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ABSTRACT

Graph matching in the setting of federated learning is still an open problem. This
paper proposes an unsupervised federated graph matching algorithm, UFGM, for
inferring matched node pairs on different graphs across clients while maintaining
privacy requirement, by leveraging graphlet theory and trust region optimization.
First, the nodes’ graphlet features are captured to generate pseudo matched node
pairs on different graphs across clients as pseudo training data for tackling the
dilemma of unsupervised graph matching in federated setting and leveraging the
strength of supervised graph matching. An approximate graphlet enumeration
method is proposed to sample a small number of graphlets and capture nodes’
graphlet features. Theoretical analysis is conducted to demonstrate that the ap-
proximate method is able to maintain the quality of graphlet estimation while re-
ducing its expensive cost. Second, we propose a separate trust region algorithm for
pseudo supervised federated graph matching while maintaining the privacy con-
straints. In order to avoid expensive cost of the second-order Hessian computation
in the trust region algorithm, we propose two weak quasi-Newton conditions to
construct a positive definite scalar matrix as the Hessian approximation with only
first-order gradients. We theoretically derive the error introduced by the separate
trust region due to the Hessian approximation and conduct the convergence anal-
ysis of the approximation method.

1 INTRODUCTION

Federated graph learning (FGL) is a promising paradigm that enables collaborative training of shared
machine learning models over large-scale distributed graph data, while preserving privacy of local
data (Zheng et al., 2020; Chen et al., 2021; Zhang et al., 2021a). Only recently, researchers have
started to attempt to study the FGL problems (Suzumura et al., 2019; Mei et al., 2019; Zhou et al.,
2020b; Jiang et al., 2020; Wang et al., 2020a; Chen et al., 2021; Ke & Honorio, 2021; Wu et al., 2021;
Wang et al., 2021a; He et al., 2021b;c). Most of them concentrate on node classification (Zhang
et al., 2021b; Wang et al., 2022a; Chen et al., 2022a; Baek et al., 2022; Xie et al., 2023; Zhang
et al., 2023; Li et al., 2023), graph classification (Xie et al., 2021; He et al., 2021a; Tan et al., 2022;
Wang et al., 2022b), network embedding (Ni et al., 2021; Zhang et al., 2022; Hu et al., 2023; Zhu
et al., 2023), and link prediction (Chen et al., 2022c; Baek et al., 2022). Graph matching (i.e.,
network alignment) is one of the most important research topics in the graph domain, which aims
to match the same entities (i.e., nodes) across two or more graphs (Zhang & Yu, 2015; Zhang et al.,
2015; Liu et al., 2016; 2017; Malmi et al., 2017; Vijayan & Milenkovic, 2018; Nassar et al., 2018;
Zhou et al., 2018b; Chu et al., 2019; Wang et al., 2019b). It has been widely applied to many real-
world applications ranging from protein network matching in bioinformatics (Kelley et al., 2003;
Singh et al., 2008), user account linking in different social networks (Shu et al., 2016; Mu et al.,
2016; Zhong et al., 2018; Li et al., 2018; Zhou et al., 2018a; Feng et al., 2019; Li et al., 2019a),
and knowledge translation in multilingual knowledge bases (Xu et al., 2019b; Zhu et al., 2019), to
geometric keypoint matching in computer vision (Fey et al., 2020).

While the existing techniques have achieved remarkable performance in the above graph learning
domains, there is still a paucity of techniques of effective federated graph matching (FGM), which is
much more difficult to study. Directly sharing and inferring matched node pairs on different graphs
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across clients and local graphs over multiple clients gives rise to a serious privacy leakage concern
and thus limits the applicability of graph matching in the centralized setting, such as user account
linking in social networks and financial crime detection on transaction networks (Suzumura et al.,
2019; Wang et al., 2019a; Zhang et al., 2021a; NSF; IBM), where the social network data and the
bank customer and transfer data contain many sensitive information, advocating the invention of
novel FGM techniques. In this work, we aim to answer the following questions: (1) How to train
effective FGM models on distributed clients with maintaining high matching performance? (2) How
to make FGM models with strong privacy protection for cross-client information exchange?

Research activities on centralized graph matching can be classified into two groups: supervised
graph matching (Man et al., 2016; Zhou et al., 2018a; Yasar & Çatalyürek, 2018; Li et al., 2019b;a;
Chu et al., 2019; Fey et al., 2020) and unsupervised graph matching (Zhou et al., 2018b; Heimann
et al., 2018; Zhong et al., 2018; Li et al., 2018; Huynh et al., 2020b). The former utilizes a set of pre-
matched node pairs between pairwise graphs belonging to the same entities as training data to learn
an effective graph matching model by minimizing the distances (or maximizing the similarities)
between the pre-matched node pairs. The latter fails to employ the strength of training data and thus
often leads to sub-optimal solutions. However, supervised graph matching using the pre-matched
node pairs as the training data is improper for the FGM scenarios due to privacy risks of direct cross-
client information exchange when the graphs to be matched are distributed over different clients.

This motivates us to capture nodes’ graphlet features to generate pseudo matched node pairs on
different graphs across clients as the pseudo training data for leveraging the strength of supervised
graph matching. A graphlet is a small graph of size up to k nodes of a larger graph, such as triangle,
wedge, or k-clique, which describes the local topology of a larger graph. A node’s local topology can
be measured by a graphlet feature vector, where each component denotes the frequency of one type
of graphlets. Thus, a graphlet feature vector is one of node structure representation (Shervashidze
et al., 2009; Kondor et al., 2009; Soufiani & Airoldi, 2012; Jin et al., 2018; Tu et al., 2019). It is
highly possible that the nodes in different graphs with the small distances regarding their graphlet
features correspond to the same entities. Thus, they can be treated as the pseudo matched node pairs
for pseudo supervised FGM.

However, graphlet enumeration one by one on large graphs is impossible due to expensive cost. We
propose to leverage Monte Carlo Markov Chain (MCMC) technique for sampling a small number
of graphlets. The number of graphlet samples is much smaller than that of all graphlets in the
graphs, which dramatically improves the efficiency of graphlet enumeration. Theoretical analysis is
conducted to demonstrate that the estimated graphlet count based on the MCMC sampling strategy
is close to the actual count of all graphlets, which implies that the graphlet samples and all graphlets
share similar distributions.

In order to maintain the privacy requirement of federated learning, we first encrypt local raw graph
data on each client with a key shared by all clients (not accessed by the server). The encrypted
graph data from all clients are accessed by only the server (not by other clients) for matching the
graphs with each other. Note that stochastic gradient descent (SGD) optimization widely used in
deep learning fails to work on the clients in the FGM, since each client can access only its own
local graph data and thus cannot update local loss based on the pseudo matched node pairs. We
propose a separate trust region algorithm for pseudo supervised FGM while maintaining the privacy
constraints. Specifically, we separate model optimization from model evaluation in the trust region
algorithm: (1) the server aggregates the local model parameter Ms

b on each client s into a global
model parameter Mb at global iteration b, runs and evaluates Mb on the all pseudo training data D̃st

and the encrypted graph data, and computes the individual loss Ls(Mb), the gradient∇Ls(Mb), and
the Hessian∇2Ls(Mb) for each client s; (2) client s receives its individual Ls(Mb),∇Ls(Mb), and
∇2Ls(Mb) from the server and optimizes Ms

b+1.

Unfortunately, the second-order Hessian computation ∇2Ls(Mb) in the separate trust region al-
gorithm is time-consuming over large graphs. We propose to explore quasi-Newton conditions to
construct a positive definite scalar matrix αbI, where αb ≥ 0 is a scalar and I is an identify ma-
trix. Client s uses only first-order gradients ∇Ls(Mb) to compute the Hessian approximation, i.e.,
zT∇2Ls(Mb)z ≈ αbz

T z. We theoretically derive the error by the separate trust region due to the
Hessian approximation and conduct the convergence analysis of the approximation method.
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To our best knowledge, this work is the first to offer an unsupervised federated graph matching solu-
tion for inferring matched node pairs on different graphs across clients while maintaining the privacy
requirement of federated learning, by leveraging the graphlet theory and trust region optimization.
Our UFGM method exhibits three compelling advantages: (1) The combination of the unsupervised
FGM and the encryption of local raw graph data is able to provide strong privacy protection for sen-
sitive local data; (2) The graphlet feature extraction can leverage the strength of supervised graph
matching with the pseudo training data for improving the matching quality; and (3) The separate
trust region for pseudo supervised FGM is helpful to enhance the efficiency while maintaining the
privacy constraints.

Empirical evaluation on real datasets shows the superior performance of our UFGM model against
several state-of-the-art centralized graph matching, federated domain adaption, and FGL methods.

2 BACKGROUND

2.1 SUPERVISED GRAPH MATCHING

Given a set of S graphsG = {G1, · · · , GS}. Each graph is denoted asGs = (V s, Es) (1 ≤ s ≤ S),
where V s = {vs1, vs2, · · · } is the set of nodes and Es = {(vsi , vsj ) : 1 ≤ i, j ≤ |V s|, i 6= j} is the
set of edges. Each Gs has a binary adjacency matrix As, where each entry As

ij = 1 if there exists
an edge (vsi , v

s
j ) ∈ Es; otherwise As

ij = 0. As
i: specifies the ith row vector of As and is used to

denote the representation of a node vsi .

The entire training data consist of a set of training data between pairwise graphs, i.e., D =
{D12, · · · , D1S , · · · , D(S−1)S}. Each Dst (1 ≤ s < t ≤ S) specifies a set of pre-matched node
pairs Dst = {(vsi , vtj)|vsi↔vtj , vsi ∈ V s, vtj ∈ V t}, where vsi↔vtj represents that two nodes vsi and
vtj are the equivalent ones in two graphs Gs and Gt and are treated as the same entity. The objec-
tive of supervised graph matching is to utilize Dst as the training data to identify the one-to-one
matchings between nodes vsi and vtj in the test data.

Based on structure, attribute, or embedding features, existing efforts often aim to learn an matching
function M to map the node pairs (vsi , v

t
j) ∈ Dst with different features across two graphs into

common space, i.e, minimize the distances (or maximize the similarities) between source nodes
M(vsi ) and target ones M(vtj) (Man et al., 2016; Zhou et al., 2018a; Yasar & Çatalyürek, 2018;
Li et al., 2019b;a). The node pairs (vsi , v

t
j) ∈ Dst with the smallest distances in the test data are

selected as the matching results. This work follows these existing efforts to design the loss function.

L =

S∑
s=1

S∑
t=s+1

E(vs
i ,v

t
j)∈D

st‖M(vsi )−M(vtj)‖22 (1)

Graph convolutional networks (GCNs) have demonstrated their superior learning performance in
network embedding tasks (Kipf & Welling, 2017). In this paper, if there are no specific descriptions,
we utilize the GCNs to learn the embedding representation with the same dimensions of each node
vsi in each graph Gs, based on its original structure features As

i:. The embedding representation of
vsi is denoted by vsi . Thus, the objective of supervised graph matching is reformulated as follows.

L =

S∑
s=1

S∑
t=s+1

E(vs
i ,v

t
j)∈D

st‖M(vs
i )−M(vt

j)‖22 (2)

2.2 FEDERATED GRAPH MATCHING

In this paper, without loss of generality, we assume that each client contains only one local graph in
the federated setting, but it is straightforward to extend to the case of multiple local graphs owned
by each client. Given S clients with a set of S graphs G = {G1, · · · , GS} and their local training
data D = {D12, · · · , D1S , · · · , D(S−1)S}, and a server, federated graph matching (FGM) aims to
learn a global graph matching model M on the server by optimizing the problem below.

min
M∈Rd

L(M) =

S∑
s=1

Ls(M) =

S∑
s=1

S∑
t=s+1

Nst

N
Lst(M)

where Lst(M) =
1

Nst

∑
(vs

i ,v
t
j)∈D

st

lstij (M)

(3)
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where lstij (M) = ‖M(vsi )−M(vtj)‖22 denotes the loss function of the prediction on the pre-matched
node pair (vsi , v

t
j) ∈ Dst made with M . Ls(M) and L(M) are the local loss function on client s

and the global one respectively. Nst = |Dst| denotes the size of local training dataset Dst. N is the
size of total training data D, i.e., N = N12 + · · ·+N1S + · · ·+N (S−1)S . A local graph matching
model Ms is optimized based on the local loss Ls(M). In the FGM, M is iteratively updated with
the aggregation of all M1, ·,MS on S clients in each round, i.e., M =

∑S
s=1

∑S
t=s+1

Nst

N Ms.

Observed from Eq.(3), when calculating the local loss Ls(M) on client s for optimizing the local
model Ms, we need to access the pre-matched node pairs {vsi , vtj} ∈ Dst and the graph Gt on
client t. This operation obviously violates the privacy requirement of federated learning. Thus, it is
difficult to utilize the pre-matched node pairs for supervised FGM.

3 MONTE CARLO MARKOV CHAIN FOR GRAPHLET FEATURE EXTRACTION

As discussed in the last section, the supervised graph matching usually achieves better performance
than the unsupervised one. In addition, supervised FGM may lead to serious privacy concerns. In
this work, we explore to capture nodes’ graphlet features to generate pseudo matched node pairs on
different graphs across clients as the pseudo training data for leveraging the strength of supervised
graph matching while keeping the local graph data safe.

In order to prohibit other clients and server from accessing local raw graphs and embedding rep-
resentations on any client s for maintaining the privacy requirement of FGM, we first utilize an
efficient matrix generation method (Randall, 1993) to produce a random nonsingular matrix K as a
key. Each client employs K to encrypt its network embedding v̂si = vsiK from the original one vsi
and uses its inverse K−1 to decrypt from v̂si to vsi = v̂siK

−1. The encrypted v̂si from all clients will
be uploaded to the server for graph matching. It is important that K is kept secret between senders
and recipients. In our setting, K is shared by all clients, but not accessed by the server.

The first step of graphlet feature extraction is to enumerate all graphlets in a graph G = (V,E).
Concretely, let Gk be the set of all C connected induced k-subgraphs (with k nodes) in G. Let
G1,G2, · · · ,GR be all R types of non-isomorphic k-graphlets (with k nodes) for which we would
like to count. We denote a k-subgraph g ∈ Gk that is isomorphic to a k-graphlet Gr (1 ≤ r ≤ R) as
g ∼ Gr. The number of k-graphlets of type r in G is equal to

nkr(G) =
∑
g∈Gk

I (g ∼ Gr) (4)

where I(·) is an indicator function.

However, graphlet enumeration one by one on large-scale graphs is impossible due to expensive cost.
We propose a MCMC sampling technique for which one can calculate the stationary distribution p
on the k-subgraphs in Gk. We only sample a small number of k-subgraphs gk1, · · · , gkO in G,
where the size O << C. Then we use Horvitz-Thompson inverse probability weighting to estimate
the graphlet counts as follows.

ñkr(G) =
1

O

O∑
o=1

I (gko ∼ Gr)

p(gko)
(5)

Next, we describe how to expand from 1-subgraphs to k subgraphs in the graphlet enumeration. For
any (k − 1)-subgraph gk−1, we expend it to a k-subgraph by adding a node from its neighborhood
Nv(gk−1) at random in terms of a certain probability distribution, where Nv(gk−1) is the set of all
nodes adjacent to a certain node in gk−1 but not including all nodes in gk−1.

This expansion operation can explore any subgraph inGk. It iteratively builds a k-subgraph gk from
a starting node. First, suppose that a starting node v1 is sampled from the distribution q, which can
be computed from local information. We assume that q(v) = f(deg(v))

F , where f(x) is a certain
function (usually a polynomial) and F is a user-defined normalizing factor. Thus, a 1-subgraph
g1 = {v1} is generated. Second, it samples an edge (v1, v2) uniformly in Ne(g1), where Ne(g1)
is the set of all edges that connect a node in g1 and a node outside of g1. Thus, a node v2 is then
attached to g1, forming a 2-subgraph g2 = g1 ∪ v2 ∪ (v1, v2). Similarly, at each iteration, it samples
an edge (vi, vj+1) (1 ≤ i ≤ j) from Ne(gj) uniformly at random and attach the node vj+1 to the
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subgraph gj , forming a j + 1-subgraph gj+1 = gj ∪ vj+1 ∪ (vi, vj+1). After k − 1 iterations, we
obtain a k-subgraph gk. Once gk has been sampled we need to classify it into a graphlet type, i.e.,
gk ∼ Gr. The method repeats the above process O times until O k-graphlets gk1, gk1, · · · , gkO are
produced.

We conduct the theoretical analysis to evaluate the permanence of our graphlet enumeration based
on the MCMC sampling, in terms of the difference between the estimated and actual graphlet counts.

In the estimation ñkr(G) in Eq.(5), a key problem is to calculate p(gko). The probability p(gk) of
getting a k-subgraph gk via subgraph expansion from a (k − 1)-subgraph gk−1 is given by the sum
p(gk) =

∑
gk−1

P(gk|gk−1)p(gk−1), where the sum is taken over all connected (k − 1)-subgraphs
gk−1 ⊂ gk, and P(gk|gk−1) is the probability of getting from gk−1 to gk in the expansion process.

p(gk) =
∑

gk−1⊂gk

p(gk−1)
deggk−1

(
Vgk − Vgk−1

)
|Ne(gk−1)| =

∑
gk−1⊂gk

p(gk−1)
|Egk | −

∣∣Egk−1

∣∣∑
v∈Vgk−1

deg(v)− 2
∣∣Egk−1

∣∣
(6)

where for a subgraph gk ⊆ G, Vgk the set of its nodes and Egk is the set of its edges. deggk−1
(V )

specifies the number of nodes in gk−1 that are connected to a node set V . deg(v) denotes the number
of associated edges of a node v.

In order to calculate p(gk), we need to consider all possible orderings of nodes in gk. Assume
that the original node ordering of gk via the subgraph expansion is xk = {v1, v2, · · · , vk}. Let
S(gk) = [v1, v2, · · · , vk] be the set of all possible node sequences of xk. Notice that an induced
subgraph hl(xk) = {v1, v2, · · · , vl, xk, G} of graph G with the first l nodes {v1, v2, · · · , vl} in xk
must be a connected subgraph for any l (1 ≤ l ≤ k). Thus, we have

S(gk) = {[v1, . . . , vk]|{v1, . . . , vk} = Vgk , gk|{v1, . . . , vl}is connected} (7)

The following theorems give an explicit solution of the probability p(gk) of getting a k-subgraph gk
via subgraph expansion and the variance of the estimation ñkr(G) of graphlet counts.
Theorem 1. Let xk = {v1, v2, · · · , vk} be the original node ordering of gk via the subgraph ex-
pansion, S(gk) = [v1, v2, · · · , vk] be the set of all possible node sequences of xk, xk[i] be the
ith node in xk, F be a user-defined normalizing factor in the subgraph expansion, and hl(xk) =
{v1, v2, · · · , vl, xk, G} be an induced subgraph of graph G with the first l nodes {v1, v2, · · · , vl} in
xk, then the probability of getting a k-subgraph gk via the subgraph expansion is

p(gk) =
∑

xk∈S(gk)

f(deg(xk[1]))

F

k−1∏
l=1

∣∣Ehl+1(xk)

∣∣− ∣∣Ehl(xk)

∣∣∑l
i=1 deg(xk[i])− 2

∣∣Ehl(xk)

∣∣ (8)

Theorem 2. Let ñkr(G) = 1
O

∑O
o=1

I(gko∼Gr)
p(gko) be the estimation of graphlet counts, d1, · · · , dk be

the k highest degrees of nodes in G, and denote D =
∏k−1
l=2 (d1 + · · · + dk). If q for sampling the

starting node is the stationary distribution of the node random walk, then the upper bound of the
variance Var(ñkr(G)) is

Var(ñkr(G)) ≤ 1

O
nkr(G)

2 |EG|
|S(Gr)|D (9)

Please refer to Appendix A.2 for detailed proof of Theorems 1 and 2.

It is observed that the variance Var(ñkr(G)) is small when the distribution of p(gk) is close to uni-
form distribution. A larger p(gk) results in a smaller variance of the estimator. Thus, the variation
can be reduced by an appropriate choice of q for sampling the starting node, say a smaller normaliz-
ing factor F . In this case, the estimated graphlet count ñkr(G) is close to the actual count nkr(G),
which implies that the graphlet samples and all graphlets share similar distributions.

We capture the graphlet features of a node by computing the frequency of each type of graphlet
with size up to k that is associated with this node. For the node pairs between pairwise graphs, we
compute the cosine similarity scores based on the graphlet features on all R types of graphlet. The
top-K node pairs with the largest similarities between pairwise graphs Gs and Gt are treated as the
pseudo matched node pairs and added to the pseudo training data D̃st.
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4 SEPARATE TRUST REGION FOR UNSUPERVISED FEDERATED GRAPH
MATCHING

In this work, according to the graphlet-based pseudo training data D̃st and the encrypted network
embedding v̂si , we propose a separate trust region algorithm for pseudo supervised FGM while
maintaining the privacy constraints. Specifically, we separate model optimization from model eval-
uation in the trust region algorithm: (1) the server aggregates the local model parameter Ms

b on each
client s into a global model parameter Mb at global iteration b, runs and evaluates Mb on all the
pseudo training data D̃st and the encrypted network embeddings v̂si , and computes the individual
loss Ls(Mb), the gradient ∇Ls(Mb), and the Hessian ∇2Ls(Mb) for each client s; (2) client s
receives its individual Ls(Mb), ∇Ls(Mb), and ∇2Ls(Mb) from the server and optimizes Ms

b+1.

Server : ComputeMb =

S∑
s=1

S∑
t=s+1

Nst

N
Ms

b , L
st(Mb) =

1

Nst

∑
(vs

i ,v
t
j)∈D̃

st

‖Mb(v̂
s
i )−Mb(v̂

t
j)‖22,

Ls(Mb) =

S∑
t=s+1

Nst

N
Lst(Mb), ∇Ls(Mb), and∇2Ls(Mb)

(10)

Client s : Optimize z∗ = arg minub(z) = Ls(Mb) + (∇Ls(Mb))
T z +

1

2
zT∇2Ls(Mb)z, s.t.‖z‖ ≤ ∆s

UpdateMs
b+1 = Ms

b + z∗

(11)
where ∆s > 0 is the trust-region radius. z∗ is the trust-region step. The individual loss Ls(Mb)
aims to minimize the sum of distance between nodes on client s and nodes on other clients in the
pseudo training data D̃st. The node pairs with the smallest distance between pairwise encrypted
network embeddings are selected as the matching results.

A key challenge in the separate trust region algorithm is to compute the second-order Hessian com-
putation ∇2Ls(Mb). It is time-consuming over large-scale graph data. We propose to explore
quasi-Newton conditions to construct a positive definite scalar matrix αbI, where αb ≥ 0 is a
scalar and I is an identify matrix, as the Hessian approximation with only first-order gradients,
i.e., zT∇2Ls(Mb)z ≈ αbzT z.

Concretely, the quasi-Newton condition is given as follows.

∇2Ls(Mb)zb = yb (12)

where zb = Mb+1 −Mb and yb = ∇Ls(Mb+1) − ∇Ls(Mb). The condition is derived from the
following quadratic model.

ub+1(z) = Ls(Mb+1) + (∇Ls(Mb+1))T z +
1

2
zT∇2Ls(Mb+1)z (13)

The quadratic model is an approximation of the objective function at iteration b+ 1 and satisfies the
following three interpolation conditions:

(1) ub+1(0) = Ls(Mb+1), (2)∇ub+1(0) = ∇Ls(Mb+1), (3)∇ub+1(−zb) = ∇Ls(Mb) (14)

It is difficult to satisfy the quasi-Newton equation in Eq.(12) with a nonsingular scalar matrix (Farid
et al., 2010). A recent study introduced a weak condition form by projecting the quasi-Newton
equation in Eq.(12) in the direction zb (J. E. Dennis & Wolkowicz, 1993).

zTb ∇2Ls(Mb+1)zb = zTb yb (15)

The choice of zb may influence the quality of the curvature information provided by the weak quasi-
Newton condition. Another weak condition is directly derived from an interpolation emphasizing
more on function values rather than from the projection of the quasi-Newton condition (xiang Yuan,
1991).

ub+1(−zb) = Ls(Mb) (16)

By combining sub-conditions (1) and (2) in Eq.(14) and replacing (3) with Eq.(16), we can get
another weak quasi-Newton condition.

zTb ∇2Ls(Mb+1)zb = 2
(
Ls(Mb)− Ls(Mb+1) + zTb ∇Ls(Mb+1)

)
(17)
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By integrating two types of weak quasi-Newton conditions together, we have a generalized weak
quasi-Newton condition.

zTb ∇2Ls(Mb+1)zb = (1− ω)zTb yb + ω
[
2 (Ls(Mb)− Ls(Mb+1)) + 2zTb ∇Ls(Mb+1)

]
= zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))T zb

] (18)

where ω ≥ 0 is the weight. If∇2Ls(Mb+1) is set to be a scalar matrix α∗b+1(ω)I, then we have

αb+1(ω) =
zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))T zb

]
zTb zb

(19)

The following theorems derive the error introduced by the separate trust region due to the Hessian
approximation and conduct the convergence analysis of the approximation method.
Theorem 3. Let d be the dimension of the flattened Mb+1, ⊗ be an appropriate tensor product,
Ab+1 ∈ Rd×d×d and Bb+1 ∈ Rd×d×d×d are the tensors of Ls(Mb+1) at iteration b+ 1 satisfying

Ab+1 ⊗ z3b =

d∑
i,j,k=1

∂3Ls(Mb+1)

∂M i∂M j∂Mk
zibz

j
bz

k
b (20)

and

Bb+1 ⊗ z4b =

d∑
i,j,k,l=1

∂4Ls(Mb+1)

∂M i∂M j∂Mk∂M l
zibz

j
bz

k
b z

l
b. (21)

Suppose that Ls(Mb+1) is sufficiently smooth, if ||zb|| is small enough, then we have

zTb ∇2Ls(Mb+1)zb − αb+1(ω)zTb zb =

(
1

2
− ω

6

)
Ab+1 ⊗ z3b −

(
1

6
− ω

12

)
Bb+1 ⊗ z4b +O

(
‖zb‖5

)
(22)

Theorem 4. Suppose ‖∇Ls(Mb)‖ 6= 0, the solution zb of the separate trust region optimization
arg minub(z) = Ls(Mb) + (∇Ls(Mb))

T z + 1
2z
T∇2Ls(Mb)z, s.t.‖z‖ ≤ ∆s in Eq.(11) satisfies

ub(0)− ub(zb) ≥
1

2
‖∇Ls(Mb)‖min

{
∆s,
‖∇Ls(Mb)‖

αb

}
(23)

Please refer to Appendix A.2 for detailed proof of Theorems 3 and 4.
Finally, the separate trust region based on two weak quasi-Newton conditions is given below.

z∗ = arg minub(z) ≈ Ls(Mb) + (∇Ls(Mb))
T z +

1

2
αb(ω)zT z, s.t.‖z‖ ≤ ∆s (24)

5 EXPERIMENTAL EVALUATION

In this section, we have evaluated the performance of our UFGM model and other comparison
methods for federated graph matching over serval representative federated graph datasets to date.
We show that UFGM with graphlet feature extraction and separate trust region is able to achieve
higher matching accuracy and faster convergence in federated settings against several state-of-the-
art centralized graph matching, federated graph learning and federated domain adaption methods.

Datasets. We focus on three representative graph learning benchmark datasets: social networks
(SNS) (Zhang et al., 2015), protein-protein interaction networks (PPI) (Zitnik & Leskovec, 2017),
and DBLP coauthor graphs (DBLP) (DBL). Without loss of generality, we assume that each client
contains only one local graph in the federated setting. For the supervised learning methods, the
training data ratio over the above three datasets is all fixed to 20%. We train the models on the
training set and test them on the test set for three datasets. The detailed descriptions of the federated
datasets are presented in Appendix A.5.

Baselines. To our best knowledge, this work is the first to offer an unsupervised federated
graph matching solution for inferring matched node pairs on different graphs across clients while
maintaining the privacy requirement of federated learning, by leveraging the graphlet theory and
trust region optimization. Thus, we choose three types of baselines that are most close to the task
of federated graph matching: centralized graph matching, federated graph learning and federated
domain adaption. We compare the UFGM model with six state-of-the-art centralized graph match-
ing models: NextAlign (Zhang et al., 2021c), NetTrans (Zhang et al., 2020), CPUGA (Pei et al.,

7
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Table 1: Final performance on SNS

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.430 0.512 0.571 0.635 2.149

Centralized NetTrans 0.379 0.439 0.447 0.496 1.611

Graph CPUGA 0.230 0.238 0.252 0.297 2.551

Matching ASAR-GM 0.199 0.229 0.252 0.337 1.410
SIGMA 0.220 0.232 0.253 0.262 1.330

SeedGNN 0.319 0.340 0.342 0.388 2.919
DualAdapt 0.001 0.002 0.002 0.002 2.049

Federated EFDA 0.001 0.001 0.002 0.002 3.427
Domain WSDA 0.003 0.005 0.007 0.011 5.129

Adaption FedKA 0.001 0.001 0.010 0.013 3.715
UFGM 0.371 0.440 0.411 0.459 0.501

Table 2: Final performance on PPI

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.951 0.962 0.972 0.979 2.115

Centralized NetTrans 0.921 0.932 0.958 0.960 1.571

Graph CPUGA 0.248 0.392 0.433 0.563 2.598

Matching ASAR-GM 0.299 0.394 0.453 0.668 1.699
SIGMA 0.499 0.560 0.633 0.782 1.652

SeedGNN 0.884 0.943 0.959 0.960 3.039
DualAdapt 0.006 0.006 0.007 0.011 2.106

Federated EFDA 0.007 0.011 0.014 0.029 3.249
Domain WSDA 0.009 0.011 0.013 0.016 2.746

Adaption FKA 0.005 0.006 0.006 0.008 2.227
UFGM 0.771 0.880 0.902 0.930 0.659

2022), ASAR-GM (Ren et al., 2022), SeedGNN (Yu et al., 2022), and SIGMA (Li et al., 2022),
six representative federated graph learning architectures: FedGraphNN (He et al., 2021a),
FKGE (Peng et al., 2021), SpreadGNN (He et al., 2022), SFL (Chen et al., 2022b),
FederatedScope-GNN (Wang et al., 2022b), and FedStar (Tan et al., 2022), and four recent
federated domain adaption methods: DualAdapt (Peng et al., 2020), EFDA (Kang et al., 2022),
WSDA (Jiang & Koyejo, 2023), and FedKA (Sun et al., 2022). The detailed descriptions of the
baselines are presented in Appendix A.5.

Evaluation metrics. By following the same settings in two representative graph matching mod-
els (Yasar & Çatalyürek, 2018; Fey et al., 2020), We employ a popular measure, Hits@K, to
evaluate and compare our UFGM model to previous lines of work, where Hits@K measures the
proportion of correctly matched nodes ranked in the top-K list. A larger Hits@K value indicates a
better graph matching result. We use finalHits@K to evaluate the quality of the federated federated
learning algorithms. In addition, we plot the measure curves regarding Hits@K and Loss Function
Values (Loss) with increasing rounds to verify the convergence of different federated learning meth-
ods: (Karimireddy et al., 2020; Mitra et al., 2021; Liu et al., 2020; Reddi et al., 2021; Karimireddy
et al., 2021; Wang et al., 2021b). A smaller Loss score shows a better federated learning result.

Final Hits@K and Loss on SNS and PPI. Tables 1 and 2 show the quality of six centralized
graph matching, six federated graph learning, and four federated domain adaption algorithms over
SNS and PPI respectively. We have observed that our UFGM federated graph matching solution
outperforms all the competitors of federated graph learning and federated domain adaption in most
experiments. UFGM achieves the highest Hits@K values (> 0.771 over SNS and > 0.371 on PPI
respectively) and the lowest Loss values (= 0.659 over SNS and = 0.501 on PPI respectively),
which are better than other four baseline methods in all tests. In addition, the Hits@K scores
achieved by UFGM is close or much better than the centralized graph matching method. Compared
with the best centralized graph matching method, NextAlign, the Hits@1, Hits@5, Hits@10, and
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Figure 2: Convergence on PPI

Hits@50 scores by UFGM are only 15.3% lower respectively. A reasonable explanation is that the
combination of graphlet feature extraction, separate trust region, and pseudo supervised learning is
able to achieve higher matching accuracy and faster convergence in federated settings. In addition,
the promising performance of UFGM over both datasets implies that UFGM has great potential as a
general federated graph matching solution over federated datasets, which is desirable in practice.

Hits@K Convergence on SNS and PPI. Figures 1 and 2 exhibit the Hits@K curves of five
federated learning models for graph matching over SNS and PPI respectively. It is obvious that the
performance curves by federated learning algorithms initially keep increasing with training rounds
and remains relatively stable when the curves are beyond convergence points, i.e., turning points
from a sharp Hits@K increase to a flat curve. This phenomenon indicates that most federated
learning algorithms are able to converge to the invariant solutions after enough training rounds.
However, among six federated graph learning and four federated domain adaption approaches, our
UFGM method can significantly speedup the convergence on two datasets in most experiments,
showing the superior performance of UFGM in federated settings. Compared to the learning results
by other federated learning models, based on training rounds at convergence points, UFGM, on
average, achieves 31.8% and 35.4% convergence improvement on two datasets respectively.

Loss Convergence on SNS and PPI. Figures 1 and 2 also present the Loss curves achieved by five
federated learning models on two datasets respectively. We have observed that the reverse trends,
in comparison with the Hits@K curves. In most experiments, our UFGM is able to achieve the
fastest convergence, especially, UFGM can converge around 1,000 training rounds and then always
keep stable on two datasets. A reasonable explanation is that UFGM fully utilizes the proposed
graphlet feature extraction techniques to generate the pseudo training data and employ the strength
of supervised graph matching for accelerating the training convergence.

6 CONCLUSIONS

In this work, we have proposed an unsupervised federated graph matching algorithm. First, an ap-
proximate graphlet enumeration method is proposed to capture nodes’ graphlet features to generate
pseudo matched node pairs as pseudo training data. Second, a separate trust region algorithm is pro-
posed for pseudo supervised federated graph matching while maintaining the privacy constraints.
Finally, empirical evaluation on real datasets demonstrates the superior performance of our UFGM.

7 REPRODUCIBILITY STATEMENT

We include the citations and URLs of all datasets used in this work and all codes of third-party base-
lines in Sections 5 and A.5. Since the datasets used are all public datasets and our methodologies,
the experiment environment, the datasets, the training strategies, the baselines, the implementation
details, and the hyperparameter settings are explicitly described in Section 3, 4, 5, and A.5, our
codes and experiments can be easily reproduced on top of a GPU server. We promise to release
our open-source codes on GitHub and maintain a project website with detailed documentation for
long-term access by other researchers and end-users after the paper is accepted.
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A APPENDIX

A.1 RELATED WORK

Centralized Graph Matching. Graph matching, also well known as network alignment, which
aims to identify the same entities (i.e., nodes) across multiple graphs, has been a heated topic in
recent years (Chu et al., 2019; Xu et al., 2019a; Wang et al., 2020f; Chen et al., 2020a;c; Zhang
& Tong, 2016; Mu et al., 2016; Heimann et al., 2018; Li et al., 2019b; Fey et al., 2020; Qin et al.,
2020; Feng et al., 2019; Ren et al., 2020). Research activities can be classified into three broad cate-
gories. (1) Topological structure-based techniques, which rely on only the structural information of
nodes to match two or multiple graphs, including CrossMNA (Chu et al., 2019), MOANA (Zhang
et al., 2019), GWL (Xu et al., 2019a), DPMC (Wang et al., 2020f), MGCN (Chen et al., 2020a),
GraphSim (Bai et al., 2020), ZAC (Wang et al., 2020c), GRAMPA (Fan et al., 2020), CONE-
Align (Chen et al., 2020c), DeepMatching (Wang et al., 2020b), Exact Graph Matching (Rácz &
Sridhar, 2021), qc-DGM (Gao et al., 2021), OTTER (Weighill et al., 2021), IA-GM (Zhao et al.,
2021), GMTracker (He et al., 2021d), Proxy Graph Matching (Tan et al., 2021), Fusion Moves
for Graph Matching (Hutschenreiter et al., 2021), D-GAP (Lyu et al., 2022), CPUGA (Pei et al.,
2022), CAPER (Zhu et al., 2022a); (2) Structure and/or attribute-based approaches, which utilize
highly discriminative structure and attribute features for ensuring the matching effectiveness, such
as FINAL (Zhang & Tong, 2016), ULink (Mu et al., 2016), gsaNA (Yasar & Çatalyürek, 2018), RE-
GAL (Heimann et al., 2018), SNNA (Li et al., 2019b), CENALP (Du et al., 2019), GAlign (Huynh
et al., 2020b), Deep Graph Matching Consensus (Fey et al., 2020), CIE (Yu et al., 2020), RE (Zhou
et al., 2020c), Meta-NA (Zhou et al., 2020a), G-CREWE (Qin et al., 2020), GA-MGM (Wang et al.,
2020d), EAGM (Qu et al., 2021), DLGM (Yu et al., 2021), SIGMA (Liu et al., 2021), CGMN (Jin
et al., 2022), FOTA (Liu et al., 2022b), SCGM (Liu et al., 2022a), and Grad-Align+ (Park et al.,
2022); (3) Heterogeneous methods employ heterogeneous structural, content, spatial, and temporal
features to further improve the matching performance, including SCAN-PS (Zhang et al., 2013),
MNA (Kong et al., 2013), HYDRA (Liu et al., 2014), COSNET (Zhang et al., 2015), Factoid Em-
bedding (Xie et al., 2018), HEP (Zheng et al., 2018), LHNE (Wang et al., 2019c), ActiveIter (Ren
et al., 2019), NAME (Zhou et al., 2019), TransLink (Zhou & Fan, 2019), DPLink (Feng et al.,
2019), DETA (Meng et al., 2019). BANANA (Ren et al., 2020), SAUIL (Qiao et al., 2020).
GCAN (Jiang et al., 2022), and Deep Multi-Graph Matching (Ye et al., 2022); Several papers review
key achievements of graph matching across online information networks including state-of-the-art
algorithms, evaluation metrics, representative datasets, and empirical analysis (Shu et al., 2016;
Guzzi & Milenkovic, 2018; Huynh et al., 2020a; Vijayan et al., 2020; Yan et al., 2020; Zhang &
Tong, 2020; Haller et al., 2022). It has been widely applied to many real-world applications, includ-
ing protein network alignment in bioinformatics (Liu et al., 2017; Vijayan et al., 2020), user account
linking in multiple social networksShu et al. (2016); Mu et al. (2016); Feng et al. (2019), object
matching in computer vision (Fey et al., 2020; Wang et al., 2020c;e; Yang et al., 2020), knowledge
translation in multilingual knowledge bases (Xu et al., 2019b; Zhu et al., 2019; Sun et al., 2020; Wu
et al., 2020; Zhu et al., 2022b; Chakrabarti et al., 2022; Liu et al., 2022c; Guo et al., 2022; Zhu et al.,
2022b; Xin et al., 2022) and text matching (Chen et al., 2020b).

Federated Graph Learning. With the increasing privacy awareness, commercial competition,
and regulation restrictions, real-world graph data is often generated locally and remains distributed
graphs of multiple data silos among a large number of clients (Zheng et al., 2020; Chen et al., 2021;
Zhang et al., 2021a). Federated graph learning (FGL) is a promising paradigm that enables collab-
orative training of shared machine learning models over large-scale distributed graph data, while
preserving privacy of local data. Based on how graph data can be distributed across clients, existing
FGL techniques on machine unlearning can be broadly classified into three categories below. (1)
Graph-level FGL: each client possesses a set of graphs and all clients collaborate to train a shared
model to predict graph properties, including (Xie et al., 2021; He et al., 2021a; Zhang et al., 2022;
Chen et al., 2022c; Tan et al., 2022; Hu et al., 2023; Qu et al., 2023). Typical graph-level FGL task
is graph classification/regression, which have been applied multiple domains, such as molecular
property prediction (Xie et al., 2021; He et al., 2022) and brain network analysis (Bayram & Rekik,
2021); (2) Subgraph-level FL: each client contains a subgraph of a global graph, a part of node
features, and a part of FGL model (Zhang et al., 2021b; Ni et al., 2021; Wang et al., 2022a; Chen
et al., 2022a; Baek et al., 2022; Xie et al., 2023; Zhang et al., 2023; Li et al., 2023; Zhu et al., 2023;
Tian et al., 2023). The clients aim to collaboratively train a global model with the partial features
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and subgraphs to predict node properties. Typical graph-level FGL task is node classification and
link prediction; (3) Node-level FGL: the clients are connected by a graph and thus each of them is
treated as a node (Lalitha et al., 2019; Meng et al., 2021; Caldarola et al., 2021; Rizk & Sayed, 2021).
Namely, the clients, rather than the data, are graph-structured. For example, each client performs
learning with its own data and they exchange data through the communication graph (Lalitha et al.,
2019; Meng et al., 2021). The server maintains the graph structure and uses a GNN to aggregate
information (either models or data) collected from the clients (Caldarola et al., 2021; Rizk & Sayed,
2021).

A recent work studied the problem of federated knowledge graphs embedding with a byproduct of
knowledge graph alignment (Peng et al., 2021). It exploits adversarial generation between pairs of
knowledge graphs to translate identical entities and relations of different domains into near embed-
ding spaces. To our best knowledge, this workThis work is the first to has the potential to tackle
the problem of general federated graph matching. However, it is a supervised learning method
with aligned entities and relations as training data. In addition, it is possible that neural models
may memorize inputs and reconstruct inputs from corresponding outputs (Carlini et al., 2021). The
method exchanges the embeddings of entities and relations between clients and server. Adversarial
samples and gradients are interchanged among the clients. Although a host client cannot access the
embeddings of the other’s, the exchange of translational mapping matrices (1.e., the gradients in
the generators of the other clients) makes it possible for the host client to reconstruct the former’s
embeddings with the inverse of translational mapping matrices. The combination of the above two
properties dramatically limits the applicability of the method in real scenarios. This work is the
first to offer an unsupervised federated graph matching solution for inferring matched node pairs on
different graphs across clients while maintaining the privacy requirement of federated learning, by
leveraging the graphlet theory and trust region optimization.

A.2 PROOF OF THEOREMS

Theorem 1. Let xk = {v1, v2, · · · , vk} be the original node ordering of gk via the subgraph ex-
pansion, S(gk) = [v1, v2, · · · , vk] be the set of all possible node sequences of xk, xk[i] be the
ith node in xk, F be a user-defined normalizing factor in the subgraph expansion, and hl(xk) =
{v1, v2, · · · , vl, xk, G} be an induced subgraph of graph G with the first l nodes {v1, v2, · · · , vl} in
xk, then the probability of getting a k-subgraph gk via the subgraph expansion is

p(gk) =
∑

xk∈S(gk)

f(deg(xk[1]))

F

k−1∏
l=1

∣∣Ehl+1(xk)

∣∣− ∣∣Ehl(xk)

∣∣∑l
i=1 deg(xk[i])− 2

∣∣Ehl(xk)

∣∣ (25)

Proof. We can consider a subgraph expansion process as a way of sampling a sequence xk =
{v1, v2, · · · , vk}, ordered from the first node sampled to the last one, that is then used to generate a
k-subgraph gk. Denote the set of such sequences as V kG . Let hl = {v1, v2, · · · , vl} is a l-subgraph
of graph G obtained by the subgraph expansion process on step l. The probability of sampling node
vl+1 on the step l + 1 to produce a (l + 1)-subgraph hl+1 = {v1, v2, · · · , vl, vl+1} is equal to

P (vl+1 | hl) =
deghl

(vl+1)

|Ne (hl)|
=

∣∣Ehl+1

∣∣− |Ehl
|∑l

i=1 deg(vi)− 2 |Ehl
|

(26)

whereNe(hl) is the set of all edges that connect a node in hl and a node outside of hl. deghl
(vl+1)

specifies the number of nodes in hl that are connected to the node vl+1.

Thus, the probability p̃(xk) of sampling a sequence xk = {v1, v2, · · · , vk} ∈ S(gk) in the subgraph
expansion process is equal to

p̃(xk) = q (v1)

k−1∏
l=1

P (vl+1 | hl) =
f (deg (v1))

F

k−1∏
l=1

∣∣Ehl+1

∣∣− |Ehl
|∑l

i=1 deg(vi)− 2 |Ehl
|

(27)

Notice that
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p(gk) =
∑

xk∈S(gk)

p̃(xk) (28)

Since

S(gk) = {[v1, . . . , vk]|{v1, . . . , vk} = Vgk , gk|{v1, . . . , vl}is connected} (29)
,

then we have

p(gk) =
∑

xk∈S(gk)

f(deg(xk[1]))

F

k−1∏
l=1

∣∣Ehl+1(xk)

∣∣− ∣∣Ehl(xk)

∣∣∑l
i=1 deg(xk[i])− 2

∣∣Ehl(xk)

∣∣ (30)

where xk = {v1, v2, · · · , vk} be the original node ordering of gk via the subgraph expansion pro-
cess. xk[i] be the ith node in xk. hl(xk) = {v1, v2, · · · , vl, xk, G} be an induced subgraph of graph
G with the first l nodes {v1, v2, · · · , vl} in xk

Therefore, the proof is concluded.

Theorem 2. Let ñkr(G) = 1
O

∑O
o=1

I(gko∼Gr)
p(gko) be the estimation of graphlet counts, d1, · · · , dk be

the k highest degrees of nodes in G, and denote D =
∏k−1
l=2 (d1 + · · · + dk). If q for sampling the

starting node is the stationary distribution of the node random walk, then the upper bound of the
variance Var(ñkr(G)) is

Var(ñkr(G)) ≤ 1

O
nkr(G)

2 |EG|
|S(Gr)|

D (31)

Proof. Consider sampling the starting node v1 independently and from an arbitrary distribution
q when we have access to all the nodes. Sampling nodes independently implies that the subgraph
expansion process will result in independent k-subgraph samples. Thus, the variance of the graphlet
count estimator can be decomposed into the variance of the individual k-subgraph samples. The
variance of the estimator ñkr(G) is then

Var(ñkr(G)) =
1

O
Var

(
I (gkO ∼ Gr)
p(gkO)

)
=

1

O

 ∑
gk∈Gk

I (gk ∼ Gr)
p(gk)

− nkr(G)2

 (32)

It is observed that the variance Var(ñkr(G)) is small when the distribution of p(gk) is close to
uniform distribution. A larger p(gk) results in a smaller variance of the estimator. Thus, the vari-
ation can be reduced by an appropriate choice of q for sampling the starting node, say a smaller
normalizing factor F . In this case, the estimated graphlet count ñkr(G) is close to the actual count
nkr(G), which implies that the graphlet samples and all graphlets share similar distributions.

Let

φo =
I (gko ∼ Gr)
p(gko)

(33)

The variance can be rewritten as follows.

Var (ñkr(G)) =
1

O
Var (φo) (34)

Notice that nkr(G) = Eφo, and ñkr(G) = 1
O

∑O
o=1 φo for the estimator.

We can bound the variancein Eq.(32) by the second moment, which is bounded by,
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Eφ2
o ≤ Eφo maxφo = nkr(G) maxφo (35)

By seeking to control the the maximum of φo, we have

max
gk

1

p(gk)
≤ max

xk

1

|S(gk)|p̃(xk)
≤ max

∏k−1
l=1 (d1 + · · ·+ dl)

|S (Gr)| q (d1)
(36)

and we obtain

max
x

|Nv(x)|
S(Gr)|p̃(x)

≤ max

∏k−1
l=1 (d1 + · · ·+ dl)

|S (Gr)| q (d1)
(37)

Thus, we can construct a bound on Var (φo) and Var (ñkr(G)).

Therefore, the proof is concluded.

Theorem 3. Let d be the dimension of the flattened Mb+1, ⊗ be an appropriate tensor product,
Ab+1 ∈ Rd×d×d and Bb+1 ∈ Rd×d×d×d are the tensors of Ls(Mb+1) at iteration b+ 1 satisfying

Ab+1 ⊗ z3
b =

d∑
i,j,k=1

∂3Ls(Mb+1)

∂M i∂M j∂Mk
zibz

j
bz
k
b (38)

and

Bb+1 ⊗ z4
b =

d∑
i,j,k,l=1

∂4Ls(Mb+1)

∂M i∂M j∂Mk∂M l
zibz

j
bz
k
b z
l
b. (39)

Suppose that Ls(Mb+1) is sufficiently smooth, if ||zb|| is small enough, then we have

zTb ∇2Ls(Mb+1)zb−αb+1(ω)zTb zb =

(
1

2
− ω

6

)
Ab+1⊗ z3

b −
(

1

6
− ω

12

)
Bb+1⊗ z4

b +O
(
‖zb‖5

)
(40)

Proof. By utilizing the Taylor expansion, we obtain

Ls(Mb) =Ls(Mb+1)− (∇Ls(Mb+1))T zb +
1

2
zTb ∇2Ls(Mb+1)zb−

1

6
Ab+1 ⊗ z3

b +
1

24
Bb+1 ⊗ z4

b +O
(
‖zb‖5

) (41)

and

(∇Ls(Mb))
T zb =(∇Ls(Mb+1))T zb − zTb ∇2Ls(Mb+1)zb+

1

2
Ab+1 ⊗ z3

b −
1

6
Bb+1 ⊗ z4

b +O
(
‖zb‖5

) (42)

In addition, we have

αb+1(ω) =
zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

]
zTb zb

(43)
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By combining Eqs.(41), (42), and (43), we get

zTb ∇2Ls(Mb+1)zb − αb+1(ω)zTb zb

=zTb ∇2Ls(Mb+1)zb − zTb yb−

ω
[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

]
=

(
1

2
− ω

6

)
Ab+1 ⊗ z3

b −
(

1

6
− ω

12

)
Bb+1 ⊗ z4

b +O
(
‖zb‖5

) (44)

Therefore, the proof is concluded.

Sensitivity analysis of weight ω. Based on Eq.(43), if ω = 0, we have

αb+1(0) =
zTb yb
zTb zb

(45)

Then, it derives the following equation based on Eq.(40).

zTb ∇2Ls(Mb+1)zb − αb+1(ω)zTb zb =
1

2
Ab+1 ⊗ z3

b −
1

6
Bb+1 ⊗ z4

b +O
(
‖zb‖5

)
(46)

According to Eq.(46) and Theorem 3, it is reasonable to believe that if the weight parameter ω is
chosen such that ∣∣∣∣12 − ω

6

∣∣∣∣ < 1

2
(47)

and ∣∣∣∣16 − ω

12

∣∣∣∣ < 1

6
(48)

i.e., 0 < ω < 4, then αb+1(ω)zTb zb may capture the second order curvature zTb ∇2Ls(Mb+1)zb with
a high precision.

Now, let us further compare several possible choices of ω and the corresponding formulas for
αb+1(ω).

(1) If ω = 1, then

αb+1(1) =
zTb yb + 2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

zTb zb
(49)

The resulting matrix αb+1(1)I satisfies the weak quasi-Newton equation in Eq.(17). Based on
Eq.(40), we have

zTb ∇2Ls(Mb+1)zb − αb+1(1)zTb zb =
1

3
Ab+1 ⊗ z3

b −
1

12
Bb+1 ⊗ z4

b +O
(
‖zb‖5

)
(50)

(2) If ω = 2, then

αb+1(2) =
zTb yb + 4 (Ls(Mb)− Ls(Mb+1)) + 2 (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

zTb zb
(51)

The following equation is derived from Eq.(40).
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zTb ∇2Ls(Mb+1)zb − αb+1(2)zTb zb =
1

6
Ab+1 ⊗ z3

b +O
(
‖zb‖5

)
(52)

(3) If ω = 3, then

αb+1(3) =
zTb yb + 6 (Ls(Mb)− Ls(Mb+1)) + 3 (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

zTb zb
(53)

According to Eq.(40), we obtain

zTb ∇2Ls(Mb+1)zb − αb+1(3)zTb zb =
1

12
Bb+1 ⊗ z4

b +O
(
‖zb‖5

)
(54)

Theorem 4. Suppose ‖∇Ls(Mb)‖ 6= 0, the solution zb of the separate trust region optimization
arg minub(z) = Ls(Mb) + (∇Ls(Mb))

T z + 1
2z
T∇2Ls(Mb)z, s.t.‖z‖ ≤ ∆s in Eq.(11) satisfies

ub(0)− ub(zb) ≥
1

2
‖∇Ls(Mb)‖min

{
∆s,
‖∇Ls(Mb)‖

αb

}
(55)

Proof. We have the separate trust region optimization based on two weak quasi-Newton conditions
as follows.

z∗ = arg minub(z) ≈ Ls(Mb) + (∇Ls(Mb))
T z +

1

2
αbz

T z, s.t.‖z‖ ≤ ∆s (56)

Since ‖∇Ls(Mb)‖ 6= 0, the solution of the separate trust region optimization based on two weak
quasi-Newton conditions in Eq.(56) can be solved as follows.

(1) if ‖∇Ls(Mb)‖ ≤ αb∆s, zb = − 1
αb
∇Ls(Mb);

(2) if ‖∇Ls(Mb)‖ > αb∆
s, the optimal solution sk will be on the boundary of the separate trust

region, i.e., zb is the solution of the following problem.

z∗ = arg minub(z) ≈ Ls(Mb) + (∇Ls(Mb))
T z +

1

2
αbz

T z, s.t.‖z‖ = ∆s (57)

From Eq.(57), we have the solution zb = − ∆s

‖∇Ls(Mb)‖∇L
s(Mb).

Thus, the general solution of the separate trust region optimization based on two weak quasi-Newton
conditions in Eq.(56) can be rewritten as follows.

zb = − 1

α̃b
∇Ls(Mb), where α̃b = max

{
αb,
‖∇Ls(Mb)‖

∆s

}
(58)

If ‖∇Ls(Mb)‖ ≤ αb∆s, then zb = − 1
αb
∇Ls(Mb). Thus, we obtain

ub(0)− ub(zb) =− (∇Ls(Mb))
T

(
− 1

αb
∇Ls(Mb)

)
− 1

2

(
− 1

αb
∇Ls(Mb)

)T
αbI

(
− 1

αb
∇Ls(Mb)

)
=
‖∇Ls(Mb)‖2

αb
− 1

2

‖∇Ls(Mb)‖2

αb

=
1

2

‖∇Ls(Mb)‖2

αb

(59)
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If ‖∇Ls(Mb)‖ > αb∆
s, then zb = − ∆s

‖∇Ls(Mb)‖∇L
s(Mb). Hence, we have

ub(0)− ub(zb) =− (∇Ls(Mb))
T

(
− ∆s

‖∇Ls(Mb)‖
∇Ls(Mb)

)
− 1

2

(
− ∆s

‖∇Ls(Mb)‖
∇Ls(Mb)

)T
αbI

(
− ∆s

‖∇Ls(Mb)‖
∇Ls(Mb)

)
=∆s ‖∇Ls(Mb)‖ −

1

2
αb(∆

s)2

>∆s ‖∇Ls(Mb)‖ −
1

2
∆s ‖∇Ls(Mb)‖

=
1

2
∆s ‖∇Ls(Mb)‖

(60)

By integrating Eqs.(59) and (60), we obtain Eq.(55).

Therefore, the proof is concluded.

A.3 ADDITIONAL EXPERIMENTS

Final Performance and Convergence on SNS, PPI, and DBLP. Table 3 and Figures-3-6 exhibit the
quality of six centralized graph matching, six federated graph learning, and four federated domain
adaption algorithms over SNS, PPI, and DBLP respectively, based on Hits@1, Hits@5, Hits@10,
Hits@50, and Loss. Similar trends are observed for the comparison of federated graph match-
ing effectiveness and convergence in these figures: our UFGM method achieves the close or much
better than the centralized graph matching method, regarding Hits@1 (>0.37), Hits@5 (>0.43),
Hits@10 (>0.41), and Hits@50 (>0.45) on three datasets respectively. Our UFGM method
achieves better performance than all the competitors offederated graph learning and federated do-
main adaption in most experiments. In addition, our UFGM method can significantly speedup the
convergence on two datasets in most experiments, compared with all federated learning algorithms.
Especially, UFGM can converge around 1,000 training rounds and then always keep stable on SNS.
This demonstrates that UFGM fully utilizes the proposed graphlet feature extraction techniques to
generate the pseudo training data and employ the strength of supervised graph matching for accel-
erating the training convergence. The above experiment results demonstrate that UFGM is effective
as well as efficient for addressing the federated graph matching problem. This advantage is very
important for large-scale federated graph matching. For example, innovators were asked to develop
privacy-preserving federated learning solutions that help tackle the challenge of international money
laundering across large-scale local transaction network owned by multiple banks (NSF, 2022). Fed-
erated graph matching (FGM) can be utilized to infer cross-graph edges over multiple clients (e.g.,
identify the same potential criminals transferring money between multiple organizations) and derive
a latent global graph (i.e., a global financial transaction network) (Suzumura et al., 2019; Wang et al.,
2019a; Zhang et al., 2021a).

Table 3: Final performance on DBLP

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.572 0.609 0.632 0.690 0.222

Centralized NetTrans 0.529 0.592 0.616 0.632 1.881

Graph CPUGA 0.136 0.199 0.276 0.296 2.232

Matching ASAR-GM 0.172 0.237 0.260 0.271 2.052
SIGMA 0.276 0.360 0.378 0.421 1.992

SeedGNN 0.530 0.582 0.637 0.702 4.185
DualAdapt 0.000 0.001 0.001 0.001 4.023

Federated EFDA 0.000 0.000 0.000 0.000 2.452
Domain WSDA 0.000 0.001 0.001 0.001 3.332

Adaption FKA 0.001 0.001 0.002 0.002 4.601
UFGM 0.453 0.552 0.591 0.659 0.332
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Figure 3: Convergence on SNS
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Figure 4: Convergence on PPI
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Figure 5: Convergence on DBLP
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Figure 6: Convergence on DBLP

Table 4: Final performance of centralized learning on SNS

Algorithm Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss

UFGM
SNS 0.371 0.440 0.411 0.459 0.501
PPI 0.771 0.880 0.902 0.930 0.659

DBLP 0.453 0.552 0.591 0.659 0.332

UFGM-C
SNS 0.387 0.417 0.478 0.486 0.427
PPI 0.786 0.911 0.922 0.932 0.495

DBLP 0.471 0.563 0.635 0.718 0.182

Final Performance of Centralized Learning. We evaluate two versions of UFGM to show the
strength of our UFGM method for federated graph matching. UFGM is the federated version with
graph data encryption, graphlet feature extraction, model evaluation on the server, model optimiza-
tion with the trust region on the clients, and Hessian approximation. UFGM-C is the centralized
version with raw graph data uploaded to the server, graphlet feature extraction, model evaluation
and model optimization with the standard stochastic gradient descent on the server. The experiment
results in Table 4 exhibit that the performance of the centralized version, UFGM-C, is close to our
federated version, UFGM over all three datasets. This further validates that our UFGM algorithm
can achieve superior performance for the federated graph matching.

Table 5: Final performance of UFGM on large-scale datasets

Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss
DBLP 100K 0.536 0.659 0.671 0.735 1.115
DBLP 200K 0.405 0.496 0.559 0.619 1.720

Final Performance on Large-scale Datasets. In order to evaluate the scalability of our UFGM
algorithm on large-scale datasets, we select and split the original DBLP dataset into 20 graphs by
publication year, ranging from 2002-2022, such that each graph has around 100,000 and 200,000
authors as nodes and coauthor relationships as edges respectively. Thus, most authors occur in all 20
graphs but different graphs contain few emeritus and new authors. The experiment results in Table
5 demonstrate that our UFGM method scales well on two large-scale datasets.
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Table 6: Final performance with new baselines on DBLP

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
Unsupervised Centralized GANN-GM 0.034 0.058 0.082 0.126 4.125

Graph Matching REGAL 0.349 0.425 0.472 0.551 N/A
Unsupervised Federated LADD 0.002 0.003 0.004 0.011 4.120

Domain Adaption FMTDA 0.008 0.011 0.016 0.029 1.597
UFGM 0.453 0.552 0.591 0.659 0.332
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Figure 7: Convergence on DBLP
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Figure 8: Convergence on DBLP

Final Performance and Convergence with New Baselines on DBLP. Table 6 and Figures 7 and
8 exhibit the quality of our UFGM method with two unsupervised centralized graph matching ap-
proaches of GANN-GM (Wang et al., 2023) and REGAL (Heimann et al., 2018) and two unsuper-
vised federated domain adaption algorithms of LADD (Shenaj et al., 2023) and FMTDA (Yao et al.,
2022), and two unsupervised federated graph learning methods of FedWalk (Pan & Zhu, 2022) and
Lumos (Pan et al., 2023). Similar trends are observed for the comparison among these unsupervised
federated earning methods: our UFGM method outperforms these baselines in all experiments, in
terms of both final performance and convergence. Notice that REGAL is a matrix factorization-
based graph alignment method and thus there are no loss functions in it.
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Table 7: Final performance of quasi-Newton approximation on three datasets

Algorithm Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss Runing Time (m)

UFGM
SNS 0.371 0.440 0.411 0.459 0.501 168
PPI 0.771 0.880 0.902 0.930 0.659 153

DBLP 0.453 0.552 0.591 0.659 0.332 732

UFGM-E
SNS 0.380 0.441 0.472 0.497 0.453 399
PPI 0.786 0.907 0.937 0.947 0.633 367

DBLP 0.487 0.606 0.657 0.687 0.228 1,556

Final Performance of quasi-Newton Approximation. We evaluate two versions of UFGM to show
the strength of the quasi-Newton approximation for improving the efficiency while maintaining the
quality federated graph matching. UFGM is the approximate version with the quasi-Newton approx-
imation. UFGM-E is the exact version with the exact Hessian computation. The experiment results
in Table 7 exhibit that the approximate version UFGM achieves slightly lower performance than
the exact version UFGM-E but has much smaller running time. This demonstrates that the quasi-
Newton approximation method is able to dramatically improve the efficiency while maintaining the
utility constraints.

A.4 PARAMETER SENSITIVITY

In this section, we conduct more experiments to validate the sensitivity of various parameters in our
UFGM method for the federated graph matching task.
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Figure 9: Final Hits@1 with varying parameters on three datasets

Impact of graphlet sample numbers. Figure 9 (a) measures the performance effect of sampled
graphlet numbers in the Monte Carlo Markov Chain sampling for graphlet enumeration and estima-
tion by varying O from 10 to 1,000. We have witnessed the performance curves by UFGM initially
increase quickly and then become stable when O continuously increases. Initially, a large O can
help utilize the strength of effective graphlet feature extraction for generating the pseudo training
data for tackling the dilemma of unsupervised graph matching in federated setting and employing
the strength of supervised graph matching. Later on, when O continues to increase and goes be-
yond some thresholds, the performance curves become stable. A rational guess is that after the
enough graphlet features have been already extracted at a certain threshold and considered in the
FGM training, our UFGM model is able to generate a good graph matching result. When O con-
tinuously increases, this does not affect the performance of graph matching any more. Figure 9 (b)
reports the corresponding running time of our UFGM model by varying sampled graphlet number
O from 10 to 1,000. We make the observation on the quality and efficiency over three datasets: both
the performance scores and the running time keep increasing when the sampled graphlet number is
increasing. A rational guess is that a larger sampled graphlet number exchanges better performance
with more sampling and processing time.
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Impact of weight ω between two types of weak quasi-Newton conditions. Figures 9 (c) shows the
influence of weight of two types of weak quasi-Newton conditions in our UFGM model by varying
it from 1 to 2. It is observed that the performance initially raises when the ω increases. Intuitively,
a large ω can help the algorithm well balance two types of weak quasi-Newton conditions and thus
help improve the quality of separate trust region and graph matching. Later on, the performance
curves decrease quickly when the ω continuously increases. A reasonable explanation is that a too
large ω may ruin the first type of weak quasi-Newton condition and miss the optimal solution in the
search process. Thus, it is important to determine the optimal ω for separate trust region.
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Figure 10: Final Hits@1 with varying parameters on three datasets

Influence of trust-region radius. Figure 10 (a) demonstrates the influence of trust-region radius
in the separate trust region in our UFGM model by varying it from 0.1 to 0.9. We have observed
that the performance initially raises when the trust-region radius increases. Intuitively, a trust-region
radius can help the algorithm quickly find the optimal solution and thus help improve the quality of
federated graph matching. Later on, the performance curves decrease quickly when the trust-region
radius continuously increases. A reasonable explanation is that a too large trust-region radius may
miss the optimal solution with large step size in the search process. Thus, it is important to determine
the optimal trust-region radius for the federated graph matching.

Sensitivity of subgraph size. Figure 10 (b) shows the influence of k-graphlets with k nodes in the
graphlet feature extraction in our UFGM model by varying it from 1 to 9. We make the observa-
tion: on the quality over three datasets: the performance curves keep increasing when the maximum
subgraph size for the graphlet counting increases and then become stable when k continuously in-
creases. A rational guess is that a larger subgraph size initially makes UFGM capture more graphlet
features and be more resilient to the unavailability of the training data. Later on, when k continues to
increase and goes beyond some thresholds, the performance curves become stable. A reasonable ex-
planation is that after the enough graphlet features have been already extracted at a certain threshold
and considered in the FGM training, our UFGM model is able to generate a good graph matching
result. When k continuously increases, this does not affect the performance of graph matching any
more.

Impact of training round. Figure 10 (c) exhibits the sensitivity of training rounds of our UFGM
model by varying them from 100 and 2,000. As we can see, the performance curves continuously
increase with increasing training rounds. This is consistent with the fact that more training rounds
makes the graph matching models be resilient to the federated setting. It is observed that our UFGM
converges very fast on three datasets. From rounds 1,500 to 2,000, the Hits@1 scores oscillate
within the range of 7.8% on three datasets.

34



Under review as a conference paper at ICLR 2024

Table 8: Final performance of quasi-Newton approximation on three datasets

Pseudo Training Data Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss

20%
SNS 0.077 0.116 0.176 0.292 0.557
PPI 0.372 0.440 0.497 0.627 0.669

DBLP 0.226 0.291 0.309 0.336 0.392

40%
SNS 0.157 0.198 0.306 0.335 0.582
PPI 0.519 0.588 0.702 0.796 0.691

DBLP 0.312 0.378 0.397 0.442 0.449

60%
SNS 0.302 0.332 0.347 0.407 0.512
PPI 0.628 0.776 0.825 0.917 0.686

DBLP 0.381 0.397 0.458 0.559 0.358

80%
SNS 0.362 0.407 0.416 0.438 0.531
PPI 0.752 0.802 0.857 0.927 0.689

DBLP 0.406 0.497 0.533 0.610 0.349

100%
SNS 0.371 0.440 0.411 0.459 0.501
PPI 0.771 0.880 0.902 0.930 0.659

DBLP 0.453 0.552 0.591 0.659 0.332

Influence of pseudo training data. Table 8 tests the influence of the pseudo training data for the
performance of graph matching by varying the ratio of the pseudo training data from 20% to 100%.
The ratio 100% corresponds to the number of the pseudo matched node pairs used in our current
experiments. The numbers are 3,041 on SNS, 1,264 over PPI, and 2,817 on DBLP respectively. As
we can see, the performance scores continuously increase with increasing pseudo training data. This
is consistent with the fact that more training data makes the graph matching models achieve better
performance.

A.5 EXPERIMENTAL DETAILS

Environment. The experiments were conducted on a compute server running on Red Hat Enterprise
Linux 7.2 with 2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce
GTX 2080 Ti (with 11GB of GDDR6 on a 352-bit memory bus and memory bandwidth in the
neighborhood of 620GB/s), 256GB of RAM, and 1TB of HDD. Overall, the experiments took about
2 days in a shared resource setting. We expect that a consumer-grade single-GPU machine (e.g.,
with a 2080 Ti GPU) could complete the full set of experiments in around 3-4 days, if its full
resources were dedicated. The codes were implemented in Python 3.7.3 and PyTorch 1.0.14. We
also employ Numpy 1.16.4 and Scipy 1.3.0 in the implementation. Since the datasets used are all
public datasets and our methodologies and the hyperparameter settings are explicitly described in
Section 3, 4, 5, and A.5, our codes and experiments can be easily reproduced on top of a GPU
server. We promise to release our open-source codes on GitHub and maintain a project website with
detailed documentation for long-term access by other researchers and end-users after the paper is
accepted.

Table 9: Statistics of the datasets

Dataset #Clients/#Graphs #Avg. Nodes #Nodes #Avg. Edges #Edges
SNS 3 14,331 14,262 ∼ 14,573 51,358 48,105 ∼ 53,381
PPI 50 1,767 1,767 32,320 31,179 ∼ 32,358

DBLP 20 10,038 9,984 ∼ 10,168 56,314 54,891 ∼ 60,058

Datasets. We study federated graph matching tasks on three representative graph matching bench-
mark datasets: social networks (SNS) 1, protein-protein interaction networks (PPI) 2, and DBLP
coauthor graphs (DBLP) 3. The above three graph datasets are all public datasets, which allow re-

1https://www.aminer.cn/cosnet
2http://snap.stanford.edu/ohmnet/
3http://dblp.uni-trier.de/xml/
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searchers to use for non-commercial research and educational purposes. Among three datasets used
in the experiment, social networks (SNS), protein-protein interaction networks (PPI), and DBLP
coauthor graphs (DBLP) contain 3, 50, 20 different graphs respectively. These three datasets are
widely used in training/evaluating the graph matching. The SNS dataset from (Zhang et al., 2015)
has 3 different graphs of Flickr, Last.fm, and MySpace. The PPI dataset from (Zitnik & Leskovec,
2017) has 50 different graphs, each representing a tissue with proteins as nodes. As for the DBLP
dataset, we select and split the original DBLP dataset into 20 graphs by publication year, ranging
from 2002-2022. Thus, most authors occur in all 20 graphs but different graphs contain few emeritus
and new authors.

Training. For each of the above three datasets, we use one client to maintain only one local graph in
the federated setting. We randomly assign the graphs in the three datasets to 3, 50, 20 clients respec-
tively in the experiments. We choose all of these graphs and clients to participate in the training of
the models of federated graph matching. For the supervised learning methods, the training data ratio
over the above three datasets is all fixed to 20%. We train the models on the training set and test
them on the test set for three datasets. In addition, we run each experiment for 3 trials for obtaining
more stable results.

Baselines. We compare three types of baselines that are most close to the task of federated graph
matching: centralized graph matching, federated graph learning and federated domain adaption.
(1) Centralized graph matching baselines. We compare the UFGM model with six state-of-
the-art models. NextAlign is a semi-supervised network alignment method that achieves a good
trade-off between alignment consistency and alignment disparity (Zhang et al., 2021c). Net-
Trans is an end-to-end supervised graph matching model that learns a composition of nonlinear
operations to transform one network to another in a hierarchical manner (Zhang et al., 2020).
CPUGA is a robust supervised graph alignment model designed with non-sampling learning to
distinguish noise from benign data in the given labeled data (Pei et al., 2022). ASAR-GM is a
robust visual graph matching approach that enlarges the disparity among appearance-similar key-
points in graph, orthogonal to de facto adversarial training (Ren et al., 2022). SeedGNN is a
supervised approach that can learn from a training set how to match unseen graphs with only a
few seeds (Yu et al., 2022). SIGMA is a semantIc-complete graph matching framework that com-
pletes mismatched semantics and reformulates the adaptation with graph matching (Li et al., 2022).
(2) Federated graph learning baselines. We evaluate the UFGM model with six representative
federated graph learning architectures. FedGraphNN is an open research federated learning system
and a benchmark to facilitate GNN-based FL research (He et al., 2021a). FKGE is a decentralized
scalable learning framework that learns knowledge graph embedding in an asynchronous and
peer-to-peer manner while being privacy-preserving (Peng et al., 2021). SpreadGNN is a multi-task
federated training framework capable of operating in the presence of partial labels and the absence
of a central server for GNNs over molecular graphs (He et al., 2022). SFL is a structured
federated learning framework to learn both the global and personalized models simultaneously using
client-wise relation graphs and clients’ private data (Chen et al., 2022b). FederatedScope-GNN
is an easy-to-use FGL package that provides a unified view for modularizing and expressing FGL
algorithms (Wang et al., 2022b). FedStar is an FGL framework that extracts and shares the common
under- lying structure information for inter-graph federated learning tasks (Tan et al., 2022). (2)
Federated domain adaption baselines. We compare the model performance with four recent fed-
erated domain adaption methods. DualAdapt aims to align the represen- tations learned among the
different nodes with the data distribution of the target node (Peng et al., 2020). EFDA extends do-
main adaptation with the constraints of federated learning to train a model for the target domain and
preserve the data privacy of all the source and target domains (Kang et al., 2022). WSDA leverages
auxiliary information to reduce the risk of federated domain adaption on the target client during
local training (Jiang & Koyejo, 2023). FedKA aligns features from different clients and those of the
target task (Sun et al., 2022).
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Implementation. For six state-of-the-art centralized graph matching models of NextAlign 4, Net-
Trans 5, CPUGA 6, ASAR-GM 7, SeedGNN 8, and SIGMA 9, we used the open-source imple-
mentation and default parameter settings by the original authors for the experiments. All hy-
perparameters are standard values from reference codes or prior works. For six representative
federated graph learning architectures of FedGraphNN 10, FKGE 11, SpreadGNN 12, SFL 13,
FederatedScope-GNN 14, and FedStar 15, we also use the default parameters in the authors’
implementation. For four recent federated domain adaption methods of DualAdapt 16, EFDA 17,
WSDA 18, and FedKA 19, we utilized the same model architecture as the official implementation
provided by the authors and used the same datasets to validate the performance of these federated
graph matching models in all experiments. All models were trained for 2,000 rounds, with a batch
size of 500, and a learning rate of 0.05. The above open-source codes from the GitHub are licensed
under the MIT License, which only requires preservation of copyright and license notices and in-
cludes the permissions of commercial use, modification, distribution, and private use.

For our UFGM model, we performed hyperparameter selection by performing a parameter sweep on
sampled graphlet numbersO ∈ {1, 5, 10, 15, 20}, weight of two types of weak quasi-Newton condi-
tions ω ∈ {1, 1.25, 1.5, 1.75, 2}, trust-region radius ∆s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, subgraph size for
graphlet feature extraction k ∈ {1, 2, 5, 7, 9}, training round ∈ {100, 500, 1, 000, 1, 500, 2, 000},
and learning rate ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. We select the best parameters over 50
epochs of training and evaluate the model at test time. In our current implementation, we first utilize
an efficient matrix generation method (Randall, 1993) to produce a random nonsingular matrix K
and then orthogonalize it to preserve the distances between the embedding vectors.

Hyperparameter settings.

Unless otherwise explicitly stated, we used the following default parameter settings in the experi-
ments.

Table 10: Hyperparameter settings

Parameter Value
Training data ratio for supervised learning methods 20%

Sampled graphlet numbers O 10
Weight of two types of weak quasi-Newton conditions ω 1.5

Trust-region radius ∆s 0.5
Subgraph size k for graphlet feature extraction 5

Training round 2,000
Batch size for training the model 500

Learning rate 0.05

4https://github.com/sizhang92/NextAlign-KDD21
5https://github.com/sizhang92/NetTrans-KDD20
6https://github.com/scpei/CPUGA
7https://github.com/Thinklab-SJTU/ThinkMatch
8https://openreview.net/forum?id=iYvbPx8GTta
9https://github.com/CityU-AIM-Group/SIGMA

16https://drive.google.com/file/d/1OekTpqB6qLfjlE2XUjQPm3F110KDMFc0/view?usp=sharing
17https://github.com/yuetan031/fedstar
18https://openreview.net/forum?id= 1gu0EX0mM3
19https://github.com/yuweisunn/federated-knowledge-alignment
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