
Published as a conference paper at ICLR 2025

NODE-TIME CONDITIONAL PROMPT LEARNING IN
DYNAMIC GRAPHS

Xingtong Yu1∗ , Zhenghao Liu2∗, Xinming Zhang2† , Yuan Fang1†

Singapore Management University1, University of Science and Technology of China2

{xingtongyu, yfang}@smu.edu.sg, salzh@mail.ustc.edu.cn, xinming@ustc.edu.cn

ABSTRACT

Dynamic graphs capture evolving interactions between entities, such as in social
networks, online learning platforms, and crowdsourcing projects. For dynamic
graph modeling, dynamic graph neural networks (DGNNs) have emerged as a
mainstream technique. However, they are generally pre-trained on the link pre-
diction task, leaving a significant gap from the objectives of downstream tasks
such as node classification. To bridge the gap, prompt-based learning has gained
traction on graphs, but most existing efforts focus on static graphs and neglect the
evolution of dynamic graphs. In this paper, we propose DYGPROMPT, a novel
pre-training and prompt learning framework for dynamic graph modeling. First,
we design dual prompts to address the discrepancy in both task objectives and
temporal variations across pre-training and downstream tasks. Second, we recog-
nize that node and time patterns often characterize each other, and propose dual
condition-nets to model the evolving node-time patterns in downstream tasks. Fi-
nally, we thoroughly evaluate and analyze DYGPROMPT through extensive exper-
iments on four public datasets.

1 INTRODUCTION

Graph data are pervasive due to their ability to model complex relationships between entities in
various applications, including social network analysis (Fan et al., 2019; Yu et al., 2023c), Web
mining (Xu et al., 2022; Wang et al., 2023), and content recommendation systems (Qu et al., 2023;
Zhang et al., 2024). In many of these applications, the graph structures evolve over time, such as
users commenting on posts in a social network (Kumar et al., 2018; Iba et al., 2010), editing pages
in a crowdsourcing project like Wikipedia (Kumar et al., 2015), or interacting with courses in an
online learning platform (Liyanagunawardena et al., 2013). Such graphs are termed dynamic graphs
(Barros et al., 2021; Skarding et al., 2021), in contrast to conventional static graphs that maintain an
unchanging structure.

On dynamic graphs, dynamic graph neural networks (DGNNs) (Pareja et al., 2020; Xu et al., 2020)
have been widely applied. In a typical design for DGNNs, each node updates its representation
by iteratively receiving and aggregating messages from its neighbors in a time-dependent manner.
While DGNNs are often pre-trained on the link prediction task, the downstream application could
involve a different task, such as node classification, leading to a significant gap between pre-training
and task objectives. More advanced pre-training and fine-tuning strategies on dynamic graphs (Bei
et al., 2024; Chen et al., 2022; Tian et al., 2021) also suffer from the same limitation. They first
pre-train a model for dynamic graphs based on various task-agnostic self-supervised signals on
the graph, and then update the pre-trained model weights in a fine-tuning phase based on task-
specific labels pertinent to the downstream application. Likewise, the pre-training and downstream
objectives can differ significantly, resulting in a notable gap between them.

To bridge the gap between pre-training and downstream objectives (Liu et al., 2023a), prompt learn-
ing has first emerged in language models (Brown et al., 2020). Fundamentally, a prompt serves to
reformulate the input for the downstream task to align with the pre-trained model, while freezing

∗Co-first authors.
†Corresponding authors.

1

Published as a conference paper at ICLR 2025

Morning Noon Night
User specific timeline

Tim
e specific user behavior

Student
Professor

night

nightLink prediction
at morning?

Node classification
at noon?

Divergent
objective

Dynamic variation

(a) Users’ comments over time (b) Envolving node-time patterns
User

Tim
e Progression from

 Start to End

Po
st

Student

Professor

active
suspended

?
?

Figure 1: Motivation of DYGPROMPT. (a) Users comment on different topics over time. (b) Evolv-
ing node-time patterns in Wikipedia, as node and time mutually characterize each other.

the pre-trained weights. Given far fewer parameters in a prompt than the pre-trained model, prompt
learning is parameter-efficient and effective especially in data-scarce scenarios (Yu et al., 2024a).
Inspired by the success of prompts in the language domain, recent studies have explored prompt
learning on graphs (Liu et al., 2023b; Sun et al., 2022b; 2023). However, these studies only focus
on static graphs, neglecting the unique challenges brought by dynamic graphs. In this work, we
explore Prompt learning for Dynamic Graphs, and propose a framework called DYGPROMPT. The
problem is non-trivial due to two key challenges.

First, how do we design prompts to bridge temporal variations across time, in addition to diver-
gent task objectives? Generally, both task objectives and the timing of pre-training and downstream
tasks can be inconsistent. For example, consider a user discussion network such as Reddit.com,
as illustrated in Fig. 1(a), where users and posts are represented as nodes, and an edge is formed
when a user comments on a post. On this dynamic graph, a typical pre-training task involves link
prediction—predicting whether a user comments on (i.e., links to) a video game post at time t1.
In contrast, the downstream task could be the status classification of the user’s account, e.g., deter-
mining whether it has been suspended at time t2. While previous work on static graphs (Liu et al.,
2023b; Sun et al., 2022b; 2023) employs prompts to narrow the task objective gap, the temporal gap
remains unsolved. In particular, even when the downstream task also involves link prediction, the
evolving graph structure introduces a temporal gap between the pre-training and downstream phases.
In DYGPROMPT, we introduce dual prompts, consisting of a node prompt and a time prompt. On
the one hand, a node prompt alters the node features to reformulate task input and bridge the task
gap, similar to previous work (Liu et al., 2023b; Fang et al., 2024). On the other hand, a time prompt
adjusts the time features, capturing the temporal evolution of the dynamic graph, thereby narrowing
inconsistencies that arise from varying priorities at different times.

Second, how do we capture evolving patterns across different nodes and time points, driven by the
dynamic interplay between them? Different nodes exhibit unique timelines, evolving distinctively
over time as nodes and time mutually influence each other. For example, in the user discussion
network, a student may comment on open source code in the morning, while commenting on video
games in the evening. However, as shown in Fig. 1(a), a professor may comment on academic
policies at noon, while discussing family topics at night. Therefore, node and time patterns mutu-
ally characterize each other: the behavior of the same node may be influenced by different times,
while the behavior of a node at a specific time may be influenced by the characteristics of the node.
Hence, the evolving node-time patterns, as shown in Fig. 1(b), may differ from the patterns observed
in the pre-training data. However, previous studies neglect the fine-grained interplay between the
node and time patterns downstream. Note that some works (Tan et al., 2023; Wen & Fang, 2023)
have designed individual prompts or tokens tailored to each node, and a contemporary approach
(Chen et al., 2024) has developed time-aware prompts. However, they do not account for the mutual
characterization between nodes and time, failing to capture the fine-grained, evolving node-time
patterns. In DYGPROMPT, inspired by conditional prompt learning (Zhou et al., 2022), we propose
a series of node and time prompts generated by dual condition-nets. Specifically, a time condition-
net generates a sequence of time-conditioned node prompts for each node. These time-conditioned
node prompts reflect temporal subtleties at different times for the same node, thereby better aligning

2

Published as a conference paper at ICLR 2025

the node’s pattern at different times with those observed during pre-training compared to using a
fixed node prompt across all time points. Likewise, a node condition-net generates a sequence of
node-conditioned time prompts at each timestamp. The node-conditioned time prompts account for
node characteristics, thereby better aligning the time patterns of different nodes with those captured
by the pre-trained model compared to using a fixed time prompt for all nodes. It is worth noting that
the condition-nets generate prompts conditioned on the input features rather than directly parame-
terizing the prompts, significantly reducing the number of learnable parameters in the downstream
prompt-tuning phase.

In summary, the contributions of this work are threefold. (1) We introduce DYGPROMPT for dy-
namic graph modeling, proposing dual prompts to narrow the gaps arising from both task and dy-
namic differences between pre-training and downstream phases. (2) We recognize that node and
time patterns mutually characterize each other and further propose dual condition-nets to generate a
series of node and time prompts, thereby adapting to downstream node-time patterns. (3) We con-
duct extensive experiments on four benchmark datasets, demonstrating the superior performance of
DYGPROMPT in comparison to state-of-the-art approaches.

2 RELATED WORK

Dynamic graph learning. Real-world graph structures often evolve over time. To model such dy-
namic evolution, various continuous-time dynamic graph learning techniques have been proposed.
Typically, these methods update node representations by iteratively receiving and aggregating mes-
sages from their neighbors in a time-dependent manner (Skarding et al., 2021; Duan et al., 2024).
Some approaches employ dynamic random walks to depict structural changes (Nguyen et al., 2018;
Wang et al., 2021), while others incorporate a time encoder to integrate temporal context with struc-
tural modeling (Xu et al., 2020; Cong et al., 2022; Rossi et al., 2020; Yu et al., 2023a). Furthermore,
some researchers utilize temporal point processes to model structural evolution or node communi-
cations (Kumar et al., 2019; Trivedi et al., 2019; Wen & Fang, 2022). However, these methods are
typically trained on link prediction tasks, whereas downstream applications may involve different
tasks, such as node classification, creating a significant gap between training and task objectives.
This gap impedes effective knowledge transfer, adversely impacting downstream task performance.

Graph pre-training. More advanced dynamic graph pre-training methods also face similar prob-
lems. Extending from graph pre-training methods (Hu et al., 2020a;b; Jiang et al., 2023), dynamic
graph pre-training captures inherent properties of dynamic graphs using various task-agnostic, self-
supervised signals through strategies such as structural and temporal contrastive learning (Bei et al.,
2024; Tian et al., 2021; Li et al., 2022), dynamic graph generation (Chen et al., 2022), and curvature-
varying Riemannian graph neural networks (Sun et al., 2022a). They then attempt to transfer the
prior knowledge to downstream tasks through fine-tuning with task-specific supervision. Nonethe-
less, a gap persists between the objectives of pre-training and fine-tuning (Liu et al., 2023a; Yu et al.,
2023d). While pre-training seeks to extract fundamental insights from graphs without supervision,
fine-tuning is tailored to specific supervision for a given downstream task.

Graph prompt learning. First emerging in the language domain, prompt learning effectively
bridges the gap between pre-training and downstream objectives (Brown et al., 2020). With a uni-
fied template, prompts are specifically tailored for each downstream task, aligning it more closely
with the pre-trained model while freezing the pre-trained weights. Prompt learning has been widely
adopted on static graphs (Liu et al., 2023b; Sun et al., 2023; Fang et al., 2024; Tan et al., 2023; Yu
et al., 2023d; 2025b; 2024b; 2025a;c; 2023b), yet its application in dynamic graphs remains an open
question. A contemporary study, TIGPrompt (Chen et al., 2024), proposes a prompt generator to
learn time-aware node prompts. However, it only considers the temporal factor in node features,
overlooking that time prompts for each node can also be influenced by node features.

3 PRELIMINARIES

In this section, we present related preliminaries and introduce our scope.

3

Published as a conference paper at ICLR 2025

Dynamic graph. Dynamic graphs are categorized into discrete-time dynamic graphs and
continuous-time dynamic graphs (Skarding et al., 2021). The former consists of a series of static
graph snapshots, whereas the latter is depicted as a sequence of events on a continuous timeline.
In this work, we adopt the more general continuous-time definition, where a dynamic graph is rep-
resented by G = (V,E, T). Here, V denotes the set of nodes, E denotes the set of edges, and T
represents the time domain. In particular, each edge (vi, vj , t) ∈ E indicates a specific interaction
(or event) between nodes vi and vj at time t. Each node is associated with a temporal feature vector
xt,v ∈ Rd evolving over time, represented as a row in the temporal feature matrix Xt ∈ R|V |×d.

Dynamic graph neural network. A popular backbone for static graphs is message-passing graph
neural networks (GNNs) (Wu et al., 2020). Formally, in the l-th GNN layer, the embedding of node
v, represented as hl

v , is calculated based on the embeddings from the preceding layer:

hl
v = Aggr(hl−1

v , {hl−1
u : u ∈ Nv}), (1)

where Nv denotes the set of neighboring nodes of v, and Aggr(·) is a neighborhood aggregation
function. Extending to dynamic graph neural networks (DGNNs), researchers integrate temporal
contexts into neighborhood aggregation (Pareja et al., 2020; Xu et al., 2020), often utilizing a time
encoder (TE) to map timestamps or intervals (Cong et al., 2022; Rossi et al., 2020) within a dynamic
graph encoder (DGE). Consequently, in the l-th layer of a dynamic graph encoder, the embedding of
node v at time t, denoted by hl

t,v , is derived as

hl
t,v = Aggr(Fuse(hl−1

t,v , TE(t)), {Fuse(hl−1
t′,u, TE(t

′)) : (u, t′) ∈ Nv}), (2)

where Nv contains the historical neighbors of v, with (u, t′) ∈ Nv indicating that u interacts with
v at time t′ < t. Fuse(·) is a fusion operation that integrates structural and temporal contexts, such
as concatenation (Rossi et al., 2020) or addition (Trivedi et al., 2019). For simplicity, the output
node embedding from the final layer is denoted as ht,v , which is then utilized in a loss function for
optimization. Note that the time encoder maps the time domain to a vector space, TE : T → Rd.
A common implementation is TE(t) = 1√

d
[cos(ω1t), sin(ω1t), . . . , cos(ωd/2t), sin(ωd/2t)], where

{ω1, . . . , ωd/2} is a set of learnable parameters (Xu et al., 2020; Cong et al., 2022).

Scope of work. In this work, we pre-train a DGNN with a time encoder on dynamic graphs, em-
ploying the task of temporal link prediction (Wang et al., 2021). For downstream tasks, we target
two popular dynamic graph-based tasks, namely, temporal node classification and temporal link
prediction1. Specifically, we focus on data-scarce scenarios with only limited data for downstream
adaptation, as labeled data are often difficult or costly to obtain for node classification (Zhou et al.,
2019; Yao et al., 2020), while nodes with sparse interactions are common in real-world link predic-
tion tasks (Lee et al., 2019; Pan et al., 2019).

4 PROPOSED APPROACH

In this section, we present our proposed model DYGPROMPT, starting with its overall framework,
followed by its key components.

4.1 OVERALL FRAMEWORK

We illustrate the overall framework of DYGPROMPT in Fig. 2, which consists of two phases: pre-
training and downstream adaptation. First, given a dynamic graph in Fig. 2(a), we pre-train a DGNN
based on temporal link prediction, as shown in Fig. 2(b). In particular, we employ a universal
task template based on similarity calculation (Liu et al., 2023b), which unifies different graph-
based tasks, such as link prediction and node classification, across the pre-training and downstream
phases. Second, given a pre-trained DGNN, to enhance its adaptation to downstream tasks, we pro-
pose dual prompts, as shown in Fig. 2(c). The dual prompts comprise a node prompt and a time
prompt, aiming to bridge the gaps caused by different task objectives and dynamic variations, re-
spectively. Moreover, extending the dual prompts, we propose dual condition-nets to generate a

1As dynamic graphs focus on the evolving structures within a graph, graph classification is rarely evaluated
as a task (Skarding et al., 2021; Pareja et al., 2020; Xu et al., 2020; Chen et al., 2024).

4

Published as a conference paper at ICLR 2025

Time
prompt

Pre-trained
time encoder

Time
encoder

𝑡1
𝑡3

𝑡0

𝑡2

𝑣0

𝑣1

𝑣2 𝑣3

𝑣5𝑣4

Dynamic graph encoder

L
in

k
 p

re
d

ic
ti

o
n

𝑡3𝑡2𝑡1𝑡0 𝑣0 𝑣1 𝑣2𝑡0
Sim

𝑣1 𝑣2 𝑣3𝑡1 Sim

𝑣1 𝑣3 𝑣4𝑡2
Sim

𝑣2 𝑣3 𝑣5𝑡3
Sim

Pre-training loss
(Eq. 3)

(a) Toy dynamic graph (b) Pre-training

𝑡7𝑡6𝑡5𝑡4

𝑡1
𝑡3

𝑡0

𝑡2

𝑣0

𝑣1

𝑣2 𝑣3

𝑣4

𝑡4 𝑡5

𝑡7

𝑡6

𝑣5

Node
prompt

⊗

⊗
Node feature

Time feature
Time

 condition-net

Node
condition-net

⊗

⊗

Pre-trained dynamic
graph encoder

(c) Prompt tuning for downstream tasks

Downstream
Loss (Eq. 11)

F
ro

zen
T

u
n

ed

Node
conditioned
time prompt

Time-
conditioned
node prompt

Class 2

Class 1

N
o

d
e

class
p
ro

to
ty

p
es

Figure 2: Overall framework of DYGPROMPT.

series of time-conditioned node prompts and node-conditioned time prompts. These conditional
prompts are designed to capture the evolving patterns across nodes and time points, along with their
mutual characterization, in a fine-grained and parameter-efficient manner.

4.2 PRE-TRAINING

Pre-training techniques (Le-Khac et al., 2020) have been widely explored on dynamic graphs (Bei
et al., 2024; Chen et al., 2022; Tian et al., 2021). In particular, the most common pre-training task
is temporal link prediction (Xu et al., 2020; Rossi et al., 2020), where links are readily available
without the need for manual annotations. Following these prior works, we adopt link prediction for
pre-training, as illustrated in Fig. 1(b). Its simplicity underscores the effectiveness and robustness of
our prompt-based learning in downstream tasks.

Specifically, consider an event (v, a, t), i.e., an interaction between nodes v and a at time t. Corre-
spondingly, we construct a tuple (v, a, b, t) such that nodes v and b are not linked at t, serving as a
contrastive signal. For each tuple, the pre-training objective is to maximize the similarity between
nodes v and a while minimizing that between v and b. Similar to previous work (You et al., 2020;
Yu et al., 2023d), we optimize the following pre-training loss over pre-training data, Dpre.

Lpre(Dpre; Θ) = −
∑

(v,a,b,t)∈Dpre
ln

exp(1
τ sim(ht,v,ht,a))

exp(1
τ sim(ht,v,ht,b))

. (3)

In Eq. (3), ht,v,ht,a,ht,b represent the node embeddings of v, a, b at time t, respectively. τ > 0 is
a temperature hyperparameter. Θ denotes the set of learnable parameters of the DGNN, including
those of the dynamic graph encoder and the time encoder. The pre-trained parameters, Θpre =
argminΘ Lpre(Dpre; Θ), will be used to initialize the downstream models.

4.3 DUAL PROMPTS

To reconcile task and temporal variations across pre-training and downstream tasks, we propose
dual prompts, comprising a node prompt and a time prompt, as shown in Fig. 2(c).

Node prompt. In language models, a prompt is a purposely designed textual description that re-
formulates the input for a downstream task, aligning the task with the pre-trained model (Brown
et al., 2020; Jia et al., 2021). Likewise, a prompt for static graphs adjusts downstream node features
(Liu et al., 2023b; Fang et al., 2024). In line with previous graph prompt learning methods on static
graphs (Liu et al., 2023b; Yu et al., 2023d;e; 2025b), for each downstream task, we define a learn-
able vector pnode as the node prompt to modify the node features at a given time via element-wise
multiplication. Concretely, the input features of node v at time t, denoted by xt,v , are modified as:

xnode
t,v = pnode ⊙ xt,v, (4)

where ⊙ is element-wise multiplication. The node prompt pnode has the same dimension as node
features, altering the importance of various node feature dimensions.

5

Published as a conference paper at ICLR 2025

Time prompt. We adopt a time encoder TE to map the continuously valued time t to time features,
ft = TE(t). However, TE is optimized based on the time periods in the pre-training data, which
can be distinct from those in downstream tasks. To overcome the temporal gap, we propose a time
prompt to adjust time features. Formally, for each downstream task, we define a learnable vector
ptime as the time prompt. Then, the time feature at t, denoted by ft, is reformulated as follows.

f time
t = ptime ⊙ ft. (5)

4.4 DUAL CONDITION-NETS

In dynamic graphs, the same node may exhibit distinct behaviors at different times. Meanwhile,
different nodes may evolve differently over the same time interval. In other words, nodes and their
temporal patterns influence and characterize each other over time, revealing fine-grained node-time
patterns. To capture such interplay, we turn to conditional prompt learning (Zhou et al., 2022).
Instead of learning a static prompt tailored to a specific task over the entire time span, we design
dual condition-nets, comprising a time condition-net that generates a sequence of time-conditioned
node prompts for each node and a node condition-net that generates a sequence of node-conditioned
time prompts at each timestamp, as shown in Fig. 2(c). In particular, each condition-net utilizes
a lightweight network to generate prompts conditioned on the input features, enabling a more
parameter-efficient approach to prompt tuning compared to directly parameterizing the prompts for
each node and timestamp.

Time condition-net. To incorporate time characteristics into node prompts, a straightforward way
is to employ a series of learnable vectors as prompts for each distinct timestamp. However, this
approach does not scale to large time intervals with many timestamps, as it quickly increases the
number of tunable parameters. Therefore, we propose a time condition-net, which generates a series
of time-conditioned node prompts. Formally, the node prompt conditioned on time t is given by

p̃node
t = TCN(f time

t ;κ), (6)

where TCN is the time condition-net parameterized by κ. This can be viewed as a form of hypernet-
work (Ha et al., 2022), where our condition-net TCN serves as a secondary network to generate the
node prompts conditioned on the input time features. This formulation enables parameter-efficient
prompt generation, especially when using a lightweight condition-net. In our implementation, we
opt for a simple multi-layer perceptron (MLP) with an efficient bottleneck structure (Wu & Lee,
2018). Therefore, for a series of events occurring at times {t0, t1, . . .}, the time condition-net pro-
duces their corresponding time-conditioned node prompts {p̃node

t0 , p̃node
t1 , . . .}. Note that these condi-

tional prompts match the dimensionality of the node features. Then, the features of node v at time
t, which have been modified by the node prompt in Sect. 4.3, are further updated as

x̃node
t,v = p̃node

t ⊙ xnode
t,v . (7)

Node condition-net. Similarly, to incorporate node characteristics into time prompts, we propose
a node condition-net to generate a series of node-conditioned time prompts, mirroring the time
condition-net. The time prompt conditioned on the node features of v at time t is given by

p̃time
t,v = NCN(xnode

t,v ;ϕ), (8)

where NCN is the node condition-net parameterized by ϕ, which is also implemented as an MLP
with a bottleneck structure. Consequently, at time t, a series of node-conditioned time prompts
{p̃time

t,v0 , p̃
time
t,v1 , . . .} is generated for all nodes, which have the same dimension as the time features.

These node-specific time prompts are then applied to each node at time t, as follows.

f̃ time
t,v = p̃time

t,v ⊙ f time
t . (9)

4.5 PROMPT TUNING

Finally, the features adjusted by the prompts are fed into the dynamic graph encoder, DGE. The
embedding of node v at time t is calculated as follows:

ht,v = DGE
(
Fuse(x̃node

t,v , f̃ time
t,v),

{
Fuse(x̃node

t′,u , f̃
time
t′,v) : (u, t

′) ∈ Nv

})
. (10)

6

Published as a conference paper at ICLR 2025

To tune the prompts and condition-nets for a downstream task, we adopt similarity calculation as
the task template (Liu et al., 2023b), consistent with the pre-training loss. Specifically, for temporal
node classification, consider a labeled set Ddown = {(v1, y1, t1), (v2, y2, t2), . . .}, where each vi
denotes a node, and yi ∈ Y is the class label of vi at time ti. Then, the downstream loss is

Ldown(Ddown;p
node,ptime, κ, ϕ) = −

∑
(vi,yi,ti)∈Ddown

ln
exp(1

τ sim(hti,vi
,h̄ti,yi

))∑
y∈Y exp(1

τ sim(hti,vi
,h̄ti,y

))
, (11)

where h̄ti,y represents class y’s prototype embeddings (Liu et al., 2023b) at time ti, which is ob-
tained by the mean embeddings of examples in class y at time ti. For temporal link prediction, we
utilize the same loss as the pre-training loss in Eq. (3).

During prompt tuning, we only update the lightweight dual prompt vectors (pnode,ptime) and the
parameters of the dual condition-nets (κ, ϕ), whilst freezing the pre-trained DGNN weights. This
parameter-efficient tuning approach is amenable to label-scarce settings, where Ddown comprises
only a limited number of training examples. We outline the key steps for prompt tuning in Algo-
rithm 1 in Appendix A and assess its complexity in Appendix B.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate DYGPROMPT and analyze the empirical results.

5.1 EXPERIMENTAL SETUP

Datasets. We utilize four benchmark datasets for evaluation: Wikipedia, Reddit, MOOC and Genre.
We provide further details of the datasets in Appendix C.

Downstream tasks. We conduct temporal node classification and temporal link prediction to eval-
uate the performance of DYGPROMPT. For link prediction, we perform experiments in both trans-
ductive and inductive settings, depending on whether nodes in the testing set have appeared in the
pre-training or downstream tuning data. In this study, we investigate the pre-training and prompt
learning on dynamic graphs, which differs from previous DGNNs (Rossi et al., 2020; Xu et al.,
2020). Therefore, we adopt a new data split to accommodate the pre-training and downstream tuning
steps. Specifically, given a chronologically ordered sequence of events (i.e., edges with timestamps),
we use the first 80% for pre-training. Note that we pre-train a DGNN only once for each dataset
and subsequently employ the same pre-trained model for all downstream tasks. The remaining 20%
of the events are used for downstream tasks. Specifically, they are further split into 1%/1%/18%
subsets, where the first 1% is reserved as the training pool for downstream prompt tuning, and the
next 1% as the validation pool, with the last 18% for downstream testing.

To construct a downstream task, we start by sampling 30 events (about 0.01% of the whole dataset)
from the training pool, ensuring that there is at least one user per class. Then, for node classification,
we take the user nodes as training instances for downstream adaptation, and their ground-truth labels
are given by their labels at the time of the corresponding event. For link prediction, the downstream
training pool also helps with adaptation due to its temporal proximity to the test set. Specifically,
we take the sampled events as positive instances, while further sampling one negative instance for
each positive instance. Specifically, for each event (v, a, t), we sample one negative instance (v, b, t)
such that b is a node taken from the training pool that is not linked to v at time t. The validation sets
are constructed by repeating the same process on the validation pool. Finally, the test set for node
classification simply comprises all user nodes in the testing events, while the test set for link predic-
tion is expanded to include negative instances following a similar sampling process as in training.
Furthermore, for inductive link prediction, we remove instances from the test set if their nodes have
appeared in the pre-training or downstream training data. We repeat this sampling process for 100
times to construct 100 tasks for node classification and link prediction.

Evaluation. To evaluate the performance on the tasks, we employ AUC-ROC for both node clas-
sification (Xu et al., 2020; Rossi et al., 2020) and link prediction (Sun et al., 2022a; Bei et al.,
2024), following prior work. For each of the 100 tasks, we repeat the experiments with five different
random seeds, and report the average and standard deviation over the 500 results.

7

Published as a conference paper at ICLR 2025

Table 1: AUC-ROC (%) evaluation of temporal node classification and link prediction.
Methods Node Classification Transductive Link Prediction Inductive Link Prediction

Wikipedia Reddit MOOC Genre Wikipedia Reddit MOOC Genre Wikipedia Reddit MOOC Genre

GCN-ROLAND 58.86±10.3 48.25±9.57 49.93±6.74 46.33±3.97 49.61±3.12 50.01±2.53 49.82±1.44 49.15±3.74 49.60±2.37 49.90±1.64 49.16±2.48 47.25±2.97

GAT-ROLAND 62.81±9.88 47.95±8.42 50.01±6.34 47.26±3.49 52.34±1.82 50.04±1.98 55.74±3.71 47.69±2.81 52.29±1.97 49.85±2.35 54.01±2.16 49.38±2.72

TGAT 67.00±5.35 53.64±5.50 59.27±4.43 51.26±2.31 55.78±2.03 62.43±1.86 51.49±1.30 69.11±3.89 48.21±1.55 57.30±0.70 51.42±4.27 48.38±4.72

TGN 50.61±13.6 49.54±6.23 50.33±4.47 50.72±2.31 72.48±0.19 67.37±0.07 54.60±0.80 86.46±2.84 74.38±0.29 69.81±0.08 54.62±0.72 87.17±2.68

TREND 69.92±9.27 64.85±4.71 66.79±5.44 50.34±1.62 63.24±0.71 80.42±0.45 58.70±0.78 52.78±1.14 50.15±0.90 65.13±0.54 57.52±1.01 45.31±0.43

GRAPHMIXER 65.43±4.21 60.21±5.36 63.72±4.98 50.15±1.49 59.73±0.35 61.88±0.11 52.42±1.38 60.83±3.25 51.34±0.84 57.64±0.31 51.16±2.59 56.32±3.08

DDGCL 65.15±4.54 55.21±6.19 62.34±5.13 50.91±2.08 54.96±1.46 61.68±0.81 55.62±0.32 68.49±5.31 47.98±1.11 55.90±1.13 55.18±2.73 42.70±3.26

CPDG 43.56±6.41 65.92±6.25 50.32±5.06 49.89±1.34 52.86±0.64 59.72±2.53 53.82±1.50 49.71±2.64 47.37±2.23 56.40±1.17 53.58±2.10 40.01±3.59

GRAPHPROMPT 73.78±5.62 60.89±6.37 64.60±5.76 51.28±2.43 55.67±0.26 67.46±0.31 51.07±0.75 86.78±3.14 48.46±0.28 59.18±0.49 50.27±0.58 87.45±2.57

PROG 60.86±7.43 68.60±5.64 63.18±4.79 51.46±2.38 92.28±0.21 93.32±0.06 58.73±1.58 86.24±2.87 89.75±0.28 90.69±0.08 56.42±1.95 85.43±3.16

TGAT-TIGPROMPT 69.21±8.88 67.70±9.64 73.90±6.68 51.38±2.72 59.54±1.41 78.45±1.44 51.69±1.24 69.71±4.16 49.52±0.85 65.66±2.68 51.58±4.02 48.34±3.28

TGN-TIGPROMPT 44.80±5.45 63.75±5.60 55.42±3.60 50.84±2.75 82.04±2.03 83.26±2.38 65.00±4.73 86.25±2.43 81.75±1.97 79.51±2.58 64.98±4.61 86.19±3.06

TGAT-DYGPROMPT 82.09±6.43 73.50±6.47 77.78±5.08 52.03±2.24 69.88±0.18 90.76±0.09 53.92±0.97 72.04±4.71 52.58±0.23 75.20±0.17 53.29±0.87 50.82±3.67

TGN-DYGPROMPT 74.47±3.44 74.00±3.10 69.06±3.89 51.97±2.16 94.33±0.12 96.82±0.06 70.17±0.75 87.02±1.63 92.22±0.19 95.69±0.08 69.77±0.66 87.63±1.97

Results are reported in percent. The best method is bolded and the runner-up is underlined.

Baselines. The performance of DYGPROMPT is evaluated against state-of-the-art approaches across
four main categories. (1) Conventional DGNNs: We first consider a discrete-time framework
ROLAND (You et al., 2022) that adapts static GNNs to DGNNs by treating the node embeddings
at each GNN layer as hierarchical node states and updating them recurrently over time. We em-
ploy GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018) for ROLAND. Additionally,
we compare to continuous-time DGNNs, including TGAT (Rossi et al., 2020), TGN (Xu et al.,
2020), TREND (Wen & Fang, 2022), and GraphMixer (Cong et al., 2023). For a fair comparison,
these conventional DGNNs are pre-trained on the first 80% of the events as well, and then contin-
ually trained on the same training data in each downstream task following our split. (2) Dynamic
graph pre-training: DDGCL (Tian et al., 2021) and CPDG (Bei et al., 2024) follow the “pre-train,
fine-tune” paradigm. They first pre-train a DGNN, leveraging the intrinsic attributes and dynamic
patterns of graphs. Then, they fine-tune the pre-trained model for downstream tasks based on task-
specific training data. (3) Static graph prompting: GraphPrompt (Liu et al., 2023b) and ProG (Sun
et al., 2023) employ a static prompt to adapt pre-trained GNNs to downstream tasks. Specifically,
we employ DGNNs as the pre-trained backbones—TGAT for GraphPrompt and TGN for ProG—as
these combinations perform competitively with their respective prompting approaches. (4) Dynamic
graph prompting: TIGPrompt (Chen et al., 2024) proposes a prompt generator to generate time-
aware prompts. Note that both TIGPrompt and our method DYGPROMPT can be applied to different
backbones, such as TGAT and TGN. More details on these baselines are described in Appendix D,
with further implementation details for the baselines and DYGPROMPT in Appendix E.

5.2 PERFORMANCE COMPARISON WITH BASELINES

We compare the performance of all methods on temporal node classification and link prediction in
Table 1 and make the following observations.

First, DYGPROMPT achieves outstanding performance across node classification and link prediction
tasks. This observation highlights the effectiveness of our proposed dual prompts and condition-nets.
To further understand the impact of specific design choices in DYGPROMPT and its robustness to
various backbones, we defer a detailed investigation to the ablation studies in Sect. 5.3 and the
backbone analysis in Sect. 5.4. Second, TIGPrompt, the only other dynamic graph prompt learning
method, significantly lags behind DYGPROMPT when using the same backbone. While it employs
time-aware prompts, it lacks fine-grained node-time characterization and is thus unable to capture
complex node-time patterns, where nodes and time mutually influence each other. Third, Graph-
Prompt and ProG perform competitively because we employ DGNNs as their backbones in pre-
training, rather than static GNNs. However, they still underperform compared to DYGPROMPT, as
they only use static prompts.

REMARK. It is worth noting that the results of TGAT and TGN in our experiments are lower than
those reported in their original papers. A possible reason is that, in their original setting, these
methods were trained on data that immediately precede the test set chronologically. In contrast, in
our experiments, to maintain consistency with the pre-training setup, we train them in two stages:
first with pre-training, and then downstream training on limited task data where we sample only

8

Published as a conference paper at ICLR 2025

Table 2: Ablation study reporting AUC-ROC (%), with TGAT as the backbone.

Methods Node Time
NCN TCN

Node classification Transductive Link Prediction Inductive Link Prediction
prompt prompt Wikipedia Reddit MOOC Wikipedia Reddit MOOC Wikipedia Reddit MOOC

VARIANT 1 × × × × 67.00 53.64 59.27 55.78 62.43 51.49 48.21 57.30 51.42
VARIANT 2 ✓ × × × 72.59 61.82 63.50 68.12 88.59 51.24 51.89 74.84 51.37
VARIANT 3 × ✓ × × 73.22 62.51 62.59 66.51 87.06 51.26 50.28 69.71 50.50
VARIANT 4 ✓ ✓ × × 72.25 63.11 62.87 68.36 90.31 52.17 52.56 75.13 51.33
VARIANT 5 ✓ × ✓ × 81.40 73.12 77.15 69.56 90.10 52.16 52.57 75.50 53.31
VARIANT 6 × ✓ × ✓ 80.34 72.59 76.16 66.62 87.34 51.22 49.05 73.16 52.34
DYGPROMPT ✓ ✓ ✓ ✓ 82.09 73.50 77.78 69.88 90.76 53.92 52.58 75.20 53.29

Table 3: AUC-ROC (%) evaluation of DYGPROMPT with different DGNN backbones.
Pre-training Downstream Node classification Transductive link prediction Inductive link prediction
Backbone Adaptation Wikipedia Reddit MOOC Wikipedia Reddit MOOC Wikipedia Reddit MOOC

DYREP
- 50.61 49.54 50.33 58.45 58.02 50.29 56.87 57.25 50.34
DYGPROMPT 53.52 50.98 51.62 91.64 93.84 72.04 90.28 93.08 72.27

JODIE - 51.37 49.80 50.53 62.40 59.81 50.71 59.59 61.28 50.57
DYGPROMPT 62.84 60.93 67.84 63.56 58.89 52.06 62.80 58.17 52.33

TGAT - 67.00 53.64 59.27 55.78 62.43 51.49 48.21 57.30 51.42
DYGPROMPT 82.09 73.50 77.78 69.88 90.76 53.92 52.58 75.20 53.29

TGN - 50.61 49.54 50.33 72.48 67.37 54.60 74.38 69.81 54.62
DYGPROMPT 74.47 74.00 69.06 94.33 96.82 70.17 92.22 95.69 69.77

TREND - 69.92 64.85 66.79 63.24 80.42 58.70 50.15 65.13 57.52
DYGPROMPT 70.15 65.24 67.58 64.35 79.62 59.45 51.26 64.88 59.13

GraphMixer - 65.43 60.21 63.72 59.73 61.88 52.42 51.34 57.64 51.16
DYGPROMPT 66.39 61.42 64.18 60.25 62.31 52.94 52.19 57.43 52.55

“-” refers to fine-tuning or continually training the backbone on downstream task data without our prompt design.

30 events for each task. Moreover, training data that are temporally closer to the test set are more
important than earlier data in pre-training. However, due to limited data in the downstream train-
ing stage, the models converge quickly and fail to effectively learn from these crucial recent time
intervals, resulting in lower performance than their original setting. In contrast, our prompt-based
approach can better handle the temporal gap and adapt well to the test data.

5.3 ABLATION STUDIES

To thoroughly understand the impact of each component within DYGPROMPT, we compare DYG-
PROMPT with its variants that employ different prompts and condition-nets. These variants and their
corresponding results, using TGAT as the backbone, are presented in Table 2 across three datasets.

For node classification, both node and time prompts are beneficial, as Variant 2 (with node prompt)
and Variant 3 (with time prompt) outperform Variant 1 (without these prompts). Incorporating both
prompts in Variant 4 could further boost the performance. Moreover, the node condition-net is
advantageous, as it integrates node characteristics into time features, since Variant 5 outperforms
Variant 2. Similarly, the time condition-net is beneficial for capturing temporal subtleties at dif-
ferent times to enhance node feature characterization, as Variant 6 outperforms Variant 3. Lastly,
DYGPROMPT achieves the best performance, demonstrating the effectiveness of dual prompts and
condition-nets.

For link prediction, the results generally exhibit similar patterns to those in node classification.
A notable exception is the MOOC dataset, where the differences between the variants are gener-
ally smaller. A potential reason is that interactions in MOOC (online courses) are less dynamic
and diverse than interactions in Reddit (a major social network) and Wikipedia (a high-traffic site),
reducing the effectiveness of prompts designed to bridge the pre-training and downstream gaps.
However, our full model DYGPROMPT still achieves significantly better performance than Variant
1, which does not utilize any prompts. On the other hand, in Reddit and Wikipedia, even though
both pre-training and downstream tasks involve link prediction, node prompts remain useful due to
the potential distributional differences in the downstream training data across tasks.

9

Published as a conference paper at ICLR 2025

Wikipidia

w
/o

 p
ro

m
pt

s
D

yG
Pr

om
pt

Reddit MOOC

Suspended user Active user

Figure 3: Visualization of output embedding space of nodes.

1 2 4 8 16 32 64 128

68

70

72

74

76

78

A
U

C
 (

%
)

α

N
o

d
e

cl
as

si
fi

ca
ti

o
n

1 2 4 8 16 32 64 128
65

70

90

95

A
U

C
 (

%
)

T
ra

n
sd

u
ct

iv
e
 l

in
k
 p

re
d

ic
ti

o
n

α

1 2 4 8 16 32 64 128
65

70

90

95

A
U

C
 (

%
)

 Wikipedia Reddit MOOC

A
U

C
-R

O
C

 (
%

)
A

U
C

-R
O

C
 (

%
)

Figure 4: Sensitivity of α.

To further visualize the effect of our prompt design, we sample 200 suspended nodes and 200 active
nodes from Wikipedia, Reddit and MOOC, respectively, and show the output embedding space of
these nodes, calculated by Variant 1 (w/o prompts) and DYGPROMPT, in Fig. 3. We observe that
with both dual prompts and dual condition-nets, node embeddings from different classes are clearly
separated, demonstrating the advantages of DYGPROMPT.

5.4 IMPACT OF BACKBONES AND HYPERPARAMETERS

First, to analyze the flexibility and robustness of DYGPROMPT, we evaluate its performance on
different DGNN backbones, including DYREP (Trivedi et al., 2019), JODIE (Kumar et al., 2019),
TGAT, TGN, TREND, and GRAPHMIXER. The results on three datasets are reported in Table 3.
We observe that regardless of the backbone utilized, DYGPROMPT surpasses the original backbone
without our prompt design in almost all cases, indicating the robustness of our proposed framework.

Next, we investigate the sensitivity of hyperparameters in DYGPROMPT. Particularly, we employ
two MLPs with a bottleneck structure as the dual condition-nets (Wen & Fang, 2023; Wu & Lee,
2018). The perceptrons embed the input feature dimension d to d̃, and then restore it back to d,
where d̃ = d/α. Here, α is a hyperparameter that scales the hidden dimension. We evaluate the
impact of α, as illustrated in Fig. 4. We observe that for both node classification and link prediction
tasks, performance generally declines as α increases, likely due to greater information loss from
a “smaller bottleneck.” The performance when α ≈ 2 is generally competitive across different
datasets. Therefore, in our experiments, we set α = 2.

6 CONCLUSIONS

In this paper, we explored prompt learning on dynamic graphs, aiming to narrow the gap between
pre-training and downstream applications on such graphs. Our proposed approach, DYGPROMPT,
employs dual prompts to overcome the divergent objectives and temporal variations across pre-
training and downstream tasks. Moreover, we propose dual condition-nets to mutually character-
ize node and time patterns. Finally, we conducted extensive experiments on four public datasets,
demonstrating that DYGPROMPT significantly outperforms various state-of-the-art baselines.

ACKNOWLEDGMENTS

This research / project is supported by the Ministry of Education, Singapore, under its Academic
Research Fund Tier 2 (Proposal ID: T2EP20122-0041). Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not reflect the views
of the Ministry of Education, Singapore.

10

Published as a conference paper at ICLR 2025

REFERENCES

Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur Ziviani. A survey on embed-
ding dynamic graphs. ACM Computing Surveys, 55(1), 2021.

Yuanchen Bei, Hao Xu, Sheng Zhou, Huixuan Chi, Mengdi Zhang, Zhao Li, and Jiajun Bu. Cpdg:
A contrastive pre-training method for dynamic graph neural networks. ICDE, pp. 1199–1212,
2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, pp. 1877–1901, 2020.

Ke-Jia Chen, Jiajun Zhang, Linpu Jiang, Yunyun Wang, and Yuxuan Dai. Pre-training on dynamic
graph neural networks. Neurocomputing, 500(C):679–687, 2022.

Xi Chen, Siwei Zhang, Yun Xiong, Xixi Wu, Jiawei Zhang, Xiangguo Sun, Yao Zhang, Ying-
long Zhao, and Yulin Kang. Prompt learning on temporal interaction graphs. arXiv preprint
arXiv:2402.06326, 2024.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In ICLR, 2022.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In ICLR, 2023.

Yifan Duan, Xinke Jiang, Guibin Zhang, Shilong Wang, Xiaojiang Peng, Wang Ziqi, Junyuan Mao,
Hao Wu, and Kun Wang. CaT-GNN: Enhancing credit card fraud detection via causal temporal
graph neural networks. arXiv preprint arXiv:2402.14708, 2024.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In WWW, pp. 417–426, 2019.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
for graph neural networks. In NeurIPS, pp. 52464–52489, 2024.

Oliver Ferschke, Torsten Zesch, and Iryna Gurevych. Wikipedia revision toolkit: Efficiently access-
ing Wikipedia’s edit history. Modern Information Technologies and Innovation Methodologies of
Education in Professional Training Methodology Theory Experience Problems, 2012.

David Ha, Andrew M Dai, and Quoc V Le. Hypernetworks. In ICLR, 2022.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. TIIS, 5(4):
1–19, 2015.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In ICLR, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. GPT-GNN: Generative
pre-training of graph neural networks. In SIGKDD, pp. 1857–1867, 2020b.

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,
and Michalis Vazirgiannis. DGraph: A large-scale financial dataset for graph anomaly detection.
In NeurIPS, pp. 22765–22777, 2022.

Takashi Iba, Keiichi Nemoto, Bernd Peters, and Peter A Gloor. Analyzing the creative editing
behavior of wikipedia editors: Through dynamic social network analysis. Procedia - Social and
Behavioral Sciences, 2(4):6441–6456, 2010.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In ICLR, 2021.

11

Published as a conference paper at ICLR 2025

Xinke Jiang, Zidi Qin, Jiarong Xu, and Xiang Ao. Incomplete graph learning via attribute-structure
decoupled variational auto-encoder. In WSDM, pp. 304–312. 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Srijan Kumar, Francesca Spezzano, and VS Subrahmanian. VEWS: A wikipedia vandal early warn-
ing system. In SIGKDD, pp. 607–616, 2015.

Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction and
conflict on the web. In WWW, pp. 933–943, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In SIGKDD, pp. 1269–1278, 2019.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A
framework and review. IEEE Access, 8:193907–193934, 2020.

Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. MeLU: Meta-learned
user preference estimator for cold-start recommendation. In SIGKDD, pp. 1073–1082, 2019.

Rongfan Li, Xinke Jiang, Ting Zhong, Goce Trajcevski, Jin Wu, and Fan Zhou. Mining spatio-
temporal relations via self-paced graph contrastive learning. In SIGKDD, pp. 936–944, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9), 2023a.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. GraphPrompt: Unifying pre-training and
downstream tasks for graph neural networks. In WWW, pp. 417–428, 2023b.

Tharindu Rekha Liyanagunawardena, Andrew Alexandar Adams, and Shirley Ann Williams.
MOOCs: A systematic study of the published literature 2008-2012. International Review of
Research in Open and Distributed Learning, 14(3):202–227, 2013.

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In WWW Companion, pp. 969–
976, 2018.

Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. Warm up cold-start advertise-
ments: Improving ctr predictions via learning to learn id embeddings. In SIGIR, pp. 695–704,
2019.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. EvolveGCN: Evolving graph convolutional
networks for dynamic graphs. In AAAI, pp. 5363–5370, 2020.

Liang Qu, Ningzhi Tang, Ruiqi Zheng, Quoc Viet Hung Nguyen, Zi Huang, Yuhui Shi, and Hongzhi
Yin. Semi-decentralized federated ego graph learning for recommendation. In WWW, pp. 339–
348, 2023.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modeling of dynamic
networks using dynamic graph neural networks: A survey. IEEE Access, 9:79143–79168, 2021.

Li Sun, Junda Ye, Hao Peng, and Philip S Yu. A self-supervised Riemannian GNN with time varying
curvature for temporal graph learning. In CIKM, pp. 1827–1836, 2022a.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. GPPT: Graph pre-training and
prompt tuning to generalize graph neural networks. In SIGKDD, pp. 1717–1727, 2022b.

12

Published as a conference paper at ICLR 2025

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting for
graph neural networks. SIGKDD, pp. 2120–2131, 2023.

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. Virtual node tuning for few-shot node classi-
fication. In SIGKDD, pp. 2177–2188, 2023.

Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. Self-supervised representation
learning on dynamic graphs. In CIKM, pp. 1814–1823, 2021.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. DyRep: Learning
representations over dynamic graphs. In ICLR, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Kun Wang, Yuxuan Liang, Xinglin Li, Guohao Li, Bernard Ghanem, Roger Zimmermann,
Zhengyang Zhou, Huahui Yi, Yudong Zhang, and Yang Wang. Brave the wind and the waves:
Discovering robust and generalizable graph lottery tickets. IEEE TPAMI, 46(5):3388–3405, 2023.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In ICLR, 2021.

Zhihao Wen and Yuan Fang. TREND: TempoRal event and node dynamics for graph representation
learning. In WWW, pp. 1159–1169, 2022.

Zhihao Wen and Yuan Fang. Prompt tuning on graph-augmented low-resource text classification.
IEEE TKDE, 36(12):9080–9095, 2023.

Yuzhong Wu and Tan Lee. Reducing model complexity for dnn based large-scale audio classifica-
tion. In ICASSP, pp. 331–335, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE TNNLS, 32(1):4–24, 2020.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. In ICLR, 2020.

Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, and Liang Wang. Evidence-aware fake news detection
with graph neural networks. In WWW, pp. 2501–2510, 2022.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla,
and Zhenhui Li. Graph few-shot learning via knowledge transfer. In AAAI, pp. 6656–6663, 2020.

Jiaxuan You, Tianyu Du, and Jure Leskovec. ROLAND: Graph learning framework for dynamic
graphs. In SIGKDD, pp. 2358–2366, 2022.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, pp. 5812–5823, 2020.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. In NeurIPS, pp. 67686–67700, 2023a.

Xingtong Yu, Zemin Liu, Yuan Fang, and Xinming Zhang. HGPrompt: Bridging homogeneous and
heterogeneous graphs for few-shot prompt learning. In AAAI, pp. 16578–16586, 2023b.

Xingtong Yu, Zemin Liu, Yuan Fang, and Xinming Zhang. Learning to count isomorphisms with
graph neural networks. In AAAI, pp. 4845–4853, 2023c.

Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming Zhang. Generalized
graph prompt: Toward a unification of pre-training and downstream tasks on graphs. IEEE TKDE,
36(11):6237– 6250, 2023d.

Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. MultiGPrompt for multi-task pre-
training and prompting on graphs. In WWW, pp. 515–526, 2023e.

13

Published as a conference paper at ICLR 2025

Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xinming Zhang, and
Steven CH Hoi. Few-shot learning on graphs: from meta-learning to pre-training and prompting.
arXiv preprint arXiv:2402.01440, 2024a.

Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Text-free multi-domain graph pre-
training: Toward graph foundation models. arXiv preprint arXiv:2405.13934, 2024b.

Xingtong Yu, Zechuan Gong, Zhou Chang, Yuan Fang, and Zhang Hui. SAMGPT: Text-free graph
foundation model for multi-domain pre-training and cross-domain adaptation. In WWW, 2025a.

Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. Non-homophilic graph pre-training and
prompt learning. In SIGKDD, 2025b.

Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, and Yuan Fang. GCoT: Chain-of-
thought prompt learning for graphs. arXiv preprint arXiv:2502.08092, 2025c.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
and Dawei Cheng. G-Designer: Architecting multi-agent communication topologies via graph
neural networks. arXiv preprint arXiv:2410.11782, 2024.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-GNN:
On few-shot node classification in graph meta-learning. In CIKM, pp. 2357–2360, 2019.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In CVPR, pp. 16816–16825, 2022.

14

Published as a conference paper at ICLR 2025

Algorithm 1 DOWNSTREAM PROMPT TUNING FOR DYGPROMPT

Input: Pre-trained DGNN with parameters Θ0, including those of DGE and TE
Output: Optimized dual prompts (pnode,ptime), and optimized parameters (κ, ϕ) of dual condition-nets
1: /* Encoding dynamic graphs and time via pre-trained DGNN */
2: pnode,ptime, κ, ϕ← initialization
3: while not converged do
4: for each dynamic graph G = (V,E) with feature matrix Xt at time t do
5: xt,v ← Xt[v], where v is a node in G
6: /* Dual prompt modification by Eqs. 4 and 5 */
7: xnode

t,v ← pnode ⊙ xt,v

8: f time
t ← ptime ⊙ ft

9: /* Dual conditional prompts generation by Eqs. 6 and 8 */
10: p̃node

t ← TCN(f time
t ;κ)

11: p̃time
t,v ← NCN(xnode

t,v ;ϕ)
12: /* Dual conditional prompts modification by Eqs. 7 and 9 */
13: x̃node

t,v ← p̃node
t ⊙ xnode

t,v

14: f̃ time
t,v ← p̃time

t,v ⊙ f time
t

15: /* Temporal node embedding calculation by Eq. 10 */
16: ht,v ← DGE

(
Fuse(x̃node

t,v , f̃ time
t,v),

{
Fuse(x̃node

t′,u, f̃
time
t‘,v) : (u, t

′) ∈ Nv

})
17: /* Update prototypical nodes */
18: for each class y do
19: ht,y ← AVERAGE(ht,v: instance v belongs to class y at time t)
20: /* Optimizing dual prompts and the parameters in dual condition-nets */
21: Calculate Ldown(p

node,ptime, κ, ϕ) by Eq. 11
22: Update pnode,ptime, κ, ϕ by backpropagating Ldown(p

node,ptime, κ, ϕ)

23: return pnode,ptime, κ, ϕ

APPENDICES

A ALGORITHM

We outline the key steps for downstream prompt tuning in Algorithm 1. In lines 6–8, we use dual
prompts to modify node and time features. In lines 9–14, we perform dual conditional prompting.
Specifically, we generate node conditioned time prompts and time conditioned node prompts (lines
9–11), and then modify node and time’s features using these conditional prompt (lines 12–14). In
line 15–16, we calculate node embeddings based on the prompted node and time features. Finally,
we update the embeddings for the prototypical nodes based on the few-shot labeled data provided in
the task (lines 18–19) and optimize dual prompts and dual condition-nets (lines 20–22). Note that
updating prototypical nodes is required exclusively for node classification tasks.

B COMPLEXITY ANALYSIS

For a downstream dynamic graph G = (V,E, T), the computational process of DYGPROMPT in-
volves two main parts: encoding nodes via a pre-trained TGN and prompt learning. The first part’s
complexity is determined by the TGN’s architecture, similar to other methods using a pre-trained
TGN. In a standard TGN, each node aggregates messages from up to d neighbors per layer. Assum-
ing the aggregation involves at most d neighbors, the complexity of calculating node embeddings
over L layers per batch time is O(dL · |V |). The second part, downstream prompt learning, has two
stages: dual prompting and dual conditional prompting. For the dual prompting, each node and time
feature is adjusted by the node prompt and time prompt, respectively, leading to a complexity of
O(|V | + 1) per batch time. For the dual condition-nets with K layers, for each timestamp, we first
generate the node-based condition prompt with a complexity of O(K), and the time-based condition
prompts with a complexity of O(K · |V |). Then the condition prompts are used to modify nodes and
time features, resulting in a complexity of O(|V | + 1). Therefore, the total complexity for prompt
learning per batch time is O((K + 2) · (|V | + 1)). In conclusion, the overall complexity of DYG-
PROMPT is O(dL · |V | + (K + 2) · (|V | + 1)). The first part dominates the overall complexity, as

15

Published as a conference paper at ICLR 2025

Table 4: Summary of datasets.

Dataset Nodes Edges Node Dynamic Feature Time
num num classes labels dimension span

Wikipedia 9,227 157,474 2 217 172 30 days
Reddit 11,000 672,447 2 366 172 30 days
MOOC 7,144 411,749 2 4,066 172 30 days
Genre 1,505 17,858,395 474 984 86 1,500 days

O(dL · |V |) far exceeds O((K +2) · (|V |+1)). Thus, the additional computational cost introduced
by the conditional prompt tuning step is minimal.

C FURTHER DESCRIPTIONS OF DATASETS

In this section, we provide a summary of these datasets in Table 4 and a further comprehensive
descriptions of these datasets.

(1) Wikipedia2 represents a month of modifications made by contributors on Wikipedia pages (Fer-
schke et al., 2012). Following prior studies (Rossi et al., 2020; Xu et al., 2020), we utilize data
from the most frequently edited pages and active contributors, obtaining a temporal graph contain-
ing 9,227 nodes and 157,474 temporal directed edges. Dynamic labels indicate whether contributors
temporarily banned from editing.

(2) Reddit3 represents a dynamic network between posts and users on subreddits, where an edge
represents a user writes a post to the subreddit, with about 11,000 nodes, about 700,000 temporal
edges, and dynamic labels indicating whether user is banned from writing posts.

(3) MOOC4 is a student-course dataset, representing the actions taken by student on MOOC plat-
form. The nodes are users and courses, and edges represent the actions by users on the courses.
Dynamic labels indicate whether the student drops-out after the action.

(4) Genre5 is a dynamic network linking users to music genres, with edges represents a user listens
to a specific genre at a certain time. The dataset includes 1,505 nodes and 17,858,395 temporal
edges, and dynamic labels indicate each user’s most favored music genre.

D FURTHER DESCRIPTIONS OF BASELINES

In this section, we provide additional details about the baselines used in our experiments.

(1) Conventional DGNNs

• ROLAND (You et al., 2022): ROLAND adapts static GNNs for dynamic graph learning.
It offers a new viewpoint for static GNNs, where the node embeddings at different GNN
layers are viewed as hierarchical node states, thus capturing temporal evolution.

• TGAT (Rossi et al., 2020): TGAT use a self-attention mechanism and a time encoding
technique based on the classical Bochner’s theorem from harmonic analysis. By stacking
TGAT layers, the network recognizes the node embeddings as functions of time and is able
to inductively infer embeddings for both new and observed nodes as the graph evolves.

• TGN (Xu et al., 2020): TGN incorporates a memory mechanism that updates node states
based on new events, effectively capturing the historical context and dependencies over
time. It further propose a novel training strategy that supports efficient parallel processing.

• TREND (Wen & Fang, 2022): TREND incorporates the Hawkes process into graph neural
networks, and adopts event dynamics and node dynamics to capture the individual charac-

2http://snap.stanford.edu/jodie/wikipedia.csv
3http://snap.stanford.edu/jodie/reddit.csv
4http://snap.stanford.edu/jodie/mooc.csv
5https://object-arbutus.cloud.computecanada.ca/tgb/tgbn-genre.zip

16

http://snap.stanford.edu/jodie/wikipedia.csv
http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/mooc.csv
https://object-arbutus.cloud.computecanada.ca/tgb/tgbn-genre.zip

Published as a conference paper at ICLR 2025

teristics of each event and the collective characteristics of events on the same node, respec-
tively.

• GraphMixer (Cong et al., 2023): GraphMixer employs a more simple MLP for feature
learning, with a portion of the parameters dedicated to time encoding being fixed. This
approach enhances the model’s ability to capture temporal dynamics while maintaining a
simpler and more flexible architecture.

(2) Graph Pre-training Models

• DDGCL (Tian et al., 2021): DDGCL designs a self-supervised dynamic graph pre-training
method via contrasting two nearby temporal views of the same node identity.

• CPDG (Bei et al., 2024): CPDG integrates two types of contrastive pre-training strategies
to learn comprehensive node representations that encapsulate both long-term and short-
term patterns.

(3) Graph Prompt Models

• GraphPrompt (Liu et al., 2023b): GraphPrompt employs subgraph similarity as a mecha-
nism to unify different pretext and downstream tasks, including link prediction, node clas-
sification, and graph classification. A learnable prompt is subsequently tuned for each
downstream task.

• ProG (Sun et al., 2023): ProG reformulate the node- and edge-level tasks as graph-level
tasks, and proposes prompt graphs with specific nodes and structures to guide different
task.

• TIGPrompt (Chen et al., 2024): TIGPrompt propose a prompt generator that generates
personalized, time-aware prompts for each node, enhancing the adaptability and expres-
siveness of node embeddings for downstream tasks.

E IMPLEMENTATION DETAILS

Environment. The environment in which we run experiments is:

• Operating system: Windows 11
• CPU information: 13th Gen Intel(R) Core(TM) i5-13600KF
• GPU information: GeForce RTX 4070Ti (12 GB)

Optimizer. For all experiments, we use the Adam optimizer.

Details of baselines. For all open-source baselines, we utilize the officially provided code. For the
non-open-source CPDG and TIGPrompt, we use our own implementations. Each model is tuned
according to the settings recommended in their respective literature to achieve optimal performance.

For both GCN and GAT in Roland, we employ a 2-layer architecture.

For TGAT and TGN, we sample 20 temporal neighbors per node to update their representations. For
Trend, after sampling neighboring nodes, we apply Hawkes processing to these temporal neighbors
using different time decay factors based on the time of each event. For GraphMixer, we employ an
MLP to process the input nodes along with their positive and negative examples. The output is then
passed through a network composed entirely of linear layers for prediction during training.

For DDGCL, we compares two temporally adjacent views of each node, utilizing a time-dependent
similarity evaluation and a GAN-style contrastive loss function. For CPDG, we employ depth-first-
search and breadth-first-search to sample neighbors of each nodes.

For GraphPrompt, we employ 1-hop subgraph for similarity calculation. For TIGPrompt, we employ
projection prompt generator, as it is reported to yield the best performance in their literature.

For all baselines, we set the hidden dimension to 172 for Wikipedia, Reddit, and MOOC, and to 86
for Genre. DDGCL, CPDG, and GraphPrompt leverage TGAT as their backbone, while ProG and

17

Published as a conference paper at ICLR 2025

Table 5: AUC-ROC (%) evaluation for anomaly detection on a large-scale dataset DGraph.
Method DGraph

GRAPHPROMPT 60.18 ± 13.06
TIGPROMPT 64.42 ± 10.37
DYGPROMPT 73.39 ± 5.85

Table 6: Prompt-tuning and testing runtimes (seconds) on node classification.

Method Wikipedia Reddit DGraph
Training Testing Training Testing Training Testing

GRAPHPROMPT 0.147 0.230 0.128 0.251 0.436 0.324
TIGPROMPT 0.312 0.397 0.356 0.411 0.847 1.063
DYGPROMPT 0.273 0.233 0.134 0.274 0.574 0.633

TIGPrompt use TGN. For TIGPrompt, we evaluate its performance using both TGAT and TGN as
the backbone.

Details of DYGPROMPT. For our proposed DYGPROMPT, We conducted experiments using TGN
and TGAT as backbones. We employ a dual-layer perceptrons with bottleneck structure as the
condition-net, and set the hidden dimension of the condition net as 86 for Wikipedia, Reddit and
MOOC, while 43 for Genre. We set the hidden dimension to 172 for Wikipedia, Reddit, and MOOC,
and to 86 for Genre.

F ADDITIONAL EXPERIMENTS

F.1 PERFORMANCE ON LARGE-SCALE DATASET

We evaluate DYGPROMPT under the same setting introduced in Sect. 5.1 on a large-scale dataset
DGraph (Huang et al., 2022), which consists of 3,700,550 nodes, 4,300,999 edges, and 1,225,601
labeled nodes. The dataset is designed for the anomaly detection task, a form of binary node classi-
fication. The results are shown in Table 5. We observe that DYGPROMPT outperforms competitive
baselines, showing the effectiveness of DYGPROMPT on large-scale datasets.

F.2 EFFICIENCY ANALYSIS

We compare the prompt tuning and testing runtimes between DYGPROMPT and competitive base-
lines for the node classification task. As shown in Table 6, DYGPROMPT takes only marginally
longer than GraphPrompt, while requiring less time than TIGPrompt. The slight overhead over
GraphPrompt is acceptable given the substantial improvement in performance. Note that the testing
runtimes are measured on the entire test set, which can be much larger than the samples used for
prompt tuning, resulting in generally longer runtimes compared to prompt tuning.

F.3 PERFORMANCE USING THE SPLITS OF TIGPROMPT

We adopt the splits of TIGPrompt and conduct further experiments, using 50% of the data for pre-
training and 20% for prompt tuning, with the remaining 30% equally divided for validation and
testing. We report the results in Table 7, where DYGPROMPT still consistently outperforms TIG-
Prompt.

F.4 PERFORMANCE ON FIVE-WAY CLASSIFICATION

While most of our datasets involve binary classification, we also conduct five-way node classifica-
tion on the ML-Rating dataset (Harper & Konstan, 2015) with 9,995 nodes, 1,000,210 edges, and
5 classes. We adopt the same setting introduced in Sect. 5.1 and compare DYGPROMPT with two

18

Published as a conference paper at ICLR 2025

Table 7: AUC-ROC (%) evaluation using the splits of TIGPrompt (Chen et al., 2024).

Method Node classification Transductive link prediction Inductive link prediction
Wikipedia MOOC Wikipedia MOOC Wikipedia MOOC

TIGPROMPT 78.85±1.35 63.40±2.31 93.95±0.47 78.98±0.52 91.35±0.38 80.26±0.76
DYGPROMPT 81.31±1.13 64.58±1.95 97.78±0.36 87.15±0.42 96.73±0.42 86.14±0.39

Table 8: AUC-ROC (%) evaluation for five-way node classification on ML-Rating.
Method ML-Rating

GRAPHPROMPT 52.37 ± 1.29
TIGPROMPT 53.26 ± 1.33
DYGPROMPT 54.82 ± 1.27

competitive baselines in Table 8. DYGPROMPT consistently outperforms these baselines, demon-
strating its effectiveness.

G FURTHER COMPARISON WITH RELATED WORK

We summarize the comparison of DYGPROMPT with representative graph prompt learning methods,
including GraphPrompt (Liu et al., 2023b) and ProG (Sun et al., 2023) for static graphs, and the
contemporary work TIGPrompt (Chen et al., 2024) for dynamic graphs (using its best-performing
variant, Projection TProG, for illustration), as shown in Table 9.

More specifically, first, a node prompt modifies the node features to reformulate the task input and
bridge the task gap (Eq. 4), while a time prompt adjusts the time features to capture the temporal
evolution of the dynamic graph (Eq. 5). The dual prompts are motivated by Challenge 1 in Sect. 1.
Previous static graph prompt learning methods (GraphPrompt and ProG) only utilize a node prompt,
neglecting the temporal gap between pre-training and downstream tasks. The dual prompts also
demonstrate empirical benefits. As shown in the ablation study in Table 2, Variant 2 (using only
node prompt) and Variant 3 (using only time prompt) consistently outperform Variant 1. Addition-
ally, Variant 4 (incorporating both node and time prompts) generally outperforms Variants 2 and 3,
demonstrating the effectiveness of node and time prompts in bridging the task gap and temporal gap
between pre-training and downstream tasks.

Second, time-aware node prompts adjust node prompts, and ultimately node features, to reflect tem-
poral influence on the node prompts (Eq. 7) instead of using a fixed node prompt across time. On
the other hand, node-aware time prompts adjust the time prompt for each time feature by incor-
porating node-specific characteristics (Eq. 9) instead of using a fixed time prompt across nodes.
Consequently, node-time patterns and their dynamic interplay are captured, addressing the Chal-
lenge 2 in Section 1. Static graph prompt learning methods lack such designs, failing to capture the
mutual characterization between node and time patterns. Moreover, TIGPrompt considers only the
temporal impact on nodes by generating time-aware node prompts, but neglects that time prompts
for each node can also be influenced by node features, hindering its ability to model the scenario
where different nodes may exhibit divergent behaviors even at the same time point, as illustrated in
Fig. 1(a). As shown in the ablation study in Table 2, Variant 5 (with node-aware time prompts) out-
performs Variant 2 (without node-aware time prompts), Variant 6 (with time-aware node prompts)
outperforms Variant 3 (without time-aware node prompts), and DyGPrompt (with both) outperforms
Variant 4 (without either), further demonstrating the effectiveness of our designs.

Third, we propose dual condition-nets to effectively generate time-aware node prompts (Eq. 6)
and node-aware time prompts (Eq. 8) while avoid overfitting in a parameter-efficient way. These
condition-nets generate prompts conditioned on the input features rather than directly parameter-
izing the prompts, significantly reducing the number of learnable parameters in the downstream
prompt-tuning phase. In our implementation, we use a 2-layer MLP as the condition-net. Specifi-
cally, our dual condition-nets contains merely 3,104 learnable parameters for Wikipedia, Reddit and
MOOC, 1,554 for Genre and 8,100 for DGraph, to generate all the time-aware node prompts and
node-aware time prompts. In contrast, to generate time-aware node prompts, TIGPrompt requires

19

Published as a conference paper at ICLR 2025

Table 9: Comparison with representative prompt learning methods.
Explicit

node prompt
Explicit

time prompt
Time-aware

node prompts
Node-aware
time prompts Condition-net

GRAPHPROMPT ✓ × × × ×
PROG ✓ × × × ×
TIGPROMPT × × ✓ × ×
DYGPROMPT ✓ ✓ ✓ ✓ ✓

learning a specific prompt for each node, leading to a significantly larger number of learnable pa-
rameters: 1,609,274 for Wikipedia, 1,911,478 for Reddit, 1,250,998 for MOOC, 130,826 for Genre,
and 66,610,156 for DGraph. Moreover, as shown in Table 6, DYGPROMPT requires less training
and testing time compared to TIGPrompt, further demonstrating the efficiency of using condition-
net. Thus, the condition-nets in DYGPROMPT is another significant difference from previous work,
addressing Challenge 2 in a parameter-efficient manner.

20

	Introduction
	Related Work
	Preliminaries
	Proposed Approach
	Overall framework
	Pre-training
	Dual prompts
	Dual condition-nets
	Prompt tuning

	Experiments
	Experimental setup
	Performance comparison with baselines
	Ablation studies
	Impact of backbones and hyperparameters

	Conclusions
	Algorithm
	Complexity Analysis
	Further Descriptions of Datasets
	Further Descriptions of Baselines
	Implementation Details
	Additional Experiments
	Performance on large-scale dataset
	Efficiency analysis
	Performance using the splits of TIGPrompt
	Performance on five-way classification

	Further Comparison with Related Work

