∗,θ(k)∗). We
first state a few assumptions that are necessary for our re-
sults on general mixture models.

Assumption 3.1 (Concavity and smoothness, a simplified
version of Assumption A.1). For all k ∈ S, there exist non-
negative constants {µ(k)

r }Rr=1 and {L(k)
r }Rr=1 such that for

all θ = {θr}Rr=1, θ′ = {θ′
r}Rr=1:

(i) (Strong concavity) q(k)(θ′) − q(k)(θ) −
∂
∂θ q

(k)(θ)T (θ′ − θ) ≤ −
󰁓R

r=1
µ(k)
r

2 󰀂θ′
r − θr󰀂22;

(ii) (Smoothness) q(k)(θ′)− q(k)(θ)− ∂
∂θ q

(k)(θ)T (θ′ −
θ) ≥ −

󰁓R
r=1

L(k)
r

2 󰀂θ′
r − θr󰀂22.

Remark 3.2. The same conditions are imposed by Balakr-
ishnan et al. (2017) in the single-task setting. The strong
concavity is usually assumed to obtain the parametric con-
vergence rate, and the smoothness is imposed for gradient
descent to converge at a geometric rate.

Assumption 3.3 (Contraction and convergence, a simpli-
fied version of Assumptions A.3 and A.5). There exist a
constant κ ∈ (0, 1), and rate functions Rw(n), Rθ(n),
such that for any k ∈ S, such that for all w′ = {w′

r}Rr=1

and θ′ = {θ′
r}Rr=1 close to {w(k)∗

r }Rr=1 and {w(k)∗
r }Rr=1:

(i) (Contraction)

(a)
󰀏󰀏E
󰀅
P(z(k) = r|x(k);w′,θ′)

󰀆
− w

(k)∗
r

󰀏󰀏 ≤ κ ·
󰁓R

r=1

󰀃
|w′

r − w
(k)∗
r |+ 󰀂θ′

r − θ
(k)∗
r 󰀂2

󰀄
;

(b)
󰀐󰀐 ∂
∂θr

q(k)(θ)|θ=θ′ − ∂
∂θr

Q(k)(θ|w′,θ′)|θ=θ′
󰀐󰀐
2

≤ κ ·
󰁓R

r=1

󰀃
|w′

r − w
(k)∗
r |+ 󰀂θ′

r − θ
(k)∗
r 󰀂2

󰀄

(ii) (Uniform convergence) w.p. 1− O(1),

(a)
󰀏󰀏 1
n

󰁓n
i=1 P(z(k) = r|x(k)

i ;w′,θ′)−E
󰀅
P(z(k) =

r|x(k);w′,θ′)
󰀆󰀏󰀏 ≤ Rw(n);

(b)
󰀐󰀐 ∂
∂θr

󰁥Q(k)(θ|w′,θ′)|θ=θ′ − ∂
∂θr

Q(k)(θ|w′,θ′)

|θ=θ′
󰀐󰀐
2
≤ Rθ(n);

(c)
󰀐󰀐 1
|S|

󰁓
k∈S

󰀅
∂

∂θr

󰁥Q(k)(θ|w′,θ′)|θ=θ′− ∂
∂θr

Q(k)

(θ|w′,θ′)|θ=θ′
󰀆󰀐󰀐

2
≤ Rθ(nK).

Note that Rw(n) and Rθ(n) also depend on other parame-
ters such as d and R, which we suppress in the notation for
the ease of presentation.

Remark 3.4. Note that by definition w
(k)∗
r = E[P(z(k) =

r|x(k);w(k)∗,θ(k)∗)]. Therefore, condition (i) de-
scribes the behavior of E

󰀅
P(z(k) = r|x(k);w′,θ′)

󰀆
and

∂
∂θr

Q(k)(θ|w′,θ′), and condition (ii) is a uniform conver-
gence assumption on the same quantities, when w′ and
θ′ are close to the true values w(k)∗ and θ(k)∗. Condi-
tion (i) has been used by Balakrishnan et al. (2017) in
the single-task setting. Condition (ii).(b) and condition
(ii).(c) are uniform convergence assumptions on the gra-
dient around the true parameter values, which are often
needed when analyzing the EM without data splitting (Yan
et al., 2017; Cai et al., 2019). Condition (ii).(c) is a general-
ization of (ii).(b) when aggregating the data from multiple
tasks. As we will see in later examples, we usually have
Rw(n) = 󰁨O(R2

󰁳
1/n) and Rθ(n) = 󰁨O(R2

󰁳
d/n), and

Rθ(n) is typically the estimation error of local single-task
methods.

Assumption 3.5 (Good initialization and step size, a sim-
plified version of Assumption A.7). | 󰁥w(k)[0]

r − w
(k)∗
r | ∨

󰀂󰁥θ(k)[0]
r − θ

(k)∗
r 󰀂2 ≤ C, η(k)r ≤ 1/L

(k)
r , for all k ∈ S

and r ∈ [R], where C > 0 is a constant whose explicit
form can be found in the appendix.

We set the penalty parameters in Algorithm 1 by induction
as

λ[0] = C1

√
n,

λ[t] = κ′ · λ[t−1] + C2

√
n[Rw(n) +Rθ(n)],

where t ≥ 1 and the explicit forms of κ′ ∈ (0, 1), C1, C2

can be found in the appendix.

Next, we present our primary result for the estimation error
of FedGrEM in Theorem 3.6.

Theorem 3.6 (Main result, a simplified version of Theorem A.8). Suppose Assumptions 3.1, 3.3, and 3.5 hold. Then for
any contaminated set Sc with 󰂃 = |Sc|/K < 1/3 and any contamination distribution QSc , w.p. 1 − O(1), for all T ≥ 1,
FedGrEM satisfies

max
k∈S,r∈[R]

󰀃
| 󰁥w(k)[T ]

r − w(k)∗
r | ∨ 󰀂󰁥θ(k)[T ]

r − θ(k)∗
r 󰀂2

󰀄
≲ κT

0󰁿󰁾󰁽󰂀
iterative error

+ Rθ(nK)󰁿 󰁾󰁽 󰂀
aggregation rate

+ Rw(n)󰁿 󰁾󰁽 󰂀
cost of heterogeneous mixture proportions

+min
󰀋
h,Rw(n) +Rθ(n)

󰀌
󰁿 󰁾󰁽 󰂀

cost of task heterogeneity

+ 󰂃
󰀅
Rw(n) +Rθ(n)

󰀆
󰁿 󰁾󰁽 󰂀

cost of outlier tasks

, (3)
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where κ0 ∈ (0, 1).

The upper bound of convergence rate in Theorem 3.6 com-
prises multiple terms, each with a clear interpretation. The
first term corresponds to the geometric iterative error which
vanishes as T → +∞, and the second term accounts for the
aggregation error which arises from combining all the data.
The third to fifth terms represent the cost of heterogeneous
mixing proportions, task heterogeneity, and outlier tasks,
respectively.

As we will observe in later specific examples, Rθ(nK)
scales as R2

󰁳
d/(nK) which depends on the total sam-

ple size nK of all K tasks, Rθ(n) = 󰁨O(R2
󰁳
d/n), and

Rw(n) = 󰁨O(R2
󰁳
1/n). Note that Rθ(n) typically rep-

resents the estimation error of local single-task algorithms.
Comparing (3) with Rθ(n) = 󰁨O(R2

󰁳
d/n), we can see

that when both h and 󰂃 are small — indicating sufficient
similarity shared across tasks and few contaminated tasks
— FedGrEM can achieve a better estimation error than the
local single-task methods. When h = 󰂃 = 0, implying that
all tasks share the same parameters, we revert to the setting
of Dieuleveut et al. (2021), Marfoq et al. (2021), and Wu
et al. (2023). In this context, our finite-sample upper bound
demonstrates that federated EM can indeed outperform the
local single-task methods, aligning with the empirical suc-
cess of federated EM algorithms observed in these works.

In subsequent sections, we will substitute specific rate ex-
pressions for each term in concrete examples, by showing
that Rw = 󰁨O(R2

󰁳
1/n) and Rθ(n) = 󰁨O(R2

󰁳
d/n).

3.2. Proof Sketch of Theorem 3.6

We briefly describe the proof of Theorem 3.6 here. The
proof follows an iterative fashion, where we show a con-
nection between the estimation error rates in two consecu-
tive iteration rounds and then iterate the analysis to obtain
the final result. More specifically, by utilizing the contrac-
tion and uniform convergence conditions assumed in As-
sumption 3.3, if we define the estimation error of round t

as Er(t) = maxk∈S,r∈[R]

󰀃
| 󰁥w(k)[t]

r − w
(k)∗
r | ∨ 󰀂󰁥θ(k)[t]

r −
θ
(k)∗
r 󰀂2

󰀄
, we can prove that with high probability,

Er(t) ≤ κ0Er(t− 1) + other terms,

where other terms include the sum of the last four terms on
the RHS of (3), and κ0 ∈ (0, 1).

We want to highlight that the proof is much harder and
more complicated than the proofs in standard EM theory.
The reason is that the mixture proportions {w(k)∗

r }Rr=1 can
be heterogenous across tasks, where we can still benefit
from federated learning because the similarity between d-
dimensional parameters {θ(k)∗

r }Rr=1 is more important than

the heterogeneity of 1-dimensional scalers {w(k)∗
r }Rr=1.

However, in standard EM theory (Balakrishnan et al., 2017;
Yan et al., 2017; Cai et al., 2019), the estimation errors of
{w(k)∗

r }Rr=1 and {θ(k)∗
r }Rr=1 are entangled and it is chal-

lenging to separate them by the existing theory. We cre-
atively used a localization technique to address the issue by
adaptively shrinking the radius of the ball within which uni-
form convergence in Assumption 3.3 must hold. This adap-
tive radius shrinking trick during iterations finally leads to
a “fast rate”, effectively replacing Rθ(n) (“the slow rate”)
with a much smaller Rw(n) for the term “cost of heteroge-
neous mixing proportions” in (3). The intuition is visually
interpreted in Figure 2, and more details can be found in
the full proof of Theorem 3.6 in the appendix.

Figure 2. Schematic of the geometric convergence and the local-
ization trick, where we shrink the radius of uniform convergence
ball from r∗1 to r∗0 after the first iteration.

3.3. Example 1: Gaussian Mixture Models (GMMs)

In this section, we examine Gaussian Mixture Models
(GMMs) as an example of (1). Each observation is from
a mixture of R Gaussian distributions (R ≥ 2):

x
(k)
i

i.i.d.∼
R󰁛

r=1

w(k)∗
r ·N(θ(k)∗

r , Id×d). (4)

Hence in (1), p(k)r ( · ;θ(k)∗
r ) represents the Lebesgue den-

sity of Gaussian distribution N(θ
(k)∗
r , Id×d). We define

∆ := mink∈S minr ∕=r′ 󰀂θ(k)∗
r − θ

(k)∗
r′ 󰀂2, which charac-

terizes the signal-to-noise ratio of GMMs among S. We
impose the following assumption.

Assumption 3.7. Suppose the following conditions hold:

(i) (Bounded parameters) w(k)∗
r ≳ 1/R, 󰀂θ(k)∗

r 󰀂2 ≤ C

6
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for all k ∈ S and r ∈ [R], where C is a constant;

(ii) (Good initialization) maxk∈S,r∈[R] | 󰁥w
(k)[0]
r −

w
(k)∗
r | ≲ 1

R , maxk∈S,r∈[R] 󰀂󰁥θ
(k)[0]
r − θ

(k)∗
r 󰀂2 ≲ ∆;

(iii) (Large signal strength) ∆ ≳ log(R);

(iv) (Sample size) n ≳ R4[d+ log(RK)]∆−2;

(v) (Step size) 1 − η
(k)
r w

(k)∗
r < c, and 0 < η

(k)
r ≤

1/w
(k)∗
r for all k ∈ S and r ∈ [R], where c > 0

is a small constant.

Proposition 3.8. Under Assumption 3.7, GMMs defined in
(4) satisfies Assumptions 3.1, 3.3, and 3.5 with

µ(k)
r = L(k)

r = w(k)∗
r , κ ≍ R2 exp{−C∆2},

Rw(n) = 󰁨O
󰀕
R2

󰁵
1

n

󰀖
, Rθ(n) = 󰁨O

󰀕
R2

󰁵
d

n

󰀖
,

where C > 0 is some constant.

By plugging the rates in Propositions 3.8 into Theorem 3.6,
we obtain the following estimation error for GMMs.

Corollary 3.9. Under Assumption 3.7, for the GMMs
defined in (4), for any contaminated set Sc with 󰂃 =
|Sc|/K ≤ 1/3 and contaminated distribution QSc , w.p.
1− O(1), for all T ≥ 1, FedGrEM satisfies

max
k∈S,r∈[R]

󰀃
| 󰁥w(k)[T ]

r − w(k)∗
r | ∨ 󰀂󰁥θ(k)[T ]

r − θ(k)∗
r 󰀂2

󰀄

= 󰁨O
󰀣
κT
0 +R2

󰁵
d

nK
+R2

󰁵
1

n
+min

󰀝
h,R2

󰁵
d

n

󰀞

+ 󰂃R2

󰁵
d

n

󰀤
.

where κ0 ∈ (0, 1) is a constant.

Our theoretical analysis is also applicable to local single-
task EM and gradient EM, enabling us to establish an up-

per bound of estimation error 󰁨OP

󰀓
R2

󰁴
d
n

󰀔
on S. Conse-

quently, when d → ∞ (diverging dimension), K → ∞
(many similar tasks), h ≪ R2

󰁴
d
n (sufficient similarity),

and 󰂃 → 0 (small proportion of outlier tasks), FedGrEM
exhibits a better estimation error rate than single-task EM
and gradient EM (up to logarithmic factors). Notably, Fed-
GrEM always achieves an error rate at least as good as the

single-task rate 󰁨OP

󰀓
R2

󰁴
d
n

󰀔
.

3.4. Example 2: Mixture of Regressions (MoRs)

As a second example, we consider a mixture of linear re-
gressions (MoRs), where each observation comes from a

mixture of R linear regression models (R ≥ 2):

z
(k)
i

i.i.d.∼
R󰁛

r=1

w(k)∗
r · δr,

Given z
(k)
i = r : y

(k)
i = (󰁨x(k)

i )Tθ(k)∗
r + 󰂃

(k)
i , (5)

󰂃
(k)
i

i.i.d.∼ N(0, 1), 󰁨x(k)
i

i.i.d.∼ N(0d, Id×d), 󰂃
(k)
i ⊥⊥ 󰁨x(k)

i .

Hence in (1) and (2), x
(k)
i is the pair (󰁨x(k)

i , y
(k)
i ) and

p
(k)
r ( · ;θ(k)∗

r ) is the Lebesgue density of joint distribution
of (󰁨x(k)

i , y
(k)
i ). We impose the following assumption set.

Assumption 3.10. Suppose the same conditions in As-
sumption 3.7 hold by replacing (iii) with:

(iii) (Large signal strength) ∆ ≳ R3 +R2(log∆)3/2.

Proposition 3.11. Under Assumption 3.10, the MoRs de-
fined in (5) satisfies Assumptions 3.1, 3.3, and 3.5 with

µ(k)
r = w(k)∗

r − CR

√
log∆

∆
, L(k)

r = w(k)∗
r + CR

√
log∆

∆
,

κ = 󰁨O
󰀕

R2

∆

󰀖
,Rw(n) = 󰁨O

󰀕
R2

󰁴
1
n

󰀖
,Rθ(n) = 󰁨O

󰀕
R2

󰁴
d
n

󰀖
,

where C > 0 is some constant.

By plugging the rates in Propositions 3.11 into Theorem
3.6, we have the following estimation error for MoRs.

Corollary 3.12. Under Assumption 3.10, for the MoRs
defined in (5), for any contaminated set Sc with 󰂃 =
|Sc|/K ≤ 1/3 and contaminated distribution QSc , with
probability 1− O(1), for all T ≥ 1, FedGrEM satisfies

max
k∈S,r∈[R]

󰀃
| 󰁥w(k)[T ]

r − w(k)∗
r | ∨ 󰀂󰁥θ(k)[T ]

r − θ(k)∗
r 󰀂2

󰀄
= 󰁨O

󰀣

κT
0 +R2

󰁴
d

nK +R2
󰁴

1
n +min

󰀝
h,R2

󰁴
d
n

󰀞
+ 󰂃R2

󰁴
d
n

󰀤
.

where κ0 ∈ (0, 1) is a constant.

We can similarly discuss when the rate of FedGrEM is bet-
ter than the estimation error of the local single-task algo-
rithms for GMMs, which we do not repeat here.

4. Numerical Results
4.1. Simulations

In this subsection, we present simulation results to empir-
ically validate our theoretical insights. We consider two
examples in the last section: Gaussian Mixture Models
(GMMs) and Mixture of Regressions (MoRs). For both ex-
amples, we set the number of tasks K = 10, the number of

7
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Figure 3. The average estimation errors of different methods in 100 replications of the GMM and MoR simulations (in loge scale). The
left two figures show the estimation error maxk∈S maxr∈[R] log(| 󰁥w(k)[T ]

r −w
(k)∗
r |) and the right two figures show the estimation error

maxk∈S maxr∈[R] log(󰀂󰁥θ(k)[T ]
r −θ

(k)∗
r 󰀂2). x-axis represents the ratio between model heterogeneity h and SNR (signal-to-noise ratio),

where the definition of SNR is in Section B.1 of the appendix.

clusters R = 5, the sample size of each task n = 150 (per-
cluster sample size is around 30), the dimension p = 10,
and introduce one outlier task (󰂃 = 0.1). The simulations
are conducted over 100 repetitions, and we generate w(k)∗

in dependently from Dirichlet(5, 5, 5, 5, 5). Details regard-
ing the values of θ(k)∗’s and the generation mechanism of
the outlier task can be found in Section B of the appendix.
We vary the value of h from 0 to 2 with an increment
of 0.25, calculating the average mean estimation error of
w(k)∗’s and θ(k)∗’s in S = 1 : 9 for different approaches.

The considered methods include several unsupervised fed-
erated learning or multi-task learning benchmarks: Local-
EM (single-task EM), Local-GrEM (single-task gradient
EM), FedEM (Marfoq et al., 2021), TGMM (Wang et al.,
2021), FedGMM (Wu et al., 2023), Pooled-EM (EM on
pooled data), Pooled-GrEM (gradient EM on pooled data),
and FedGrEM (ours).

The results are presented in Figure 3. In the GMM simu-

lation, the estimation errors of w(k)∗’s for different meth-
ods are similar, except for EM methods on the pooled
data. FedGrEM, FedEM, TGMM, and FedGMM outper-
form the others in estimating θ(k)∗’s with FedGrEM sur-
passing the other three due to its robustness to outlier
tasks. As h increases, the performance of FedEM and
TGMM degrades, becoming inferior to EM and GrEM.
Conversely, FedGrEM’s performance becomes compara-
ble to EM and GrEM as h/SNR approaches 35.92%, high-
lighting its adaptability to unknown h. Similar trends are
observed in the MoR simulation. These numerical results
align with our theoretical analyses and confirm FedGrEM’s
advantage in handling unknown similarity levels h and a
few outlier tasks.

4.2. Real-data Studies

We also conduct experiments on three real datasets:

8
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󰂃/Method Local-EM Local-GrEM FedEM FedGrEM TGMM Pooled-EM Pooled-GrEM
0% 13.30 (1.17) 13.20 (1.77) 15.75 (2.09) 9.62 (1.03) 25.14 (2.72) 26.84 (5.54) 34.88 (11.70)

6.8% 12.88 (1.11) 12.96 (1.70) 15.87 (2.20) 9.31 (1.10) 25.00 (3.16) 26.60 (5.80) 34.61 (11.92)
13.6% 12.62 (1.26) 12.99 (1.99) 17.56 (2.44) 9.04 (1.06) 25.68 (2.85) 26.79 (5.53) 35.61 (12.52)
20.5% 12.94 (1.37) 13.31 (1.93) 18.52 (2.38) 9.39 (1.25) 26.14 (3.08) 27.05 (5.46) 37.94 (13.65)

Table 1. Average mis-clustering error rates (standard deviations) in percentages for Pen-Based Recognition of Handwritten Digits dataset

󰂃/Method Local-EM Local-GrEM FedEM FedGrEM TGMM Pooled-EM Pooled-GrEM
0% 12.47 (1.19) 12.06 (0.95) 9.97 (2.09) 10.63 (2.72) 12.18 (4.08) 12.84 (2.92) 10.67 (2.41)
8% 12.30 (1.10) 11.98 (0.88) 11.97 (2.80) 10.64 (1.98) 13.66 (4.13) 15.07 (5.25) 14.16 (4.23)

16% 12.47 (1.19) 12.06 (0.93) 14.46 (2.95) 10.96 (1.96) 14.47 (4.24) 16.16 (5.46) 14.97 (4.36)
24% 12.43 (1.11) 12.10 (0.89) 21.67 (4.33) 10.97 (1.59) 15.70 (5.01) 15.50 (5.09) 14.35 (3.96)

Table 2. Average mis-clustering error rates (standard deviations) in percentages for MNIST dataset

󰂃/Method Local-EM Local-GrEM FedEM FedGrEM TGMM Pooled-EM Pooled-GrEM
0% 36.40 (0.67) 35.66 (0.64) 36.06 (1.42) 34.44 (1.98) 36.14 (2.89) 36.31 (1.25) 35.72 (1.07)
8% 36.40 (0.72) 35.69 (0.65) 36.82 (1.15) 33.27 (1.96) 36.71 (3.32) 39.75 (1.41) 39.71 (1.54)

16% 36.34 (0.66) 35.65 (0.70) 36.80 (1.28) 33.29 (1.86) 37.50 (3.16) 39.65 (1.50) 39.34 (1.91)
24% 36.31 (0.69) 35.61 (0.73) 37.93 (1.81) 33.35 (1.69) 38.20 (3.28) 39.51 (1.24) 39.44 (1.57)

Table 3. Average mis-clustering error rates (standard deviations) in percentages for Fashion-MNIST dataset

• Pen-Based Recognition of Handwritten Digits 3: This
dataset collects 0-9 digits written by 44 writers on the
tablet with 16 features related to each digit such as the
pressure level at certain coordinates. The ID of the
writer for each handwritten digit is provided. Hence,
it is a federated multi-task learning dataset in nature
by viewing each writer as a client.

• MNIST 4: 70000 grayscale images of 28 × 28 pixels
for the handwritten digits 0-9 from different writers.
There is no information about the writers, hence we
manually created a federated learning dataset by ran-
domly assigning each image to one of 100 clients.

• Fashion-MNIST 5: 70000 of Zalando’s article
grayscale images in 28 × 28 pixels, each associated
with a label from 10 classes. We manually created a
federated learning dataset by randomly assigning each
image to one of 100 clients.

In each replication, 80% data for each task is used as train-
ing data, and the remaining 20% is used as test data to cal-
culate the mis-clustering error. We also contaminate dif-
ferent proportions (󰂃) of tasks to showcase the robustness

3https://archive.ics.uci.edu/dataset/81/
pen+based+recognition+of+handwritten+digits

4https://www.kaggle.com/datasets/hojjatk/
mnist-dataset

5https://www.kaggle.com/datasets/
zalando-research/fashionmnist

of FedGrEM against adversarial attacks. We run differ-
ent benchmark methods with GMMs (without the knowl-
edge of the true labels) for 200 replications and compare
their performances in terms of mis-clustering error rates,
as shown in Tables 1-3, where FedGrEM performs the best
in most settings. More details about the datasets, pre-
processing steps, and results can be found in Section B.2
of the appendix.

5. Discussions
In this work, we introduced a federated gradient EM al-
gorithm (FedGrEM) to enhance the existing federated EM
methods, by considering the task heterogeneity and adver-
sarial attacks. We studied the non-asymptotic theory on
general mixture models, and applied the theory to GMMs
and MoRs to obtain the explicit estimation error of the
model parameters and mixture proportions. Our theory
helps illustrate the empirical success of existing federated
EM algorithms in literature and offers new theoretical in-
sights on unsupervised federated learning. The proposed
FedGrEM was shown to be adaptive to unknown task sim-
ilarity, robust against the adversarial attack on a small pro-
portion of tasks, protective for the local data, computation-
ally and communicationally efficient. It serves as a valu-
able supplement to existing federated EM algorithms.

Some additional discussions on the limitations and future
extensions are available in Section D of the appendix.
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Appendix
This appendix collects the additional theoretical and numerical details as well as all the technical proofs of the theory. We
present the formal theoretical results in Section A which correspond to the simplified versions in Section 3 of the main text.
Section B contains more details of the numerical studies presented in Section 4 of the main text. Section C discusses the
label permutation issue we mentioned in Section 2.4. Section D includes additional discussions on limitations and potential
extensions of the current work in the future. All the technical proofs are summarized in Section E.

We recall our mathematical notations here. P and E denote the probability and expectation, respectively. P and E denote the
probability and expectation, respectively. For two positive sequences {an} and {bn}, an ≪ bn means an/bn → 0, an ≲ bn
or an = O(bn) means an/bn ≤ C < ∞, and an ≍ bn means an/bn, bn/an ≤ C < ∞. For a random variable xn and a
positive sequence an, xn = Op(an) means that for any 󰂃 > 0, there exists M > 0 such that supn P(|xn/an| > M) ≤ 󰂃.
󰁨Op(an) has a similar meaning up to logarithmic factors in an. For a vector x ∈ Rd, 󰀂x󰀂2 represents its Euclidean norm.
For two numbers a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}. For any positive integer K, 1 : K and [K] stand for
the set {1, 2, . . . ,K}. Denote Bξ(θ) as an Euclidean ball centered at θ with radius ξ > 0. And for any set S, |S| denotes
its cardinality and Sc denotes its complement. “w.p.” stands for “with probability”. “WLOG” stands for “Without loss of
generality”. The absolute constants c and C may vary from line to line.

A. Formal Theoretical Results
Denote η̄ = maxk∈S,r∈[R] η

(k)
r as the maximum step size used in the local M-step on tasks in S. For simplicity, denote

q(k)(θ) = Q(k)(θ|w(k)∗,θ(k)∗). We first state a few assumptions which are necessary for our result on general mixture
models.

Assumption A.1. For any k ∈ S, there exist non-negative sets {µ(k)
r }r∈[R], {L

(k)
r }r∈[R], and a positive constant r∗1 such

that for all θ = {θr}Rr=1, θ′ = {θ′
r}Rr=1 with θr,θ

′
r ∈ Br∗1

(θ
(k)∗
r ):

(i) (Strong concavity) q(k)(θ′)− q(k)(θ)− ∂
∂θ q

(k)(θ)T (θ′ − θ) ≤ −
󰁓R

r=1
µ(k)
r

2 󰀂θ′
r − θr󰀂22;

(ii) (Smoothness) q(k)(θ′)− q(k)(θ)− ∂
∂θ q

(k)(θ)T (θ′ − θ) ≥ −
󰁓R

r=1
L(k)

r

2 󰀂θ′
r − θr󰀂22.

Remark A.2. The same conditions are imposed by Balakrishnan et al. (2017) in the single-task setting. The strong concavity
is usually assumed to obtain the parametric convergence rate, and the smoothness is imposed for gradient descent to
converge at a geometric rate.

Assumption A.3. There exist positive constants r∗w, r∗2 , and κ ∈ (0, 1), and a function W , such that for any k ∈ S:

(i) For all w′ = {w′
r}Rr=1 and θ′ = {θ′

r}Rr=1 with w′
r ∈ Br∗w(w

(k)∗
r ) and θ′

r ∈ Br∗2
(θ

(k)∗
r ), we have

󰀏󰀏E
󰀅
P(z(k) =

r|x(k);w′,θ′)
󰀆
− w

(k)∗
r

󰀏󰀏 ≤ κ ·
󰁓R

r=1

󰀃
|w′

r − w
(k)∗
r |+ 󰀂θ′

r − θ
(k)∗
r 󰀂2

󰀄
;

(ii) w.p. at least 1− δ, for all w′ = {w′
r}Rr=1, ξ > 0, and θ′ = {θ′

r}Rr=1 with w′
r ∈ Br∗w(w

(k)∗
r ) and θ′

r ∈ Bξ(θ
(k)∗
r ), we

have
󰀏󰀏 1
n

󰁓n
i=1 P(z(k) = r|x(k)

i ;w′,θ′)− E
󰀅
P(z(k) = r|x(k);w′,θ′)

󰀆󰀏󰀏 ≤ W(n, δ, ξ).

Remark A.4. Note that by definition w
(k)∗
r = E[P(z(k) = r|x(k);w(k)∗,θ(k)∗)]. Therefore, condition (i) describes the be-

havior of E
󰀅
P(z(k) = r|x(k);w′,θ′)

󰀆
, and condition (ii) is a uniform convergence assumption on P(z(k) = r|x(k)

i ;w′,θ′),
when w′ and θ′ are close to the true values w(k)∗ and θ(k)∗.

Assumption A.5. With the same constants r∗w and r∗2 in Assumption A.3, there exists a constant γ ∈ (0, 1) and functions
E1, E2 such that for any k ∈ S:

(i) For all w′ = {w′
r}Rr=1 and θ′ = {θ′

r}Rr=1 with w′
r ∈ Br∗w(w

(k)∗
r ) and θ′

r ∈ Br∗2
(θ

(k)∗
r ), we have

󰀐󰀐 ∂
∂θr

q(k)(θ)|θ=θ′ −
∂

∂θr
Q(k)(θ|w′,θ′)|θ=θ′

󰀐󰀐 ≤ γ ·
󰁓R

r=1

󰀃
|w′

r − w
(k)∗
r |+ 󰀂θ′

r − θ
(k)∗
r 󰀂2

󰀄
;

(ii) w.p. at least 1 − δ, for all w′ = {w′
r}Rr=1 and θ′ = {θ′

r}Rr=1 with w′
r ∈ Br∗w(w

(k)∗
r ) and θ′

r ∈ Br∗2
(θ

(k)∗
r ), we have󰀐󰀐 ∂

∂θr

󰁥Q(k)(θ|w′,θ′)|θ=θ′ − ∂
∂θr

Q(k)(θ|w′,θ′)|θ=θ′
󰀐󰀐
2
≤ E1(n, δ);
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(iii) w.p. at least 1 − δ, for ξ > 0 and all w(k)′ = {w(k)′
r }Rr=1, θ′ = {θ′

r}Rr=1, and {η(k)r }k∈S,r∈[R]

with w
(k)′
r ∈ Br∗w(w

(k)∗
r ) and θ′

r ∈ Br∗2
(θ

(k)∗
r ), we have

󰀐󰀐 1
|S|

󰁓
k∈S η

(k)
r ·

󰀅
∂

∂θr

󰁥Q(k)(θ|w′,θ′)|θ=θ′ −
∂

∂θr
Q(k)(θ|w′,θ′)|θ=θ′

󰀆󰀐󰀐
2
≤ η̄E2(n, |S|, δ).

Remark A.6. Conditions (i) and (ii) have been used by Balakrishnan et al. (2017) in the single-task setting, while condition
(iii) is a generalization of (ii) when aggregating the data from multiple tasks. Similar to condition (ii) in Assumption A.3,
condition (ii) and condition (iii) are uniform convergence assumptions on the gradient around the true parameter values,
which are often needed when analyzing the EM without data splitting (Yan et al., 2017; Cai et al., 2019).

Assumption A.7. Denote r∗θ = r∗1 ∧ r∗2 and κ̃0 = 119
󰀓󰁴

1−minr,k∈S(µ
(k)
r η

(k)
r ) + η̄γR+ κR

󰀔
. Suppose

max
k∈S,r∈[R]

| 󰁥w(k)[0]
r − w(k)∗

r | ≤ r∗w, max
k∈S,r∈[R]

󰀂󰁥θ(k)[0]
r − θ(k)∗

r 󰀂2 ≤ r∗θ.

In addition, κ̃0, κ, r∗w, r∗θ , and functions W , E1, and E2 defined in Assumptions A.1-A.5 satisfy

(i) κ̃0 ≤ r∗θ
18(r∗w+r∗θ)

, κR ≤ 9
1199 · r∗w

r∗w+r∗θ
;

(ii) η̄ · E1
󰀓
n, δ

3RK

󰀔
≤

󰁫
(1−κ̃0/119)(1−κ̃0)

4320 r∗θ

󰁬
∧
󰀓

1
3r

∗
w

󰀔
;

(iii) W
󰀓
n, δ

3RK , r∗θ

󰀔
≤ (1−κ̃0/119)(1−κ̃0)

2160 r∗θ;

(iv) η̄ · E2
󰀓
n, |S|, δ

3R

󰀔
≤ 1−κ̃0/119

20 r∗θ;

(v) η
(k)
r ≤ 1/L

(k)
r for all k ∈ S and r ∈ [R].

We set the penalty parameters in Algorithm 1 by induction as

λ[0] =
15

119

√
n(r∗w + r∗θ),

λ[t] = κ̃0λ
[t−1] + 15

√
n
󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
,

Theorem A.8. Suppose Assumptions A.1-A.7 hold. Then for any contaminated set Sc with 󰂃 = |Sc|/K < 1/3 and any
contaminated distribution QSc , with probability at least 1− δ, for all T ≥ 1, FedGrEM satisfies

max
k∈S,r∈[R]

󰀃
| 󰁥w(k)[T ]

r − w(k)∗
r | ∨ 󰀂󰁥θ(k)[T ]

r − θ(k)∗
r 󰀂2

󰀄
≤ 20T κ̃T−1

0 × (r∗w ∨ r∗θ)󰁿 󰁾󰁽 󰂀
iterative error

+
1

1− κ̃0/119
η̄E2

󰀓
n, |S|, δ

3R

󰀔

󰁿 󰁾󰁽 󰂀
aggregation rate

+
1

1− κ̃0/119
W

󰀓
n,

δ

3RK
, r∗θ,T

󰀔

󰁿 󰁾󰁽 󰂀
cost of heterogeneous mixing proportions

+
18

1− κ̃0/119
min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞

󰁿 󰁾󰁽 󰂀
cost of task heterogeneity

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃
󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬

󰁿 󰁾󰁽 󰂀
cost of outlier tasks

,

where r∗θ,T is defined in an iterative fashion by

At =

󰀗
9κ̃0

󰀕
κ̃0

119

󰀖t−1

+
118

119
(t− 1)κ̃t−1

0

󰀘
(r∗w + r∗θ) +

1

1− κ̃0/119
η̄E2

󰀕
n, |S|, δ

3R

󰀖

+
18

1− κ̃0/119
min

󰀝
3h,

6

1− κ̃0

󰀗
W

󰀕
n,

δ

3RK
, r∗θ

󰀖
+ 2η̄E1

󰀕
n,

δ

3R

󰀖󰀘󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃

󰀗
W

󰀕
n,

δ

3RK
, r∗θ

󰀖
+ 2η̄E1

󰀕
n,

δ

3R

󰀖󰀘
;
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At +
18

1− κ̃0/119
W

󰀕
n,

δ

3RK
, r∗θ,t

󰀖
= r∗θ,t+1,

for t ≥ 1 with r∗θ,1 := r∗θ .

Before jumping into two specific examples, we want to point out that the term r∗θ,T is introduced to address a specific
challenge in the analysis of gradient EM mentioned in Section 3.2. In the classical EM theory, the estimates of similar
{θ(k)∗

r }k∈S and heterogeneous {w(k)∗
r }k∈S are entangled in the iterations, which will make the heterogeneous scalars

{w(k)∗
r }k∈S contribute a large dimension-dependent error W

󰀓
n, δ

3RK , r∗θ

󰀔
to the estimation and finally lead to a “slow

rate” of convergence for {θ(k)∗
r }k∈S,r∈[R]. To mitigate this issue, we reduced the radius of the ball within which uni-

form convergence must hold during iterations. This localization trick finally leads to a “fast rate”, effectively replacing
W

󰀓
n, δ

3RK , r∗θ

󰀔
in the slow rate with the current W

󰀓
n, δ

3RK , r∗θ,T

󰀔
, where r∗θ,T ≪ r∗θ . The intuition has been visually

interpreted in Figure 2, and more details can be found in the proof of Theorem 3.6.

A.1. Example 1: Gaussian Mixture Models (GMMs)

Assumption A.9. Suppose the following conditions hold:

(i) (Bounded parameters) w
(k)∗
r ≥ cw/R, 󰀂θ(k)∗

r 󰀂2 ≤ M with some cw ∈ (0, 1] for all k ∈ S and r ∈ [R] and
M ≥ C > 0, where C is a constant;

(ii) (Good initialization) maxk∈S,r∈[R] | 󰁥w
(k)[0]
r − w

(k)∗
r | ≤ Cb

cw
R , maxk∈S,r∈[R] 󰀂󰁥θ

(k)[0]
r − θ

(k)∗
r 󰀂2 ≤ Cb∆, with Cb a

small constant;

(iii) (Large signal strength) ∆ ≳ log(MRc−1
w );

(iv) (Sample size) n ≳ [R2M6d+R2 log2(Rc−1
w )M2 +M2 log(RK/δ)]C−2

b ∆−2η̄2;

(v) (Step size) 1− min
k∈S,r∈[R]

(η
(k)
r w

(k)∗
r ) < a small constant c, and 0 < η

(k)
r ≤ 1/w

(k)∗
r for all k ∈ S and r ∈ [R].

Remark A.10. Note that we allow cw, M , Cb, ∆, T , R, K, and d to change with sample size n.
Proposition A.11. Under Assumption A.9, GMMs defined in (4) satisfies Assumptions A.1-A.7 with

µ(k)
r = L(k)

r = w(k)∗
r ,

r∗1 = +∞, r∗w = Cb
cw
R

, r∗2 = Cb∆,

κ ≍ c−2
w R2 exp{−C∆2}, γ ≍ M2c−2

w R2 exp{−C∆2},

W(n, δ, ξ)≍ RMξ

󰁵
d

n
+ [RM2 +R log(Rc−1

w )]

󰁵
1

n
+

󰁵
log(1/δ)

n
,

E1(n, δ) ≍ RM3

󰁵
d

n
+RM log(Rc−1

w )

󰁵
1

n
+M

󰁵
log(1/δ)

n
,

E2(n, |S|, δ) ≍ RM3

󰁶
d

n|S| + [RM3 +RM log(Rc−1
w )]

󰁵
1

n

+M

󰁶
log(1/δ)

n|S| ,

where C > 0 is some constant.

By plugging the rates in Propositions 3.8 into Theorem 3.6, we obtain the following result for GMMs.

Corollary A.12. Set η(k)r = (1+Cb)
−1( 󰁥w(k)[0]

r )−1. Under Assumption 3.7, for the GMMs defined in (4), for any contam-
inated set Sc with 󰂃 = |Sc|/K ≤ 1/3 and contaminated distribution QSc , with probability at least 1 − δ, for all T ≥ 1,
FedGrEM satisfies

max
k∈S,r∈[R]

󰀃
| 󰁥w(k)[T ]

r − w(k)∗
r | ∨ 󰀂󰁥θ(k)[T ]

r − θ(k)∗
r 󰀂2

󰀄
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≲ T 2κT−1
0 M +R2c−1

w M3

󰁶
d

n|S|

+Rc−1
w M

󰁵
log(RK/δ)

n

+R2c−1
w M [M2 + log(Rc−1

w )]

󰁵
1

n

+min

󰀝
h,R2c−1

w M3

󰁵
d

n

󰀞
+ 󰂃R2c−1

w M3

󰁵
d

n
,

where κ0 = 119
󰁴

2Cb

1+Cb
+CM2c−2

w R3 exp{−C ′∆2}+Cc−2
w R3 exp{−C ′∆2}+ κ̃′

0 ∈ (0, 1), and κ̃′
0 satisfies 1 > κ̃′

0 >

CMR
󰁴

d
n for some C > 0..

Remark A.13. If M and cw are bounded, when T ≳ log n, we will have

max
k∈S,r∈[R]

󰀃
| 󰁥w(k)[T ]

r − w(k)∗
r | ∨ 󰀂󰁥θ(k)[T ]

r − θ(k)∗
r 󰀂2

󰀄

= 󰁨OP

󰀕
R2

󰁶
d

n|S| +R2

󰁵
1

n
+min

󰀝
h,R2

󰁵
d

n

󰀞
+ 󰂃R2

󰁵
d

n

󰀖
.

Next, we want to illustrate the choice of step size η(k)r . In Corollary A.12, we set η(k)r = (1+Cb)
−1( 󰁥w(k)[0]

r )−1, then under

Assumption A.9, it can be shown that Assumptions A.7.(i) and A.7.(v) hold,
󰁴
1−mink∈S,r∈[R](η

(k)
r µ

(k)
r ) ≤

󰁴
2Cb

1+Cb
,

and we can replace η̄ with CRc−1
w for some constant C in Assumptions A.7.(ii) and A.7.(v).

Second, we have the following upper bound for r∗θ,T , which can be plugged into Theorem A.8 with the rates in Proposition
A.11 to obtain the upper bound of estimation error in Corollary A.12.

Proposition A.14. Under Assumption A.9, for the GMMs defined in (4), we have

r∗θ,T ≲ T 2κT−1
0 M + η̄RM3

󰁶
d

n|S| + [(η̄M) ∨ 1][RM2 +R log(Rc−1
w )]

󰁵
1

n
+ [(η̄M) ∨ 1]

󰁵
log(RK/δ)

n

+min

󰀝
h, η̄RM3

󰁵
d

n

󰀞
+ 󰂃η̄RM2[(η̄M) ∨ 1]

󰁵
d

n
,

where κ0 = 119
󰁴

2Cb

1+Cb
+CM2c−2

w R3 exp{−C ′∆2}+Cc−2
w R3 exp{−C ′∆2}+κ̃′

0, and κ̃′
0 satisfies 1 > κ̃′

0 > CMR
󰁴

d
n

for some C > 0.

A.2. Example 2: Mixture of Regressions (MoRs)

Assumption A.15. Suppose the same conditions in Assumption A.9 hold by replacing (iii) with:

(iii) (Strong signal strength) ∆ ≳ R3c−1
w +R2c−1

w (log∆)3/2;

Similar to our previous comments in Remark A.10 for GMMs, we also allow cw, M , Cb, ∆, T , R, K, and d to change
with sample size n in MoRs.

Proposition A.16. Under Assumption A.15, the MoRs defined in (5) satisfies Assumptions A.1-A.7 with r∗1 , r∗2 , W(n, δ, ξ),
E1(n, δ), E2(n, |S|, δ) the same as in Proposition A.11, and

µ(k)
r = w(k)∗

r − CR

√
log∆

∆
,

L(k)
r = w(k)∗

r + CR

√
log∆

∆
,

16



Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms

κ ≍ c−1
w R

√
log∆

∆
+ c−1

w RCb +R2c−1
w

1

∆
,

γ ≍ c−1
w R

(log∆)3/2

∆
+ c−1

w RCb +R2c−1
w

1

∆
,

where C > 0 is some constant.

Corollary A.17. Set η(k)r = (1 + Cb)
−1( 󰁥w(k)[0]

r )−1. Under Assumption A.15, for the MoRs defined in (5), for any
contaminated set Sc with 󰂃 = |Sc|/K ≤ 1/3 and contaminated distribution QSc , with probability at least 1 − δ, for all
T ≥ 1, FedGrEM satisfies

max
k∈S,r∈[R]

󰀃
| 󰁥w(k)[T ]

r − w(k)∗
r | ∨ 󰀂󰁥θ(k)[T ]

r − θ(k)∗
r 󰀂2

󰀄

≲ T 2κT−1
0 M +R2c−1

w M3

󰁶
d

n|S|

+Rc−1
w M

󰁵
log(RK/δ)

n

+R2c−1
w M [M2 + log(Rc−1

w )]

󰁵
1

n

+min

󰀝
h,R2c−1

w M3

󰁵
d

n

󰀞
+ 󰂃R2c−1

w M3

󰁵
d

n
,

where κ0 = 119
󰁴

3Cb

1+2Cb
+ CR3c−2

w
(log∆)3/2

∆ + CR3c−2
w Cb + CR4c−2

w
1
∆ + κ̃′

0 ∈ (0, 1), and κ̃′
0 satisfies 1 > κ̃′

0 >

CMR
󰁴

d
n for some C > 0.

Remark A.18. If M and cw are bounded, when T ≳ log n, we will have the same rate for MoRs as in Remark A.13. We
can also compare the rate of FedGrEM and the local single-task rates as in GMMs, which we do not repeat here.

In Corollary A.17, we set η(k)r = (1 + 2Cb)
−1( 󰁥w(k)[0]

r )−1 and let Cb ≳ Rc−1
w

√
log∆
∆ , then under Assumption A.15, it

can be shown that Assumptions A.7.(i) and (v) hold,
󰁴
1−mink∈S,r∈[R](η

(k)
r µ

(k)
r ) ≤

󰁴
3Cb

1+2Cb
+ C

√
log∆
∆ , and we can

replace η̄ with CRc−1
w for some constant C in Assumptions A.7.(ii) and A.7.(iv).

In addition, we have the following upper bound for r∗θ,T , which can be plugged into Theorem A.8 with the rates in
Proposition A.16 to obtain the upper bound of estimation error in Corollary A.17.

Proposition A.19. Under Assumption A.15, for the MoRs defined in (5), we have

r∗θ,T ≲ T 2κT−1
0 M + η̄RM3

󰁶
d

n|S| + [(η̄M) ∨ 1][RM2 +R log(Rc−1
w )]

󰁵
1

n
+ [(η̄M) ∨ 1]

󰁵
log(RK/δ)

n

+min

󰀝
h, η̄RM3

󰁵
d

n

󰀞
+ 󰂃η̄RM2[(η̄M) ∨ 1]

󰁵
d

n
,

where κ0 = 119
󰁴

3Cb

1+2Cb
+ CR3c−2

w
(log∆)3/2

∆ +CR3c−2
w Cb+CR4c−2

w
1
∆ + κ̃′

0, and κ̃′
0 satisfies 1 > κ̃′

0 > CMR
󰁴

d
n for

some C > 0.

B. Additional Details of Numerical Results
In this section, we provide more details of the numerical studies in Section 4. All experiments are implemented in R, where
EM is executed using the mclust package for GMMs and the mixreg package for MoRs. GrEM, FedEM (Marfoq et al.,
2021), TGMM (Wang et al., 2021), FedGMM (Wu et al., 2023), and FedGrEM are initialized with the estimates from local
EM. As the empirical results in Wang et al. (2021) suggested, we set the tuning parameter λ = 0.4 in TGMM, which
controls how much information to borrow from the other tasks. TGMM was originally designed for transfer learning in
Wang et al. (2021) and we ran it on each task with all the other tasks as sources. For FedGMM, we set the number of
mixtures M1 = 3.
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B.1. Additional Details of Simulations

In both examples, we generate centers θ̄r of parameters {θ(k)∗
r }k∈S as

θ̄1 = (1, 0, 3,−1, 1,−1, 0, 1, 1,−1)T ,

θ̄2 = (0, 1,−1,−3, 2,−1, 2,−1, 1,−)T ,

θ̄3 = (−3,−1, 2,−1, 2,−1, 1,−3,−1,−2)T ,

θ̄4 = (1,−2, 0,−1,−2, 2, 1, 3, 1,−1)T ,

θ̄5 = (3, 1, 2,−1,−2, 1, 2,−1,−1, 2)T .

And we generate the parameter θ(k)∗
r by

θ(k)∗
r = θ̄r + h× z

(k)
r

󰀂z(k)
r 󰀂2

, r ∈ [R],

where zr ∼ N(0p, Ip×p) and they are independent for different k and r. In the GMM simulation, the observations of the
outlier task are generated i.i.d. from N(2 · 1p, 3Ip×p). In the MoR simulation, all x(k)

i ’s are generated from N(0p, Ip×p),
and the responses {y(k)i }ni=1 of the outlier task are generated i.i.d. from the regression model y(k)i = (x

(k)
i )Tθ

(k)∗
r + 󰂃

(k)
i

with θ
(k)∗
r = 3 · 1p and 󰂃

(k)
i ∼ N(0, 1). In Figure 3, the SNR is defined to be mink∈S maxr ∕=r′∈[R] 󰀂θ

(k)∗
r − θ

(k)∗
r′ 󰀂2.

In FedGrEM, we set the number of iterations T = 1000, and the penalty parameters λ[t] are updated in iterations as follows:

λ[0] = 1, λ[t] = κ0λ
[t−1] + C

󰁳
p+ logK,

where κ = 0.1 and C = 2.

The optimization in the central update is solved by an alternating optimization procedure. We first reparameterize the
problem by ν(k) = ν̄ +∆(k), and we solve

argmin
{∆(k)}K

k=1⊆Rd,ν∈Rd

󰀝 K󰁛

k=1

󰀓n
2
󰀂ν̄ +∆(k) − 󰁨θ(k)[t]

r 󰀂22 +
√
nλ[t] · 󰀂∆(k)󰀂2

󰀔󰀞
, (6)

and assign 󰁥θ(k)[t]
r = ν̄ +∆(k). We solve (6) by the alternating optimization as follows:

(i) Set ∆(k) = 0 for all k ∈ [K];

(ii) Fix {∆(k)}Kk=1, and update ν̄ = 1
K

󰁓K
k=1(

󰁨θ(k)[t]
r −∆(k));

(iii) Fix ν̄, and update ∆(k) as

∆(k) = argmin
∆

󰁱n

2
󰀂ν̄ +∆− 󰁨θ(k)[t]

r 󰀂22 +
√
nλ[t] · 󰀂∆󰀂2

󰁲

=

󰀻
󰀿

󰀽

󰀕
1− λ[t]/

√
n

󰀂󰁨θ(k)[t]
r −ν̄󰀂2

󰀖
(󰁨θ(k)[t]

r − ν̄), if 󰀂󰁨θ(k)[t]
r − ν̄󰀂2 ≥ λ[t]

√
n
,

0, else.

We iterate (ii) and (iii) for a few times until convergence.

We also run our simulation example with different Cη values ranging from 0.55 to 1.35. The results are summarized in
the following Tables 4 and 5. It can be seen that the estimation error of mixture proportions w

(k)∗
r ’s is quite stable with

the choice of Cη , and the estimation error of parameters θ(k)∗
r first decreases then becomes stable when Cη changes from

0.55 to 1.35. In fact, according to our observation in the experiments, if we continue increasing the Cη , the algorithm
would fail to converge and output useless estimates. Overall the performance is robust to the choice of Cη within this
range [0.55, 1.35], and we can further tune it in practice, although the theoretically-guided choice already leads to a decent
performance.
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Cη / h h = 0 h = 0.25 h = 0.5 h = 0.75 h = 1 h = 1.25 h = 1.5

0.55 0.072 (0.017) 0.071 (0.015) 0.068 (0.015) 0.071 (0.016) 0.072 (0.017) 0.071 (0.017) 0.071 (0.016)
0.65 0.072 (0.017) 0.071 (0.015) 0.068 (0.015) 0.071 (0.016) 0.072 (0.017) 0.071 (0.017) 0.071 (0.016)
0.75 0.072 (0.017) 0.071 (0.018) 0.068 (0.015) 0.071 (0.016) 0.072 (0.017) 0.071 (0.019) 0.071 (0.015)
0.85 0.072 (0.017) 0.071 (0.015) 0.068 (0.015) 0.071 (0.016) 0.072 (0.019) 0.071 (0.018) 0.071 (0.015)
0.95 0.072 (0.017) 0.071 (0.016) 0.068 (0.015) 0.071 (0.016) 0.072 (0.02) 0.071 (0.018) 0.071 (0.015)
1.05 0.072 (0.017) 0.071 (0.016) 0.068 (0.015) 0.071 (0.016) 0.071 (0.017) 0.071 (0.017) 0.071 (0.015)
1.15 0.072 (0.017) 0.071 (0.016) 0.069 (0.017) 0.071 (0.016) 0.071 (0.017) 0.071 (0.017) 0.071 (0.016)
1.25 0.072 (0.017) 0.071 (0.016) 0.068 (0.015) 0.071 (0.017) 0.071 (0.017) 0.072 (0.019) 0.071 (0.017)
1.35 0.073 (0.021) 0.071 (0.016) 0.069 (0.017) 0.071 (0.016) 0.071 (0.017) 0.072 (0.018) 0.071 (0.016)

Table 4. Average of the maximum estimation error of {w(k)∗
r }k∈S,r (standard deviations) in loge scale in the GMM simulation, with

different constants Cη in learning rate η
(k)
r = Cη/ŵ

(k)[0]
r and heterogeneity parameter h.

Cη/ h h = 0 h = 0.25 h = 0.5 h = 0.75 h = 1 h = 1.25 h = 1.5 h = 1.75

0.55 1.36 (0.62) 1.47 (0.63) 1.62 (0.63) 1.71 (0.56) 1.89 (0.70) 2.07 (0.72) 2.23 (0.84) 2.44 (0.99)
0.65 1.28 (0.59) 1.38 (0.61) 1.52 (0.62) 1.62 (0.56) 1.79 (0.71) 1.99 (0.75) 2.14 (0.90) 2.33 (0.99)
0.75 1.22 (0.55) 1.34 (0.63) 1.44 (0.59) 1.54 (0.55) 1.71 (0.69) 1.93 (0.78) 2.02 (0.81) 2.25 (1.01)
0.85 1.17 (0.51) 1.30 (0.68) 1.38 (0.57) 1.49 (0.54) 1.66 (0.68) 1.88 (0.77) 1.95 (0.79) 2.22 (1.05)
0.95 1.13 (0.47) 1.30 (0.80) 1.34 (0.56) 1.45 (0.52) 1.60 (0.61) 1.82 (0.74) 1.90 (0.77) 2.14 (1.05)
1.05 1.12 (0.44) 1.27 (0.75) 1.30 (0.51) 1.42 (0.48) 1.54 (0.52) 1.79 (0.73) 1.85 (0.74) 2.07 (0.97)
1.15 1.10 (0.41) 1.25 (0.77) 1.32 (0.66) 1.39 (0.46) 1.52 (0.50) 1.79 (0.79) 1.82 (0.72) 2.04 (0.98)
1.25 1.09 (0.38) 1.23 (0.76) 1.34 (0.71) 1.40 (0.59) 1.50 (0.48) 1.78 (0.81) 1.81 (0.75) 1.99 (0.96)
1.35 1.21 (1.42) 1.24 (0.81) 1.31 (0.57) 1.36 (0.41) 1.49 (0.48) 1.81 (0.91) 1.79 (0.74) 1.99 (1.00)

Table 5. Average of the maximum estimation error of {θ(k)∗
r }k∈S,r (standard deviations) in loge scale in the GMM simulation, with

different constants Cη in learning rate η
(k)
r = Cη/ŵ

(k)[0]
r and heterogeneity parameter h.

B.2. Additional Details of Real Studies

Due to the high dimensionality of the MNIST and Fashion-MNIST datasets, we first applied tSNE (Hinton & Roweis,
2002; Van der Maaten & Hinton, 2008) to reduce the dimension to 10 then performed all methods on the transformed
datasets. In each replication, 80% data for each task is used as training data and the remaining 20% is used as test data
to calculate the mis-clustering error. We also contaminate different proportions of tasks to showcase the robustness of
FedGrEM against adversarial attacks.

We record the average computational time for each method and the results are summarized below. The experiments were
conducted with Dual Intel Xeon Gold 6226R processors (2.9 GHz) and a single core. The results are summarized in Tables
6, 7, and 8. From the performance and computational time, we can see that FedGrEM can be adapted to a federated
learning environment with hundreds of nodes, even without parallel computing. By parallelizing the local update steps in
each iteration, we can further speed things up.

The reason why gradient EM-based methods are slower than full EM-based methods is that the M-step of full EM has
an explicit expression and does not require calculating the matrix inverse since all covariances are identities. Full EM-
based methods do not apply to the problems with non-explicit M-steps and would be more time-consuming than gradient
EM-based methods if the explicit M-step expression is very complicated.

C. Label Permutation
Denote the family of permutation functions on [R] as PR.
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󰂃 / Method Local-EM Local-GrEM FedEM FedGrEM TGMM Pooled-EM Pooled-GrEM

0% 26.01 (1.22) 36.55 (1.58) 29.86 (1.48) 47.07 (2.38) 86.79 (3.69) 18.85 (2.10) 30.24 (2.97)
6.8% 25.92 (1.04) 36.19 (1.41) 29.74 (1.27) 46.76 (1.92) 85.07 (3.57) 18.28 (1.66) 29.71 (2.23)

13.6% 25.94 (1.46) 36.07 (1.46) 29.78 (1.54) 46.90 (2.31) 84.85 (3.73) 17.81 (1.47) 29.39 (2.00)
20.5% 25.62 (1.05) 35.80 (1.48) 29.49 (1.21) 46.49 (2.12) 83.84 (3.65) 17.36 (1.35) 28.56 (2.14)

Table 6. Average computational time (standard deviations) in seconds for Pen-Based Recognition of Handwritten Digits dataset.

󰂃 / Method Local-EM Local-GrEM FedEM FedGrEM TGMM Pooled-EM Pooled-GrEM

0% 83.99 (4.07) 113.81 (6.59) 93.00 (4.85) 134.69 (6.41) 299.56 (19.18) 94.87 (12.26) 166.12 (27.84)
8% 80.63 (3.92) 110.90 (5.31) 89.36 (4.57) 132.49 (6.63) 291.81 (17.09) 93.51 (13.56) 159.38 (28.76)
16% 80.06 (4.08) 110.27 (5.51) 88.52 (4.82) 133.32 (7.12) 290.71 (17.95) 89.39 (14.91) 151.79 (27.51)
24% 79.32 (3.82) 109.31 (5.20) 90.16 (4.55) 133.74 (6.47) 287.80 (15.12) 86.54 (15.00) 145.39 (25.01)

Table 7. Average computational time (standard deviations) in seconds for MNIST dataset.

󰂃 / Method Local-EM Local-GrEM FedEM FedGrEM TGMM Pooled-EM Pooled-GrEM

0% 83.89 (3.58) 113.21 (4.94) 92.82 (4.10) 134.92 (5.98) 297.01 (13.73) 96.46 (14.15) 169.07 (32.25)
8% 81.15 (3.54) 111.78 (4.89) 89.41 (4.08) 133.29 (6.01) 293.78 (14.59) 94.52 (15.28) 162.50 (30.77)
16% 80.70 (3.56) 111.28 (4.78) 89.80 (4.16) 134.38 (6.17) 293.31 (15.13) 90.28 (15.88) 154.20 (29.21)
24% 80.39 (3.46) 110.75 (4.59) 90.91 (4.17) 135.52 (5.95) 292.91 (13.93) 87.20 (15.59) 147.38 (27.98)

Table 8. Average computational time (standard deviations) in seconds for Fashion-MNIST dataset.

C.1. Label Permutation in Initialization

One challenge that hinders the practical application of FedGrEM (and other federated EM algorithms) and our theoreti-
cal framework relates to the initialization condition outlined in Assumption 3.5 (more rigorously, Assumption A.7). As
is common in many unsupervised learning problems, the parameters are estimated up to a label permutation. Our re-
sults still hold if the initialization condition holds up to a permutation, i.e. there exists a permutation π ∈ PR such that
max

k∈S,r∈[R]
| 󰁥w(k)[0]

π(r) − w
(k)∗
r | ≤ r∗w, max

k∈S,r∈[R]
󰀂󰁥θ(k)[0]

π(r) − θ
(k)∗
r 󰀂2 ≤ r∗θ , however, it necessitates the presence of a shared

permutation π ∈ PR among the tasks in S. However, in all clustering methods typically employed for initialization in in-
dividual tasks, the estimations are inherently invariant to permutations, and different tasks may yield distinct permutations.
To the best of our knowledge, there has been limited discussion in the existing literature on unsupervised FDL regarding
this issue, with the exception of Tian et al. (2022). We generalized the solutions proposed in Tian et al. (2022) to address
the permutation issue in initialization. By ensuring that different tasks in S share the same permutation, we make FedGrEM
and our accompanying theory applicable in practice.

C.2. Alignment Algorithms

We define the following score function of the permutations π = {πk}Kk=1 ∈ (PR)⊗K :

score(π,K) =

R󰁛

r=1

󰁛

k ∕=k′∈[K]

󰀂󰁥θ(k)[0]
πk(r)

− 󰁥θ(k)[0]
πk′ (r)

󰀂2.

Intuitively, the score is smaller if the permutations π = {πk}Kk=1 ∈ (PR)⊗K are more aligned, serving as the basis for
adjusting the permutations of each task. We also define the best permutation for task k ∈ S as

π∗
k = argmin

πk∈PR

R󰁛

r=1

󰀂󰁥θ(k)[0]
πk(r)

− θ(k)∗
r 󰀂2.
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Next, we introduce an exhaustive search algorithm for permutation alignment, which seeks the permutations minimizing
the score.

Permutation Alignment Algorithm 1 (Exhaustive search): Let 󰁥π = argmin
π∈(PR)⊗K

score(π,K).

Under the assumption detailed below, we demonstrate that the output permutations in tasks of S from the exhaustive search
algorithm are well-aligned.

Assumption C.1. The following conditions hold:

(i) ∆ > 2+2󰂃
1−󰂃 h+ 4+4󰂃

1−󰂃 maxk∈S minπk∈PR maxr∈[R] 󰀂󰁥θ
(k)[0]
πk(r)

− θ
(k)∗
r 󰀂2;

(ii) 󰂃 < 1/2.

Theorem C.2. Under Assumption C.1, for Alignment Algorithm 1 (Exhaustive search), there exists a permutation ι ∈ PR

such that 󰁥πk = ι ◦ π∗
k for all k ∈ S.

The computational cost of the exhaustive search algorithm is O((R!)K ·K2R) as it explores all the possible permutations
on [R] for all K tasks and takes O(K2R) time to calculate the score for each permutation. We introduce the following
stepwise search algorithm which can reduce the computational cost to O(R!K ·K2R).

Permutation Alignment Algorithm 2 (Stepwise search): For k = 1 : K, with {󰁥πk′}k−1
k′=1 fixed, set 󰁥πk = argmin

πk∈PR

score({󰁥πk′}k−1
k′=1 ∪ πk, k). Finally, let 󰁥π = {󰁥πk}Kk=1.

Under the following assumption, we show that the output permutations in tasks of S from the stepwise search algorithm
are well-aligned.

Assumption C.3. Suppose there are no outlier tasks in the first K0 tasks and

(i) ∆ > 2K0+K󰂃
K0−K󰂃h+ 6K0+K󰂃

K0−K󰂃 maxk∈S minπk∈PR maxr∈[R] 󰀂󰁥θ
(k)[0]
πk(r)

− θ
(k)∗
r 󰀂2;

(ii) K0 > K󰂃;

(iii) 󰂃 < 1/2.

Theorem C.4. Under Assumption C.3, there exists a permutation ι ∈ PR such that 󰁥πk = ι ◦ π∗
k for all k ∈ S.

The limitation of the stepwise search algorithm is that it requires the first K0 tasks to be non-outlier tasks. One potential
solution is running the algorithm multiple times with a random shuffling of tasks and then picking the permutations based
on recurring patterns observed across multiple experiment runs. We leave a full investigation of this random algorithm for
future study.

D. Additional Discussions
We want to comment a bit more about our FedGrEM algorithm.

• When mixture proportions {w(k)∗
r }Kk=1 are also similar across tasks, we can apply the same aggregation by regular-

ization in the central update to further improve the performance of FedGrEM. The same analysis tools can be applied
to obtain stronger results.

• When there exist various computational capabilities across different tasks, we can replace the current local gradient
descent with full local data by local stochastic gradient descent (SGD) with small batches of local data. This would
decrease the computational cost for each task. Moreover, instead of including all users in each iteration round, we can
randomly sample a few users in each round to update their local estimates and run the central update with only these
active users. These two approaches could further decrease the computational cost. And the size of SGD batches and
the proportion of active users in each round could depend on the computational and communicational budget for each
user, which could differ from user to user.
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• The current communicational cost for FedGrEM or FedEM (Marfoq et al., 2021) is already low because they only
pass the gradients across tasks in each iteration. The sampling of active users could help further decrease the commu-
nication cost.

• Our current analysis and the method FedGrEM can be extended to a fully decentralized version with the same idea
used by Algorithm 4 in (Marfoq et al., 2021). In each iteration, instead of sending all local estimates to the central
server, each node can send their local estimates only to their neighbors (the nodes that are closest to them in the geo-
metric sense or the communication cost sense) and perform the aggregation locally with the estimates received from
the neighbors. We can use the current theoretical framework to analyze the estimation error of this fully decentralized
algorithm and derive similar results.

• We can consider other types of attacks and contaminations. For example, instead of the corruption of the entire dataset
from some users, we can assume partial observations are contaminated. In this case, we can create a robust version
of local estimates by using truncated gradients, similar to the gradient clipping used in differential privacy (Varshney
et al., 2022). Aggregating these robust local estimates in the central update can make the whole procedure robust to
both observation-level and user-level attacks.

• We assume that the central update can be exactly solved and we use alternating optimization to solve it in practice. We
did not directly analyze the alternating optimization itself because the EM procedure is already very complicated to
study due to its iterative nature. We believe that this is an important question. One nice characteristic about our central
update in FedGrEM (Algorithm 1) is that it is a convex problem. There exist convergence results about alternating
optimization, such as (Li et al., 2019; Guminov et al., 2021; Tupitsa et al., 2021), which can be helpful. We can also
consider other optimization methods such as proximal gradient descent (Polson et al., 2015). We will work on this
problem in the future.

We also want to point out the possibility of generalizing our theory and method to high-dimensional or non-i.i.d. data.

• For i.i.d. high-dimensional data, which is very common in healthcare and biomedical studies, we can add an additional
regularization term (e.g., ℓ1-penalty) for the global estimator ν̄ in the central update of FedGrEM (Algorithm 1).
Another solution is to truncate the current local estimator (one-step gradient descent) by a coordinate-wise soft-
thresholding function and keep the central update as it is. The challenges of analyzing such a problem are mainly
aligned with the challenges in other high-dimensional problems. For example, the strong concavity would fail for
the empirical surrogate risk function 󰁥Q(k). Instead, as one of the standard techniques used in the high-dimensional
analysis, we need to first prove that the estimators belong to a small subset (usually a cone in Rd), and within this
subset, the so-called restricted strong convexity or concavity (RSC) holds. In the context of federated EM algorithms,
the analysis would be more complicated due to the nature of the iterative procedure. Some analysis has been done for
the single-task EM in (Cai et al., 2019), and some techniques therein might be helpful.

• For non-i.i.d. data, for example, the data of social networks, we can first apply some embedding methods to transform
the original data into a standard unsupervised learning problem. For instance, for adjacency or Laplacian matrices
in social networks, we can compute its spectral embedding and use the embedding as the input for the federated EM
algorithms. The challenge here is that the embedded data is not independent. But in many situations, the dependence
within the embedded data can be shown to be somewhat weak, which is sufficient to derive some theoretical guarantees
(Rohe et al., 2011; Tang & Priebe, 2018; Abbe et al., 2020).

E. Proofs
E.1. Proof of Theorem A.8

Let us first fix an S ⊆ [K] and introduce the following key lemma.
Lemma E.1. (Duan & Wang, 2022) The following results hold:

(i) If λ[t] ≥ 5
√
nmaxk∈S 󰀂󰁨θ(k)[t]

r −θ(k)∗
r 󰀂2

1−2󰂃 , then

max
k∈S

󰀂󰁥θ(k)[t]
r − θ(k)∗

r 󰀂2 ≤ 1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

(󰁨θ(k)[t]
r − θ(k)∗

r )

󰀐󰀐󰀐󰀐󰀐
2

+
6

1− 2󰂃
min

󰁱
3h,

2λ[t]

5
√
n

󰁲
+

2λ[t]

√
n
󰂃.
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(ii) If we further have λ[t] ≥ 15
√
n

1−2󰂃 h, then

max
k∈S

󰀂󰁥θ(k)[t]
r − θ(k)∗

r 󰀂2 ≤ 1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

(󰁨θ(k)[t]
r − θ(k)∗

r )

󰀐󰀐󰀐󰀐󰀐
2

+ 2h+
2λ[t]

√
n
󰂃.

Define a random event V which is the intersection of the following three events:

• The event in Assumption A.3.(ii) holds for all k ∈ S with failure probability δ
3RK ;

• The event in Assumption A.3.(ii) holds for all k ∈ S with failure probability δ
3RK ;

• The event in Assumption A.5.(iii) holds with failure probability δ
3 .

Then by the union bound, P(V) ≥ 1 − δ. In the following analysis, we condition on V . Hence all arguments hold with
probability at least 1− δ.

(I) Part 1: Iteration round t = 1.

By Lemma E.1, when λ[t] ≥ 5
√
n

1−2󰂃 maxk∈S maxr∈[R] 󰀂󰁨θ
(k)[1]
r − θ

(k)∗
r 󰀂2:

max
k∈S

󰀂󰁥θ(k)[1]
r − θ(k)∗

r 󰀂2 ≤ 1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

(󰁨θ(k)[1]
r − θ(k)∗

r )

󰀐󰀐󰀐󰀐󰀐
2

+
6

1− 2󰂃
min

󰁱
3h,

2λ[1]

5
√
n

󰁲
+

2λ[1]

√
n
󰂃.

Note that

1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

(󰁨θ(k)[1]
r − θ(k)∗

r )

󰀐󰀐󰀐󰀐󰀐
2

≤ 1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

󰀗
󰁥θ(k)[0]
r − θ(k)∗

r + η(k)r

∂

∂θr
Q(k)(󰁥θ(k)[0]| 󰁥w(k)[0], 󰁥θ(k)[0])

󰀘󰀐󰀐󰀐󰀐󰀐
2󰁿 󰁾󰁽 󰂀

[1]

+
1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

η(k)r

󰀗
∂

∂θr
Q(k)(󰁥θ(k)[0]| 󰁥w(k)[0], 󰁥θ(k)[0])− ∂

∂θr
󰁥Q(k)(󰁥θ(k)[0]| 󰁥w(k)[0], 󰁥θ(k)[0])

󰀘󰀐󰀐󰀐󰀐󰀐
2󰁿 󰁾󰁽 󰂀

[2]

.

For [1], we have

[1] ≤ 1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

󰀗
󰁥θ(k)[0]
r − θ(k)∗

r + η(k)r

∂

∂θr
q(k)(󰁥θ(k)[0])

󰀘󰀐󰀐󰀐󰀐󰀐
2

+
1

|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

η(k)r

󰀗
∂

∂θr
Q(k)(󰁥θ(k)[0]| 󰁥w(k)[0], 󰁥θ(k)[0])− ∂

∂θr
q(k)(󰁥θ(k)[0])

󰀘󰀐󰀐󰀐󰀐󰀐
2

≤ 1

|S|
󰁛

k∈S

󰁴
1− η

(k)
r µ

(k)
r 󰀂󰁥θ(k)[0] − θ(k)∗

r 󰀂2 +
1

|S|
󰁛

k∈S

γ ·
R󰁛

r=1

η(k)r (| 󰁥w(k)[0]
r − w(k)∗

r |+ 󰀂󰁥θ(k)[0]
r − θ(k)∗

r 󰀂2)

≤
󰀕󰁵

1− min
k∈S,r∈[R]

(η
(k)
r µ

(k)
r ) + γη̄R

󰀖
max
k∈S

max
r∈[R]

󰀂󰁥θ(k)[0]
r − θ(k)∗

r 󰀂2 + γη̄R ·max
k∈S

max
r∈[R]

| 󰁥w(k)[0]
r − w(k)∗

r |,

where the first part of the second inequality comes from the classical result of gradient descent (e.g., see Theorem 3.4 in
Lan (2020)).

Similarly, we can show that

max
k∈S

󰀂󰁨θ(k)[1]
r − θ(k)∗

r 󰀂2 ≤ κ0G
[0] + η̄E1

󰀓
n,

δ

3RK

󰀔
.
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Therefore λ[1] = 󰁨κ0λ
[0] + 15

√
n[W(n, δ

3RK , r∗θ) + 2η̄E1(n, δ
3RK )] = 15

119󰁨κ0
√
n(r∗w + r∗θ) + 15

√
n[W(n, δ

3RK , r∗θ) +

2η̄E1(n, δ
3RK )] ≥ 5

√
n

1−2󰂃 maxk∈S 󰀂󰁨θ(k)[1]
r −θ

(k)∗
r 󰀂2 indeed holds, where 󰁨κ0 = 119

󰁫󰁴
1−mink∈S,r∈[R](η

(k)
r µ

(k)
r )+γη̄R+

κR
󰁬
.

For [2], we have

[2] ≤ η̄E1
󰀓
n,

δ

3RK

󰀔
.

Combine the bounds of [1] and [2]:

max
k∈S

max
r∈[R]

󰀂󰁥θ(k)[1]
r − θ(k)∗

r 󰀂2 ≤
󰀕󰁵

1− min
k∈S,r∈[R]

(η
(k)
r µ

(k)
r ) + γη̄R

󰀖
max
k∈S

max
r∈[R]

(󰀂󰁥θ(k)[0]
r − θ(k)∗

r 󰀂2 + | 󰁥w(k)[0]
r − w(k)∗

r |)

+
6

1− 2󰂃
min

󰁱
3h,

2λ[1]

5
√
n

󰁲
+

2λ[1]

√
n
󰂃+ η̄E1

󰀓
n,

δ

3RK

󰀔
.

On the other hand,

max
k∈S

max
r∈[R]

| 󰁥w(k)[0]
r − w(k)∗

r | ≤ max
k∈S

max
r∈[R]

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

P(z(k) = r|x(k)
i , 󰁥w(k)[0], 󰁥θ(k)[0])− E

󰀅
P(z(k) = r|x(k)

i , 󰁥w(k)[0], 󰁥θ(k)[0])
󰀆
󰀏󰀏󰀏󰀏󰀏

+max
k∈S

max
r∈[R]

󰀏󰀏󰀏E
󰀅
P(z(k) = r|x(k)

i , 󰁥w(k)[0], 󰁥θ(k)[0])
󰀆
− w(k)∗

r

󰀏󰀏󰀏

≤ W
󰀓
n,

δ

3RK
, r∗θ

󰀔
+ κmax

k∈S

R󰁛

r=1

(󰀂󰁥θ(k)[0]
r − θ(k)∗

r 󰀂2 + | 󰁥w(k)[0]
r − w(k)∗

r |)

≤ W
󰀓
n,

δ

3RK
, r∗θ

󰀔
+ κRmax

k∈S
max
r∈[R]

(󰀂󰁥θ(k)[0]
r − θ(k)∗

r 󰀂2 + | 󰁥w(k)[0]
r − w(k)∗

r |). (7)

As a result,

max
k∈S

max
r∈[R]

(󰀂󰁥θ(k)[1]
r − θ(k)∗

r 󰀂2 + | 󰁥w(k)[1]
r − w(k)∗

r |)

≤
󰀕󰁵

1− min
k∈S,r∈[R]

(η
(k)
r µ

(k)
r ) + γη̄R+ κR

󰀖
max
k∈S

max
r∈[R]

(󰀂󰁥θ(k)[0]
r − θ(k)∗

r 󰀂2 + | 󰁥w(k)[0]
r − w(k)∗

r |)

+
6

1− 2󰂃
min

󰁱
3h,

2λ[1]

5
√
n

󰁲
+

2λ[1]

√
n
󰂃+ η̄E1

󰀓
n,

δ

3RK

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔
.

Denote G[t] = maxk∈S maxr∈[R](󰀂󰁥θ
(k)[t]
r −θ

(k)∗
r 󰀂2+ | 󰁥w(k)[t]

r −w
(k)∗
r |) and κ0 =

󰁴
1−mink∈S,r∈[R](η

(k)
r µ

(k)
r )+γη̄R+

κR. Then

G[1] ≤ κ0G
[0] +

6

1− 2󰂃
min

󰁱
3h,

2λ[1]

5
√
n

󰁲
+

2λ[1]

√
n
󰂃+ η̄E1

󰀓
n,

δ

3RK

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔

≤ κ0G
[0] +

󰀗
12

5(1− 2󰂃)
+ 2󰂃

󰀘
λ[1]

√
n
+ η̄E1

󰀓
n,

δ

3RK

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔

≤ κ0G
[0] +

118

15
· λ

[1]

√
n
+ η̄E1

󰀓
n,

δ

3RK

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔
.

(II) Part 2: Iteration round t ≥ 2.

Repeating the analysis in (I), we can see that when λ[t] ≥ 15
√
nκ0G

[t−1] + 15
√
nη̄E1(n, δ

3RK ) ≥

15
√
n
󰀓󰁴

1−mink∈S,r∈[R](η
(k)
r µ

(k)
r ) + γη̄R

󰀔
G[t−1] + 15

√
nη̄E1(n, δ

3RK ),

G[t] ≤ κ0G
[t−1] +

118

15
· λ

[t]

√
n
+ η̄E1

󰀓
n,

δ

3RK

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔
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≤ 119

15
· λ

[t]

√
n
+ η̄E1

󰀓
n,

δ

3RK

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔
. (8)

Recall our setting of {λ[t]}Tt=1:

λ[0] =
15

119

√
n(r∗w + r∗θ),

λ[t] = κ̃0λ
[t−1] + 15

√
n
󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
.

Hence λ[t] ≥ 15
√
nκ0G

[t−1] + 15
√
nη̄E1(n, δ

3RK ) indeed holds and

λ[t] = (󰁨κ0)
tλ[0] +

1− (󰁨κ0)
t

1− 󰁨κ0
15
√
n
󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
, (9)

which together with (8) implies

G[t] ≤ (󰁨κ0)
t(r∗w + r∗θ) +

󰀕
119

1− 󰁨κ0
+ 1

󰀖󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
≤ r∗θ, (10)

when t ≥ 1. The last inequality holds due to Assumption A.7. Similar to (7), we have

max
k∈S

max
r∈[R]

| 󰁥w(k)[t]
r − w(k)∗

r | ≤ W
󰀓
n,

δ

3RK
, r∗θ

󰀔
+ κR ·G[t−1]

≤ W
󰀓
n,

δ

3RK
, r∗θ

󰀔
+

119

15
(󰁨κ0)

t−1κR(r∗w + r∗θ)

+ κR

󰀕
119
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3RK
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󰀔
+ 2η̄E1

󰀓
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δ

3RK

󰀔󰁬

≤ r∗w,

where the last inequality is due to Assumption A.7.

(III) Part 3: The case when h ≤ 1
3 [W

󰀃
n, δ

3RK , r∗θ
󰀄
+ 2η̄E1

󰀃
n, δ

3RK

󰀄󰀆
.

In this case, we have λ[t] ≥ 15
√
n
󰀅
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󰀃
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3RK , r∗θ
󰀄
+ 2η̄E1

󰀃
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√
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1−2󰂃 h for t ≥ 1. Then by Lemma E.1.(ii),
󰁥θ(k)[t]’s are equal for k ∈ S when t ≥ 1. Thus
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which implies that
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when t ≥ 2. By induction,

G[t] ≤ κt−1
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3R

󰀔
+

6

1− 2󰂃

t󰁛

t′=2

κt−t′

0 ·min
󰁱
3h,

2λ[t′]

5
√
n

󰁲

󰁿 󰁾󰁽 󰂀
[3]

+
2󰂃√
n

t󰁛

t′=2

κt−t′

0 · λ[t′]

󰁿 󰁾󰁽 󰂀
[4]
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+W
󰀓
n,

δ

3RK
, r∗θ

󰀔
.

By (9),

[3] ≤ min

󰀝
3
1− κt−1

0

1− κ0
h,

2

5
(t− 1)(κ̃0)

t · λ
[0]

√
n
+

6

1− κ̃0
· 1− κt−1

0

1− κ0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞
,

[4] ≤ (t− 1)(κ̃0)
tλ[0] +

15

1− κ̃0
· 1− κt−1

0

1− κ0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬√
n.

Therefore,

G[t] ≤ (κ̃0/119)
t−1G[1] +

1

1− κ0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ η̄E2

󰀓
n, |S|, δ

3R

󰀔󰁬

+
18

1− κ̃0/119
·min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃 ·

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
+
󰀓2
3
+

2

5
· 18

󰀔
· (t− 1)(κ̃0)

tλ
[0]

√
n

≤ 119

15
κ̃0(κ̃0/119)

t−1

󰀝
λ[0]

√
n
+
󰀓 119

1− κ̃0
+ 1

󰀔󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞

+
1

1− κ0

󰁫
η̄E2

󰀓
n, |S|, δ

3R

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔󰁬

+
18

1− κ̃0/119
·min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃 ·

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
+

118

15
· (t− 1)(κ̃0)

tλ
[0]

√
n

≤ κ̃0(κ̃0/119)
t−1(r∗w + r∗θ) +

󰀗
119

15
κ̃0(κ̃0/119)

t−1 +
118

119
(t− 1)(κ̃0)

t

󰀘
(r∗w + r∗θ)

+
1

1− κ0

󰁫
η̄E2

󰀓
n, |S|, δ

3R

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔󰁬

+
18

1− κ̃0/119
·min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃 ·

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
.

Note that κ̃0(κ̃0/119)
t−1 + 119

15 κ̃0(κ̃0/119)
t−1 + 118

119 (t − 1)(κ̃0)
t ≤ 9κ̃0(κ̃0/119)

t−1 + 118
119 (t − 1)(κ̃0)

t ≤ 10t(κ̃0)
t,

hence

G[t] ≤ 20t(κ̃0)
t−1(r∗w ∨ r∗θ) +

󰀗
119

15
κ̃0(κ̃0/119)

t−1 +
118

119
(t− 1)(κ̃0)

t

󰀘
(r∗w + r∗θ)

+
1

1− κ0

󰁫
η̄E2

󰀓
n, |S|, δ

3R

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ

󰀔󰁬

+
18

1− κ̃0/119
·min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃 ·

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬
. (11)

By Assumption 4, we obtain maxk∈S maxr∈[R] 󰀂󰁥θ
(k)[t]
r − θ

(k)∗
r 󰀂2 ≤ G[t] ≤ r∗θ .

Next, let us shrink the contraction radius to obtain the desired rate. Recall that

At =

󰀗
9κ̃0

󰀓 κ̃0

119

󰀔t−1

+
118

119
(t− 1)κ̃t−1

0

󰀘
(r∗w + r∗θ) +

1

1− κ̃0/119
η̄E2

󰀓
n, |S|, δ

3R

󰀔

26



Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms

+
18

1− κ̃0/119
min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3R

󰀔󰁬󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃

󰀗
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3R

󰀔󰀘
,

and
At +

18

1− κ̃0/119
W

󰀓
n,

δ

3RK
, r∗θ,t

󰀔
= r∗θ,t+1,

with r∗θ,1 := r∗θ . Then we repeat the previous analysis in part (III) for t = 1 : T , then we will get the same rate as in (11)
but replace r∗θ with r∗θ,T in the term 1

1−κ0

󰀅
η̄E2(n, |S|, δ

3R ) +W(n, δ
3RK , r∗θ)

󰀆
.

(IV) Part 4: Combining this rate (which holds when h ≤ 1
3 [W(n, δ

3RK , r∗θ) + 2η̄E1(n, δ
3RK )]) with (10) (which holds for

any h ≥ 0 but is only used when h > 1
3 [W(n, δ

3RK , r∗θ) + 2η̄E1(n, δ
3RK )]) completes our proof.

E.2. Proof of Proposition A.11

We first introduce two useful lemmas.

Lemma E.2 (Theorem 3 in Maurer & Pontil (2021)). Let f : Xn → R and X = (X1, . . . , Xn) be a vector of independent
random variables with values in a space X . Then for any t > 0 we have

P(f(X)− Ef(X) > t) ≤ exp

󰀻
󰀿

󰀽− t2

32e
󰀐󰀐󰀐
󰁓n

i=1 󰀂fi(X)󰀂2ψ2

󰀐󰀐󰀐
∞

󰀼
󰁀

󰀾 ,

where fi(X) as a random function of x is defined to be (fi(X))(x) := f(x1, . . . , xi−1, Xi, xi+1, . . . , Xn) −
EXi [f(x1, . . . , xi−1, Xi, xi+1, . . . , Xn)], the sub-Gaussian norm 󰀂Z󰀂ψ2

:= supd≥1{󰀂Z󰀂d/
√
d}, and 󰀂Z󰀂d =

(E|Z|d)1/d.

Lemma E.3 (Vectorized contraction of Rademacher complexity, Corollary 1 in Maurer (2016)). Suppose {󰂃ir}i∈[n],r∈[R]

and {󰂃i}ni=1 are independent Rademacher variables. Let F be a class of functions f : Rd → S ⊆ RR and h : S → R is
L-Lipschitz under ℓ2-norm, i.e., |h(y)− h(y′)| ≤ L󰀂y− y′󰀂2, where y = (y1, . . . , yR)

T , y′ = (y′1, . . . , y
′
R)

T ∈ S . Then

E sup
f∈F

n󰁛

i=1

󰂃ih(f(xi)) ≤
√
2LE sup

f∈F

n󰁛

i=1

R󰁛

r=1

󰂃irfr(xi),

where fr(xi) is the r-th component of f(xi) ∈ S ⊆ RR.

Define the posterior

γ
(r)

θ(k),w(k)(x
(k)) =

w
(k)
r exp{(x(k))T (θ

(k)
r − θ

(k)
1 )− 1

2 (󰀂θ
(k)
r 󰀂22 − 󰀂θ(k)

1 󰀂22)}
w

(k)
1 +

󰁓R
r=2 w

(k)
r exp{(x(k))T (θ

(k)
r − θ

(k)
1 )− 1

2 (󰀂θ
(k)
r 󰀂22 − 󰀂θ(k)

1 󰀂22)}
= P(z(k) = r|x(k);θ(k),w(k)), r ∈ [R],

where w(k) = {w(k)}Kk=1 and θ(k) = {θ(k)
r }Kk=1.

By definition, q(k)(θ) = Q(k)(θ|θ(k)∗,w(k)∗) = − 1
2E

󰀅󰁓R
r=1 γ

(r)

θ(k)∗,w(k)∗(x
(k))󰀂x(k)−θ󰀂22

󰀆
, hence µ(k)

r = L
(k)
r = w

(k)∗
r

with r∗1 = +∞. And

󰁥Q(k)(θ|θ′,w′) = − 1

2nk

n󰁛

i=1

R󰁛

r=1

γ
(r)
θ′,w′(x

(k)
i )󰀂x(k)

i − θ󰀂22,

∂

∂θr
Q(k)(θ|θ′,w′) = −Ex(k)

󰀅
γ
(r)
θ′,w′(x

(k))(θ − x(k))
󰀆
,

∂

∂θr
󰁥Q(k)(θ|θ′,w′) = − 1

nk

n󰁛

i=1

γ
(r)
θ′,w′(x

(k)
i )(θ − x

(k)
i ).
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From the proof of Theorem 1 in Tian et al. (2022), we have κ ≍ c−2
w R2 exp{−C∆2}, γ ≍ M2c−2

w R2 exp{−C∆2} with
r2 = Cb∆. Consider r∗θ = r∗1 ∧ r∗2 = Cb∆ ≤ M . In the remaining proof of Proposition 1, we will derive the expressions
of W, E1 and E2. Let

V = sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

P(z(k) = r|x(k)
i ;w,θ)− Ex(k)

󰀅
P(z(k) = r|x(k);w,θ)

󰀆󰀏󰀏󰀏󰀏

= sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

γ
(r)
θ,w(x

(k)
i )− E

󰀅
γ
(r)
θ,w(x(k))

󰀆󰀏󰀏󰀏󰀏.

By bounded difference inequality (Corollary 2.21 in Wainwright (2019)), w.p. at least 1− δ,

V ≤ EV +

󰁵
log(1/δ)

n
.

And by classical symmetrization arguments (e.g., see Proposition 4.11 in Wainwright (2019)),

EV ≤ 2

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
i γ

(k)
θ,w(x

(k)
i )

󰀏󰀏󰀏󰀏.

Let g(k)ir = (θr−θ1)
Tx

(k)
i − 1

2 (󰀂θr󰀂
2
2−󰀂θ1󰀂22)+ logwr− logw1, ϕ(x) = exp{xr}

1+
󰁓R

r=2 exp{xr}
, where ϕ is 1-Lipschitz (w.r.t.

ℓ2-norm) and γ
(r)
θ,w(x) = ϕ({g(k)ir }Rr=2). Then by Lemma E.3,

2

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
i γ

(k)
θ,w(x

(k)
i )

󰀏󰀏󰀏󰀏

≲ 1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

R󰁛

r=2

󰂃
(k)
ir g

(k)
ir

󰀏󰀏󰀏󰀏

≲ 1

n

R󰁛

r=2

Ex(k)E󰂃 sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir g

(k)
ir

󰀏󰀏󰀏󰀏

≲
R󰁛

r=2

󰀫
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (θr − θ1)

Tx
(k)
i

󰀏󰀏󰀏󰀏+
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (󰀂θr󰀂22 − 󰀂θ1󰀂22)

󰀏󰀏󰀏󰀏

+
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (logwr − logw1)

󰀏󰀏󰀏󰀏

󰀬

≲
R󰁛

r=2

󰀫
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (θr − θ(k)∗

r )Tx
(k)
i

󰀏󰀏󰀏󰀏+
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (θ1 − θ

(k)∗
1 )Tx

(k)
i

󰀏󰀏󰀏󰀏

+
1

n
Ex(k)E󰂃

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (θ(k)∗

r − θ
(k)∗
1 )Tx

(k)
i

󰀏󰀏󰀏󰀏+
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (θr + θ1)

T (θr − θ1)

󰀏󰀏󰀏󰀏

+
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
ir (logwr − logw1)

󰀏󰀏󰀏󰀏

󰀬
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≲ RMξ

󰁵
d

n
+ [RM2 +R log(Rc−1

w )]

󰁵
1

n
,

which implies

V ≲ RMξ

󰁵
d

n
+ [RM2 +R log(Rc−1

w )]

󰁵
1

n
+

󰁵
log(1/δ)

n
≍ W(n, δ, ξ).

w.p. at least 1− δ.

Next, let

U = sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

󰀐󰀐󰀐󰀐
1

n

n󰁛

i=1

γ
(r)
θ,w(x

(k)
i )x

(k)
i − E

󰀅
γ
(r)
θ,w(x(k))x(k)

󰀆󰀐󰀐󰀐󰀐
2

= sup
󰀂u󰀂2≤1

sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

γ
(r)
θ,w(x

(k)
i )(x

(k)
i )Tu− E

󰀅
γ
(r)
θ,w(x(k))(x(k))Tu

󰀆󰀏󰀏󰀏󰀏

≤ 2 max
j=1:N

sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

γ
(r)
θ,w(x

(k)
i )(x

(k)
i )Tuj − E

󰀅
γ
(r)
θ,w(x(k))(x(k))Tuj

󰀆󰀏󰀏󰀏󰀏

󰁿 󰁾󰁽 󰂀
Uj

,

where {uj}Nj=1 is a 1/2-cover of the unit ball B(0, 1) in Rd w.r.t. ℓ2-norm, with N ≤ 5d (by Example 5.8 in (Wain-

wright, 2019)). We first bound Uj − EUj as follows. Fix x
(k)
1 , . . . ,x

(k)
i−1,x

(k)
i+1, . . . ,x

(k)
n and define s

(k)
ir (x

(k)
i ) =

Vj − E[Vj |x(k)
1 , . . . ,x

(k)
i−1,x

(k)
i+1, . . . ,x

(k)
n ]. Then

|s(k)ir (x
(k)
i )| ≤ 1

n
sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

󰀏󰀏󰀏γ(r)
θ,w(x

(k)
i )(x

(k)
i )Tuj

󰀏󰀏󰀏

󰁿 󰁾󰁽 󰂀
W1

+
2

n
E

󰀏󰀏󰀏󰀏󰀏 sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

γ
(r)
θ,w(x

(k)
i )(x

(k)
i )Tuj

󰀏󰀏󰀏󰀏󰀏

󰁿 󰁾󰁽 󰂀
W2

,

where [E(W1+W2)
d]1/d ≤ (EW d

1 )
1/d+(EW d

2 )
1/d, and (EW d

1 )
1/d, (EW d

2 )
1/d ≤ CM

√
d/n with some constantC > 0.

Then by Lemma E.2,

P(Uj − EUj ≥ t) ≲ exp

󰀝
− Cnt2

M2

󰀞
.

By a similar procedure used in deriving W(n, δ, ξ), we can show that

EUj ≲ RM2r∗θ

󰁵
d

n
+ [RM3 +RM log(Rc−1

w )]

󰁵
1

n
.

As a consequence,

P
󰀕
Uj ≥ CRM2r∗θ

󰁵
d

n
+ C[RM3 +RM log(Rc−1

w )]

󰁵
1

n
+ t

󰀖
≲ exp

󰀝
− Cnt2

M2

󰀞
.

Therefore

P
󰀕

max
j=1:N

Uj ≥ CRM2r∗θ

󰁵
d

n
+ C[RM3 +RM log(Rc−1

w )]

󰁵
1

n
+ t

󰀖
≲ N exp

󰀝
− Cnt2

M2

󰀞
,

which implies that

U ≲ (RM2r∗θ +M)

󰁵
d

n
+ [RM3 +RM log(Rc−1

w )]

󰁵
1

n
+M

󰁵
log(1/δ)

n
,
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w.p. at least 1− δ. On the other hand, by W(n, δ, r∗θ), we have

sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

󰀐󰀐󰀐󰀐
1

n

n󰁛

i=1

γ
(r)
θ,w(x

(k)
i )θ−E

󰀅
γ
(r)
θ,w(x(k))θ

󰀆󰀐󰀐󰀐󰀐
2

≲
󰀗
RMξ

󰁵
d

n
+[RM2+R log(Rc−1

w )]

󰁵
1

n
+

󰁵
log(1/δ)

n

󰀘
·M,

hence

E1(n, δ) ≍ (RM2r∗θ +M)

󰁵
d

n
+ [RM3 +RM log(Rc−1

w )]

󰁵
1

n
+M

󰁵
log(1/δ)

n

≍ RM3

󰁵
d

n
+ [RM3 +RM log(Rc−1

w )]

󰁵
1

n
+M

󰁵
log(1/δ)

n
,

where the last inequality is due to r∗θ = r∗1 ∧ r∗2 = Cb∆ ≤ M .

Let

Z = sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

0<≤η(k)
r ≤η̄

1

n|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

η(k)r ·
n󰁛

i=1

󰀃
γ
(k)
θ,w(x

(k)
i )x

(k)
i − E[γ(k)

θ,w(x(k))x(k)]
󰀄
󰀐󰀐󰀐󰀐󰀐
2

= sup
󰀂u󰀂2≤1

sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

0<≤η(k)
r ≤η̄

1

n|S|

󰀏󰀏󰀏󰀏󰀏
󰁛

k∈S

η(k)r ·
n󰁛

i=1

󰀃
γ
(k)
θ,w(x

(k)
i )(x

(k)
i )Tu− E[γ(k)

θ,w(x(k))(x(k))Tu]
󰀄
󰀏󰀏󰀏󰀏󰀏

≤ sup
j′1,...,j

′
k=1:N ′

sup
j=1:N

2

n|S| sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

󰀏󰀏󰀏󰀏󰀏
󰁛

k∈S

ηj′k ·
n󰁛

i=1

󰀃
γ
(k)
θ,w(x

(k)
i )(x

(k)
i )Tuj − E[γ(k)

θ,w(x(k))(x(k))Tuj ]
󰀄
󰀏󰀏󰀏󰀏󰀏

󰁿 󰁾󰁽 󰂀
Z(j,j′1,...,j

′
k)

,

where {uj}Nj=1 is a 1/2-cover of the unit ball B(0, 1) in Rd w.r.t. ℓ2-norm with N ≤ 5d and {ηj′}N
′

j′=1 is a 1/2-cover of

[0, 1] with N ′ ≤ 2. We first bound Z(j, j′1, . . . , j
′
k)−EZ(j, j′1, . . . , j

′
k) as follows. Fix x

(k)
1 , . . . ,x

(k)
i−1,x

(k)
i+1, . . . ,x

(k)
n and

define v
(k)
ir (x

(k)
i ) = Z(j, j′1, . . . , j

′
k)− E[Z(j, j′1, . . . , j

′
k)|{x

(k)
i }k∈S,i∈[n]\{x

(k)
i }]. Then

|v(k)ir (x
(k)
i )| ≤ ηjk

n|S| sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

󰀏󰀏󰀏γ(r)
θ,w(x

(k)
i )(x

(k)
i )Tuj

󰀏󰀏󰀏

󰁿 󰁾󰁽 󰂀
W1

+
2ηjk
n|S|E

󰀏󰀏󰀏󰀏󰀏 sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

γ
(r)
θ,w(x

(k)
i )(x

(k)
i )Tuj

󰀏󰀏󰀏󰀏󰀏

󰁿 󰁾󰁽 󰂀
W2

.

Via the same procedure used to bound Uj , it can be shown that

P(Z(j, j′1, . . . , j
′
k)− EZ(j, j′1, . . . , j

′
k) ≥ t) ≲ exp

󰀝
− Cn|S|t2

M2η̄2

󰀞
,

EZ(j, j′1, . . . , j
′
k) ≲ η̄RM2r∗θ

󰁶
d

n|S| + η̄[RM3 +RM log(Rc−1
w )]

󰁵
1

n
,

leading to

P
󰀕
Z(j, j′1, . . . , j

′
k) ≥ η̄RM2r∗θ

󰁶
d

n|S| + η̄[RM3 +RM log(Rc−1
w )]

󰁵
1

n
+ t

󰀖
≲ exp

󰀝
− Cn|S|t2

M2η̄2

󰀞
.

Therefore

P
󰀕

max
j′1,...,j

′
k=1:N ′

max
j=1:N

Z(j, j′1, . . . , j
′
k) ≥ Cη̄RM2r∗θ

󰁶
d

n|S| + Cη̄[RM3 +RM log(Rc−1
w )]

󰁵
1

n
+ t

󰀖
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≲ N(N ′)K exp

󰀝
− Cn|S|t2

M2η̄2

󰀞
,

which implies that

Z ≤ max
j′1,...,j

′
k=1:N ′

max
j=1:N

Z(j, j′1, . . . , j
′
k) ≲ η̄(RM2r∗θ+M)

󰁶
d

n|S|+η̄[RM3+RM log(Rc−1
w )]

󰁵
1

n
+η̄M

󰁶
log(1/δ)

n|S| ,

w.p. at least 1− δ. Similarly,

sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤r∗θ

0<≤η(k)
r ≤η̄

1

n|S|

󰀐󰀐󰀐󰀐󰀐
󰁛

k∈S

η(k)r ·
n󰁛

i=1

󰀃
γ
(k)
θ,w(x

(k)
i )θr − E[γ(k)

θ,w(x(k))θr]
󰀄
󰀐󰀐󰀐󰀐󰀐
2

≲ η̄(RM2r∗θ +M)

󰁶
d

n|S| + η̄[RM3 +RM log(Rc−1
w )]

󰁵
1

n
+ η̄M

󰁶
log(1/δ)

n|S| ,

w.p. at least 1− δ. Considering that r∗θ = r∗1 ∧ r∗2 = Cb∆ ≤ M , we have

E2(n, |S|, δ) ≍ RM3

󰁶
d

n|S| + [RM3 +RM log(Rc−1
w )]

󰁵
1

n
+M

󰁶
log(1/δ)

n|S| .

E.3. Proof of Proposition A.14

Recall that

At =

󰀗
9κ̃0

󰀓 κ̃0

119

󰀔t−1

+
118

119
(t− 1)κ̃t−1

0

󰀘
(r∗w + r∗θ) +

1

1− κ̃0/119
η̄E2

󰀓
n, |S|, δ

3R

󰀔

+
18

1− κ̃0/119
min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3R

󰀔󰁬󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃

󰀗
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3R

󰀔󰀘
,

and

At +
18

1− κ̃0/119
W

󰀓
n,

δ

3RK
, r∗θ,t

󰀔
= r∗θ,t+1,

for t ≥ 1 with r∗θ,1 := r∗θ .

By Assumption A.9.(iv), there exists κ̃′
0 ∈ (0, 1) such that CRM

󰁳
p
n ≤ κ̃′

0 with a large C. Hence by plugging in the
explicit rates obtained in Proposition A.11,

r∗θ,t+1 ≤ κ̃′
0r

∗
θ,t + Ct(κ̃0)

t−1(r∗w ∨ r∗θ) + Cη̄RM3

󰁶
d

n|S| + C[(η̄M) ∨ 1][RM2 +R log(Rc−1
w )]

󰁵
1

n

+ C[(η̄M) ∨ 1]

󰁵
log(RK/δ)

n
+ Cmin

󰀝
h, η̄RM3

󰁵
d

n

󰀞
+ 󰂃η̄RM2[(η̄M) ∨ 1]

󰁵
d

n
,

implying that

r∗θ,T ≲ (κ̃′
0)

T−1r∗θ + T 2(κ̃′
0)

T−1(r∗w ∨ r∗θ) + η̄RM3

󰁶
d

n|S| + [(η̄M) ∨ 1][RM2 +R log(Rc−1
w )]

󰁵
1

n

+ [(η̄M) ∨ 1]

󰁵
log(RK/δ)

n
+min

󰀝
h, η̄RM3

󰁵
d

n

󰀞
+ 󰂃η̄RM2[(η̄M) ∨ 1]

󰁵
d

n
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≲ T 2(κ̃0 ∨ κ̃′
0)

T−1(r∗w ∨ r∗θ) + η̄RM3

󰁶
d

n|S| + [(η̄M) ∨ 1][RM2 +R log(Rc−1
w )]

󰁵
1

n

+ [(η̄M) ∨ 1]

󰁵
log(RK/δ)

n
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󰀝
h, η̄RM3

󰁵
d

n

󰀞
+ 󰂃η̄RM2[(η̄M) ∨ 1]

󰁵
d

n

≲ T 2(κ̃0 ∨ κ̃′
0)

T−1(r∗w ∨ r∗θ) +R2M3c−1
w

󰁶
d

n|S| +R2Mc−1
w [M2 + log(Rc−1

w )]

󰁵
1

n

+MRc−1
w

󰁵
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n
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󰀝
h,R2M3c−1

w

󰁵
d

n

󰀞
+ 󰂃RM3c−1

w

󰁵
d

n
,

where κ0 = 119
󰁴

2Cb

1+Cb
+CM2c−2

w R3 exp{−C ′∆2}+Cc−2
w R3 exp{−C ′∆2}+κ̃′

0, and κ̃′
0 satisfies 1 > κ̃′

0 > CMR
󰁴

d
n

for some C > 0.

E.4. Proof of Corollary A.12

By the rate of W(n, δ
3RK , r∗θ,T ) in Proposition A.11 and the upper bound of r∗θ,T in Proposition A.14,

W
󰀓
n,

δ

3RK
, r∗θ,T

󰀔
≍ RMr∗θ,T

󰁵
d

n
+ [RM2 +R log(Rc−1

w )]

󰁵
1

n
+

󰁵
log(RK/δ)

n

≲ T 2(κ̃0 ∨ κ̃′
0)

T−1(r∗w ∨ r∗θ) +R2M3c−1
w

󰁶
d

n|S| +R2Mc−1
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1
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󰁵
d

n
.

Applying Theorem A.8, we have

max
k∈S

max
r∈[R]

(󰀂󰁥θ(k)[T ]
r − θ(k)∗

r 󰀂2 + | 󰁥w(k)[T ]
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≤ 20T (κ̃0)
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󰀗
119

15
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T−1 +
118

119
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T

󰀘
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+
1
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󰁫
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󰀓
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󰀔
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󰀓
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δ
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+
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6
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󰀓
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δ
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30

(1− κ̃0)(1− κ̃0/119)
󰂃 ·

󰁫
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󰀔
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≤ T 2(κ̃0 ∨ κ̃′
0)
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w

󰁶
d

n|S| +R2Mc−1
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w )]

󰁵
1

n
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n
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󰀝
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w

󰁵
d

n

󰀞
+ 󰂃RM3c−1

w

󰁵
d

n
. (12)

Note that conditioned on the event V defined in the proof of Theorem A.8,

η(k)r = (1 + Cb)
−1( 󰁥w(k)[0]

r )−1 ≲ Rc−1
w ,

for all k ∈ S and r ∈ [R]. Plugging it in equation (12) implies the desired upper bound in Corollary A.12.

E.5. Proof of Proposition A.16

Since this proof is very long, we divide it into several parts.

(I) Part 1: Deriving the expressions of µ(k)
r and L

(k)
r .
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First, note that

q(k)(θ) = Q(k)(θ|θ(k)∗,w(k)∗) = −1

2
E

󰀥
R󰁛
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γ
(r)

θ(k)∗,w(k)∗(x
(k), y(k))(y(k) − (x(k))Tθr)

2

󰀦
.

and

󰁥Q(k)(θ|θ′,w′) = − 1
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γ
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∂
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󰀅
γ
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󰀆
,

∂
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n
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γ
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i )x

(k)
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∇2
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󰀓󰁱

E
󰁫
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θ
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r ,w

(k)∗
r
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󰁬󰁲R
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󰀔
.

We have the following lemma.

Lemma E.4. Under Assumption A.15:

(i) λmax
󰀃
E
󰀅
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰀆󰀄

≤ w
(k)∗
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√
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∆

:= L
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󰀃
E
󰀅
γ
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θ
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√
log∆
∆

:= µ
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Now let us prove the lemma.

(i) Note that

γ
(r)
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Conditioned on the event {z(k) = 1}, we have [y(k) − (x(k))Tθ
(k)∗
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(k)∗
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󰀌
,

then by the tail bounds for Gaussian variables and the boundedness of Gaussian density, we have P(Vc
1) ≲ exp{−Cτ21 },
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2) ≲ τ2. Therefore,
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≲ sup
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τ1|(x(k))T (θ(k)∗

r − θ
(k)∗
1 )|− 1

2
|(x(k))T (θ(k)∗

r − θ
(k)∗
1 )|2

󰀏󰀏󰀏z(k) = 1,V1 ∩ V2

󰁲󰀘

≲ w
(k)∗
r

w
(k)∗
1

· exp
󰁱
τ1τ2󰀂θ(k)∗

r − θ
(k)∗
1 󰀂2 −

1

2
τ22 󰀂θ(k)∗

r − θ
(k)∗
1 󰀂22

󰁲
,

[2] ≲ exp{−Cτ21 },
[3] ≲ sup

󰀂u󰀂2=1

E[((x(k))Tu)2|V2] · P(V2) ≲ P(V2) ≲ τ2, . (13)

The second inequality in (13) holds due to Lemma A.1 in Kwon & Caramanis (2020b). Let τ1 = c

󰁴
log 󰀂θ(k)∗

r − θ
(k)∗
1 󰀂2,

τ2 = 3C

󰁴
log 󰀂θ(k)∗

r −θ
(k)∗
1 󰀂2

󰀂θ(k)∗
r −θ

(k)∗
1 󰀂2

with some constant c > 0. Note that 󰀂θ(k)∗
r − θ

(k)∗
1 󰀂2 ≤ τ1/τ2 = 󰀂θ(k)∗

r − θ
(k)∗
1 󰀂2/3. Then

λmax

󰀓
E
󰁫
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰀏󰀏󰀏z(k) = 1

󰁬󰀔
≤ [1] + [2] + [3] ≲ w

(k)∗
r

w
(k)∗
1

1

∆
+

√
log∆

∆
.

Similarly, the same bound holds for λmax(E[γ(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T |z(k) = r′]) with all r′ ∕= r. In addition,

we can rewrite γ
(r)

w(k)∗,θ(k)∗(x
(k), y(k)) as

γ
(r)

w(k)∗,θ(k)∗(x
(k), y(k)) =

w
(k)∗
r

w
(k)∗
r +

󰁓
r′ ∕=r w

(k)∗
r′ exp{y(k)(x(k))T (θ

(k)∗
r′ − θ

(k)∗
1 )− 1

2 [((x
(k))Tθ

(k)∗
r′ )2 − ((x(k))Tθ

(k)∗
1 )2]}

≤ 1,

which implies that
λmax

󰀓
E
󰁫
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰀏󰀏󰀏z(k) = r

󰁬󰀔
≤ 1.

Hence by the convexity of maximum eigenvalues,

λmax

󰀓
E
󰁫
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰁬󰀔

≤
R󰁛

r′=1

w
(k)∗
r′ · λmax

󰀓
E
󰁫
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰀏󰀏󰀏z(k) = r′

󰁬󰀔

≤ w(k)∗
r

󰀓
1 +

C

∆

󰀔
+ C

√
log∆

∆

≤ w(k)∗
r + C ′

√
log∆

∆
.

(ii) We have

λmin

󰀓
E
󰁫
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰁬󰀔

≥ w(k)∗
r λmin

󰀓
E
󰁫
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰀏󰀏󰀏z(k) = r

󰁬󰀔

≥ w(k)∗
r λmin

󰀃
E
󰀅
x(k)(x(k))T

󰀏󰀏z(k) = r
󰀆󰀄
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− w(k)∗
r λmin

󰀓
E
󰁫
(1− γ

(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k)))x(k)(x(k))T
󰀏󰀏󰀏z(k) = r

󰁬󰀔
.

Similar to (i), it is straightforward to show that

λmax

󰀣
E

󰀥
w

(k)∗
r′ exp{y(k)(x(k))T (θ

(k)∗
r′ − θ

(k)∗
1 )− 1

2 [((x
(k))Tθ

(k)∗
r′ )2 − ((x(k))Tθ

(k)∗
1 )2]}

w
(k)∗
r +

󰁓
r′ ∕=r w

(k)∗
r′ exp{y(k)(x(k))T (θ

(k)∗
r′ − θ

(k)∗
1 )− 1

2 [((x
(k))Tθ

(k)∗
r′ )2 − ((x(k))Tθ

(k)∗
1 )2]}

x(k)(x(k))T

󰀏󰀏󰀏󰀏󰀏z
(k) = r

󰀦󰀤
≲ w

(k)∗
r′

w
(k)∗
r

1

∆
+

√
log∆

∆
,

for any r′ ∕= r. Hence

λmin

󰀓
E
󰁫
γ
(r)

θ
(k)∗
r ,w

(k)∗
r

(x(k), y(k))x(k)(x(k))T
󰁬󰀔

≥ w(k)∗
r −C

󰁛

r′ ∕=r

󰀕
w

(k)∗
r′

1

∆
+w(k)∗

r

√
log∆

∆

󰀖
≥ w(k)∗

r −CR

√
log∆

∆
,

which completes the proof of Lemma E.4.

(II) Part 2: Deriving the rate of κ in Assumption 2.(i).

Since Assumption A.3 is assumed to hold for all k ∈ [K], in this part, for notation simplicity, we drop the task index k

in the superscript and write w(k) = {w(k)
r }Rr=1, θ(k) = {θ(k)

r }Rr=1, w(k)∗ = {w(k)∗
r }Rr=1, θ(k)∗ = {θ(k)∗

r }Rr=1, x(k), and
y(k) simply as w = {wr}Rr=1, θ = {θr}Rr=1, w∗ = {w∗

r}Rr=1, θ(k) = {θ∗
r}Rr=1, x, and y.

By Taylor expansion:

E
󰀅
γ
(r)
θ,w(x, y)−γ

(r)
θ∗,w∗(x, y)

󰀆
=

R󰁛

r′=1

E

󰀥
∂γ

(r)
θ,w(x, y)

∂wr′

󰀏󰀏󰀏󰀏
wr′= 󰁨wr′

(wr′−w∗
r′)

󰀦
+

R󰁛

r′=1

E

󰀥󰀕
∂γ

(r)
θ,w(x, y)

∂θr′

󰀏󰀏󰀏󰀏
θr′=

󰁨θr′

󰀖T

(θr′−θ∗
r′)

󰀦
,

where 󰁨wr′ is at the line segment between wr′ and w∗
r , and 󰁨θr′ is at the line segment between θr′ and θ∗

r . And

∂γ
(r)
θ,w(x, y)

∂wr′
=

󰀻
󰀿

󰀽

exp{yxT (θr−θ1)− 1
2 [(x

T θr)
2−(xT θ1)

2]}(w1+
󰁓

r′ ∕=r wr′ exp{yx
T (θr′−θ1)− 1

2 [(x
T θr′ )

2−(xT θ1)
2]})

(w1+
󰁓R

r′=1
wr′ exp{yxT (θr′−θ1)− 1

2 [(x
T θr′ )

2−(xT θ1)2]})2
, r′ = r;

−wr exp{yxT (θr−θ1)− 1
2 [(x

T θr)
2−(xT θ1)

2]}·exp{yxT (θr′−θ1)− 1
2 [(x

T θr′ )
2−(xT θ1)

2]}
(w1+

󰁓R
r′=1

wr′ exp{yxT (θr′−θ1)− 1
2 [(x

T θr′ )
2−(xT θ1)2]})2

, r′ ∕= r.

We want to upper bound E
󰁫
∂γ

(r)
θ,w(x,y)

∂wr

󰀏󰀏󰀏z = r̃
󰁬

for all r̃. Since in the expression of E
󰁫
∂γ

(r)
θ,w(x,y)

∂wr

󰀏󰀏󰀏z = r̃
󰁬
, {wr′}r′ ∕=r and

{θr′}r′ ∕=r are symmetric, i.e., any class can be the reference class. WLOG, we only show how to bound E
󰁫
∂γ

(r)
θ,w(x,y)

∂wr

󰀏󰀏󰀏z =

1
󰁬

and the same arguments can be used to bound E
󰁫
∂γ

(r)
θ,w(x,y)

∂wr

󰀏󰀏󰀏z = r̃
󰁬

for 󰁨r ∕= 1.

Denote (∗) = y(1)xT (θr − θ1)− 1
2 [(x

Tθr)
2 − (xTθ1)

2], 󰁨z = (y(1) − xTθ∗
1) · xT (θr − θ1)|x ∼ N(0, [xT (θr − θ1)]

2),

where y(1)
d
= (y|z = 1). Then

(∗) = 󰁨z + (xTθ∗
1) · xT (θr − θ1)−

1

2
xT (θr + θ1) · xT (θr − θ1),

where

(xTθ∗
1) · xT (θr − θ1)−

1

2
xT (θr + θ1) · xT (θr − θ1)

=
󰀅
xT (θ∗

r − θ∗
1) + xT (θ∗

1 − θ1 + θr − θ∗
r )
󰀆󰀗

− 1

2
xT (θ∗

r − θ∗
1) +−1

2
xT (θ∗

1 − θ1) +
1

2
xT (θ∗

r − θr)

󰀘

= −1

2
[xT (θ∗

r − θ∗
1)]

2 +
1

2
{xT [(θ∗

1 − θ1) + (θ∗
r − θr)]}2.

35



Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms

Define events

V1 =

󰀝
|xT (θ∗

1 − θ1)| ∨ |xT (θ∗
r − θr)| ≤

1

4
|xT (θ∗

r − θ∗
1)|

󰀞
,

V2 = {|󰁨z| ≤ τ1|xT (θr − θ1)|},
V3 = {|xT (θ∗

r − θ∗
1)| > τ2|θ∗

r − θ∗
1 |}.

We know that

P(Vc
1) ≤ P

󰀕
|xT (θ∗

1 − θ1)| ∨ |xT (θ∗
r − θr)| >

1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≤ P
󰀕
|xT (θ∗

1 − θ1)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖
+ P

󰀕
|xT (θ∗

r − θr)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≤ 4

󰀕
󰀂θ∗

1 − θ1󰀂2
󰀂θ∗

r − θ∗
1󰀂2

+
󰀂θ∗

r − θr󰀂2
󰀂θ∗

r − θ∗
1󰀂2

󰀖

≤ 8Cb,

where we applied Lemma A.1 in Kwon & Caramanis (2020b) to get the second last inequality. And

P(Vc
2) ≤ C exp{−C ′τ21 }, P(Vc

3) ≤ Cτ2.

Given V1 ∩ V2 ∩ V3, we have

−1

2
[xT (θ∗

r − θ∗
1)]

2 +
1

2
{xT [(θ∗

1 − θ1) + (θ∗
r − θr)]}2 ≤ −3

8
[xT (θ∗

r − θ∗
1)]

2,

leading to

󰁨z ≤ τ1|xT (θr − θ1)| ≤ τ1(|xT (θ∗
r − θ∗

1)|+ |xT (θr − θ∗
r )|+ |xT (θ1 − θ∗

1)|) ≤ τ1 ·
3

2
|xT (θ∗

r − θ∗
1)|.

Hence
󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏 ≤

󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr

󰀏󰀏󰀏󰀏z = 1,V1 ∩ V2 ∩ V3

󰀘
P(V1 ∩ V2 ∩ V3)

󰀏󰀏󰀏󰀏󰀏+
R

cw
[P(Vc

1) + P(Vc
2) + P(Vc

3)]

≤ R

cw
exp

󰀝
3

2
τ1|xT (θ∗

r − θ∗
1)|−

3

8
[xT (θ∗

r − θ∗
1)]

2

󰀞
+ C

R

cw

󰀃
Cb + exp{−C ′τ21 }+ τ2

󰀄

≤ R

cw
exp

󰀝
3

2
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ22 󰀂θ∗

r − θ∗
1󰀂22

󰀞
+ C

R

cw

󰀃
Cb + exp{−C ′τ21 }+ τ2

󰀄
,

where the last inequality requires |xT (θ∗
r − θ∗

1)| ≥ τ2󰀂θ∗
r − θ∗

1󰀂2 ≥ 2τ1. Let τ1 = c
󰁳
log 󰀂θ∗

r − θ∗
1󰀂2 and τ2 =

10c

√
log 󰀂θ∗

r−θ∗
1󰀂2

󰀂θ∗
r−θ∗

1󰀂2
with some constant c > 0, then

󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏 ≲
R

cw

󰀕
Cb +

󰁳
log 󰀂θ∗

r − θ∗
1󰀂2

󰀂θ∗
r − θ∗

1󰀂2

󰀖
≲ R

cw

󰀕
Cb +

√
log∆

∆

󰀖
.

Similarly, 󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr′

󰀏󰀏󰀏󰀏z = 󰁨r
󰀘󰀏󰀏󰀏󰀏󰀏 ≲

R

cw

󰀕
Cb +

√
log∆

∆

󰀖
,

for any r, r′, and 󰁨r. Therefore,

R󰁛

r′=1

E

󰀥
∂γ

(r)
θ,w(x, y)

∂wr′

󰀏󰀏󰀏󰀏
wr′= 󰁨wr′

(wr′ − w∗
r′)

󰀦
≤ C

R

cw

󰀕
Cb +

√
log∆

∆

󰀖 R󰁛

r=1

|wr − w∗
r |.
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On the other hand,

∂γ
(r)
w,θ(x, y)

∂θr′
=

󰀫
γ
(r)
w,θ(x, y)x(y − xTθr)−

󰀃
γ
(r)
w,θ(x, y)

󰀄2
x(y − xTθr), r′ = r;

−γ
(r)
w,θ(x, y)γ

(r′)
w,θ(x, y)x(y − xTθr′), r′ ∕= r,

(14)

where

γ
(r)
w,θ(x, y) =

wr exp{yxT (θr − θ1)− 1
2 [(x

Tθr)
2 − (xTθ1)

2]}
w1 +

󰁓R
r′=2 wr′ exp{yxT (θr′ − θ1)− 1

2 [(x
Tθr′)2 − (xTθ1)2]}

,

We will show how to upper bound E[γ(r)
w,θ(x, y)(y−xTθr) ·xT (θr − θ′

r)], and the same arguments can be used to bound

E[(γ(r)
w,θ(x, y))

2(y − xTθr) · xT (θr − θ′
r)]. Then we will have an upper bound for E

󰁫󰀃∂γ
(r)
θ,w(x,y)

∂θr

󰀏󰀏
θr=󰁨θr

󰀄T
(θr − θ′

r)
󰁬
,

and the analysis is the same for E
󰁫󰀃∂γ

(r)
θ,w(x,y)

∂θr′

󰀏󰀏
θr′=

󰁨θr′

󰀄T
(θr′ − θ∗

r′)
󰁬

with r′ ∕= r.

Let us start from E[γ(r)
w,θ(x, y)(y − xTθr) · xT (θr − θ′

r)|z = 1]. Consider y(1) d
= (y|z = 1) and

y(1) − xTθr = (y(1) − xTθ∗
1) + xT (θ∗

1 − θ∗
r ) + xT (θ∗

r − θr).

Define events

V1 =

󰀝
|xT (θ∗

1 − θ1)| ∨ |xT (θ∗
r − θr)| ≤

1

4
|xT (θ∗

r − θ∗
1)|

󰀞
,

V2 = {|y(1) − xTθ∗
1 | ≤ τ1},

V3 = {|xT (θ∗
r − θ∗

1)| > τ2|θ∗
r − θ∗

1 |}.

We know that

P(Vc
1) ≤ P

󰀕
|xT (θ∗

1 − θ1)| ∨ |xT (θ∗
r − θr)| >

1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≤ P
󰀕
|xT (θ∗

1 − θ1)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖
+ P

󰀕
|xT (θ∗

r − θr)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≤ 4

󰀕
󰀂θ∗

1 − θ1󰀂2
󰀂θ∗

r − θ∗
1󰀂2

+
󰀂θ∗

r − θr󰀂2
󰀂θ∗

r − θ∗
1󰀂2

󰀖

≤ 8Cb,

where we applied Lemma A.1 in Kwon & Caramanis (2020b) to get the second last inequality. And

P(Vc
2) ≤ C exp{−C ′τ21 }, P(Vc

3) ≤ Cτ2.

Note that

E
󰀅
γ
(r)
w,θ(x, y)(y − xTθr) · xT (θr − θ′

r)|z = 1
󰀆

≤ E
󰀅
γ
(r)
w,θ(x, y)(y − xTθr) · xT (θr − θ′

r)|z = 1,V1 ∩ V2 ∩ V3

󰀆
P(V1 ∩ V2 ∩ V3)

󰁿 󰁾󰁽 󰂀
[1]

+ E
󰀅
xT (θr − θ′

r)(y
(1) − xTθr)1(Vc

1 ∪ Vc
2 ∪ Vc

3)
󰀆

󰁿 󰁾󰁽 󰂀
[2]

.

(a) Case 1: maxr 󰀂θr − θ∗
r󰀂2 ≤ 1.

Note that for term [2], by Lemma A.1 in Kwon & Caramanis (2020b),

E
󰀅
xT (θr − θ′

r)(y
(1) − xTθ∗

1)1(Vc
1)
󰀆
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≤ E
󰀗
xT (θr − θ′

r)(y
(1) − xTθ∗

1)1(Vc
1)

󰀏󰀏󰀏󰀏|x
T (θ∗

1 − θ1)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀘
P
󰀕
|xT (θ∗

1 − θ1)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖

+ E
󰀗
xT (θr − θ′

r)(y
(1) − xTθ∗

1)1(Vc
1)

󰀏󰀏󰀏󰀏|x
T (θ∗

r − θr)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀘
P
󰀕
|xT (θ∗

r − θr)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≤

󰁶

E
󰀗
(xT (θr − θ′

r))
2

󰀏󰀏󰀏󰀏|xT (θ∗
1 − θ1)| >

1

4
|xT (θ∗

r − θ∗
1)|

󰀘
·
󰁴
E(y(1) − xTθ∗

1)
2

· P
󰀕
|xT (θ∗

1 − θ1)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖

+

󰁶

E
󰀗
(xT (θr − θ′

r))
2

󰀏󰀏󰀏󰀏|xT (θ∗
1 − θ1)| >

1

4
|xT (θ∗

r − θ∗
1)|

󰀘
·
󰁴
E(y(1) − xTθ∗

1)
2

· P
󰀕
|xT (θ∗

r − θr)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≲ Cb󰀂θr − θ′
r󰀂2.

And by Cauchy-Schwarz inequality,

E
󰀅
xT (θr − θ′

r)(y
(1) − xTθ∗

1)1(Vc
2)
󰀆
≤

󰁴
E
󰀅
(xT (θr − θ′

r))
2(y(1) − xTθ∗

1)
2
󰀆󰁴

P(Vc
2) ≲ 󰀂θr − θ′

r󰀂2 · exp{−Cτ21 },

E
󰀅
xT (θr − θ′

r)(y
(1) − xTθ∗

1)1(Vc
3)
󰀆
≤

󰁴
E
󰀅
(xT (θr − θ′

r))
2
󰀆
· P(Vc

2)
󰁴
E
󰀅
(y(1) − xTθ∗

1)
2
󰀆
· P(Vc

2) ≲ 󰀂θr − θ′
r󰀂2 · τ2.

Combine them together:

E
󰀅
xT (θr − θ′

r)(y
(1) − xTθ∗

1)1(Vc
1 ∪ Vc

2 ∪ Vc
3)
󰀆
≲ (Cb + exp{−Cτ21 }+ τ2)󰀂θr − θ′

r󰀂2.

Furthermore,

E
󰀅
xT (θr − θ′

r) · xT (θ∗
1 − θ∗

r )1(Vc
1)
󰀆
≤

󰁴
E
󰀅
(xT (θr − θ′

r))
2|Vc

1

󰀆
· P(Vc

1) ·
󰁴
E
󰀅
(xT (θ∗

1 − θ∗
r ))

2|Vc
1

󰀆
· P(Vc

1)

≲ 󰀂θr − θ′
r󰀂2 · Cb ·

󰁴
E
󰀅
|xT (θ∗

1 − θ1)|2 ∨ |xT (θ∗
r − θr)|2|Vc

1

󰀆

≲ Cb󰀂θr − θ′
r󰀂2,

and

E
󰀅
xT (θr − θ′

r) · xT (θ∗
1 − θ∗

r )1(Vc
2)
󰀆
≲ exp{−Cτ21 } · 󰀂θ∗

1 − θ∗
r󰀂2 · 󰀂θr − θ′

r󰀂2,

E
󰀅
xT (θr − θ′

r) · xT (θ∗
1 − θ∗

r )1(Vc
3)
󰀆
≲

󰁴
E
󰀅
(xT (θr − θ′

r))
2|Vc

3

󰀆
· P(Vc

3) ·
󰁴
E
󰀅
(xT (θ∗

1 − θ∗
r ))

2|Vc
3

󰀆
· P(Vc

3)

≲ τ22 󰀂θr − θ′
r󰀂2 · 󰀂θ∗

1 − θ∗
r󰀂2.

Therefore

E
󰀅
xT (θr − θ′

r) · xT (θ∗
1 − θ∗

r )1(Vc
1 ∪ Vc

2 ∪ Vc
3)
󰀆
≲ (Cb + exp{−Cτ21 }+ τ22 󰀂θ∗

1 − θ∗
r󰀂2)󰀂θr − θ′

r󰀂2.

Similarly,

E
󰀅
xT (θr − θ′

r) · xT (θ∗
r − θr)1(Vc

1 ∪ Vc
2 ∪ Vc

3)
󰀆
≲ (Cb + exp{−Cτ21 }+ τ22 󰀂θ∗

r − θr󰀂2)󰀂θr − θ′
r󰀂2

≲ (Cb + exp{−Cτ21 }+ τ22 )󰀂θr − θ′
r󰀂2.

Therefore we have
[2] ≲ (Cb + exp{−Cτ21 }+ τ2 + τ22 󰀂θ∗

1 − θ∗
r󰀂2)󰀂θr − θ′

r󰀂2.
For [1], given V1 ∩ V2 ∩ V3, we know that

−1

2
[xT (θ∗

r − θ∗
1)]

2 +
1

2
{xT [(θ∗

1 − θ1) + (θ∗
r − θr)]}2 ≤ −3

8
[xT (θ∗

r − θ∗
1)]

2,
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leading to (y(1) − xTθ∗
1) + xT (θ∗

1 − θ∗
r )

(y(1)−xTθ∗
1)·xT (θr−θ1) ≤ τ1|xT (θr−θ1)| ≤ τ1(|xT (θ∗

r−θ∗
1)|+|xT (θr−θ∗

r )|+|xT (θ1−θ∗
1)|) ≤ τ1 ·

3

2
|xT (θ∗

r−θ∗
1)|.

Similar to the previous analysis, we can show that

[1] ≲ R

cw
exp

󰀝
3

2
τ1|xT (θ∗

r − θ∗
1)|−

3

8
|xT (θ∗

r − θ∗
1)|2

󰀞
(τ1 + 1) · 󰀂θr − θ′

r󰀂2

≲ R

cw
exp

󰀝
3

2
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ22 󰀂θ∗

r − θ∗
1󰀂22

󰀞
(τ1 + 1) · 󰀂θr − θ′

r󰀂2.

This implies that

E
󰀅
γ
(r)
w,θ(x, y)(y − xTθr) · xT (θr − θ′

r)|z = 1
󰀆

≤ [1] + [2]

≲
󰀥
R

cw
exp

󰀝
3

2
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ22 󰀂θ∗

r − θ∗
1󰀂22

󰀞
(τ1 + 1) + Cb + exp{−Cτ21 }+ τ2 + τ22 󰀂θ∗

1 − θ∗
r󰀂2

󰀦
· 󰀂θr − θ′

r󰀂2.

(15)

Let τ1 = c
󰁳
log 󰀂θ∗

r − θ∗
1󰀂2 and τ2 = 10c

√
log 󰀂θ∗

r−θ∗
1󰀂2

󰀂θ∗
r−θ∗

1󰀂2
with some constant c > 0. Then

RHS of (15) ≲
󰀕

R

cw

1

∆

󰁳
log∆+

R

cw
Cb

󰀖
󰀂θr − θ′

r󰀂2.

Similarly, we can show that E
󰀅
γ
(r)
w,θ(x, y)(y − xTθr) · xT (θr − θ′

r)|z = r′
󰀆

has the same upper bound. Therefore

E
󰀅
γ
(r)
w,θ(x, y)(y − xTθr) · xT (θr − θ′

r)
󰀆
≲

󰀕
R

cw

1

∆

󰁳
log∆+

R

cw
Cb

󰀖
󰀂θr − θ′

r󰀂2.

Similarly, following the same arguments, it can be shown that

E
󰀅
(γ

(r)
w,θ(x, y))

2(y − xTθr) · xT (θr − θ′
r)
󰀆
≲

󰀕
R

cw

1

∆

󰁳
log∆+

R

cw
Cb

󰀖
󰀂θr − θ′

r󰀂2.

Hence by (14),
󰀏󰀏󰀏󰀏󰀏E
󰀗󰀕

∂γ
(r)
θ,w(x, y)

∂θr

󰀏󰀏
θr=󰁨θr

󰀖T

(θr − θ∗
r )

󰀘󰀏󰀏󰀏󰀏󰀏 ≲
󰀕

R

cw

1

∆

󰁳
log∆+

R

cw
Cb

󰀖
󰀂θr − θ′

r󰀂2.

(b) Case 2: maxr 󰀂θr − θ∗
r󰀂2 > 1.

Suppose r0 ∈ [R] satisfies 󰀂θr0 − θ∗
r0󰀂2 > 1. For r′ ∕= r, we have

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀏󰀏z = r′
󰀆󰀏󰀏 ≤

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)

󰀏󰀏z = r′
󰀆󰀏󰀏+

󰀏󰀏E
󰀅
γ
(r)
w∗,θ∗(x, y)

󰀏󰀏z = r′
󰀆󰀏󰀏.

WLOG, let us consider the case r′ = 1 ∕= r, and the other cases can be similarly discussed. We have

E
󰀅
γ
(r)
w,θ(x, y)

󰀏󰀏z = 1
󰀆
= E

󰀥
wr exp{yxT (θr − θ1)− 1

2 [(x
Tθr)

2 − (xTθ1)
2]}

w1 +
󰁓R

r′=2 wr′ exp{yxT (θr′ − θ1)− 1
2 [(x

Tθr′)2 − (xTθ1)2]}

󰀦
.

Recall that

V1 =

󰀝
|xT (θ∗

1 − θ1)| ∨ |xT (θ∗
r − θr)| ≤

1

4
|xT (θ∗

r − θ∗
1)|

󰀞
,
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V2 = {|y(1) − xTθ∗
1 | ≤ τ1},

V3 = {|xT (θ∗
r − θ∗

1)| > τ2|θ∗
r − θ∗

1 |}.

and
P(Vc

1) ≤ 8Cb, P(Vc
2) ≤ C exp{−C ′τ21 }, P(Vc

3) ≤ Cτ2.

Similar to the previous analysis,

y(1)xT (θr−θ1)−
1

2
[(xTθr)

2−(xTθ1)
2] = (y(1)−xTθ∗

1)x
T (θr−θ1)+(xTθ∗

1)·xT (θr−θ1)−
1

2
xT (θr+θ1)·xT (θr−θ1).

Conditioned on V1 ∩ V2 ∩ V3,

(xTθ∗
1) · xT (θr − θ1)−

1

2
xT (θr + θ1) · xT (θr − θ1)

=
󰀅
xT (θ∗

r − θ∗
1) + xT (θ∗

1 − θ1 + θr − θ∗
r )
󰀆󰀗

− 1

2
xT (θ∗

r − θ∗
1) +−1

2
xT (θ∗

1 − θ1) +
1

2
xT (θ∗

r − θr)

󰀘

= −1

2
[xT (θ∗

r − θ∗
1)]

2 +
1

2
{xT [(θ∗

1 − θ1) + (θ∗
r − θr)]}2

≤ −3

8
[xT (θ∗

r − θ∗
1)]

2,

and
|(y(1) − xTθ∗

1)x
T (θr − θ1)| ≤

1

4
τ1|xT (θ∗

r − θ∗
1)|,

hence

E
󰀅
γ
(r)
w,θ(x, y)

󰀏󰀏z = 1,V1 ∩ V2 ∩ V3

󰀆
≤ wr

w1
E
󰀗
exp

󰀝
1

4
τ1|xT (θ∗

r − θ∗
1)|−

3

8
|xT (θ∗

r − θ∗
1)|2

󰀞󰀘

≲ R

cw
exp

󰀝
1

4
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ2󰀂θ∗

r − θ∗
1󰀂22

󰀞
.

Therefore,

E
󰀅
γ
(r)
w,θ(x, y)

󰀏󰀏z = 1
󰀆
≲ R

cw
exp

󰀝
1

4
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ2󰀂θ∗

r − θ∗
1󰀂22

󰀞
+ P(Vc

1) + P(Vc
2) + P(Vc

3)

≲ R

cw
exp

󰀝
1

4
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ2󰀂θ∗

r − θ∗
1󰀂22

󰀞
+ Cb + exp{−Cτ21 }+ τ2.

Let τ1 = c
󰁳
log 󰀂θ∗

r − θ∗
1󰀂2 and τ2 = 10c

√
log 󰀂θ∗

r−θ∗
1󰀂2

󰀂θ∗
r−θ∗

1󰀂2
with some constant c > 0. Then

E
󰀅
γ
(r)
w,θ(x, y)

󰀏󰀏z = 1
󰀆
≲ R

cw

1

∆
+ Cb +

1

∆
+

√
log∆

∆
≲ R

cw

1

∆
+ Cb +

√
log∆

∆
.

Similarly, we can show the same bound for E[γ(r)
w∗,θ∗(x, y)|z = 1]. Then

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀏󰀏z = 1
󰀆󰀏󰀏 ≲ R

cw

1

∆
+ Cb +

√
log∆

∆
,

and the same bound holds for
󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀏󰀏z = r′
󰀆󰀏󰀏 for any r′ ∕= r. On the other hand,

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀏󰀏z = r
󰀆󰀏󰀏 ≤

󰁛

r′ ∕=r

󰀏󰀏E
󰀅
γ
(r′)
w,θ(x, y)− γ

(r′)
w∗,θ∗(x, y)

󰀏󰀏z = r
󰀆󰀏󰀏 ≲ R2

cw

1

∆
+RCb +R

√
log∆

∆
.

Therefore,

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀆󰀏󰀏 ≤
R󰁛

r′=1

w∗
r′

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀏󰀏z = r′
󰀆󰀏󰀏
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≲ R2

cw

1

∆
+RCb +R

√
log∆

∆

≲
󰀕
R2

cw

1

∆
+RCb +R

√
log∆

∆

󰀖
· 󰀂θr0 − θ∗

r0󰀂2,

where the last inequality comes from the fact that 󰀂θr0 − θ∗
r0󰀂2 > 1.

Combining two cases entails Assumption A.3.(i) with κ ≍ R
cw

√
log∆
∆ + R

cw
Cb +

R2

cw
1
∆ .

(III) Part 3: Deriving the rate of γ in Assumption A.5.(i).

Similar to Part 2, for notation simplicity, we drop the task index k in the superscript and write w(k) = {w(k)
r }Rr=1,

θ(k) = {θ(k)
r }Rr=1, w(k)∗ = {w(k)∗

r }Rr=1, θ(k)∗ = {θ(k)∗
r }Rr=1, x(k), y(k), Q(k), and q(k) simply as w(k) = {w(k)

r }Rr=1,
θ = {θr}Rr=1, w = {w∗

r}Rr=1, θ(k) = {θ∗
r}Rr=1, x, y, Q, and q.

Note that ∂Q(k)

∂θr
(θ|w′,θ′) = −E[γ(r)

w′,θ′(x, y)x(xTθr − y)], which implies that
󰀐󰀐󰀐󰀐
∂Q

∂θr
(θ|w,θ)− ∂q

∂θr
(θ)

󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
x(xTθr − y)

󰀆󰀐󰀐󰀐󰀐
2

(a) Case 1: maxr 󰀂θr − θ∗
r󰀂2 ≤ 1.

WLOG, let us consider E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
x(xTθr − y)

󰀏󰀏z = 1
󰀆

with r ∕= 1. For any u ∈ Sd−1,

󰀏󰀏E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
xTu · (xTθr − y)

󰀏󰀏z = 1
󰀆󰀏󰀏

≤
󰀏󰀏E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
xTu · xT (θ∗

r − θ∗
1)
󰀏󰀏z = 1

󰀆󰀏󰀏
󰁿 󰁾󰁽 󰂀

[1]

+
󰀏󰀏E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
xTu · xT (θr − θ∗

r )
󰀏󰀏z = 1

󰀆󰀏󰀏
󰁿 󰁾󰁽 󰂀

[2]

+
󰀏󰀏E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
xTu · (y − xTθ∗

1)
󰀏󰀏z = 1

󰀆󰀏󰀏
󰁿 󰁾󰁽 󰂀

[3]

. (16)

First,

[1] ≤
R󰁛

r′=1

󰀏󰀏󰀏󰀏E
󰀗
∂γ(r)(x, y)

∂wr′
(wr′ − w∗

r′)x
Tu · xT (θ∗

r − θ∗
1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏

+

R󰁛

r′=1

󰀏󰀏󰀏󰀏E
󰀗󰀕

∂γ(r)(x, y)

∂θr′

󰀖T

(θr′ − θ∗
r′)x

Tu · xT (θ∗
r − θ∗

1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏. (17)

Recall that

∂γ(r)(x, y)

∂wr

=
exp{yxT (θr − θ1)− 1

2 [(x
Tθr)

2 − (xTθ1)
2]}(w1 +

󰁓
r′ ∕=r wr′ exp{yxT (θr′ − θ1)− 1

2 [(x
Tθr′)

2 − (xTθ1)
2]})

(w1 +
󰁓R

r′=1 wr′ exp{yxT (θr′ − θ1)− 1
2 [(x

Tθr′)2 − (xTθ1)2]})2
.

Denote (∗) = y(1)xT (θr − θ1)− 1
2 [(x

Tθr)
2 − (xTθ1)

2], 󰁨z = (y(1) − xTθ∗
1) · xT (θr − θ1)|x ∼ N(0, [xT (θr − θ1)]

2),

where y(1)
d
= (y|z = 1). Then

(∗) = 󰁨z + (xTθ∗
1) · xT (θr − θ1)−

1

2
xT (θr + θ1) · xT (θr − θ1),
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where

(xTθ∗
1) · xT (θr − θ1)−

1

2
xT (θr + θ1) · xT (θr − θ1)

=
󰀅
xT (θ∗

r − θ∗
1) + xT (θ∗

1 − θ1 + θr − θ∗
r )
󰀆󰀗

− 1

2
xT (θ∗

r − θ∗
1) +−1

2
xT (θ∗

1 − θ1) +
1

2
xT (θ∗

r − θr)

󰀘

= −1

2
[xT (θ∗

r − θ∗
1)]

2 +
1

2
{xT [(θ∗

1 − θ1) + (θ∗
r − θr)]}2.

Define events

V1 =

󰀝
|xT (θ∗

1 − θ1)| ∨ |xT (θ∗
r − θr)| ≤

1

4
|xT (θ∗

r − θ∗
1)|

󰀞
,

V2 = {|󰁨z| ≤ τ1|xT (θr − θ1)|},
V3 = {|xT (θ∗

r − θ∗
1)| > τ2|θ∗

r − θ∗
1 |}.

We know that

P(Vc
1) ≤ P

󰀕
|xT (θ∗

1 − θ1)| ∨ |xT (θ∗
r − θr)| >

1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≤ P
󰀕
|xT (θ∗

1 − θ1)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖
+ P

󰀕
|xT (θ∗

r − θr)| >
1

4
|xT (θ∗

r − θ∗
1)|

󰀖

≤ 4

󰀕
󰀂θ∗

1 − θ1󰀂2
󰀂θ∗

r − θ∗
1󰀂2

+
󰀂θ∗

r − θr󰀂2
󰀂θ∗

r − θ∗
1󰀂2

󰀖

≤ 8Cb,

where we applied Lemma A.1 in Kwon & Caramanis (2020b) to get the second last inequality. And

P(Vc
2) ≤ C exp{−C ′τ21 }, P(Vc

3) ≤ Cτ2.

Given V1 ∩ V2 ∩ V3, we have

−1

2
[xT (θ∗

r − θ∗
1)]

2 +
1

2
{xT [(θ∗

1 − θ1) + (θ∗
r − θr)]}2 ≤ −3

8
[xT (θ∗

r − θ∗
1)]

2,

leading to

󰁨z ≤ τ1|xT (θr − θ1)| ≤ τ1(|xT (θ∗
r − θ∗

1)|+ |xT (θr − θ∗
r )|+ |xT (θ1 − θ∗

1)|) ≤ τ1 ·
3

2
|xT (θ∗

r − θ∗
1)|.

Hence
󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏

≤

󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1)

󰀏󰀏󰀏󰀏z = 1,V1 ∩ V2 ∩ V3

󰀘
P(V1 ∩ V2 ∩ V3)

󰀏󰀏󰀏󰀏󰀏

+

3󰁛

j=1

󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1) · 1(Vc

j )

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏.

Note that
󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1)

󰀏󰀏󰀏󰀏z = 1,V1 ∩ V2 ∩ V3

󰀘󰀏󰀏󰀏󰀏󰀏

≲ R

cw
exp

󰀝
3

2
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ22 󰀂θ∗

r − θ∗
1󰀂22

󰀞
· 󰀂θ∗

r − θ∗
1󰀂2 · |wr − w∗

r |.
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Also,
󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1) · 1(Vc

1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏

≤ R

cw

󰁴
E[(xTu)2|Vc

1 ]P(Vc
1)
󰁴
E[(xT (θ∗

r − θ∗
1))

2|Vc
1 ]P(Vc

1) · |wr − w∗
r |

≲ R

cw

󰁴
E[(xT (θr − θ∗

r ))
2|Vc

1 ] + E[(xT (θ1 − θ∗
1))

2|Vc
1 ] · P(Vc

1) · |wr − w∗
r |

≲ R

cw
Cb|wr − w∗

r |.

󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1) · 1(Vc

2)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏 ≲ exp{−Cτ21 } · 󰀂θ∗
r − θ∗

1󰀂2 · |wr − w∗
r |.

󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1) · 1(Vc

3)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏

≤ R

cw

󰁴
E[(xTu)2|Vc

3 ]P(Vc
3)
󰁴
E[(xT (θ∗

r − θ∗
1))

2|Vc
3 ]P(Vc

3) · |wr − w∗
r |

≲ R

cw
τ22 · 󰀂θ∗

r − θ∗
1󰀂2 · |wr − w∗

r |.

Let τ1 = c
󰁳
log 󰀂θ∗

r − θ∗
1󰀂2 and τ2 = 10c

√
log 󰀂θ∗

r−θ∗
1󰀂2

󰀂θ∗
r−θ∗

1󰀂2
with some constant c > 0, then

󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr
(wr − w∗

r)x
Tu · xT (θ∗

r − θ∗
1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏 ≲
󰀕

R

cw

1

∆
+

R

cw
Cb +

1

∆
+

R

Cw

log∆

∆

󰀖
· |wr − w∗

r |

≲
󰀕

R

cw
Cb +

R

Cw

log∆

∆

󰀖
· |wr − w∗

r |.

Similarly, we can show that
󰀏󰀏󰀏󰀏󰀏E
󰀗
∂γ

(r)
θ,w(x, y)

∂wr′
(wr′ − w∗

r′)x
Tu · xT (θ∗

r′ − θ∗
1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏󰀏 ≲
󰀕

R

cw
Cb +

R

Cw

log∆

∆

󰀖
· |wr′ − w∗

r′ |,

for r′ ∕= r.

On the other hand, recall that

∂γ
(r)
w,θ(x, y)

∂θr
= γ

(r)
w,θ(x, y)x(y − xTθr)−

󰀃
γ
(r)
w,θ(x, y)

󰀄2
x(y − xTθr),

where

γ
(r)
w,θ(x, y) =

wr exp{yxT (θr − θ1)− 1
2 [(x

Tθr)
2 − (xTθ1)

2]}
w1 +

󰁓R
r′=2 wr′ exp{yxT (θr′ − θ1)− 1

2 [(x
Tθr′)2 − (xTθ1)2]}

.

We have
󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · (y(1) − xTθr) · xTu · xT (θ∗

r − θ∗
1)
󰀏󰀏z = 1

󰀆󰀏󰀏

≤
󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · (y(1) − xTθ∗

1) · xTu · xT (θ∗
r − θ∗

1)
󰀏󰀏z = 1

󰀆󰀏󰀏

+
󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · xT (θ∗

1 − θ∗
r ) · xTu · xT (θ∗

r − θ∗
1)
󰀏󰀏z = 1

󰀆󰀏󰀏

+
󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · xT (θ∗

r − θr) · xTu · xT (θ∗
r − θ∗

1)
󰀏󰀏z = 1

󰀆󰀏󰀏.
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Similar to the previous analysis,
󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · (y(1) − xTθ∗

1) · xTu · xT (θ∗
r − θ∗

1)
󰀏󰀏z = 1

󰀆󰀏󰀏

≤
󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · (y(1) − xTθ∗

1) · xTu · xT (θ∗
r − θ∗

1)
󰀏󰀏z = 1,V1 ∩ V2 ∩ V3

󰀆󰀏󰀏

+

3󰁛

j=1

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · (y(1) − xTθ∗

1) · xTu · xT (θ∗
r − θ∗

1)
󰀏󰀏z = 1,Vc

j

󰀆󰀏󰀏 · P(Vc
j )

≲ R

cw
exp

󰀝
3

2
τ1τ2󰀂θ∗

r − θ∗
1󰀂2 −

3

8
τ2󰀂θ∗

r − θ∗
1󰀂22

󰀞
󰀂θ∗

r − θ∗
1󰀂2 · 󰀂θr − θ∗

r󰀂2

+
R

cw
Cb + exp{−Cτ21 } · 󰀂θ∗

r − θ∗
1󰀂2 · 󰀂θr − θ∗

r󰀂2 +
R

cw
τ22 󰀂θ∗

r − θ∗
1󰀂2 · 󰀂θr − θ∗

r󰀂2.

Let τ1 = c
󰁳
log 󰀂θ∗

r − θ∗
1󰀂2 and τ2 = 10c

√
log 󰀂θ∗

r−θ∗
1󰀂2

󰀂θ∗
r−θ∗

1󰀂2
with some constant c > 0, then

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · (y(1) − xTθ∗

1) · xTu · xT (θ∗
r − θ∗

1)
󰀏󰀏z = 1

󰀆󰀏󰀏 ≲
󰀕

R

cw

log∆

∆
+

R

cw
Cb

󰀖
· 󰀂θr − θ∗

r󰀂2.

Similarly,

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · xT (θ∗

1 − θ∗
r ) · xTu · xT (θ∗

r − θ∗
1)
󰀏󰀏z = 1

󰀆󰀏󰀏 ≲
󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
· 󰀂θr − θ∗

r󰀂2,

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · xT (θ∗

r − θr) · xTu · xT (θ∗
r − θ∗

1)
󰀏󰀏z = 1

󰀆󰀏󰀏 ≲
󰀕

R

cw

log∆

∆
+

R

cw
Cb

󰀖
· 󰀂θr − θ∗

r󰀂2.

Hence,

󰀏󰀏E
󰀅
γ
(r)
w,θ(x, y)x

T (θr − θ∗
r ) · (y(1) − xTθr) · xTu · xT (θ∗

r − θ∗
1)
󰀏󰀏z = 1

󰀆󰀏󰀏 ≲
󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
· 󰀂θr − θ∗

r󰀂2.

Similarly,

󰀏󰀏E
󰀅
(γ

(r)
w,θ(x, y))

2xT (θr −θ∗
r ) · (y(1)−xTθr) ·xTu ·xT (θ∗

r −θ∗
1)
󰀏󰀏z = 1

󰀆󰀏󰀏 ≲
󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
· 󰀂θr −θ∗

r󰀂2.

Therefore,

󰀏󰀏󰀏󰀏E
󰀗󰀕

∂γ
(r)
w,θ(x, y)

∂θr

󰀖T

(θr − θ∗
r ) · xTu · xT (θ∗

r − θ∗
1)
󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏 ≲
󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
· 󰀂θr − θ∗

r󰀂2.

Similarly,

󰀏󰀏󰀏󰀏E
󰀗󰀕

∂γ
(r)
w,θ(x, y)

∂θr′

󰀖T

(θr − θ∗
r ) · xTu · xT (θ∗

r − θ∗
1)
󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏 ≲
󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
· 󰀂θr − θ∗

r󰀂2,

for r′ ∕= r. Recall (16) and (17),

[1] ≤
R󰁛

r′=1

󰀏󰀏󰀏󰀏E
󰀗
∂γ(r)(x, y)

∂wr′
(wr′ − w∗

r′)x
Tu · xT (θ∗

r − θ∗
1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏

+

R󰁛

r′=1

󰀏󰀏󰀏󰀏E
󰀗󰀕

∂γ(r)(x, y)

∂θr′

󰀖T

(θr′ − θ∗
r′)x

Tu · xT (θ∗
r − θ∗

1)

󰀏󰀏󰀏󰀏z = 1

󰀘󰀏󰀏󰀏󰀏

≲
󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
·

R󰁛

r′=1

(|wr′ − w∗
r′ |+ 󰀂θr′ − θ∗

r′󰀂2).

44



Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms

Similarly, the same bound holds for terms [2] and [3] in (16) as well, therefore

󰀏󰀏E
󰀅󰀃
γ
(r)
w,θ(x, y)−γ

(r)
w∗,θ∗(x, y)

󰀄
xTu·(xTθr−y)

󰀏󰀏z = 1
󰀆󰀏󰀏 ≲

󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
·

R󰁛

r′=1

(|wr′−w∗
r′ |+󰀂θr′−θ∗

r′󰀂2).

With similar arguments, we have

󰀏󰀏E
󰀅󰀃
γ
(r)
w,θ(x, y)−γ

(r)
w∗,θ∗(x, y)

󰀄
xTu·(xTθr−y)

󰀏󰀏z = r̃
󰀆󰀏󰀏 ≲

󰀗
R

cw

(log∆)3/2

∆
+

R

cw
Cb

󰀘
·

R󰁛

r′=1

(|wr′−w∗
r′ |+󰀂θr′−θ∗

r′󰀂2),

for r̃ ∕= 1. Therefore,
󰀐󰀐󰀐󰀐
∂Q

∂θr
(θ|w,θ)− ∂q

∂θr
(θ)

󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
x(xTθr − y)

󰀆󰀐󰀐󰀐󰀐
2

= sup
󰀂u󰀂2≤1

R󰁛

r′=1

E
󰀅󰀃
γ
(r)
w,θ(x, y)− γ

(r)
w∗,θ∗(x, y)

󰀄
(xTu)(xTθr − y)

󰀏󰀏z = r′
󰀆
· P(z = r′)

≤
󰀗
C

R

cw

(log∆)3/2

∆
+ C

R

cw
Cb

󰀘
·

R󰁛

r′=1

(|wr′ − w∗
r′ |+ 󰀂θr′ − θ∗

r′󰀂2).

(b) Case 2: maxr 󰀂θr − θ∗
r󰀂2 > 1.

Similar to case 2 of Part 2, it can be shown that
󰀐󰀐󰀐󰀐
∂Q

∂θr
(θ|w,θ)− ∂q

∂θr
(θ)

󰀐󰀐󰀐󰀐
2

≤
󰀗
C
R2

cw
+ C

R

cw

(log∆)3/2

∆
+ C

R

cw
Cb

󰀘
·

R󰁛

r′=1

(|wr′ − w∗
r′ |+ 󰀂θr′ − θ∗

r′󰀂2).

Therefore γ ≍ R2

cw
+ R

cw

(log∆)3/2

∆ + R
cw

Cb in Assumption A.5.(i).

(IV) Part 4: Deriving the rate of W in Assumption A.3.(ii). Let

V = sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

P(z(k) = r|x(k)
i , y

(k)
i ;w,θ)− Ex(k)

󰀅
P(z(k) = r|x(k), y(k);w,θ)

󰀆󰀏󰀏󰀏󰀏

= sup
|wr−w(k)∗

r |≤ cw
2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

γ
(r)
θ,w(x

(k)
i , y

(k)
i )− E

󰀅
γ
(r)
θ,w(x(k), y(k))

󰀆󰀏󰀏󰀏󰀏.

By bounded difference inequality (Corollary 2.21 in Wainwright (2019)), w.p. at least 1− δ,

V ≤ EV +

󰁵
log(1/δ)

n
.

And by classical symmetrization arguments (e.g., see Proposition 4.11 in Wainwright (2019)),

EV ≤ 2

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
i γ

(k)
θ,w(x

(k)
i , y

(k)
i )

󰀏󰀏󰀏󰀏.

Let g(k)ir = (θr − θ1)
Tx

(k)
i · y(k)i − 1

2 [((x
(k)
i )Tθr)

2 − ((x
(k)
i )Tθ1)

2] + logwr − logw1, ϕ(x) = exp{xr}
1+

󰁓R
r=2 exp{xr}

, where

ϕ is 1-Lipschitz (w.r.t. ℓ2-norm) and γ
(r)
θ,w(x, y) = ϕ({g(k)ir }Rr=2). Then by Lemma E.3,

2

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
r 󰀂2≤ξ

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰂃
(k)
i γ

(k)
θ,w(x

(k)
i , y

(k)
i ))

󰀏󰀏󰀏󰀏

45



Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms

≲ 1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
r |≤ cw

2R

󰀂θr−θ(k)∗
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󰀏󰀏󰀏󰀏
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1
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1

n
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󰂃
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(k)
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󰀏󰀏󰀏󰀏

+
1
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i=1

󰂃
(k)
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󰀬
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󰀫
1

n
Ex(k)E󰂃 sup

|wr−w(k)∗
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󰂃
(k)
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+
1

n
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2R
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n
+ [RM2 +R log(Rc−1

w )]

󰁵
1

n
,

which implies

V ≲ RMξ

󰁵
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n
+ [RM2 +R log(Rc−1

w )]

󰁵
1

n
+

󰁵
log(1/δ)

n
≍ W(n, δ, ξ).

w.p. at least 1− δ.

(V) Part 5: Deriving the rate of E1 in Assumption A.5.(ii).

We first introduce the following useful lemma.
Lemma E.5 (Theorem 4 in Maurer & Pontil (2021)). Let f : Xn → R and X = (X1, . . . , Xn) be a vector of independent
random variables with values in a space X . Then for any t > 0 we have

P(f(X)− Ef(X) > t) ≤ exp

󰀻
󰀿

󰀽− t2

4e2
󰀐󰀐󰀐
󰁓n

i=1 󰀂fi(X)󰀂2ψ1

󰀐󰀐󰀐
∞

+ 2emaxi 󰀂󰀂fi(X)󰀂ψ1󰀂∞ t

󰀼
󰁀

󰀾 ,

where fi(X) as a random function of x is defined to be (fi(X))(x) := f(x1, . . . , xi−1, Xi, xi+1, . . . , Xn) −
EXi [f(x1, . . . , xi−1, Xi, xi+1, . . . , Xn)], the sub-Gaussian norm 󰀂Z󰀂ψ1

:= supd≥1{󰀂Z󰀂d/d}, and 󰀂Z󰀂d = (E|Z|d)1/d.
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Let
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,

where {uj}Nj=1 is a 1/2-cover of the unit ball B(0, 1) in Rd w.r.t. ℓ2-norm, with N ≤ 5d (by Example 5.8 in Wainwright

(2019)). We first bound Uj − EUj as below. Fix (x
(k)
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(k)
i ), . . . , (x

(k)
i−1, y

(k)
i−1), (x

(k)
i+1, y

(k)
i+1), . . . , (x

(k)
n , y

(k)
n ) and define

s
(k)
ir (x

(k)
i , y

(k)
i ) = Vj − E

󰀅
Vj |(x(k)

1 , y
(k)
i ), . . . , (x

(k)
i−1, y

(k)
i−1), (x

(k)
i+1, y

(k)
i+1), . . . , (x

(k)
n , y

(k)
n )

󰀆
. Then
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where [E(W1 +W2)
d]1/d ≤ (EW d

1 )
1/d + (EW d

2 )
1/d, and (EW d

1 )
1/d, (EW d

2 )
1/d ≤ CMd/n with some constantC > 0.

Then by Lemma E.2,
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󰀞
.

By a similar procedure used in deriving W(n, δ, ξ), we can show that
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≲ [RM2r∗θ +RM(M + r∗θ)
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n
,

which implies that
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.

Therefore
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,

which implies that

U ≲ RM3
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d
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+MR log(Rc−1
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󰁵
log(1/δ)

n
,

w.p. at least 1− δ. On the other hand, similarly, we have
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,

hence
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(VI) Part 6: Deriving the rate of E2 in Assumption A.5.(iii). Let
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where {uj}Nj=1 is a 1/2-cover of the unit ball B(0, 1) in Rd w.r.t. ℓ2-norm with N ≤ 5d and {ηj′}N
′

j′=1

is a 1/2-cover of [0, 1] with N ′ ≤ 2. We first bound Z(j, j′1, . . . , j
′
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k) as follows.
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Via the same procedure used to bound Uj , it can be shown that
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w.p. at least 1− δ. Similarly,
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E.6. Proof of Proposition A.19

Recall that
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and
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some C > 0.

E.7. Proof of Corollary A.17

By the rate of W(n, δ
3RK , r∗θ,T ) in Proposition A.16 and the upper bound of r∗θ,T in Proposition A.19,

W
󰀓
n,

δ

3RK
, r∗θ,T

󰀔
≍ RMr∗θ,T

󰁵
d

n
+ [RM2 +R log(Rc−1

w )]

󰁵
1

n
+

󰁵
log(RK/δ)

n

≲ T 2(κ̃0 ∨ κ̃′
0)

T−1(r∗w ∨ r∗θ) +R2M3c−1
w

󰁶
d

n|S| +R2Mc−1
w [M2 + log(Rc−1

w )]

󰁵
1

n

+MRc−1
w

󰁵
log(RK/δ)

n
+min

󰀝
h,R2M3c−1

w

󰁵
d

n

󰀞
+ 󰂃RM3c−1

w

󰁵
d

n
.

Applying Theorem A.8, we have

max
k∈S

max
r∈[R]

(󰀂󰁥θ(k)[T ]
r − θ(k)∗

r 󰀂2 + | 󰁥w(k)[T ]
r − w(k)∗

r |)

≤ 20T (κ̃0)
T−1(r∗w ∨ r∗θ) +

󰀗
119

15
κ̃0(κ̃0/119)

T−1 +
118

119
(T − 1)(κ̃0)

T

󰀘
(r∗w + r∗θ)

+
1

1− κ0

󰁫
η̄E2

󰀓
n, |S|, δ

3R

󰀔
+W

󰀓
n,

δ

3RK
, r∗θ,J

󰀔󰁬
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+
18

1− κ̃0/119
·min

󰀝
3h,

6

1− κ̃0

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬󰀞

+
30

(1− κ̃0)(1− κ̃0/119)
󰂃 ·

󰁫
W

󰀓
n,

δ

3RK
, r∗θ

󰀔
+ 2η̄E1

󰀓
n,

δ

3RK

󰀔󰁬

≤ T 2(κ̃0 ∨ κ̃′
0)

T−1(r∗w ∨ r∗θ) +R2M3c−1
w

󰁶
d

n|S| +R2Mc−1
w [M2 + log(Rc−1

w )]

󰁵
1

n

+MRc−1
w

󰁵
log(RK/δ)

n
+min

󰀝
h,R2M3c−1

w

󰁵
d

n

󰀞
+ 󰂃RM3c−1

w

󰁵
d

n
. (18)

Note that conditioned on the event V defined in the proof of Theorem A.8,

η(k)r = (1 + 2Cb)
−1( 󰁥w(k)[0]

r )−1 ≲ Rc−1
w ,

for all k ∈ S and r ∈ [R]. Plugging it in equation (18) implies the desired upper bound in Corollary 2.

E.8. Proof of Theorem C.2

Recall that our best permutation π∗
k ∈ PR on task k can be up to a permutation on [K]. WLOG, consider π∗

k satisfying that
π∗
k(r) = “the majority class” r̃ if #{k ∈ S : πk(r) = r̃} > 1

2 |S|, for all k ∈ S. Define “the majority class” of {πk(r)}k∈S

as the r̃ ∈ [R] which satisfies #{k ∈ S : πk(r) = r̃} ≥ maxr′ ∕=r̃ #{k ∈ S : πk(r) = r′}. Denote the majority class
of {πk(r)}k∈S as mr ∈ [R] and Sr = {k ∈ S : πk(r) = mr}. WLOG, suppose π∗ = {π∗

k}Kk=1 satisties π∗
k(r) = r for

any r and k ∈ S. Consider any π = {πk}Kk=1 with πk(r) = π∗
k(r) for all k ∈ Sc and π ∕= π∗. It suffices to show that

score(π,K) > score(π∗,K).

For convenience, denote ξ = maxk∈S minπk
maxr∈[R] 󰀂󰁥θ

(k)[0]
πk(r)

− θ
(k)∗
r 󰀂2. We have

score(π,K)− score(π∗,K) =
󰁛

k ∕=k′∈S

R󰁛

r=1

󰀂󰁥θ(k)[0]
πk(r)

− 󰁥θ(k′)[0]
πk′ (r)

󰀂2
󰁿 󰁾󰁽 󰂀

[1]

+2
󰁛

k∈S,k′∈Sc

R󰁛

r=1

󰀂󰁥θ(k)[0]
πk(r)

− 󰁥θ(k′)[0]
πk′ (r)

󰀂2
󰁿 󰁾󰁽 󰂀

[2]

−
󰁛

k ∕=k′∈S

R󰁛

r=1

󰀂󰁥θ(k)[0]
r − 󰁥θ(k′)[0]

r 󰀂2
󰁿 󰁾󰁽 󰂀

[1]′

− 2
󰁛

k ∕=k′∈S

R󰁛

r=1

󰀂󰁥θ(k)[0]
r − 󰁥θ(k′)[0]

πk′ (r)
󰀂2

󰁿 󰁾󰁽 󰂀
[2]′

.

Note that

[1]− [1]′ =
󰁛

k ∕=k′∈S

󰁛

r:πk(r) ∕=πk′ (r)

󰀓
󰀂󰁥θ(k)[0]

πk(r)
− 󰁥θ(k′)[0]

πk′ (r)
󰀂2 − 󰀂󰁥θ(k)[0]

r − 󰁥θ(k′)[0]
r 󰀂2

󰀔

≥
󰁛

k ∕=k′∈S

󰁛

r:πk(r) ∕=πk′ (r)

󰀓
󰀂θ(k)∗

πk(r)
− θ

(k′)∗
πk′ (r)

󰀂2 − 󰀂θ(k)∗
r − θ(k′)∗

r 󰀂2 − 4ξ
󰀔

≥
󰁛

k ∕=k′∈S

󰁛

r:πk(r) ∕=πk′ (r)

󰀓
󰀂θ(k)∗

πk(r)
− θ

(k)∗
πk′ (r)

󰀂2 − 󰀂θ(k)∗
πk′ (r)

− θ
(k′)∗
πk′ (r)

󰀂2 − 󰀂θ(k)∗
r − θ(k′)∗

r 󰀂2 − 4ξ
󰀔

≥
󰁛

k ∕=k′∈S

󰁛

r:πk(r) ∕=πk′ (r)

(∆− 2h− 4ξ)

=

R󰁛

r=1

󰁛

k ∕=k′∈S,πk(r) ∕=πk′ (r)

(∆− 2h− 4ξ).

For r with |Sr| > 1
2 |S|:

󰁛

k ∕=k′:πk(r) ∕=πk′ (r)

(∆− 2h− 4ξ) ≥ |Sr|(|S|− |Sr|)(∆− 2h− 4ξ).
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For r with |Sr| ≤ 1
2 |S|: denote #{K ∈ S : πk(r) = r′} as vr′ , where

󰁓R
r′=1 vr′ = |S| and |vr′ | ≤ 1

2 |S| for all r′. Then

󰁛

k ∕=k′:πk(r) ∕=πk′ (r)

(∆− 2h− 4ξ) ≥ (∆− 2h− 4ξ)

󰀗
|S|(|S|− 1)−

R󰁛

r′=1

vr′(vr′ − 1)

󰀘

= (∆− 2h− 4ξ)

󰀗
|S|2 −

R󰁛

r′=1

v2r′

󰀘

≥ (∆− 2h− 4ξ)

󰀗
|S|2 − 2 ·

󰀓1
2
|S|

󰀔2
󰀘

≥ (∆− 2h− 4ξ) · 1
2
|S|2.

Hence

[1]− [1]′ ≥ (∆− 2h− 4ξ) ·
󰀥

󰁛

r:|Sr|>|S|/2

|Sr|(|S|− |Sr|) +
󰁛

r:|Sr|≤|S|/2

1

2
|S|2

󰀦
.

And

[2]− [2]′ ≥ −2
󰁛

k∈S,k′∈Sc

R󰁛

r=1

󰀂󰁥θ(k)[0]
πk(r)

− 󰁥θ(k)[0]
r 󰀂2

≥ −2|Sc|
󰁛

k∈S

󰁛

r:πk(r) ∕=r

(h+ 2ξ)

≥ −2|Sc|
󰀥

󰁛

r:|Sr|>|S|/2

󰁛

k∈S,πk(r) ∕=r

(h+ 2ξ) +
󰁛

r:|Sr|≤|S|/2

󰁛

k∈S,πk(r) ∕=r

(h+ 2ξ)

󰀦

≥ −2|Sc|(h+ 2ξ)

󰀥
󰁛

r:|Sr|>|S|/2

(|S|− |Sr|) +
󰁛

r:|Sr|≤|S|/2

|S|
󰀦
.

Therefore,

score(π)− score(π∗) ≥
󰁛

r:|Sr|>|S|/2

(|S|− |Sr|)[|Sr|(∆− 2h− 4ξ)− 2|Sc|(h+ 2ξ)]

+
󰁛

r:|Sr|≤|S|/2

󰀗
1

2
|S|2(∆− 2h− 4ξ)− 2|Sc||S|(h+ 2ξ)

󰀘

≥
󰁛

r:|Sr|>|S|/2

(|S|− |Sr|)
󰀗
1

2
|S|∆− h(|S|+ 2|Sc|)− ξ(2|S|+ 4|Sc|)

󰀘

+
󰁛

r:|Sr|≤|S|/2

|S|
󰀗
1

2
|S|(∆− 2h− 4ξ)− 2|Sc|(h+ 2ξ)

󰀘

≥
󰁛

r:|Sr|>|S|/2

(|S|− |Sr|) ·
1

2
|S|

󰀗
∆− h

󰀕
2 + 4 · |S

c|
|S|

󰀖
− ξ

󰀕
4 + 8 · |S

c|
|S|

󰀖󰀘

+
󰁛

r:|Sr|≤|S|/2

1

2
|S|2

󰀗
∆− h

󰀕
2 + 4 · |S

c|
|S|

󰀖
− ξ

󰀕
4 + 8 · |S

c|
|S|

󰀖󰀘

> 0,

which completes the proof, where in the last inequality we used the fact that |Sc|/|S| ≤ 󰂃
1−󰂃 .

E.9. Proof of Theorem C.4

Consider the 󰁨K-th round where 󰁨K ∈ S. WLOG, suppose ι is the identity permutation on [R]. Denote 󰁨S = [ 󰁨K] ∩ S,
󰁨Sc = [ 󰁨K] ∩ Sc, hence [K] = 󰁨S ∪ 󰁨Sc. WLOG, suppose π1 = π2 = . . . = π 󰁨K−1 are the identity permutations on [R].
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Denote π = {πk}
󰁨K−1
k=1 ∪ π 󰁨K and 󰁨π = {πk}

󰁨K−1
k=1 ∪ 󰁨π 󰁨K , where 󰁨π 󰁨K is the identity permutation on [R] and π 󰁨K can be any

non-identity permutation. We claim that it suffices to show that score(π) > score(󰁨π) for any 󰁨K ≥ K0, because if this
is the case, then 󰁨π 󰁨K will be chosen in the 󰁨K-th round of the “for” loop. Hence all chosen permutations in 󰁨S have the
same alignment. By induction, the output permutations from “Permutation Alignment Algorithm 2 (Stepwise search)” are
identity permutations on [R] among tasks in S, which completes our proof. In the remaining part of this proof, we show
score(π) > score(󰁨π) for any 󰁨K ≥ K0.

In fact,

score(π)− score(󰁨π) =
󰁛

k∈󰁨S

󰁛

r:π󰁩K(r) ∕=r

󰀂󰁥θ( 󰁨K)[0]
π󰁩K(r) − 󰁥θ(k)[0]

r 󰀂2

󰁿 󰁾󰁽 󰂀
[1]

+
󰁛

k∈󰁨Sc

󰁛

r:π󰁩K(r) ∕=r

󰀂󰁥θ( 󰁨K)[0]
π󰁩K(r) − 󰁥θ(k)[0]

r 󰀂2

󰁿 󰁾󰁽 󰂀
[2]

−
󰁛

k∈󰁨S

󰁛

r:π󰁩K(r) ∕=r

󰀂󰁥θ( 󰁨K)[0]
r − 󰁥θ(k)[0]

r 󰀂2

󰁿 󰁾󰁽 󰂀
[1]′

−
󰁛

k∈󰁨Sc

󰁛

r:π󰁩K(r) ∕=r

󰀂󰁥θ( 󰁨K)[0]
r − 󰁥θ(k)[0]

r 󰀂2

󰁿 󰁾󰁽 󰂀
[2]′

.

And

[1]− [1]′ =
󰁛

k∈󰁨S

󰁛

r:π󰁩K(r) ∕=r

󰀓
󰀂󰁥θ( 󰁨K)[0]

π󰁩K(r) − 󰁥θ(k)[0]
r 󰀂2 − 󰀂󰁥θ( 󰁨K)[0]

r − 󰁥θ(k)[0]
r 󰀂2

󰀔

≥
󰁛

k∈󰁨S

󰁛

r:π󰁩K(r) ∕=r

󰀓
󰀂󰁥θ( 󰁨K)[0]

π󰁩K(r) − 󰁥θ(k)[0]
r 󰀂2 − 󰀂θ( 󰁨K)∗

r − θ(k)∗
r 󰀂2 − 2ξ

󰀔

≥
󰁛

k∈󰁨S

󰁛

r:π󰁩K(r) ∕=r

󰀓
󰀂󰁥θ( 󰁨K)[0]

π󰁩K(r) − 󰁥θ( 󰁨K)[0]
r 󰀂2 − 2h− 4ξ

󰀔

≥
󰁛

r:π󰁩K(r) ∕=r

|󰁨S|
󰀓
󰀂󰁥θ( 󰁨K)[0]

π󰁩K(r) − 󰁥θ( 󰁨K)[0]
r 󰀂2 − 2h− 4ξ

󰀔
,

and

[2]− [2]′ ≥
󰁛

k∈󰁨Sc

󰁛

r:π󰁩K(r) ∕=r

󰀓
󰀂󰁥θ( 󰁨K)[0]

π󰁩K(r) − 󰁥θ(k)[0]
r 󰀂2 − 󰀂󰁥θ( 󰁨K)[0]

r − 󰁥θ(k)[0]
r 󰀂2

󰀔

≥ −
󰁛

k∈󰁨Sc

󰁛

r:π󰁩K(r) ∕=r

󰀂󰁥θ( 󰁨K)[0]
π󰁩K(r) − 󰁥θ( 󰁨K)[0]

r 󰀂2

= −
󰁛

r:π󰁩K(r) ∕=r

|󰁨Sc| · 󰀂󰁥θ( 󰁨K)[0]
π󰁩K(r) − 󰁥θ( 󰁨K)[0]

r 󰀂2.

Therefore,

score(π)− score(󰁨π) = [1]− [1]′ + [2]− [2]′

≥
󰁛

r:π󰁩K(r) ∕=r

󰁫
(|󰁨S|− |󰁨Sc|)󰀂󰁥θ( 󰁨K)[0]

π󰁩K(r) − 󰁥θ( 󰁨K)[0]
r 󰀂2 − 2|󰁨S|h− 4|󰁨S|ξ

󰁬

≥
󰁛

r:π󰁩K(r) ∕=r

󰁫
(|󰁨S|− |󰁨Sc|)∆− 2|󰁨S|h− (6|󰁨S|− 2|󰁨Sc|)ξ

󰁬

=
󰁛

r:π󰁩K(r) ∕=r

󰁨K
󰀗󰀕

2
|󰁨S|
󰁨K

− 1

󰀖
∆− 2

|󰁨S|
󰁨K

· h−
󰀕
8
|󰁨S|
󰁨K

− 2

󰀖
ξ

󰀘

≥
󰁛

r:π󰁩K(r) ∕=r

󰁨K ·
󰀕
K0 −K󰂃

K0 +K󰂃
·∆− 2h− 6ξ

󰀖

> 0,
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where the second last inequality is due to the fact that K0

K0+K󰂃 ≤ |󰁨S/ 󰁨K| ≤ 1.
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