Learning Neuro-Symbolic World Models
for Text-Based Game Playing Agents

Don Joven Agravante and Michiaki Tatsubori
IBM Research

don. joven.r.agravante@ibm.com,

Abstract

Text-based games serve as important bench-
marks for agents with natural language capa-
bilities. To enable such agents, we are inter-
ested in the problem of learning useful world
models. Our assumption is that such a world
model is best represented by a logical form
which underlies the structure of these games.
We propose to tackle this problem by leverag-
ing the expressivity of recent neuro-symbolic
architectures, specifically the Logical Neural
Networks (LNN). Here, we describe a method
that can learn neuro-symbolic world models on
the TextWorld-Commonsense set of games. We
then show that planning on this learned world
model results in optimal actions in the game
world.

1 Introduction

Text-Based Games began as a form of entertain-
ment in the 1980s. Players could read a narrative
and imagine the state of the game world from text.
They can then interact with this world through text
input as well. In recent years, text-based games
have become an interesting benchmark in the inter-
section of natural language processing and sequen-
tial decision making. For example, deep reinforce-
ment learning (RL) was proposed as a possible
solution starting with (Narasimhan et al., 2015).
Recently, several sets of benchmarks and game en-
vironments were proposed such as TextWorld (Coté
et al., 2018), Jericho (Hausknecht et al., 2020) and
TextWorld Commonsense (Murugesan et al., 2021).

Text-based games present several different prob-
lems that are interesting topics for research. In this
paper, we concentrate on the problem of learning
logical world models. The main idea is that the col-
orful and complex natural language narrative of the
text actually describes a fairly simple and compact
world. This idea is used implicitly in other works
appearing as Knowledge Graphs (Ammanabrolu
and Riedl, 2019) or belief graphs (Adhikari et al.,

mich@jp.ibm.com

/\

Environment Action
State f
Agent
fact 1 f
fact 2 Noisy State
Semantic
—
Observation

u

Figure 1: Model-based architecture with logical states

2020) that are then used to enhance deep RL meth-
ods. In contrast to these methods we want to explic-
itly use the logical world models to plan optimal
action sequences to be performed in the game. The
main question to be addressed is then: How can we
learn such models for text-based games?

An overview of our proposed method is depicted
by Figure 1. The left side depicts that the environ-
ment state can be sufficiently approximated as a set
of logical facts. Continuing in the bottom right, the
agent can get textual observations of the environ-
ment. We assume that we have a semantic parser
that converts these observations into a logical form.
In the real situation the semantic parsing is good,
but won’t be perfect, hence we require that our
agent should be capable of handling noisy logical
states. From such states, our agent should produce
suitable actions for accomplishing its tasks in the
environment. In the next sections we formally de-
scribe the problem setting of our agent and our
proposed method that learns explicit logical world
models from potentially noisy logical data.

2 Problem Definition

Text-based games are often modelled with the RL
problem setting in mind as Partially Observable -
Markov Decision Processes (PO-MDP) (Coté et al.,
2018; Hausknecht et al., 2020). As a first approach,
we add an additional assumption in this paper - that
the semantic parser can remove partial observabil-
ity and that we are dealing with an MDP. At each
time step the agent uses the information in a state,
s, to take an action, a, which transitions the state
to the new state, s’ according to the state transition
function 7" such that s’ = T'(s,a). While acting
in this environment the agent also gets rewards,
r, according to an unknown reward function, R,
such that = R(s,a). In the model-free RL set-
ting, the agent learns a policy or value function
which directly governs the actions. Here, we are
interested in the model-based RL setting where the
agent learns a model of the world which usually
consists of both 7" and R. This model can then be
used with planning and search methods to find the
optimal actions.

Based on the classical model-based RL setting,
our problem has two more important specifications.
First, we assume that our environment is relational,
similar to (Lang et al., 2012). This means that
all actions and states are composed of relational
logic. They may be in the propositional form but
there must be a corresponding lifted form that has a
consistent meaning. For example, the propositional
state, on(book,table) can be abstracted or lifted into
on(x,y) with predicate, on, and the variables, (z,y).
The first assumption is that all states and actions
handled by the agent are in this relational lifted
form. This assumption can be handled as a design
specification of the semantic parser. The second
assumption is that the goal state is given. This is a
weaker assumption that is already used in current
RL research, the so-called goal-conditioned RL.
Here, it allows us to concentrate only on learning
T since R is no longer required for planning when
we are given the goal state.

In the end, our problem definition is very close
to the line of work on learning symbolic models
of complex domains (Pasula et al., 2007). It may
seem surprising to revert to an older problem set-
ting, however, we believe that recent advances in
semantic parsing and logical rule learning might
provide breakthroughs.

3 Learning Logical World Models

The problem of learning logical rules that explain
a given set of logical examples can be cast into
the general problem called Inductive Logic Pro-
gramming (ILP) (Muggleton and De Raedt, 1994).
What needs to be done is then to cast our relational
model-based RL problem into ILP form. But be-
fore going into that detail, it is important to note
that relying on classical ILP has significant fail-
ings. In particular, it is not well suited to noisy
data to the extent that a single erroneous data point
may cause the whole system to fail. However,
newer methods that leverage neural networks have
shown great promise on working even with noisy
data (Evans and Grefenstette, 2018). These are
sometimes called neural ILP, differentiable ILP or
neurosymbolic ILP. These advances are the main
impetus for us to revisit the classical problem of
learning logical world models.

We may use any such ILP method that is noise-
resistant but here we propose to use the Logical
Neural Network (LNN) (Riegel et al., 2020) as a
Neuro-Symbolic Al framework because it has two
main features. It is an end-to-end differentiable sys-
tem that enables scalable gradient-based learning
and it has a real-valued logic representation of each
neuron that enables logical reasoning (Riegel et al.,
2020). (Riegel et al., 2020; Sen et al., 2021). These
features may prove useful in future works.

Now, getting back to the task of expressing our
relational model-based RL problem as ILP, we first
gather data samples which are triples of lifted logic,
(s,a,s’). This is gathered by using an exploration
policy to generate actions. Here, we used a policy
that uniformly randomly samples the action space
but better exploration methods may be used, such
as that outlined in (Lang et al., 2012). This data
collection may be done in an offline or online RL
setting but we assume that a large enough batch is
available in the online RL setting before we start
the learning procedure.

Given a batch of data samples, the learning pro-
cedure must produce an estimate of 7'. This T'
will be the hypothesis to be generated by our ILP.
To make learning more efficient we need to nar-
row down the definition of 7. Because we are
ultimately interested in using 7" for planning, we
define it as a set of STRIPS-like operators where
each one is a quadruple of («, 3,7v,0). Each el-
ement is a set of logical conditions where « are
conditions that must be true for the action to be ex-

ecutable, 3 are ones that must be false, are ones
made true by the action and o are ones made false.
These conditions are the lifted logic statements that
comprise a state, s, and the set of all possible condi-
tions is P. We model each of the operator elements
as an LNN conjunction operator whose inputs are
P. The LNN learning procedure can learn weights
for each of these inputs that correspond to real-
valued logic (Riegel et al., 2020; Sen et al., 2021).
For the LNNs of « and (3, the inputs are given the
corresponding logical values of the conditions in
s. The output is true when action, a, corresponds
and s # s otherwise it is false. For the LNNs
of v and o, the inputs are given the logical values
corresponding to the difference in the conditions
of s and s’ such that are the the conditions made
true and o those that are made false. The output
is true when action, a, corresponds otherwise it is
false. Using these inputs and outputs to the LNN,
gradient-based optimization can be used for super-
vised learning (Riegel et al., 2020; Sen et al., 2021).
When learning converges, we have a set of weights
for each of the corresponding elements. These may
be interpreted as probabilistic transitions but here
we simply threshold them and maintain a determin-
istic transition system for our final estimate of 7.
Given this operator transition model and the goal,
we can be in any state and use classical planning
methods to find a series of actions to reach the goal.

4 Results and Discussions

In this paper, we experiment on the TextWorld
Commonsense (TWC) set of games (Murugesan
et al., 2021). In general, TextWorld provides an
ideal testbed for us because it gives an interface to
the underlying logical states (Coté et al., 2018). In
our problem setting this conveniently corresponds
to a perfect semantic parsing. Although our meth-
ods are chosen with a view to being able to handle
real world noise, our preliminary results here show
the soundness of our methodology. Once we have
the logical world model in the form of STRIPS
operators we can use this with a planner to com-
plete our game-playing agent. Here, we use the
Fast-Downward Planner (Helmert, 2006). For our
convenience we also convert the STRIPS operators
into PDDL operators in the form of preconditions
and effects by combining («, /3) into the precondi-
tions and (v, o) into the effects.

For our results, we first show some examples of
the learned rules in our logical world model in Fig-

ure 3. This is in the converted PDDL form. Here,
we can visually inspect the validity of the rules.
For example, for the fake action the effect would
be that the object v0 is no longer at(v1) but now it
is in the inventory v3. This level of explanability
is inherent in logical models although it requires
careful inspection.

It would be tedious to inspect the rules individu-
ally, but what would be more interesting is if taken
altogether can these rules allow us to plan optimal
actions in the world. To answer this, we present
our results in the table shown in Figure 2. Here,
there are 3 rows, the first two rows are for com-
parison while the third row is our method. For
comparison, we show the best performing deep
RL agent in (Murugesan et al., 2021) and the opti-
mal possible actions using perfect game knowledge.
Note that we have additional assumptions differ-
ing from the plain deep RL setting of the original
setup in (Murugesan et al., 2021) but we give this
as a reference on the potential improvement our
overall approach might provide. The TWC games
are categorized into Easy-Medium-Hard with a val-
idation and testing set for each as shown in the
columns. Our results show that planning on our
learned model can produce the same optimal ac-
tions for all the Easy and Medium games and for
the validation set of the Hard games. An interesting
limitation appears in the test set of the Hard games
wherein novel predicates appear in the test set that
do not appear in any of the training or validation
set. This is a current limitation of our system which
does not have any mechanism for handling such
novel predicates.

5 Conclusion

We outlined and proposed a model-based RL set-
ting for text-based games which is comprised of
a semantic parser which produces logical states, a
neuro-symbolic ILP module for learning logical
world models and an off-the-shelf planning sys-
tem to produce optimal actions in the game world.
We believe this approach shows promise and we
present initial results and experiments on the key
component which learns the logical world models.

The natural progression of this work is to use
real semantic parsers. Although our method is de-
signed with noisy logical states in mind, the extent
and type of noise might differ in practice. We are
also working on relaxing more assumptions in our
problem setting to be closer to those assumptions

Easy

Medium Hard

Valid Test

Valid Test Valid Test

KG-A2C
(in TWC, AAAI 2021)

17.65 + 3.62
85% £ 7%

18.00 + 3.24
87% + 5%

37.18 + 4.86
72% + 7%

43.08 +£4.13
54% £ 17%

49.36 + 7.50
46% + 10%

49.96 + 0.00
22% + 0%

2.4 steps
100% score

Optimal Actions
(Upper Bound)

2.4 steps
100% score

4.4 steps
100% score

3.6 steps
100% score

13.6 steps
100% score

14.0 steps
100% score

Logic-Model-Based RL (Ours)
(LNN-learned Action Transition)

24100
100%

24+0.0
100%

44100
100%

3.6+ 00
100%

13.6 £ 0.0
100%

28.4+0.0
60.6%

:action
insert into,

:parameters
?vO0 - object
?vl - object
?v2 - object
?v3 - inventory
?vé4 - player

:precondition
(in ?v0 ?v3)
(at ?v4 ?v2)
(at ?vl ?v2)
(open ?v1)
(not (on ?v0 ?v1))
(not (in ?v0 ?v1))
(not (in ?v0 ?v2))
(not (at ?v3 ?v1))
(not (at ?v0 ?v1))

:effect
(in ?v0 ?v1)
(not (in ?v0 ?v3))

Figure 2: Scores on the TextWorld Commonsense(TWC) set of games

:action
put_on,

:parameters
?v0 - object
?vl - object
?v2 - object
?v3 -inventory
?v4 — player

:precondition
(in ?v0 ?v3)
(at ?v1 ?v2)
(at ?v4 v2)
(not (in ?v0 ?v2))
(not (on ?v0 ?v1))
(not (in ?v0 ?v1))
(not (at ?v3 ?v1))
(not (at ?v0 ?v1))
(not (open ?v1))

:effect
(on ?v0 ?v1)
(not (in ?v0 ?v3))

:action
take

:parameters
?vO0 - object
?v1 - object
?v2 - inventory
?v3 - player

:precondition
(at ?v0 ?v1)
(at ?v3 ?v1)
(not (open ?v1))
(not (on ?v0 ?v1))
(not (in ?v0 ?v1))
(not (at ?v1 ?v2))
(not (in ?v0 ?v2))
(not (in ?v0 ?v3))

:effect
(in ?v0 ?v2)
(not (at ?v0 ?v1))

Figure 3: Examples of the learned action models

used. Another recent trend that will help is the
emmergence of foundation models (Bommasani
et al., 2021) which are large general-purpose pre-
trained models. In our context this would be re-
puposed for translating the natural data into log-
ical states. We also believe our method can be
made general enough for even the most difficult
text-based games.

References

Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Co6té,
Mikulas Zelinka, Marc-Antoine Rondeau, Romain
Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and Will Hamilton. 2020. Learning dynamic belief
graphs to generalize on text-based games. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3045-3057. Curran Associates,
Inc.

Prithviraj Ammanabrolu and Mark Riedl. 2019. Play-
ing text-adventure games with graph-based deep re-
inforcement learning. In Proceedings of the 2019
Conference of the North American Chapter of the

Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3557-3565, Minneapolis, Minnesota.
Association for Computational Linguistics.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dal-
las Card, Rodrigo Castellon, Niladri S. Chatterji,
Annie S. Chen, Kathleen Creel, Jared Quincy
Davis, Dorottya Demszky, Chris Donahue, Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren Gillespie, Karan Goel,
Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John He-
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing
Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. 2021. On the opportunities and risks of
foundation models. CoRR, abs/2108.07258.

Marc-Alexandre Coté, Akos Kéadar, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Ruo Yu Tao, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler.
2018. Textworld: A learning environment for text-
based games. CoRR, abs/1806.11532.

Richard Evans and Edward Grefenstette. 2018. Learn-
ing explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1-64.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Co6té, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):7903-7910.

Malte Helmert. 2006. The fast downward planning
system. Journal of Artificial Intelligence Research,
26:191-246.

Tobias Lang, Marc Toussaint, and Kristian Kersting.
2012. Exploration in relational domains for model-

https://proceedings.neurips.cc/paper/2020/file/1fc30b9d4319760b04fab735fbfed9a9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1fc30b9d4319760b04fab735fbfed9a9-Paper.pdf
https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/N19-1358
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.1609/aaai.v34i05.6297
http://jmlr.org/papers/v13/lang12a.html

based reinforcement learning. Journal of Machine
Learning Research, 13(119):3725-3768.

Stephen Muggleton and Luc De Raedt. 1994. Induc-
tive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629-679.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Pushkar Shukla, Sadhana Kumaravel, Gerald
Tesauro, Kartik Talamadupula, Mrinmaya Sachan,
and Murray Campbell. 2021. Text-based rl agents
with commonsense knowledge: New challenges, en-
vironments and baselines. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(10):9018-
9027.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1-11,
Lisbon, Portugal. Association for Computational Lin-
guistics.

Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack
Kaelbling. 2007. Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence
Research, 29:309-352.

Ryan Riegel, Alexander G. Gray, Francois P. S. Luus,
Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Fran-
cisco Barahona, Udit Sharma, Shajith Ikbal, Hima
Karanam, Sumit Neelam, Ankita Likhyani, and San-
tosh K. Srivastava. 2020. Logical neural networks.
CoRR, abs/2006.13155.

Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel,
and Alexander G. Gray. 2021. Neuro-symbolic induc-
tive logic programming with logical neural networks.
CoRR, abs/2112.03324.

http://jmlr.org/papers/v13/lang12a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17090
https://ojs.aaai.org/index.php/AAAI/article/view/17090
https://ojs.aaai.org/index.php/AAAI/article/view/17090
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
http://arxiv.org/abs/2006.13155
http://arxiv.org/abs/2112.03324
http://arxiv.org/abs/2112.03324

