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ABSTRACT

Quantization techniques such as BitsAndBytes (Dettmers et al., 2022), AWQ (Lin
et al., 2024), and GPTQ (Frantar et al., 2023) are widely used as a standard method
in deploying large language models but often degrades accuracy when using low-
bit representations, e.g., 4 bits. Low-rank correction methods (e.g., LQER (Zhang
et al., 2024a), QERA (Zhang et al., 2024b), ASER (Zhao et al., 2025)) has been
proposed to mitigate this issue, however, they restore all layers and insert error-
correction modules into every decoder block, which increases latency and memory
overhead. To address this limitation, we propose GlowQ, a group-shared low-rank
approximation for quantized LLMs that caches a single shared right factor per
input-sharing group and restores only the groups or layers that yield the highest
accuracy benefit. GlowQ computes the high-precision projection once per input-
sharing group and reuses it across its modules, reducing parameter and memory
overhead, and retaining the expressivity of layer-specific corrections. We also
propose a selective variant, GlowQ-S, that applies the cached shared module only
where it provides the largest benefit. Compared with strong baselines, our ap-
proach reduces TTFB by 5.6% and increases throughput by 9.6% on average,
while reducing perplexity on WikiText-2 by 0.17% and increasing downstream
accuracy by 0.42 percentage points. The selective model GlowQ-S further re-
duces latency, cutting TTFB by 23.4% and increasing throughput by 37.4%, while
maintaining accuracy within 0.2 percentage points on average.

1 INTRODUCTION

As large language models (LLMs) grow in width and depth, the cost of serving and adapt-
ing them becomes a primary bottleneck for real-world use. Compression by post-training quan-
tization (PTQ) alleviates memory and bandwidth pressure without altering the model architec-
ture, and has matured through methods such as GPTQ Frantar et al. (2023), AWQ Lin et al.
(2024),BITSANDBYTES Dettmers et al. (2022). A complementary thread augments quantized
weights with a small high-precision, low-rank term so that W ≈Wq +AB and the inference output
is corrected by adding A(BX) Zhang et al. (2024a;c); Zhao et al. (2025); Zhang et al. (2024b).
These lines enable competitive quality at quantized weights across modern transformer stacks.

Most low-rank compensation pipelines attach an independent (A,B) module to each layer or pro-
jection and evaluate the high-precision projection BX repeatedly along the network. This design
(i) duplicates the same expensive computation for modules that ingest the same input tensor, (ii)
increases memory traffic by materializing multiple BX values, and (iii) selects subspaces with ob-
jectives that often ignore the strong anisotropy of real activations Ethayarajh (2019); Godey et al.
(2024), misallocating limited rank to rarely used directions. As a result, the accuracy-efficiency
trade-off is weaker than necessary, especially under strict latency budgets.

We propose GlowQ, Group-Shared Low-Rank Approximation for Quantized LLMs. As illustrated
in Fig. 1, GlowQ treats modules that share the same input as a group Vaswani et al. (2017), learns
a single shared right factor Bshared for that group, and keeps module-specific left factors {Ai}. At
inference, it computes R := BsharedX once per group and reuses it via AiR, turning many large BX
multiplications into several cheap matrix-vector updates. To align limited rank with how inputs are
actually used, we adopt a covariance-aligned objective that emphasizes frequently visited directions.

1
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Figure 1: GlowQ Overview

Finally, a Selective Restore policy enables only high-payoff groups or layers under a deployment
budget. Molchanov et al. (2019)

When modules share the input dimension, the joint least-squares problem with a single right factor
is equivalent to approximating the vertical stack of module-wise error matrices; its minimizers are
characterized by the right singular structure of the stacked matrix (“stacked SVD”). We then connect
a usage-weighted risk minA,B ∥Ecat −AB∥2F to a right-weighted Frobenius norm, which yields a
covariance-aligned objective whose global solution is governed by the SVD of the whitened error,
where the whitened errors are those rescaled by the input covariance. This provides both a rationale
for a shared B and a principled way to steer it toward data-preferred axes.

To avoid forming tall whitened matrices, we introduce a QR-reduced randomized SVD routine: a
thin QR compresses the stacked error into a d × d core; randomized SVD with oversampling and
power iterations extracts the dominant right subspace; balanced recovery returns (A⋆, B⋆) with
improved numerical stability. The solver drops into our grouping and caching runtime with no extra
architectural changes.

• Group-level shared-B. We formalize input-sharing groups and show that one shared right
factor per group suffices for the joint least-squares objective, enabling one-shot BX and
multi-module reuse (Sec. 3).

• Data-aware alignment. We derive a covariance-aligned objective by bridging usage-
weighted risk and a right-weighted Frobenius criterion; its global minimizer aligns the
shared right subspace with data-preferred directions (Sec. 3.1).

• QR-reduced RSVD. We present a practical pipeline that performs QR reduction to a small
core and applies randomized SVD with balanced factor recovery, avoiding tall whitened
matrices while preserving accuracy (Sec. 3.2).

• Caching & Selective Restore. We implement a deployment path that caches R = BsharedX
once per group and activates only important groups/layers, translating algorithmic savings
into latency/throughput gains (Sec. 3.3).

• Empirical gains over strong baselines. Across the evaluated model families and bench-
marks, GlowQ consistently improves both efficiency and accuracy: it reduces time-to-
first-byte (TTFB) by 5.6% and increases throughput by 9.6% on average, while reducing
WikiText-2 perplexity by 0.17% and increasing downstream accuracy by 0.42 percentage
points. The selective variant, GlowQ-S, further lowers latency, cutting TTFB by 23.4% and
increasing throughput by 37.4%, while maintaining accuracy within 0.2 percentage points
of full GlowQ.

2 RELATED WORK

Post-training quantization (PTQ). Today’s PTQ methods span a variety of designs that re-
cover accuracy at the quantization stage without changing the model structure or runtime path.

2
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GPTQ Frantar et al. (2023) uses second-order information to directly fit quantized weights and pre-
serve layer outputs; AWQ Lin et al. (2024) protects important channels based on activation statistics
via rescaling. In the BITSANDBYTES family, LLM.INT8() Dettmers et al. (2022) uses vector-wise
quantization with an outlier-aware mixed-precision path where most channels run in INT8. These
methods constitute standard baselines for LLM lightweighting.

Quantization error correction via low-rank compensation. Prior work shows that post-
quantization errors can be effectively reduced by adding a low-rank term to the quantized weights
or outputs. LQER approximates the per-layer quantization error as E ≈ AB and adds a high-
precision correction without changing the inference graph (Zhang et al., 2024a). ZEROQUANT-V2
systematizes low-rank compensation (LoRC) within PTQ pipelines and demonstrates that a small-
rank correction can recover accuracy at low bit-widths (et al., 2023). QERA derives a closed-form,
output-error-centric formulation that clarifies when low-rank correction benefits PTQ/PEFT (Zhang
et al., 2024b). ASER combines a whitened-SVD-style low-rank corrector with activation smoothing
to stabilize low-bit regimes (Zhao et al., 2025). While these works justify the AB correction prin-
ciple, most deploy independent (Aℓ, Bℓ) at every layer and recompute the high-precision product
Aℓ(BℓX) for all layers and tokens, which increases latency and memory traffic; moreover, attaching
a low-rank module to every layer inflates GPU memory usage.

Stacked/collective SVD for a shared right subspace. The idea of factorizing multiple matrices
with a shared latent factor is established in collective/joint matrix factorization: when several ma-
trices share the same input dimension, one can vertically concatenate their blocks and fit a single
right subspace while allowing matrix-specific left factors (Singh & Gordon, 2008). Recent analyses
also study the optimal recovery of shared singular subspaces across matrices (Ma & Ma, 2024).
We adopt this principle for input-sharing modules in LLMs : we stack group-wise error blocks into
Ecat and learn one Bshared per group. At inference, we compute the right projection once per group,
R = BsharedX , cache it, and let each module apply only the lightweight left multiplication AiR.
This reduces high-precision matmuls and the number of resident correction parameters compared to
layer-wise independent AB.

Covariance-aligned selective restoration. Because inputs are anisotropic, a plain stacked ob-
jective may learn right subspaces misaligned with data-preferred directions. We therefore adopt a
covariance-aligned (whitened) formulation, measuring residual error in the input-covariance met-
ric so that the shared subspace is guided toward meaningful axes (Golub & Loan, 2013; Srebro &
Jaakkola, 2003). Not all layers require restoration; following pruning-inspired saliency, we activate
only the most beneficial groups under a budget, using (i) an SVD energy-capture score (∥A∥2F per
group), (ii) a normalized error ratio ∥Eg∥F /∥Wg∥F (Nagel et al., 2020; Banner et al., 2018), and (iii)
a layer-order fallback when signals are weak. Coupled with the shared-right-subspace design and
cached R = BsharedX , this selective restore achieves stronger accuracy-latency-memory trade-offs
than per-layer low-rank baselines at the same cost.

3 METHOD: GLOWQ

In this section, we introduce our method, Group-Shared Low-Rank Approximation For Quantized
LLMs (GlowQ). Prior low-rank restoration often (i) restores all layers and (ii) multiplies a per-
layer low-rank module with activations, causing heavy overhead. We address both by (a) learning
a shared right subspace for modules that share the same input and (b) caching the input projection
once per group for reuse. We approximate each error matrix and its vertical concatenation by a rank-
r factorization: Ei ≈ AiB and Ecat ≈ AB, where A = [A1; . . . ;Am] and B is shared within a
group. At inference, the correction for each module i takes the form Ai(BX), where the projection
BX is computed once for the entire group.

3.1 GROUPING QUANTIZATION-ERROR CORRECTION MODULES

We aim to find the optimal shared low-rank correction module, in particular a shared right factor B.
To this end, we first formalize the problem via an unweighted baseline (Sec. 3.1.1), and propose a
data-aware objective that incorporates covariance alignment to overcome the limitation induced by
input anisotropy (Sec. 3.1.2).

3
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Figure 2: Input spectrum and energy-capture measurements. (a) We stream calibration samples
through the model, collect the input activations at the target layer, and plot the eigenvalue spectrum
of the empirical input covariance for the QKV and MLP groups, revealing a heavy-tailed profile. (b)
The same spectra plotted in log10 λr–log10 r coordinates; dotted lines show least-squares fits over
the approximately linear tail region, indicating power-law decay λr ∝ r−α with exponents αMLP ≈
0.77 and αQKV ≈ 1.19. (c-d) For each group, we vertically stack the quantization-error matrices and
plot the cumulative fraction of Frobenius energy recovered by the best rank-r approximation. We
show both the unweighted baseline (No cov) and the covariance-aligned variant that weights errors
by the observed inputs (Cov align). Horizontal dashed lines mark 90% and 95% energy capture.

3.1.1 UNWEIGHTED BASELINE: STACKED SVD

Let modules i = 1, . . . ,m share the same input dimension d. For error matrices Ei ∈ ROi×d, define
the vertical concatenation

Ecat :=
[
ET

1 · · · ET
m

]
∈ Rd×(

∑
i Oi), A :=

[
AT

1 · · · AT
m

]
∈ Rr×(

∑
i Oi). (1)

We seek a shared right factor B ∈ Rr×d and blocks Ai ∈ ROi×r that minimize

min
A,B

∥Ecat −AB∥2F . (2)

Proposition 1 (Shared-B is optimal). For modules that share the same input, jointly fitting with a
single right factor B is equivalent to one low-rank fit of the stacked matrix Ecat. By Eckart-Young-
Mirsky, an optimal B spans the top-r right-singular subspace of Ecat; allowing per-module Bi adds
no extra expressivity because any differences can be absorbed into invertible reparameterizations
of Ai. Hence, a single shared B is sufficient and optimal for the group. (Proof and identifiability
details are deferred to Appendix A.1.)

Real inputs are anisotropic, which can be diagnosed by the eigenvalue spectrum of the covariance
Σx. Fig. 2a exhibits a heavy-tailed profile, with an abrupt initial drop followed by a long tail,
indicating that the usage of the representation space is strongly concentrated in a small number of
axes. Under such a distribution, the relative importance between frequently used directions and the
remaining ones diverges markedly. To quantify this behavior, Fig. 2b plots the eigenvalue spectra
of the empirical input covariance for the MLP and QKV groups in log10 λr–log10 r scale: for each
group we sort the eigenvalues {λr} in descending order and plot log10 λr versus log10 r. The dotted
lines show least-squares linear fits over the approximately linear tail region, revealing power-law
decay λr ∝ r−α with exponents αMLP ≈ 0.77 and αQKV ≈ 1.19, which quantitatively confirms the
heavy-tailed, anisotropic input statistics that motivate our covariance-aligned objective.
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However, the unweighted cluster SVD selects the shared right subspace purely from the geometry
(variance structure) of the error matrices. This can misalign the selected subspace with the axes
preferred by the data; at a fixed rank, such a misalignment reduces energy capture and weakens
consistency within the group. Alignment arises naturally only in restrictive cases, such as isotropic
input or near-simultaneous diagonalization.

Therefore, to treat anisotropy fairly, we should evaluate errors in a coordinate system where all
directions carry equal usage. In such a space, frequently used directions are not under-weighted,
and rarely used directions are not over-weighted, so the learned shared right subspace aligns better
with the data-preferred axes.

3.1.2 DATA-AWARE COVARIANCE ALIGNMENT

The evidence in Fig. 2a shows strong input anisotropy; hence reconstruction should account not only
for the geometry of error matrices but also for how inputs are actually used. For any factors (A,B)
and residual M := Ecat −AB, the expected loss under the usage distribution is

E ∥Mx∥22 = tr
(
MΣx M

⊤) = ∥MΣ1/2
x ∥2F . (3)

which follows from the standard quadratic-form identity together with the Frobenius-trace iden-
tity (Petersen & Pedersen, 2012). To balance direction-wise usage, we whiten by Σ

1/2
x so that the

selected shared right subspace is steered toward axes preferred by the data.

Using the definitions from Sec. 3.1.1, we adopt the right-weighted objective

min
A,B

∥∥ (Ecat −AB)Σ1/2
x

∥∥2
F
≡ min

A,B

∥∥ Ẽ−AB
∥∥2
F
, Ẽ := EcatΣ

1/2
x . (4)

In the isotropic case (Σx ∝ I), Eq. 4 reduces to the unweighted baseline in Sec. 3.1.1. Empirically,
Fig. 2c and 2d shows that, at a fixed rank, whitening yields substantially faster growth of the cumu-
lative energy capture compared to the unweighted variant, indicating better alignment of the learned
shared right subspace with data-preferred directions.

Proposition 2 (Usage-weighted risk equals a right-weighted reconstruction error). When in-
puts are centered and have covariance Σx, the model’s expected loss equals the residual energy aver-
aged over draws from the input distribution. Equivalently, it is the residual measured after weighting
columns according to how frequently and how strongly each input direction is used (as determined
by Σx). Therefore, minimizing the usage-weighted risk is exactly the same optimization as min-
imizing the right-weighted reconstruction error in Eq. 4. A full derivation and the nonzero-mean
case are deferred to Appendix A.2.

Proposition 3 (Covariance-aligned minimizer) The global minimizers (A⋆,B⋆) of Eq. 4 are
given by the rank-r SVD of the whitened error matrix Ẽ = EcatΣ

1/2
x . In particular, the opti-

mal shared right subspace, row(B⋆), is spanned by the top-r right singular vectors of Ẽ; this is
the standard Eckart-Young-Mirsky solution specialized to the whitened problem (Eckart & Young,
1936) Golub & Loan, 2013.

3.2 SCALABLE IMPLEMENTATION VIA QR-REDUCED RANDOMIZED SVD

We present an implementation that solves the covariance-aligned objective

min
A,B

∥∥(Ecat −AB)Σ1/2
x

∥∥2
F

(5)

without forming the tall whitened matrix. The method follows three steps: (i) QR reduction to
compress the tall matrix into a d × d core, (ii) Randomized SVD (RSVD) on the core to capture
the top-r right subspace, and (iii) balanced recovery to obtain (A⋆,B⋆). This yields practical ad-
vantages such as avoiding materialization of huge matrices, lower compute/memory cost, improved
numerical stability via balanced factors, and direct compatibility with the caching/Selective-Restore
pipeline in Sec. 3.3.

5
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3.2.1 ALGORITHM & COMPLEXITY

Using a thin QR of Ecat, we reduce the covariance-aligned objective to a d× d core (Alg. 1); a full
SVD on the core costs O(d3), whereas randomized sketching recovers the leading right subspace in
O
(
d2(r+p)+ q d2(r+p)

)
time. Here, p denotes oversampling (extra sketch columns) and q denotes

the number of power iterations used to sharpen the subspace.

Algorithm 1 Covariance-aligned QR reduction and randomized SVD on the core

Require: Stacked error Ecat ∈ Rm×d, covariance Σx ⪰ 0, target rank r, oversampling p, power
iters q

Ensure: Low-rank factors (A⋆,B⋆) for the covariance-aligned objective
1: Thin QR of Ecat: compute QeRe = Ecat with Q⊤

e Qe = Id
2: Core construction: set M← Re Σ

1/2
x ∈ Rd×d

3: Random sketch / range finding: draw Ω ∼ N (0, 1)d×(r+p), set Y ← MΩ; optionally do q
power steps Y ←M(M⊤Y)

4: Orthonormalize: Q← orth(Y) ∈ Rd×(r+p)

5: Compressed SVD: Bsmall ← Q⊤M; compute Bsmall = ŨΣV⊤

6: Lift left factor: U← QŨ

7: Truncate (top-r) & balance: keep (Ur,Σr,Vr) and set Â⋆ ← Ur Σ
1/2
r , B̂⋆ ← Σ

1/2
r V⊤

r

8: Lift to original variables: A⋆ ← Qe Â
⋆, B⋆ ← B̂⋆ Σ

−1/2
x ▷ use a pseudoinverse if Σx is

singular

By left-orthogonal invariance of the Frobenius norm, the QR reduction collapses the tall-m problem
to a d × d core without loss for the covariance-aligned objective (formal proof in Appendix A.3;
(Golub & Loan, 2013)). Randomized sketching on the core provides an efficient and accurate es-
timate of the leading right subspace with controllable bias via (p, q); we summarize theoretical
guarantees in Appendix A.4 and present empirical runtime-accuracy trade-offs (vs. exact SVD) in
Sec. D.3.1 (Halko et al., 2011). Balanced recovery yields

Â⋆ = UrΣ
1/2
r , B̂⋆ = Σ1/2

r V⊤
r ,

∥∥(Ecat −A⋆B⋆)Σ1/2
x

∥∥
F
=

∥∥M−UrΣrV
⊤
r

∥∥
F

(6)

and the resulting B⋆ serves as the shared right factor used in Sec. 3.3 for once-per-group caching
(R = BsharedX) and Selective Restore.

3.3 CACHING AND SELECTIVE RESTORE

The group-shared factorization implies that modules within the same input-sharing group all rely on
the same right-side projection XB⊤

ℓ,shared. Naively evaluating this projection for every module recre-
ates the primary inefficiency of layer-wise correction, i.e., multiple high-precision matrix-vector
multiplications along the critical path. To translate the theoretical shared structure into practical
inference gains, GlowQ introduces a caching mechanism that computes the right-sided projection
once per group, and a complementary selective-restore policy that activates correction only at groups
offering the largest accuracy benefit under a deployment budget.

For each layer group Gℓ that shares the same input dimension, we compute a single intermediate

Rℓ := XB⊤
ℓ,shared ∈ RB×T×r (7)

once per group and reuse it across all modules in the group. Each module i ∈ Gℓ then applies only
the small correction

yi = W
(q)
i X + Aℓ,i Rℓ, (8)

where Aℓ,i ∈ ROi×r and Bℓ,shared ∈ Rr×I . We adopt an anchor policy to materialize Rℓ exactly
once and consume it a fixed number of times: in attention, q is the anchor and (k, v) are consumers;
in MLP, gate is the anchor and up is the consumer. Solo modules that do not share inputs (e.g.,
o proj, down proj) compute Ri := XB⊤

i on the fly without reuse.

Given a latency or memory budget, we rank all candidate units (groups or solo layers) by an im-
portance score and activate only the top k. Importance is measured using two metrics: a GSVD-
based energy-capture score (Eq. 9) after covariance alignment (Paige & Saunders, 1981; Jolliffe &

6
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Figure 3: Perplexity (PPL) and time-to-first-byte (TTFB) versus the fraction of restored groups.

Cadima, 2016; Halko et al., 2011), and a normalized error ratio (Eq. 10) (Malinovskii et al., 2024;
Dong et al., 2019). At runtime, we apply the cached low-rank correction only to the selected units,
skipping inactive ones; because the cache is materialized only for active groups, selective restore
naturally complements group-shared caching.

gec(u) =

∑r
j=1 σj(Mu)

2

∥Mu∥2F
(9) gner(u) =

∥Eu∥2F
∥Wu∥2F

(10)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate LLaMA 3 (3.2–3B, 3.1–8B) Dubey et al. (2024), LLaMA 2 (7B, 13B) Touvron et al.
(2023), Qwen 2.5 (7B, 14B) Yang et al. (2024), Qwen 3 (8B, 14B) Yang et al. (2025), OPT (1.3B,
6.7B) Zhang et al. (2022), Mistral 7B Jiang et al. (2023), and Qwen1.5-MoE-A2.7B Bai et al. (2023)
with Vicuna reported only in ablations.

All models use W4A16 (int4 weights, fp16 activations) with group size 128; the rank is fixed at
64. Calibration uses 64 sequences of length 2048 shared across methods, with no fine-tuning unless
a baseline requires it. We compare GlowQ and GlowQ-S with various state-of-the-art baselines,
including PTQ (BitsAndBytes Dettmers et al. (2022), AWQ Lin et al. (2024), GPTQ Frantar et al.
(2023)) and error-correction methods in literature (L2QER Zhang et al. (2024a), ZeroQuant-V2 et al.
(2023), QERA Zhang et al. (2024b)). All under the same protocol and recommended defaults.

We report perplexity on WikiText-2 Merity et al. (2016) and C4 Raffel et al. (2023), and zero-shot
accuracy on ARC-E/ARC-C Clark et al. (2018), PIQA Bisk et al. (2019), HellaSwag Zellers et al.
(2019), WinoGrande Sakaguchi et al. (2019), BoolQ Clark et al. (2019), and LAMBADA Paperno
et al. (2016) via lm-eval-harness (defaults). We run the proposed method on A100 GPUs for
covariance/SVD steps while inference is executed on an RTX 4090.

GlowQ-S Configuration GlowQ-S applies the cached correction only to a subset of groups, se-
lected according to an importance score. Since different model families exhibit distinct restoration
profiles, we adopt a model-specific scoring rule for GlowQ-S. We defer the full characterization of
these curves and the selection policy to Section 4.6.

4.2 MAIN RESULTS: PERPLEXITY AND ZERO-SHOT ACCURACY

Perplexity. Table 1 reports test perplexity (lower is better) for WikiText-2 under a common proto-
col: W4A16 with int4 weight groups of 128 and a shared calibration set of 64 sequences at length
2048 for all methods. Overall, GlowQ achieves the best or tied-best perplexity on 9 of 11 model
variants, including consistent gains on LLaMA 3 (3.2-3B/3.1-8B), Qwen 3 (8B/14B), Qwen 2.5-7B,
and Mistral-7B. On Qwen 2.5-14B, GlowQ matches the strongest baselines. Exceptions occur on
LLaMA 2-13B (where L2QER slightly leads) and OPT-1.3B (where QERA leads), while OPT 6.7B
favors a pure PTQ path. These outcomes indicate that group-shared low-rank correction closes
much of the int4 gap to FP16 across diverse architectures without task-specific tuning. Beyond the
W4A16 setting, the lower block of Table 1 evaluates mixed-precision weight-activation quantization
with W4A4 and W4A8. As expected, W4A4 increases perplexity for all methods, but GlowQ (and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: WikiText-2 test perplexity (lower is better). GlowQ-S restores 51% of layers for
LLaMA 3.2-3B, while all other models use 50% restoration.

Method Q config LLaMA 2 LLaMA 3 Qwen 2.5 Qwen 3 Mistral OPT

7B 13B 3.2-3B 3.1-8B 7B 14B 8B 14B 7B 1.3B 6.7B

FP16 - 5.48 4.90 7.81 6.24 6.86 5.29 9.73 8.64 5.32 14.62 10.85

BnB NF4 5.64 4.97 8.29 6.66 7.10 5.64 9.97 8.88 5.51 15.16 10.94
AWQ INT4, g128 5.61 4.97 8.24 6.64 7.11 6.17 10.19 9.00 5.51 15.22 11.23
GPTQ INT4, g128 5.65 5.35 9.46 6.63 7.11 5.75 9.98 8.90 5.51 15.00 11.07

ZeroQuant-V2 INT4, g128 5.72 4.99 8.44 6.79 8.41 5.75 10.19 9.04 5.53 15.10 11.14
QERA INT4, g128 5.61 4.98 8.22 6.64 8.09 5.64 10.07 8.85 5.48 14.85 11.00
L2QER INT4, g128 5.68 4.94 8.30 6.75 8.14 5.66 10.07 8.85 5.46 15.30 11.16
GlowQ INT4, g128 5.58 4.96 8.16 6.59 7.07 5.64 9.90 8.80 5.42 14.84 11.00
GlowQ-S INT4, g128 5.60 4.96 8.22 6.62 7.09 5.68 9.97 8.89 5.45 15.00 11.00

L2QER W4A4 5.90 5.18 9.42 7.65 9.11 6.52 10.76 9.36 5.73 27.40 11.32
L2QER W4A8 5.69 4.95 8.31 6.76 8.15 5.67 10.11 8.86 5.47 14.90 11.00
GlowQ W4A4 5.90 5.20 9.21 7.42 8.03 6.55 10.66 9.33 5.74 26.35 11.31
GlowQ-S W4A4 5.92 5.20 9.25 7.45 8.05 6.61 10.72 9.37 5.79 27.42 11.33
GlowQ W4A8 5.59 4.97 8.20 6.63 7.12 5.71 10.08 8.85 5.43 14.85 10.97
GlowQ-S W4A8 5.60 4.97 8.24 6.64 7.13 5.77 10.10 8.92 5.48 14.99 10.99

GlowQ-S) remain competitive with or better than L2QER on most models, and the W4A8 configura-
tion nearly recovers the W4A16 accuracy, indicating that our covariance-aware low-rank correction
continues to be effective even under joint weight-activation quantization.

Table 2: Average accuracy (↑) on seven downstream tasks and C4 perplexity (↓).

Method Rank LLaMA 3.2-3B LLaMA 3.1-8B Qwen 3-8B Qwen 3-14B

Acc (↑) C4 (↓) Acc (↑) C4 (↓) Acc (↑) C4 (↓) Acc (↑) C4 (↓)

FP16 - 67.14 10.30 73.29 9.00 71.48 14.52 74.10 13.08

ZeroQuant-V2 65.38 11.45 73.48 9.87 70.19 15.00 72.62 13.79
QERA 65.48 11.04 72.86 9.68 69.86 14.78 73.14 13.29
L2QER 64 66.19 11.04 72.43 9.63 69.52 14.82 73.24 13.80
GlowQ 66.90 10.98 73.33 9.59 70.71 14.60 73.84 13.26

GlowQ-S 66.33 11.07 72.62 9.78 70.29 14.77 73.24 13.48

Overall quality. Table 2 reports the zero-shot accuracy via lm-eval-harness along with the per-
plexity for the C4 dataset. Across four representative models (LLaMA 3 3.2-3B / 3.1-8B, Qwen 3
8B / 14B), GlowQ attains the lowest C4 perplexity among quantized/error-corrected methods and de-
livers the strongest average zero-shot accuracy on LLaMA 3.2-3B and Qwen 3-8B/14B (ZeroQuant-
V2 leads on LLaMA 3.1-8B). GlowQ improves over the best non-GlowQ baseline in the zero-shot
accuracy by average +0.3%; in C4 perplexity, GlowQ improves by -0.2 ppl on average. Relative to
FP16, the remaining C4 gap is +0.4 ppl on average, while average accuracy remains close to FP16
across the board. The selective-restore variant (GlowQ-S) shows the expected efficiency trade-off:
−0.55% on average accuracy and +0.15 ppl on average in C4 compared to GlowQ.

4.3 LATENCY AND THROUGHPUT BENEFITS FROM CACHING AND SELECTIVE RESTORE

Latency on LLaMA 2 models. Under a common generation protocol (3 prompts, batch=1,
max new tokens=128, repeats=1, num beams=1) and custom CUDA W4A16 kernels, we measure
TTFB via a warm-start generate(max new tokens=1) and per-token decode latency using
CUDA events (Table 3). We establish our baseline using a standard Layerwise method, which does
not employ caching. This setup ensures a fair comparison, as both the Layerwise baseline and
GlowQ utilize the identical custom CUDA W4A16 kernels compiled with the same optimization
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Table 3: Latency comparison on LLaMA 2 models for Layerwise vs. GlowQ, GlowQ-S.

Models Setting TTFB(ms) ↓ tok/s ↑ Prefill(ms) ↓ Dec(ms/tok) ↓

LLaMA 2

7B
Layerwise 88.45 15.66 95.13 63.17
GlowQ 82.66 17.12 92.23 58.32
GlowQ-S 66.68 21.16 72.35 45.90

13B
Layerwise 128.70 11.22 141.76 85.91
GlowQ 122.78 12.33 136.53 81.15
GlowQ-S 100.17 15.68 112.09 62.98

Avg. ∆ BX (%) -5.57 +9.61 -3.37 -6.61
Avg. ∆ R50 (%) -23.39 +37.44 -22.44 -27.01

level, isolating the algorithmic impact of our caching strategy. Compared to this Layerwise base-
line, GlowQ consistently reduces end-to-end latency across both sizes: on average TTFB drops by
5.51%, prefill time by 3.37%, and decode latency by 6.61%, yielding a 9.61% increase in throughput
(tok/s).

Selective restore efficiency. The GlowQ-S, which are restoring about half of the units by an im-
portance score, amplifies the gains: average TTFB, prefill, and decode fall by 23.39%, 22.44%, and
27.01%, respectively, and throughput increases by 37.44% over the Layerwise baseline.

4.4 MEMORY OVERHEAD AND EFFICIENCY ANALYSIS
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Figure 4: Comparison of memory and per-
formance trade-off. (a) Memory overhead
of different methods. (b) PPL at equal
memory budget.

On memory, GlowQ consistently uses less addi-
tional GPU memory than layer-wise restoration at
the same rank r. This follows from maintaining a
single shared right factor Bshared per input-sharing
group and computing R = BsharedX once per group
for cache-and-reuse. Applying GlowQ-S further re-
duces overhead, yielding the flattest growth slope
even at higher ranks. On accuracy, under an equal-
memory budget in Fig. 4(b), GlowQ attains the low-
est PPL, while GlowQ-S preserves PPL close to full
GlowQ with substantially lower memory, consis-
tently outperforming than layer-wise methods. Con-
sequently, GlowQ is the preferred choice when max-
imizing performance within a fixed memory bud-
get, whereas GlowQ-S offers a strong performance-
efficiency compromise when memory constraints are
tighter or latency minimization is prioritized.

4.5 COMPATIBILITY WITH PTQ METHODS AND GENERALIZATION TO MOE

We further examine the compatibility of GlowQ with diverse LLM configurations, focusing in par-
ticular on PTQ baselines and MoE architectures, as summarized in Table 4.

Table 4: Perplexity (↓) on Wikitext-2 with
and without GlowQ: dense models (top)
and Qwen1.5-MoE-A2.7B (bottom).

Method LLaMA 2-7B LLaMA 3.2-3B

GPTQ 5.64 9.32
+GlowQ (on GPTQ) 5.60 8.19

BnB 5.64 8.29
+GlowQ (on BnB) 5.57 8.10

FP16 Quant only GlowQ Layerwise

Qwen1.5-MoE-A2.7B 7.22 7.70 7.41 7.39

Layering GlowQ on top of PTQ baselines reduces
perplexity by -0.59 ppl on average for GPTQ and
-0.13 ppl on average for BnB. Improvements hold
across both evaluated models in each setting, indi-
cating consistent add-on gains independent of the
underlying quantizer. GlowQ acts as an orthog-
onal, plug-and-play low-rank correction: it ex-
changes a small set of shared parameters for ac-
curacy gains while remaining compatible with di-
verse PTQ pipelines.

On this MoE benchmark, GlowQ largely recovers
the Wikitext-2 perplexity loss from 4-bit weight
quantization and ends up only +0.02 PPL worse

9
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than the more expensive layer-wise low-rank baseline. The layer-wise variant attaches a separate
error-correction module to every expert, whereas GlowQ uses a single shared right factor Bshared per
group across experts and the shared MLP. The whitening-based alignment heatmaps in Fig. 7 and
Fig. 8 show that expert-specific error subspaces are well aligned with this shared right subspace,
explaining why the shared-B design can match layer-wise accuracy while reducing the memory
footprint of the low-rank correction by about 63%. These results confirm that GlowQ remains ef-
fective even on large MoE architectures.

Given the recent trend toward rotation-based saliency-aware PTQ and KV-cache compression,
GlowQ can be viewed as a complementary low-rank correction layer that may be attached to strong
PTQ baselines such as ROSAQ Yoon et al. (2025) and GuidedQuant Kim et al. (2025), and fur-
ther extended to KV-cache compression frameworks like CommVQ Li et al. (2025); exploring such
combinations remains an interesting direction for future work.

4.6 BEHAVIOR OF SELECTIVE RESTORATION ACROSS MODEL FAMILIES

Fig. 3 plots PPL and TTFB as a function of the restored fraction. On LLaMA 3.2-3B, PPL stays
relatively flat and then exhibits an abrupt drop at an elbow point, after which marginal gains saturate
quickly. In contrast, Qwen 2.5-7B shows a more gradual, near-monotone PPL decrease with increas-
ing restoration, without a clear knee. Since TTFB generally grows with the restoration fraction,
these shapes motivate different selective-restoration budgets. We verify that these family-specific
tendencies persist across other sizes within each family in our ablation study (Sec. G).

Guided by the above curves, GlowQ-S restores (i) for LLaMA, the elbow (steep-drop) operating
point to capture most PPL gains with limited overhead, and (ii) for Qwen, a fixed 50% of groups,
which offers stable accuracy improvements with moderate TTFB growth. For unit ranking, we
follow the importance metrics delineated in Sec. 3.3: covariance-aware error capture is adopted as
the default criterion. For the model families, when two alternative metrics are available (covariance-
aware error capture vs. normalized error ratio), we evaluate both on the validation split and, per
model, adopt the metric that yields the stronger outcome; all reported results use this per-model best
choice.

4.7 IMPACT OF COVARIANCE ALIGNMENT ON ACCURACY

Table 5: C4 Evaluation of Σx-weighted
(Whitened SVD) vs. unweighted (Stacked SVD)
on Qwen 3-8B; lower is better (↓).

No-White White

Layer Group Layer Group

14.97 14.60 13.85 13.40

On C4 (Table 5), the Σx-weighted Whitened SVD
consistently outperforms the unweighted Stacked
SVD across both layer-wise and group-shared vari-
ants of Qwen 3-8B. Because the unweighted objec-
tive ignores the input-usage distribution embodied
in Σx, it tends to select right subspaces misaligned
with the axes most exploited by the data, leading to
a marked degradation in perplexity at a fixed rank;
whitening, by evaluating errors in a data-aligned
coordinate system, improves energy capture and yields lower PPL. Grouped restoration also domi-
nates layer-wise under both weightings, and, taken together, these results identify White + Group as
the preferred configuration.

5 CONCLUSIONS

We introduced GlowQ, a group-shared low-rank approximation for quantized LLMs that replaces
per-layer correction with a single right subspace shared among input-sharing modules and a cache-
and-reuse runtime. By connecting usage-weighted risk to a right-weighted reconstruction objective,
our covariance-aligned (whitened) formulation steers the learned subspace toward data-preferred di-
rections, and a QR-reduced randomized SVD provides an efficient, scalable solver. The deployment
path computes one right-side projection per group and reuses it across modules, while a selective
policy (GlowQ-S) activates only high-importance units under latency or memory budgets. Across
modern model families and PTQ baselines, GlowQ consistently lowers perplexity, reduces time-
to-first-byte, increases throughput, and decreases memory overhead relative to layer-wise correc-
tion; whitening and grouping combine to yield the strongest results. The approach is architecture-
agnostic, drop-in at inference, and complementary to existing PTQ pipelines.
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Pushing the limits of large language model quantization via the linearity theorem. arXiv preprint
arXiv:2411.17525, 2024.

Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear algebra: Foundations
and algorithms. Acta Numerica, 29:403–572, 2020. doi: 10.1017/S0962492920000021. URL
https://doi.org/10.1017/S0962492920000021. See also arXiv:2002.01387 for the
preprint.

Gabryel Mason-Williams and Fredrik Dahlqvist. What makes a good prune? maximal unstructured
pruning for maximal cosine similarity. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=jsvvPVVzwf.

Stephen Merity, Caiming Xiong, James Bradbury, and R. Socher. Pointer sentinel mixture models.
In International Conference on Learning Representations, 2016.

Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal of
Mathematics, 11(1):50–59, 1960. doi: 10.1093/qmath/11.1.50.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Importance estimation
for neural network pruning. In CVPR, 2019.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2015.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Up or
down? adaptive rounding for post-training quantization. In Proceedings of ICML (Workshops) /
arXiv preprint, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization, 2021. URL https://
arxiv.org/abs/2106.08295.

Open Compute Project. Ocp microscaling formats (mx) specification, version 1.0. Technical re-
port, Open Compute Project, September 2023. URL https://www.opencompute.org/
documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf. Version
1.0, Sept. 7, 2023.

Christopher C. Paige and Michael A. Saunders. Towards a generalized singular value decomposition.
SIAM Journal on Numerical Analysis, 18(3):398–405, 1981. doi: 10.1137/0718026.

13

https://doi.org/10.1145/3725843.3756118
https://arxiv.org/abs/2411.17054
https://doi.org/10.1017/S0962492920000021
https://openreview.net/forum?id=jsvvPVVzwf
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Denis Paperno, Germu00e1n Kruszewski, Angeliki Lazaridou, Q. N. Pham, R. Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and R. Fernu00e1ndez. The lambada dataset: Word
prediction requiring a broad discourse context. In Annual Meeting of the Association for Compu-
tational Linguistics, 2016. doi: 10.18653/v1/P16-1144.

Roger Penrose. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge
Philosophical Society, 51(3):406–413, 1955. doi: 10.1017/S0305004100030401.

Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook. https://www.
math.uwaterloo.ca/˜hwolkowi/matrixcookbook.pdf, 2012. Accessed: 2025-09-
18.

Hadi Pouransari and Oncel Tuzel. Least squares binary quantization of neural networks. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 2986–2996, 2020. URL https://api.semanticscholar.org/CorpusID:
210116550.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010. doi:
10.1137/070697835.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix factorization. In
Proceedings of KDD, 2008.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Proceedings of ICML,
2003.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, and et al. Llama 2:
Open foundation and fine-tuned chat models. In arXiv preprint arXiv:2307.09288, 2023.

Lloyd N. Trefethen and III Bau, David. Numerical Linear Algebra. SIAM, 1997. doi: 10.1137/1.
9780898719574.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, and et al. Qwen2.5 technical re-
port. CoRR, abs/2412.15115, 2024. URL https://doi.org/10.48550/arXiv.2412.
15115.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, and et al. Qwen3 technical
report, 2025. URL https://arxiv.org/abs/2505.09388.

Junho Yoon, Geom Lee, Donghyeon Jeon, Inho Kang, and Seung-Hoon Na. ROSAQ: rotation-based
saliency-aware weight quantization for efficiently compressing large language models. CoRR,
abs/2506.13472, 2025. doi: 10.48550/ARXIV.2506.13472. URL https://doi.org/10.
48550/arXiv.2506.13472.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Cheng Zhang, Jianyi Cheng, George A. Constantinides, and Yiren Zhao. Lqer: low-rank quan-
tization error reconstruction for llms. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024a.

14

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://api.semanticscholar.org/CorpusID:210116550
https://api.semanticscholar.org/CorpusID:210116550
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://arxiv.org/abs/2505.09388
https://doi.org/10.48550/arXiv.2506.13472
https://doi.org/10.48550/arXiv.2506.13472
https://arxiv.org/abs/1905.07830


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Cheng Zhang, Jeffrey TH Wong, Can Xiao, George A Constantinides, and Yiren Zhao. Qera: an
analytical framework for quantization error reconstruction. arXiv preprint arXiv:2410.06040,
2024b.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy,
2024c. URL https://arxiv.org/abs/2410.03111.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models. In arXiv.org, 2022.

Weibo Zhao, Yubin Shi, Xinyu Lyu, Wanchen Sui, Shen Li, and Yong Li. Aser: activation smoothing
and error reconstruction for large language model quantization. In Proceedings of the Thirty-Ninth
AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Appli-
cations of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial
Intelligence, AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi:
10.1609/aaai.v39i21.34443. URL https://doi.org/10.1609/aaai.v39i21.34443.

A APPENDIX

A.0 NOTATION & SHAPES

Refer to Table 6

A.1 STACKED SVD: SHARED RIGHT SUBSPACE AND GLOBAL OPTIMUM (PROOF)

When multiple modules share the same input dimension, we vertically concatenate the module-wise
error matrices Ei ∈ ROi×d into Ecat. We then choose a shared right subspace (the row space of B)
while allowing module-specific left factors Ai, by solving

min
A,B

∥∥Ecat −AB
∥∥2
F
.

This appendix shows that (i) the solution is well-defined, and (ii) the shared B is also optimal in
an energy/projection sense (Ky Fan; cf. Fan (1949); Golub & Loan (2013)). Consequently, a single
shared B serves as a strong representative of what one might otherwise try to learn as separate Bi’s
per module.

Problem (Unweighted Frobenius Approximation).
min
A,B

∥∥Ecat −AB
∥∥2
F
. (A.1.1)

LEMMA A.1.1 - EQUIVALENCE OF SEARCH SETS: Mr = Rr .

Let
Mr := {AB : A ∈ Rm×r, B ∈ Rr×d}, Rr := {X ∈ Rm×d : rank(X) ≤ r}.

ThenMr = Rr.

This is a standard consequence of rank-factorization and the SVD characterization of best rank-r
approximants; see, e.g., Eckart & Young (1936); Mirsky (1960); Golub & Loan (2013); Horn &
Johnson (2012). We omit the proof.

Proof. By Lemma A.1.1, the problem reduces to a rank-r approximation of Ecat. By the Eckart-
Young-Mirsky theorem Eckart & Young (1936); Mirsky (1960), the optimizer is the truncated SVD

X⋆ = UrΣrV
⊤
r ,

so any global minimizer (A,B) must satisfy

AB = X⋆ = UrΣrV
⊤
r . (A.1.2)

If σr = σr+1, the optimizer may be non-unique Golub & Loan (2013).
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Table 6: Unified notation and shapes for stacked errors, low-rank factors, and covariance-weighted
core.

Symbol Meaning

Ei ∈ ROi×d Error matrix of module i with output dimension Oi and
shared input dimension d.

Ecat := [E1; . . . ;Em] ∈ Rm×d Row-stacked errors across modules; total rows m :=∑
i Oi.

A := [A1; . . . ;Am] ∈ Rm×r Left factor formed by stacking per-module factors Ai.

B ∈ Rr×d Shared right factor; target rank r.

1 ≤ r ≤ min{m,d} Admissible rank range.

Ecat = UΣV⊤ Thin SVD with U ∈ Rm×d, Σ ∈ Rd×d, V ∈ Rd×d

orthogonal.

(Ur,Σr,Vr) Top-r SVD blocks: Ur ∈ Rm×r, Σr ∈ Rr×r, Vr ∈
Rd×r.

Σx ⪰ 0 Input covariance; Σx := E[xx⊤] for centered inputs
E[x] = 0.

Σ
1/2
x (Pseudo-)square root of Σx.

Ecat = QeRe Thin QR with Qe ∈ Rm×d, Q⊤
e Qe = Id, Re ∈

Rd×d.

M := ReΣ
1/2
x ∈ Rd×d Covariance-weighted SVD core used for randomized

SVD on the reduced space.

Â := Q⊤
e A ∈ Rd×r Variable change (reduced left factor).

B̂ := BΣ
1/2
x ∈ Rr×d Variable change (covariance-weighted right factor).

Residual (Ecat −AB) ∈ Rm×d Stacked error after factorization (no separate symbol
reserved).

THEOREM A.1.2 - IDENTIFYING THE SHARED RIGHT SUBSPACE: row(B) = span(V⊤
r ).

We determine the optimal shared right subspace for the factorization minA,B ∥Ecat −AB∥2F . Let
Ecat = UΣV⊤ be a thin SVD, and let r = rank(B). Denote S := row(B) and the orthogonal
projector PS := B⊤(BB⊤)−1B (assume B has full row rank; otherwise use the Moore-Penrose
pseudoinverse).

Fixing B, least-squares normal equations yield (see, e.g., (Golub & Loan, 2013, §5))

A∗ = EcatB
⊤(BB⊤)−1, (A.1.3a)

A∗B = EcatPS. (A.1.3b)

Hence, with G := E⊤
catEcat,

∥Ecat −A∗B∥2F = ∥Ecat(I−PS)∥2F = ∥Ecat∥2F − tr(PSG), (A.1.4)

where the last identity is the usual projection-trace formula (cf. Horn & Johnson (2012)).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Therefore, selecting S of dimension r is equivalent to

max
dimS=r

tr(PSG). (A.1.5)

By Ky Fan’s maximum principle Fan (1949), the maximizer S is the span of the top-r eigenvectors
of G. Since Ecat = UΣV⊤ implies G = VΣ2V⊤, its top-r eigenspace equals span(Vr). Thus

row(B) = span(V⊤
r ). (A.1.6)

THEOREM A.1.3 - REPRESENTATIVENESS / ENERGY OPTIMALITY: SUM OF PROJECTION
ENERGIES.

The shared right subspace S = row(B) of dimension r maximizes the total projection energy∑
i ∥EiPS∥2F , where PS is the orthogonal projector onto S (e.g., PS = QQ⊤ for any orthonormal

basis Q of S).

Proof. For each module Ei,
∥EiPS∥2F = tr

(
PS E⊤

i Ei

)
, (A.1.7)

a standard identity using symmetry/idempotence of PS and trace cyclicity (see, e.g., Horn & John-
son (2012); Golub & Loan (2013)). Summing over i yields

max
dimS=r

∑
i

∥EiPS∥2F = max
dimS=r

tr
(
PS

∑
i

E⊤
i Ei

)
= max

dimS=r
tr(PSG), G :=

∑
i

E⊤
i Ei = E⊤

catEcat.

(A.1.8)
By Ky Fan’s maximum principle Fan (1949) (cf. Eq. A.1.5), the maximizer is the span of the top-r
eigenvectors of G. Since Ecat = UΣV⊤ implies G = VΣ2V⊤, it follows that

S∗ = span(Vr) ⇐⇒ row(B) = span(V⊤
r ).

LEMMA A.1.4 - IDENTIFIABILITY AND “BALANCED” FACTORIZATION.

Although the pair (A,B) is non-unique up to invertible reparameterizations, the right subspace
row(B) is identifiable; choosing the SVD half-split Σ1/2

r yields a numerically stable balanced fac-
torization Golub & Loan (2013).

Non-uniqueness. For any invertible R ∈ Rr×r,

(A,B) 7→ (AR, R−1B) ⇒ AB invariant.

Hence factors are not unique, while the projector onto row(B) is unique (right singular subspace;
cf. Theorem. A.1.2 and Golub & Loan (2013)).

Balanced factorization. Let Ecat = UΣV⊤ and denote by Ur,Σr,Vr the top-r blocks. The
half-split

A∗ = UrΣ
1/2
r , (A.1.9a)

B∗ = Σ1/2
r V⊤

r , (A.1.9b)

A∗B∗ = UrΣrV
⊤
r (A.1.9c)

satisfies
A∗⊤A∗ = Σr, B∗B∗⊤ = Σr,

which avoids squaring condition numbers in normal equations and minimizes combined factor
norms among reparameterizations:

1

2

(
∥A∥2F + ∥B∥2F

)
≥ ∥UrΣrV

⊤
r ∥∗,

with equality at (A∗,B∗) Recht et al. (2010). (Standard facts; see Golub & Loan (2013); Recht
et al. (2010).)
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Block Recovery and the Pseudoinverse Given the shared right factor B∗, each module-specific
left factor Ai is obtained by a single least-squares solve. Using the Moore-Penrose pseudoinverse
provides the minimum-norm solution and remains valid under rank deficiency Penrose (1955); Ben-
Israel & Greville (2003); Golub & Loan (2013):

A∗
i = Ei B

∗⊤ (
B∗B∗⊤)†. (A.1.10)

It suggests that (i) when B∗ has full row rank, (·)† reduces to the inverse and Eq. A.1.10 coincides
with the normal-equations solution; (ii) in general, (·)† yields the unique minimum-norm LS solu-
tion and is numerically stable under near-singularity Ben-Israel & Greville (2003); Golub & Loan
(2013).

A.2 COVARIANCE-ALIGNED OBJECTIVE: BRIDGE EQUIVALENCE AND GLOBAL MINIMIZER
(PROOF)

Sec. 3.1.2 formulates the covariance-aligned objective

min
A,B

∥∥(Ecat −AB)Σ1/2
x

∥∥2
F
,

which weights errors by the input usage encoded in the covariance Σx Anderson (2003); Bishop
(2006). This appendix provides a complete mathematical justification: (i) a bridge equivalence
that converts E

[
∥(Ecat − AB)x∥22

]
into a Frobenius form via the trace identity E[x⊤Mx] =

tr(MΣx) Petersen & Pedersen (2012); (ii) a whitening reduction to a standard low-rank approx-
imation by the change of variables B̃ := BΣ

1/2
x (and EcatΣ

1/2
x on the right) Golub & Loan (2013);

(iii) a closed-form global minimizer given by the truncated SVD of EcatΣ
1/2
x with balanced factors

and the identity of the shared right subspace; and (iv) extensions to nonzero-mean inputs (centering)
and singular Σx via pseudoinverse whitening Ben-Israel & Greville (2003); Penrose (1955).

In our case, the (distribution-weighted) risk is the expected squared output error under the input law:

R(A,B) := E ∥Mx∥22.

Directions used more frequently or with larger magnitude (large variance) are weighted more heavily
by Σx, which motivates a right-weighted objective via Σ

1/2
x Bishop (2006); Anderson (2003). An

empirical counterpart uses samples {xn}Nn=1:

R̂(A,B) :=
1

N

N∑
n=1

∥Mxn∥22, Σ̂x :=
1

N

N∑
n=1

xnx
⊤
n .

THEOREM A.2.1 (BRIDGE EQUIVALENCE).

In this subsection, we prove the bridge identity E ∥Mx∥22 = tr(MΣxM
⊤) = ∥MΣ

1/2
x ∥2F , which

converts the distribution-weighted risk into a Frobenius norm amenable to SVD analysis (see the
trace/expectation identities in Petersen & Pedersen (2012)).

For zero-mean inputs with covariance Σx ⪰ 0,

E ∥Mx∥22 = tr(MΣxM
⊤) =

∥∥MΣ1/2
x

∥∥2
F
. (A.2.1)

Proof. (Vector norm→ trace). Since ∥y∥22 = tr(yy⊤) and trace is linear,

E ∥Mx∥22 = E tr(Mxx⊤M⊤) = tr
(
ME[xx⊤]M⊤) = tr(MΣxM

⊤).

(Trace→ Frobenius). Because ∥Z∥2F = tr(ZZ⊤) and Σ
1/2
x Σ

1/2
x = Σx,

∥MΣ1/2
x ∥2F = tr

(
(MΣ1/2

x )(MΣ1/2
x )⊤

)
= tr(MΣxM

⊤). □

Distribution-weighted risk equals the Frobenius norm of the right-whitened residual MΣ
1/2
x .
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LEMMA A.2.2 (NONZERO-MEAN INPUTS).

In this subsection, we decompose the risk for E[x] ̸= 0 into a covariance term and a deterministic
mean term, showing E∥Mx∥22 = tr(MCov(x)M⊤) + ∥Mµ∥22 (cf. Anderson (2003); Bishop
(2006)).

Let µ := E[x] and Cov(x) := E[(x− µ)(x− µ)⊤]. Then
E ∥Mx∥22 = tr

(
MCov(x)M⊤)+ ∥Mµ∥22. (A.2.2)

Proof. Write x = (x− µ) + µ and expand:
∥Mx∥22 = ∥M(x− µ)∥22 + 2⟨M(x− µ),Mµ⟩+ ∥Mµ∥22.

Taking expectations annihilates the cross term since E[x− µ] = 0, yielding the claim.

Risk decomposes into a covariance term plus a mean-induced term.

THEOREM A.2.3 (VARIABLE CHANGE AND WHITENING).

In this subsection, we show that right-whitening reduces the covariance-aligned objective to a stan-
dard Frobenius low-rank approximation by proving

∥∥(Ecat − AB)Σ
1/2
x

∥∥2
F

= ∥Ẽ − ÂB̂∥2F with

Ẽ = EcatΣ
1/2
x , B̂ = BΣ

1/2
x (standard whitening trick; cf. Golub & Loan (2013)).

Define
Ẽ := EcatΣ

1/2
x , Â := A, B̂ := BΣ1/2

x .
Then ∥∥(Ecat −AB)Σ1/2

x

∥∥2
F
= ∥Ẽ− Â B̂∥2F . (A.2.3)

Proof. Direct substitution:
Ẽ− ÂB̂ = EcatΣ

1/2
x −A(BΣ1/2

x ) = (Ecat −AB)Σ1/2
x .

Taking Frobenius norms yields the identity.

Whitening converts risk minimization into a plain Frobenius factorization.

LEMMA A.2.4 (WEIGHTED LEAST SQUARES FOR A GIVEN B).

In this subsection, we derive the closed-form weighted least-squares minimizer A∗ =
EΣx B

⊤(BΣx B
⊤)−1 for fixed B, and interpret the residual as a Σx-weighted right projection

((Golub & Loan, 2013, Ch. 5), Björck (1996); matrix derivatives in Petersen & Pedersen (2012)).

Consider
f(A) :=

∥∥(Ecat −AB)Σ1/2
x

∥∥2
F
.

Let E := Ecat, E∼ := EΣ
1/2
x , and B̂ := BΣ

1/2
x . Then the unique least-squares minimizer is

A∗ = E∼ B̂⊤(B̂ B̂⊤)−1 = EΣx B
⊤ (BΣx B

⊤)−1. (A.2.4)

Proof. In whitened variables,
f(A) = ∥E∼ −AB̂∥2F = tr(E∼E

⊤
∼)− 2 tr(AB̂E⊤

∼) + tr
(
A(B̂B̂⊤)A⊤).

Using ∂
∂A tr(ACA⊤) = 2AC for symmetric C and ∂

∂A tr(AM) = M⊤ Petersen & Pedersen
(2012),

∇Af(A) = −2E∼B̂
⊤ + 2A(B̂B̂⊤) = 0 ⇒ A∗ = E∼B̂

⊤(B̂B̂⊤)−1.

Substituting E∼ = EΣ
1/2
x and B̂ = BΣ

1/2
x gives the second form.

In whitened variables, E∼ − A∗B̂ = E∼(I − PŜ) with PŜ := B̂⊤(B̂B̂⊤)−1B̂, the orthogonal
projector onto row(B̂) in the Euclidean metric. In original variables, A∗B = EPΣ with

PΣ := Σx B
⊤ (BΣx B

⊤)−1B,

the right projection under the Σx-weighted inner product (a standard form of weighted/oblique
projection;( cf. Golub & Loan (2013), Ben-Israel & Greville (2003); Björck (1996)).

For fixed B, the optimal A is a weighted LS solution; the residual is a Σx-weighted right projection.
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THEOREM A.2.5 (GLOBAL MINIMIZER; BALANCED FACTORS; RIGHT SUBSPACE).

In this subsection, we obtain the global solution via the Eckart–Young–Mirsky theorem Eckart &
Young (1936); Mirsky (1960), choose balanced factors Â⋆ = UrΣ

1/2
r , B̂⋆ = Σ

1/2
r V⊤

r , and iden-
tify the optimal shared right subspace as row(B⋆) = row(V⊤

r Σ
−1/2
x ) (cf. Ky Fan’s principle and

the subspace discussion in Fan (1949); Golub & Loan (2013)).

Let Ẽ = UΣV⊤ be an SVD and (Ur,Σr,Vr) the top-r blocks. Then

Â⋆ = UrΣ
1/2
r , B̂⋆ = Σ1/2

r V⊤
r

achieve the global optimum of minÂ,B̂ ∥Ẽ− ÂB̂∥2F , with minimum value
∑

i>r σi(Ẽ)2 Eckart &
Young (1936); Mirsky (1960); Golub & Loan (2013). In original variables,

A⋆ = Â⋆ = UrΣ
1/2
r , B⋆ = B̂⋆ Σ−1/2

x = Σ1/2
r V⊤

r Σ
−1/2
x ,

and
row(B⋆) = row

(
V⊤

r Σ
−1/2
x

)
. (A.2.5)

Proof. By Theorem A.2.3,

min
A,B

∥∥(Ecat −AB)Σ1/2
x

∥∥2
F
= min

Â,B̂
∥Ẽ− ÂB̂∥2F .

Left/right orthogonal invariance of the Frobenius norm reduces the problem to minrank(Y)≤r ∥Σ−
Y∥2F , solved by the truncated SVD Y⋆ = Σr⊕0; hence X⋆ = UrΣrV

⊤
r Eckart & Young (1936);

Mirsky (1960). Choosing Â⋆ = UrΣ
1/2
r and B̂⋆ = Σ

1/2
r V⊤

r produces X⋆ = Â⋆B̂⋆. Returning
to original variables gives the stated (A⋆,B⋆) and the row-space identity (cf. Fan (1949); Golub &
Loan (2013)).

In whitened variables: (Â⋆)⊤Â⋆ = Σr and B̂⋆(B̂⋆)⊤ = Σr. In original variables: (A⋆)⊤A⋆ =
Σr and B⋆Σx(B

⋆)⊤ = Σr Golub & Loan (2013). For any orthogonal R ∈ Rr×r, (AR,R⊤B)
attains the same objective value Golub & Loan (2013).

The truncated SVD is globally optimal; the balanced factorization is well-conditioned, and the opti-
mal shared right subspace is row(V⊤

r Σ
−1/2
x ).

LEMMA A.2.6 (SINGULAR Σx AND PSEUDOINVERSE WHITENING).

In this subsection, we extend all results to rank-deficient Σx by showing the objective depends only
on Range(Σx) and that pseudoinverse whitening preserves the conclusions on that subspace Ben-
Israel & Greville (2003); Penrose (1955).

Let Σx = QΛQ⊤ with Λ = diag(λ1, . . . , λr+
, 0, . . . , 0). Define

Σ1/2
x = QΛ1/2Q⊤, Σ−1/2

x = QΛ†/2Q⊤,

where Λ†/2 applies λ
−1/2
i to λi > 0 and 0 otherwise. Then the objective ∥(Ecat − AB)Σ

1/2
x ∥2F

depends only on Range(Σx), and Theorems A.2.1–A.2.5 hold unchanged on that subspace.

Proof. Let Q = [Qr Q0] with Qr spanning Range(Σx) and Σ
1/2
x = QrΛ

1/2
r Q⊤

r . Then

∥(E−AB)Σ1/2
x ∥2F = ∥(EQr −A(BQr))Λ

1/2
r ∥2F ,

which is the same Frobenius objective restricted to Range(Σx). Components along Q0 vanish under
Σ

1/2
x and contribute nothing.

Pseudoinverse whitening discards the nullspace; all conclusions hold on Range(Σx).

In our implementation, to estimate and stabilize Σx, we perform ridge/shrinkage regularization
(Σ̂x ← Σ̂x+εI) while using diagonal approximations (cf. Bishop (2006); Anderson (2003); Ledoit
& Wolf (2004); Hoerl & Kennard (1970)) with mini-batch and sliding-window since computing full
covariances are costly.
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A.3 QR REDUCTION: SMALL-CORE EQUIVALENCE AND GLOBAL SOLUTION (PROOF)

The covariance-aligned objective

min
A∈Rm×r, B∈Rr×d

∥∥(Ecat −AB
)
Σ1/2

x

∥∥2
F

(A.3.1)

can be solved without ever forming the tall whitened matrix Ẽ := EcatΣ
1/2
x ∈ Rm×d. A thin

QR Ecat = QeRe (with Q⊤
e Qe = Id) collects all the information relevant to Eq. A.3.1 into the

d×d core M := ReΣ
1/2
x because Ẽ = QeM and the Frobenius norm is left-orthogonally invariant

(∥QZ∥F = ∥Z∥F when Q⊤Q = I) Golub & Loan (2013); Trefethen & Bau (1997). Thus we can
reduce the large problem to an equivalent d × d problem, apply standard SVD/EYM analysis on
the core, and lift the solution back (QR reduction to a core matrix; see also Halko et al. (2011);
Martinsson & Tropp (2020) for randomized variants).

LEMMA A.3.1 (OPTIMAL A LIES IN col(Qe)).

For any A, decompose A = QeÂ+A⊥ with Q⊤
e A⊥ = 0 and set B̂ := BΣ

1/2
x . Then

∥Ẽ−AB̂∥2F = ∥Qe(M− ÂB̂)∥2F + ∥A⊥B̂∥2F ≥ ∥Qe(M− ÂB̂)∥2F ,

where Ẽ = QeM and M := ReΣ
1/2
x . Hence any global minimizer satisfies A⊥ = 0, i.e., A⋆ =

QeÂ
⋆. It shrinks the search space for A to the d-dimensional column space of Qe; any component

orthogonal to col(Qe) only increases the loss. (Orthogonal decomposition/Pythagorean property of
the Frobenius inner product; cf. Golub & Loan (2013); Trefethen & Bau (1997).)

Proof. Use Ẽ = QeM and orthogonality: Q⊤
e (Qe(·)) = (·) and Q⊤

e (A⊥B̂) = 0, so the two
terms are orthogonal in the Frobenius inner product and the squared norm splits. The minimum
occurs at A⊥ = 0. □

THEOREM A.3.2 (CORE EQUIVALENCE).

By Lemma A.3.1 and left-orthogonal invariance of ∥ · ∥F (i.e., ∥QZ∥F = ∥Z∥F for orthogonal Q;
Golub & Loan (2013)),

min
A,B

∥∥(Ecat −AB)Σ1/2
x

∥∥2
F

= min
Â,B̂
∥M− ÂB̂∥2F , M = ReΣ

1/2
x . (A.3.2)

Any minimizer (Â⋆, B̂⋆) lifts to a minimizer of the original problem via

A⋆ = QeÂ
⋆, B⋆ = B̂⋆ Σ−1/2

x , (A.3.3)

where Σ
−1/2
x denotes a (pseudo-)inverse square root when Σx is singular Ben-Israel & Greville

(2003).

Proof. Restrict to A = QeÂ (Eq. A.3.3). Then ∥(Ecat −AB)Σ
1/2
x ∥F = ∥Qe(M − ÂB̂)∥F =

∥M− ÂB̂∥F . The lifting follows by inverting the change B̂ = BΣ
1/2
x . □

COROLLARY A.3.3 (PRESERVATION OF NONZERO SINGULAR VALUES AND RIGHT SINGULAR
VECTORS).

Since (QeM)⊤(QeM) = M⊤M, Ẽ = QeM and M share the same nonzero singular values
and the same right singular vectors. Hence the SVD of M directly yields the optimal shared right
subspace for the covariance-aligned objective (orthogonal invariance of SVD; e.g., Golub & Loan
(2013); Trefethen & Bau (1997)).

Proof. Immediate from Q⊤
e Qe = Id. □
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THEOREM A.3.4 (BALANCED FACTORS, GLOBAL MINIMIZER, AND LIFTING).

Let M = UΣV⊤ be an SVD and (Ur,Σr,Vr) the top-r blocks. Then

Â⋆ = UrΣ
1/2
r , B̂⋆ = Σ1/2

r V⊤
r (A.3.4)

achieve the global minimum of ∥M−ÂB̂∥2F by the Eckart–Young–Mirsky theorem Eckart & Young
(1936); Mirsky (1960); Golub & Loan (2013). Lifting to the original variables gives

A⋆ = QeUrΣ
1/2
r , B⋆ = Σ1/2

r V⊤
r Σ−1/2

x . (A.3.5)
The minimum value is ∥M − UrΣrV

⊤
r ∥2F , and the shared right subspace is row(B⋆) =

span(V⊤
r Σ

−1/2
x ) (cf. Ky Fan Fan (1949)).

It provides a closed-form global minimizer and a numerically well-conditioned (balanced) factor-
ization.

Truncated SVD is optimal; balancing (Σ
1/2
r ) improves conditioning and scale regularity Golub &

Loan (2013).

Proof. Apply EYM to the core problem from Eq. A.3.2; choose balanced factors so that
UrΣrV

⊤
r = Â⋆B̂⋆. Use Eq. A.3.3 to obtain (A⋆,B⋆). □

This process makes the thin QR costO(md 2), while forming/using the core costsO(d 3) (orO(d 2)

if Σ1/2
x is precomputed/structured). All subsequent optimization is on the d×d core Golub & Loan

(2013); Trefethen & Bau (1997). After computing M, we do not materialize M; instead we keep
z 7→ Mz = Re(Σ

1/2
x z) and y 7→ M⊤y = Σ

1/2
x (R⊤

e y), and pass these to RSVD Halko et al.
(2011); Martinsson & Tropp (2020).

From Eq. A.3.5, row(B⋆) = span(V⊤
r Σ

−1/2
x ) defines the shared right subspace. In GLOWQ, this

subspace is exactly the group-shared projection used to compute and cache R = BsharedX once
per input-sharing group, thereby enabling efficient AiR reuse during inference while preserving
expressivity via module-specific Ai (cf. Sec. 3.3 and the Ky Fan view in Theorem A.1.3).

A.4 RSVD ACCURACY GUARANTEES

Let the core matrix be M := ReΣ
1/2
x ∈ Rd×d as defined by the QR reduction in Appendix A.3.

We target rank r ≤ d with oversampling p ≥ 2 and power iterations q ≥ 0. By the core equivalence
and preservation results, accuracy on M transfers verbatim to the covariance-aligned objective.

ALGORITHM A.4.1 - RSVD ON THE CORE M.

It computes the dominant right subspace (which defines the shared right factor) on the small d ×
d core without ever materializing the tall whitened matrix (standard RSVD; (Halko et al., 2011;
Martinsson & Tropp, 2020)).

Procedure.
(i) Ω ∼ N (0, 1)d×(r+p), Y ←MΩ;

(ii) Power iterations: repeat q times {Y ←M(M⊤Y) } with re-orthonormalization;

(iii) Q← orth(Y), B← Q⊤M;

(iv) B = ŨΣV⊤, U← QŨ; truncate to (Ur,Σr,Vr);

(v) Balanced core factors: Â⋆ = UrΣ
1/2
r , B̂⋆ = Σ1/2

r V⊤
r .

Find a good range Q via randomized sketching (with optional power iterations), then refine by a
small SVD on Q⊤M. Justification. Within the subspace R(Q), the best rank-r approximation is
the truncated SVD of Q⊤M; lifting by Q yields UrΣrV

⊤
r as the optimal restricted approxima-

tion (Golub & Loan, 2013, Ch. 2). The randomized sketch ensures (in expectation or with high
probability) that R(Q) captures the dominant right subspace of M (Halko et al., 2011; Martinsson
& Tropp, 2020). □
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THEOREM A.4.2 (FROBENIUS ERROR, EXPECTATION).

Let M = UΣV⊤ with singular values σ1 ≥ · · · ≥ σd. For p ≥ 2 and q = 0,

E ∥M−QQ⊤M∥F ≤
(
1 +

r

p− 1

)1/2 (∑
j>r

σ2
j

)1/2
. (A.4.1)

(Halko–Martinsson–Tropp; e.g., (Halko et al., 2011, Thm. 10.5))

It quantifies that RSVD matches the optimal tail energy up to a mild factor depending only on (r,p).

Proof. Write M = U

[
Σ1 0

0 Σ2

]
V⊤ with Σ1 ∈ Rr×r and Σ2 the tail. Let V⊤Ω =

[
Ω1

Ω2

]
and

Y = MΩ. Standard analysis of Gaussian sketches gives ∥(I − PQ)M∥F ≤ ∥Σ2∥F ∥Ω2Ω
†
1∥F ,

and E∥Ω2Ω
†
1∥2F ≤ r/(p− 1) for p ≥ 2 (Halko et al., 2011). Taking square roots and expectations

yields Eq. A.4.1. □

THEOREM A.4.3 (SPECTRAL ERROR WITH q POWER ITERATIONS).

For q ≥ 0 and a modest constant Cr,p (depending gently on r,p),

∥M−UrΣrV
⊤
r ∥2 ≲ C 1/(2q+1)

r,p σr+1. (A.4.2)

(Cf. (Halko et al., 2011; Martinsson & Tropp, 2020; Musco & Musco, 2015).)

Power iterations shrink the subspace-angle gap geometrically toward the optimal σr+1 bound.

Each power iteration reduces the gap factor roughly by a (·)1/(2q+1) exponent toward σr+1.

Proof. After q power steps, Y = (MM⊤)qMΩ = UΣ 2q+1(V⊤Ω). Block-partitioning

V⊤Ω =

[
Ω1

Ω2

]
and analyzing principal angles between the exact and sketched right subspaces

gives

∥(I−PQ)M∥2 ≤ ∥Σ2∥2
∥∥∥Σ 2q

2 Ω2(Ω1)
†Σ−2q

1

∥∥∥1/(2q+1)

2
.

Bounding the Gaussian pseudo-inverse term by Cr,p and using ∥Σ 2q
2 Σ−2q

1 ∥2 = (σr+1/σr)
2q

yields Eq. A.4.2. □

COROLLARY A.4.4 (TRANSFER TO THE COVARIANCE-ALIGNED OBJECTIVE).

By Theorem A.3.2 and Corollary A.3.3.∥∥ (Ecat −A⋆B⋆)Σ1/2
x

∥∥
F

= ∥M−UrΣrV
⊤
r ∥F . (A.4.3)

It links RSVD accuracy on the core directly to the original covariance-aligned objective.

Core RSVD error bounds become the error bounds for the original problem, verbatim.

Proof. We have Ẽ = EcatΣ
1/2
x = QeM and Frobenius norms are left-orthogonally invariant; the

optimal truncated approximation on M corresponds under lifting to the optimal approximation of
(Ecat −AB)Σ

1/2
x , yielding Eq. A.4.3. □

PROPOSITION (Q-LESS LIFTING: BLOCKWISE RECOVERY OF A⋆
i ).

Write Ecat = [E1; . . . ;Em] and A⋆ = [A⋆
1; . . . ;A

⋆
m] conformably. At fixed B⋆, each block admits

the closed form
A⋆

i = Ei(B
⋆)⊤

(
B⋆(B⋆)⊤

)†
, i = 1, . . . ,m, (A.4.4)

so the tall orthonormal factor Qe need not be stored (least-squares with pseudoinverse; cf. (Björck,
1996; Ben-Israel & Greville, 2003; Golub & Loan, 2013)).
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It economizes memory: per-block factors are recovered directly from (Ei,B
⋆) without retaining

Qe.

Per-block least-squares with a pseudoinverse yields A⋆
i using only (Ei,B

⋆).

Proof. For each block, minimize ∥Ei − AiB
⋆∥2F . The first-order optimality condition is

A⋆
iB

⋆(B⋆)⊤ = Ei(B
⋆)⊤. Multiplying on the right by the Moore–Penrose pseudoinverse gives

the minimal-norm solution A⋆
i = Ei(B

⋆)⊤
(
B⋆(B⋆)⊤

)†
, which is precisely Eq. A.4.4. □

B EFFECT OF RIGHT-WEIGHTED SHARED B

In this section, we analyze the effect of the right-weighted shared-B on the GlowQ’s error correction
with the following procedure.

Procedure. (1) Using calibration inputs {xn}Nn=1 ⊂ Rd, estimate the layer input covariance

Σ̂x = 1
N

∑
n

xnx
⊤
n (optionally: Σ̂x←Σ̂x + ε I).

(2) For each module i ∈ {q, k, v, gate, up}, form the quantization-error matrix Ei ∈ ROi×d and
the row-stack Ecat = [E1; . . . ;Em] ∈ Rm×d.

(3) Cov-aligned (whitened): compute SVDs of Ẽi := EiΣ̂
1/2
x and Ẽcat := EcatΣ̂

1/2
x , and take

the top-r right bases Vi,r and Vr.

(4) Unweighted (no-cov): repeat the same without whitening to obtain V(no-cov)
i,r and V(no-cov)

r .

(5) For each module, form the absolute cross-basis cosine matrix

Ci =
∣∣V⊤

r Vi,r

∣∣ ∈ Rr×r,

Hungarian-reorder it to maximize the diagonal sum, and visualize as heatmaps.

Impact of optimization with the right weighted objective. As illustrated in Fig. 5 and 6, the
whitened condition produces a bright near-diagonal across all groups (Q/K/V and MLP gate/up),
indicating a one-to-one alignment between the shared right subspace row(Bshared) and each module’s
right subspace (up to sign/permutation). The effect is strongest for Q/K, and slightly more diffuse for
V and for MLP (gate/up), but remains concentrated on the leading axes. In contrast, the unweighted
condition yields noise-like patterns with no diagonal structure.

Right-side covariance weighting is crucial for estimating a shared B under anisotropic inputs: it
exposes a common right subspace across modules that ingest the same input tensor. This validates
the shared-B assumption and directly motivates our ABx caching strategy, i.e., computing R =
BsharedX once per group and reusing AiR across modules. Unweighted stacked SVD fails to reveal
this alignment, weakening both the shared-B premise and the practical caching benefit.

B.1 GROUP-CACHED (WEIGHTED STACKED RSVD) VS. LAYER-WISE (WEIGHTED RSVD)

Table 7: Perplexity (lower is better) across model families on WikiText-2. Layer-wise applies layer-
wise SVD correction, whereas GLOWQ applies group-wise SVD with a shared right factor B;
GLOWQ (Selective restore) denotes selective group restoration.

Method LLaMA 2 LLaMA 3 Qwen 2.5 Qwen 3 OPT Vicuna Mistral

7B 13B 3.2-3B 3.1-8B 7B 14B 8B 14B 1.3B 6.7B 7B 13B 7B

LAYERWISE 5.58 4.96 8.15 6.59 7.06 5.64 9.92 8.80 15.05 11.00 6.89 6.03 5.42
GlowQ 5.58 4.96 8.16 6.59 7.07 5.64 9.90 8.80 15.06 11.00 6.90 6.02 5.42
GlowQ-S 5.60 4.96 8.22 6.62 7.09 5.68 9.97 8.89 15.19 11.00 6.90 6.04 5.45
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(a) Q layer: no whiten (b) Q layer: whiten

(c) K layer: no whiten (d) K layer: whiten

(e) V layer: no whiten (f) V layer: whiten

Figure 5: Whitening vs. non-whitening alignment matrices. For LLaMA 3.2-3B, we estimate a
shared right basis Bshared from the stacked error either without covariance weighting (Ecat, left pan-
els) or with covariance-aware whitening (EcatΣ

1/2
x , right panels). Each heatmap shows the absolute

basis alignment between row(Bshared) and the per-module right subspace for Q, K, V; brighter values
denote larger absolute inner products. DiagScore and Affinity summaries are reported in the main
text.

Results on Table 7. Across 13 model-size combinations, GlowQ and Layer-wise yield essentially
identical perplexity: the mean gap is +0.001 ppl on average, with per-family fluctuations confined
to ±0.02 ppl. By design, GlowQ-S (Selective restore) trades a bit of accuracy for efficiency, trailing
Layer-wise by +0.04 ppl on average. In short, the full shared-B configuration matches layer-wise
(Ai,Bi) on WikiText-2 without systematic degradation, while the selective variant incurs a small,
consistent increase in ppl.

Observation on Fig. 5, 6. The covariance-aligned cross-basis heatmaps exhibit an almost per-
fectly diagonal structure after Hungarian matching, indicating a near one-to-one correspondence
between the shared right subspace and each module’s top-r directions. Whitening aligns input us-
age so that the shared B spans (practically) the same right-singular space that the individual Bi
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(a) MLP gate: no whiten (b) MLP gate: whiten

(c) MLP up - no whiten (d) MLP up - whiten

Figure 6: Whitening vs. non-whitening alignment matrices. MLP (up/gate).

would select, explaining why GlowQ’s perplexity tracks layerwise so closely, and why GlowQ-S,
restoring only a subset, shows the small upward shift in ppl.

Observation on Fig. 7, 8, 9. For the MoE FFN of Qwen1.5-MoE-A2.7B, the covariance-aligned
cross-basis heatmaps show the same qualitative behavior as in the dense models once whitening
is enabled. Without whitening, all panels (expert gate/up, shared gate/up, and MoE attention)
look almost uniformly dark, indicating that the shared right subspace and each expert’s local top-
r directions are essentially uncorrelated. After whitening and Hungarian matching, the heatmaps
become sharply diagonal for both the representative expert (e.g., expert59 gate proj /
expert59 up proj) and the shared-B MLP/attention blocks, revealing a near one-to-one align-
ment between the shared basis and each expert’s own error subspace. This confirms that, once inputs
are whitened, the grouped MoE FFNs and the shared MLP effectively live in the same right-singular
space, so a single shared Bshared can serve all experts with only small residual mismatch. Conse-
quently, GlowQ can compress all experts and the shared MLP with one shared right-hand matrix
while closely tracking the layerwise baseline in perplexity, explaining the tiny +0.02 PPL gap we
observe on Qwen1.5-MoE-A2.7B.
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(a) Q layer: no whiten (b) Q layer: whiten

(c) K layer: no whiten (d) K layer: whiten

(e) V layer: no whiten (f) V layer: whiten

Figure 7: Whitening vs. non-whitening alignment matrices for Q/K/V in Qwen1.5-MoE-A2.7B.
As in Fig. 5, we estimate a shared right basis Bshared from the stacked attention-projection error,
either from the raw error (“no whiten”, left panels) or after covariance-aware whitening EcatΣ

1/2
x

(“whiten”, right panels). Each heatmap shows the absolute basis alignment between row(Bshared)
and the per-module right subspace for Q, K, and V; brighter values denote larger absolute inner
products. Whitening again yields a sharply diagonally dominant structure, indicating that a single
covariance-aligned basis captures the dominant error directions across Q/K/V.
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(a) MLP gate: no whiten (b) MLP gate: whiten

(c) MLP up - no whiten (d) MLP up - whiten

Figure 8: Whitening vs. non-whitening alignment matrices for MLP (gate and up) in Qwen1.5-
MoE-A2.7B. The construction is identical to Fig. 7, but applied to the MLP gate and up projections
aggregated over all experts. Whitening produces a diagonally dominant alignment, indicating that a
shared covariance-aligned basis also captures the principal error directions of the MLP blocks.
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(a) MLP gate: no whiten (b) MLP gate: whiten

(c) MLP up - no whiten (d) MLP up - whiten

Figure 9: Whitening vs. non-whitening alignment matrices for the MLP (gate and up) of a single
expert (Expert 59) in Qwen1.5-MoE-A2.7B. We apply the same construction as in Fig.8, but restrict
the stacked error and shared basis Bshared to Expert 59 only. The diagonally dominant structure under
whitening shows that the covariance-aligned basis remains meaningful even at the per-expert level.
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C TTFB & THROUGHPUT AROUND OTHER MODELS

Table 8: Latency comparison on LLaMA 3 models for Layerwise vs. GlowQ, GlowQ-S.

Models Setting TTFB ↓ tok/s ↑ Prefill ↓ Dec ↓
(ms) (ms) (ms/tok)

LLaMA 3

3.2-3B
Layerwise 70.83 17.46 71.07 58.22
GlowQ 64.92 18.94 66.20 52.04
GlowQ-S 53.17 21.37 60.69 44.35

3.1-8B
Layerwise 96.50 14.24 95.72 69.26
GlowQ 86.44 15.31 90.01 64.47
GlowQ-S 71.70 18.89 73.50 52.34

Avg. ∆ BX (%) -9.38 +8.00 -6.41 -8.77
Avg. ∆ R50 (%) -25.32 +27.52 -18.91 -24.13

Results on Table 8. Table 8 mirrors the LLaMA 2 evaluation under an identical runtime and mea-
surement protocol. Two consistent trends emerge: (i) GlowQ reduces all latency components, with
the largest relative gains on per-token decode; and (ii) GlowQ-S further amplifies these benefits.
On LLaMA 3 (3.2-3B, 3.1-8B), GlowQ with BX caching improves serving latency over Layerwise:
TTFB −9.38%, tok/s +8.00%, Prefill −6.41%, and Dec −8.77% on average. GlowQ-S (selec-
tive restore) amplifies these gains: TTFB −25.32%, tok/s +27.52%, Prefill −18.91%, and Dec
−24.13% on average. Improvements are consistent across both model sizes, with the largest reduc-
tions appearing in the per-token Dec phase and end-to-end TTFB, reflecting reduced compute on the
critical path. In practice, BX caching provides drop-in speedups without modifying weights, while
the selective policy (GlowQ-S) offers a simple accuracy-latency knob by reducing the number of
AiR applications (Sec. 3.3).

Observation on Table 8. BX caching removes redundant right-projection work by reusing the
shared subspace, so each decode step primarily executes lightweight AiR updates; this directly
lowers Dec and TTFB. The selective-restore strategy further trims the executed paths across decoder
blocks, yielding additional latency drops with a commensurate increase in throughput (tok/s). These
mechanisms explain the near-linear percentage gains in the RSVD-driven core cost: caching reduces
repeated right-side multiplies, while selective restoration shortens the active compute graph along
the decoding trajectory.

D HYPERPARAMETER CHANGE

D.1 CALIBRATION DIFFERENCE
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(a) Energy capture - QKV layer
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(b) Energy capture - MLP layer
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ity

Figure 10: Energy Capture and Cosine similarity of Rightspace over number of calibration samples

Fig. 10a, 10b plot energy-capture curves versus rank for different numbers of calibration samples,
while Fig. 10c reports the mean pairwise cosine similarity (weighted) between the shared right
subspace and the per-layer right subspaces as the calibration size varies.
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Varying the number of calibration samples N ∈ {32, 64, 128, 256} leaves the energy-capture curves
in Fig. 10a, 10b nearly indistinguishable, especially for practical ranks r ≤ 128. In Fig. 10c,
the weighted cosine similarity between the shared right subspace and layer-wise right subspaces is
already high at N = 32 and saturates for N ≥ 64. These results indicate that a small calibration set
suffices to recover a stable, data-aligned right subspace, consistent with PCA stability under a clear
spectral gap (Jolliffe & Cadima, 2016; Horn & Johnson, 2012).

We attribute the observed stability under a relatively small calibration set, e.g., N = 32 to the
following four reasons: (i) Spectral-gap effect: The input covariance Σx is heavy-tailed, so the
top directions are separated by a clear eigenvalue gap; the dominant r-dimensional right subspace
stabilizes quickly with modest N (Jolliffe & Cadima, 2016; Horn & Johnson, 2012). (ii) Robust
weighted objective. We optimize a right-weighted criterion,

min
A,B

∥∥(Ecat −AB
)
Σ1/2

x

∥∥2
F
,

so small perturbations in the estimate Σ̂x have limited effect: large-eigenvalue axes dominate and
lead to the same top r-subspace (see also weighted low-rank formulations (Srebro & Jaakkola,
2003)). Numerical regularization. Shrinkage/normalization of Σ̂x reduces small-sample noise and
improves conditioning (Ledoit & Wolf, 2004; Hoerl & Kennard, 1970; Bishop, 2006). Benefit of
group stacking. Building the SVD core from vertically stacked errors increases the effective sample
support along rows, which smooths estimation of the shared right subspace (Paige & Saunders,
1981; Golub & Loan, 2013).

To conclude, calibration sizes as small as N ≈ 32–64 already place the system in a saturated mode
since energy capture at a fixed r and the similarity between the shared and layer-wise right subspaces
change only marginally beyond this point. Thus, our covariance-aligned, group-shared B achieves
stable performance with low calibration cost.

D.1.1 SHRINK ALPHA DIFFERENCE

Table 9: Perplexity on WikiText-2 while sweeping calibration samples and shrink α (lower is better).

Calibration Samples Shrink α
LLaMA 3 Qwen 3

3.2-3B 8B 3.1-8B 14B

32
0 8.16 6.59 9.89 8.82

0.02 8.16 6.59 9.86 8.82

0.05 8.16 6.59 9.88 8.82

64
0 8.15 6.59 9.90 8.81

0.02 8.15 6.59 9.88 8.78

0.05 8.16 6.59 9.87 8.79

128
0 8.16 6.59 9.92 8.80

0.02 8.16 6.58 9.91 8.80

0.05 8.15 6.58 9.90 8.81

256
0 8.16 6.58 9.93 8.81

0.02 8.15 6.59 9.92 8.80

0.05 8.16 6.58 9.92 8.82

We apply a standard covariance shrinkage when forming the input statistic used for covariance-
aligned subspace estimation. Let Σ̂x be the sample covariance from N calibration sequences and d
the input dimension. We construct

Σ̂(α)
x = (1−α) Σ̂x + α

tr
(
Σ̂x

)
d

I, α ∈ [0, 1],
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i.e., a convex combination of the sample covariance and an isotropic target (scaled identity); small α
reduces small-sample noise and improves conditioning without altering the dominant axes learned
from data (Ledoit & Wolf, 2004; Bishop, 2006; Anderson, 2003).

Results on Table 9. Across calibration sizes N ∈ {32, 64, 128, 256} and shrink α ∈
{0, 0.02, 0.05}, perplexity remains essentially flat for LLaMA 3: for 3.2-3B and 8B, the sweep
changes values by +0.01 ppl on average. Qwen 3 shows the same qualitative behavior, with a mild
benefit from shrinkage: α ∈ [0.02, 0.05] yields -0.02 ppl on average for 3.1-8B and -0.01 ppl on
average for 14B (relative to α=0 at the same N ). Aggregating all models, α=0.02 improves by
-0.01 ppl average, and increasing N beyond 64 produces only marginal changes (≤ +0.01-+0.02
ppl on average depending on the family). In short, both the calibration size and a small shrink factor
have only second-order effect on WikiText-2 perplexity, consistent with the stability suggested by
the energy and cosine-similarity panels (Jolliffe & Cadima, 2016).

Observation on Table 9. The right subspace stabilizes quickly because (i) the input covariance
exhibits a pronounced spectral gap, so the dominant r-dimensional space is identified with few sam-
ples (Jolliffe & Cadima, 2016; Horn & Johnson, 2012); (ii) the right-weighted objective emphasizes
large-variance directions, making the solution insensitive to small perturbations in Σ̂x; (iii) mild
shrinkage damps small-sample noise (Ledoit & Wolf, 2004; Bishop, 2006); and (iv) stacking mod-
ules to form the core increases effective sample support along rows (Paige & Saunders, 1981; Golub
& Loan, 2013). Consequently, small calibration sets (N ≈ 32–64) already recover a data-aligned
shared right subspace, explaining the near-constant perplexity across the sweep and the slight, con-
sistent gains from α ∈ [0.02, 0.05] on Qwen 3.

D.1.2 MEMORY USAGE
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Figure 11: Calibration runtime and memory footprint as a function of model size and the number of
calibration samples N . (a) Stacked bars show the runtime breakdown into calibration and decom-
position for each (model, N) configuration; calibration dominates the total cost and grows nearly
linearly with N , while decomposition time remains almost constant. (b) Memory footprint of the
error tensor, covariance tensor, and peak GPU/CPU usage for each OPT model; the error and co-
variance tensors account for most of the memory and grow steeply with model size.

Results on Fig. 11. We profile calibration on a single A100 80GB GPU for three OPT models
(6.7B, 13B, 30B) and calibration sizes N ∈ {32, 64, 128}, using SlimPajama-6B as the calibration
corpus. Fig. 11a shows that the total wall-clock time is dominated by the calibration pass: for every
model, the blue bars (forward passes used to estimate Σ̂x and collect error tensors) account for
most of the runtime and grow almost linearly with N , whereas the red bars (randomized GSVD
/ decomposition) contribute a relatively small and nearly constant overhead. Even for OPT-30B,
increasing N from 32 to 128 scales the runtime by roughly the same factor, indicating that the cost
is predictable and controlled by the choice of calibration size. Fig. 11b breaks down the memory
footprint. Peak GPU memory (blue) grows moderately with model size and remains well below
the CPU footprint, since we keep the model and activations on GPU but store error and covariance
tensors on host memory. The green and purple bars show that these two tensors dominate the CPU
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usage and scale with model size: moving from OPT-6.7B to OPT-30B increases both err size
and cov size by several times, and the peak CPU RAM closely tracks their sum.

Observation on Fig. 11. Overall, the results indicate that the main cost of our method comes from
a one-time, embarrassingly parallel calibration phase whose runtime scales linearly with N and
roughly with model size, while the decomposition step has almost fixed cost. Memory-wise, the
GPU footprint is modest and does not require larger-than-standard accelerators; the heavy objects
are the error and covariance tensors on CPU, which can be streamed, sharded, or discarded immedi-
ately after decomposition. Since Sections D.1–D.1.1 show that small calibration sets (N ≈ 32–64)
already yield stable energy capture, right-subspace similarity, and perplexity, practitioners can op-
erate in this low-N regime. In practice, this keeps the calibration overhead to a few GPU hours
even for 30B models and confines the CPU memory requirement to a one-off offline preprocessing
step, directly addressing concerns about prohibitive calibration time and memory pressure for large
LLMs.

D.2 RANK DIFFERENCE

Table 10: Perplexity on WikiText-2 by rank and method, formatted like the calibration-sweep ta-
ble.(Lower is better.)

Rank Method LLaMA 3 Qwen 3

3.2 3B 3.1 8B 8B 14B

8 GlowQ 8.22 6.64 9.95 8.84
Layerwise 8.22 6.64 9.96 8.84

16 GlowQ 8.20 6.63 9.95 8.81
Layerwise 8.20 6.62 9.94 8.80

32 GlowQ 8.18 6.61 9.91 8.81
Layerwise 8.18 6.61 9.93 8.80

64 GlowQ 8.16 6.59 9.87 8.80
Layerwise 8.15 6.58 9.88 8.80

128 GlowQ 8.12 6.56 9.83 8.79
Layerwise 8.11 6.55 9.87 8.79

Results on Table 10. Sweeping the rank r, GlowQ matches layer-wise restoration in perplexity:
the gap is +0.02 ppl average across models and ranks (never exceeding +0.04 ppl). Returns dimin-
ish beyond moderate ranks: from r=8 to r=128, the change is -0.09 ppl average across families.
Most of the gain is realized by r ∈ {32, 64}; increases beyond this window yield only marginal
improvements (e.g., r=64→128 shifts by just a few hundredths of a ppl).

Observation on Table 10. The rank-accuracy curve exhibits family-specific shapes: LLaMA
shows a knee around r ≈ 32–64 (initially flat, then a brief drop), whereas Qwen decreases more
gradually without a sharp elbow. In practice, this suggests using r=64 for LLaMA and r=32 for
Qwen as strong defaults; GlowQ remains interchangeable with layer-wise restoration in accuracy at
fixed r, while retaining the runtime advantages established elsewhere.

D.3 RANDOMIZED SVD PARAMETERS

D.3.1 PROOF OF QR REDUCTION & RANDOMIZED SVD

Discussion. Table 11 shows that Exact SVD on the d × d core M takes 42.86 s in total (0.76 s
per layer on average), whereas Randomized SVD (RSVD) completes in 5.16–5.22 s (.09 s per
layer). This ≈ 8.2–8.3× wall-clock speedup is consistent with the complexity gap between O(d3)
and O

(
(q+1)d2(r+p) + d(r+p)2

)
when d ≫ r+p (Golub & Loan, 2013; Halko et al., 2011;
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Table 11: SVD runtime (s) and perplexity on LLaMA 3.2-3B (WikiText-2). Exact =
torch.linalg.svd on the GSVD core M ; Randomized = Halko R -SVD with oversampling
p and power iterations q. SVD-only times factorization on M (CUDA-synced), excluding the core
QR used to build M . Total sums over layers; Layer(mean) averages across layers.

Method q p SVD time (s) ↓ Perplexity ↓

Total Layer(mean)

Exact SVD – – 42.86 0.76 8.16

Randomized SVD 0

0 5.16 0.09 8.22

4 5.19 0.09 8.21

8 5.20 0.09 8.21

16 5.21 0.09 8.21

24 5.21 0.09 8.21

Randomized SVD 1

0 5.17 0.09 8.17

4 5.19 0.09 8.16

8 5.20 0.09 8.16

16 5.21 0.09 8.16

24 5.21 0.09 8.16

Randomized SVD 2

0 5.17 0.09 8.16

4 5.20 0.09 8.16

8 5.20 0.09 8.15

16 5.21 0.09 8.16

24 5.22 0.09 8.16

Martinsson & Tropp, 2020). Concretely, with d=3072, r=64, and p ∈ {0, . . . , 24}, we have
(r+p)/d ≤ 88/3072 ≈ 2.9%, so the RSVD term (q+1)d2(r+p) scales roughly like a few percent
of d3 up to constant factors, matching the observed order-of-magnitude reduction in runtime.

Effect of q and p. Runtime varies only weakly across p ∈ {0, 4, 8, 16, 24} and q ∈ {0, 1, 2}
(5.16 s→ 5.22 s). This is expected because the dominant RSVD cost is the matrix-block multiplies
MΩ, M⊤(·); increasing p from 0 to 24 changes (r+p) from 64 to 88 (only ∼38%), and the extra
q passes add a small multiple of the same GEMM cost. The lower-order term d(r+p)2 is negligible
at this scale. In short, the linear dependence on (r+p) and on (q+1) predicted by

O
(
(q+1)d2(r+p) + d(r+p)2

)
manifests as a near-flat runtime curve because d ≫ r+p and GEMM kernels saturate the de-
vice (Halko et al., 2011; Martinsson & Tropp, 2020).

Accuracy. Perplexity stays essentially unchanged: Exact = 8.16; RSVD is 8.22 at (q=0,p=0) and
improves to 8.15–8.16 for q ≥ 1 (with small p already sufficient). This aligns with randomized
SVD theory: even a single power iteration (q=1) sharpens separation between leading and trailing
singular directions and yields a right subspace that is effectively indistinguishable (for a rank-r
objective) from Exact SVD in downstream perplexity (Halko et al., 2011; Musco & Musco, 2015;
Martinsson & Tropp, 2020).

The empirical results agree with the stated complexity: Exact SVD on M incurs O(d3) time, while
RSVD retrieves the leading right subspace in O

(
(q+1)d2(r+p)

)
time (plus a minor d(r+p)2

term) (Golub & Loan, 2013; Halko et al., 2011; Martinsson & Tropp, 2020). In practice, q=1 with
a modest p (e.g., p ∈ [4, 16]) delivers near-Exact perplexity at∼8× lower wall time, and increasing
p further yields diminishing returns (Halko et al., 2011; Martinsson & Tropp, 2020).
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D.3.2 POWER ITERATION & OVERSAMPLING DIFFERENCE

Table 12: Randomized SVD hyperparameters on WikiText-2, measured on LLaMA-3.2-3B. We
sweep (a) oversampling p (fixed q = 2) and (b) power iterations q (fixed p = 16) and report perplex-
ity (lower is better).

(a) Oversampling p sweep (fixed q = 2).

Method p PPL ↓

LLaMA 3.2-3B

10 8.16
12 8.16
16 8.16
24 8.16

LLaMA 3.1-8B

10 6.59
12 6.59
16 6.59
24 6.58

Qwen 3-8B

10 9.90
12 9.89
16 9.88
24 9.89

Qwen 3-14B

10 8.81
12 8.80
16 8.81
24 8.81

(b) Power iterations q sweep (fixed p = 16).

Method q PPL ↓

Llama 3.2-3B
0 8.21

1 8.16

2 8.16

Llama 3.1-8B
0 6.63

1 6.59

2 6.59

Qwen 3-8B
0 9.97

1 9.87

2 9.88

Qwen 3-14B
0 8.79

1 8.81

2 8.81

Table 12 contrasts oversampling p (with q=2 fixed; subtable 12a) and power iterations q (with p=16
fixed; subtable 12b). Empirically, increasing p from 10 to 24 leaves PPL essentially unchanged
across models (differences of ≤ 0.01), whereas raising q from 0 to 1 yields small but consistent
gains (most visibly on QWEN3–8B), after which improvements saturate by q=2.

This pattern aligns with the standard analysis of randomized SVD (RSVD). Oversampling enlarges
the sketch dimension to ℓ = r + p, which reduces the probability of missing near-rank-r directions
but ultimately does not change the target truncation rank r. Once r already captures the dominant
subspace and the spectral gap is reasonable, the marginal benefit of additional p is small; theory
predicts only a mild reduction of the residual as p grows (e.g., with expected error bounds that
degrade roughly as

√
r/(p− 1)), so practical guidance typically recommends p ≈ 5–10 (Halko

et al., 2011; Martinsson & Tropp, 2020).

By contrast, q directly amplifies spectral separation via the power scheme. Forming Y =
(AA⊤)qAΩ effectively reweights singular values as σ 2q+1

i , which boosts the ratio between σr

and the tail {σj>r} and thereby reduces leakage beyond rank r. As a result, the sampled subspace
aligns better with the true top-r subspace, often yielding noticeable gains from q=0 to q=1, with
diminishing returns thereafter; q ∈ {1, 2} is commonly recommended in practice (Halko et al.,
2011; Ma & Ma, 2024; Martinsson & Tropp, 2020).

When r already captures the dominant energy, increasing p beyond a modest buffer offers little
accuracy benefit, while a single power iteration (q=1) can materially improve approximation for
matrices with slowly decaying spectra. In our experiments, this theoretical expectation manifests as
flat PPL curves across p and consistent but saturating improvements across q.

E COMPATIBILITY ACROSS QUANTIZATION DATATYPES

We apply weight-only quantization to Mistral-7B and evaluate on the WikiText-2 test set across both
integer and floating-point-like datatypes (Table 13). For the integer settings (INT2/INT3/INT4),
we use uniform weight-only quantization with shared scales within each weight group. For the
floating-point-like settings (MXFP4, MXFP6, NVFP4), we adopt microscaling-style formats in
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Table 13: WikiText-2 test perplexity (↓) for different datatypes.

Method FP16
INT Floating-point-like

INT2 INT3 INT4 MXFP4 MXFP6 NVFP4

Quant only
5.32

1015.39 6.16 5.51 8.05 5.36 6.09
Quant + GlowQ 24.23 5.84 5.41 6.10 5.32 5.63

which weights are first normalized within a small block and then encoded using low-bit floating-
point codes. Concretely, MXFP4 and MXFP6 follow the block-wise microscaling design of MX+
and the OCP MX specification, using a shared scale per block and 4-bit or 6-bit element codes,
respectively Lee et al. (2025); Open Compute Project (2023). NVFP4 follows NVIDIA’s reference
design with a microscaled FP4 representation for weights, as described in their low-precision in-
ference guidelines Alvarez et al. (2025). These configurations allow us to test GlowQ not only on
conventional integer quantization, but also on recent microscaling-based floating-point-like formats.

Layering GlowQ on top of the quant-only baselines reduces perplexity by -991.16 on INT2, -0.32
on INT3, -0.10 on INT4, -1.95 on MXFP4, -0.04 on MXFP6, and -0.46 on NVFP4, relative to the
corresponding quant-only settings. Improvements hold across all six evaluated datatypes, indicating
that GlowQ behaves as an orthogonal, plug-and-play low-rank correction rather than a mechanism
tied to a single integer format or precision; in particular, it remains compatible with recent floating-
point-like microscaling formats while providing consistent accuracy gains.

F LONGBENCH RESULTS

Table 14: The results of Llama-3.1-8B-Instruct on LongBench. The model is evaluated on the 15
English subsets using the official LongBench evaluation protocol, with up to 4K input tokens as
context.

Method NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue 2WikiMQA GovReport QMSum

Baseline 18.26 12.01 25.96 13.76 7.87 14.95 32.79 21.43
W4A4+GlowQ 14.68 10.80 24.95 14.21 8.39 14.20 32.01 22.01
W4A8+GlowQ 15.56 11.77 23.71 14.39 8.41 14.92 32.00 21.19
W4A16+GlowQ 15.46 11.82 23.68 14.39 7.77 14.53 32.32 21.20

MultiNews LCC RepoBench-P TriviaQA SAMSum TRec PR Avg

Baseline 26.95 51.93 47.00 87.76 44.72 70.00 37.50 34.19
W4A4+GlowQ 26.43 47.50 37.51 85.54 42.05 69.00 36.36 32.38
W4A8+GlowQ 27.03 51.50 35.97 84.10 42.62 68.50 37.08 32.58
W4A16+GlowQ 26.86 50.46 35.59 84.30 42.67 68.50 37.17 32.45

Table 14, 15 shows that across both 4K and 8K context settings on the English LongBench bench-
mark (Bai et al., 2024), applying W4 weight quantization with GlowQ (W4A4/8/16+GlowQ) leads
to only small differences from the original LLaMA-3.1-8B-Instruct on the 15 English LongBench
tasks. On most tasks, the scores remain within a few points of the baseline, and the relative dif-
ficulty and ranking among tasks are largely preserved. This indicates that, even under aggressive
quantization of both weights and activations, the low-rank correction in GlowQ keeps the overall
performance stable.

When we extend the context length from 4K to 8K, both the baseline and the GlowQ models improve
their average scores by a similar margin. In other words, in scenarios that benefit from longer
context, the GlowQ models track the same performance trends as the full-precision model, without a
collapse in reasoning ability in the long-context regime. Overall, GlowQ enables 4-bit quantization
while preserving LLaMA-3.1-8B-Instruct’s performance not only in standard contexts but also in
long-context settings.
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Table 15: The results of Llama-3.1-8B-Instruct on LongBench. The model is evaluated on the 15
English subsets using the official LongBench evaluation protocol, with up to 8K input tokens as
context.

Method NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue 2WikiMQA GovReport QMSum

Baseline 23.50 13.54 27.87 16.83 10.94 16.44 34.27 22.87
W4A4+GlowQ 23.45 12.20 27.41 15.34 9.21 16.15 33.87 22.78
W4A8+GlowQ 25.38 12.61 25.71 15.37 9.93 15.30 34.07 22.67
W4A16+GlowQ 25.36 12.61 25.62 15.13 9.82 15.20 34.00 22.59

MultiNews LCC RepoBench-P TriviaQA SAMSum TRec PR Avg

Baseline 26.87 52.81 48.04 90.77 43.94 71.00 73.13 38.19
W4A4+GlowQ 26.39 48.73 38.83 88.78 42.43 70.50 70.52 36.44
W4A8+GlowQ 27.14 52.06 38.55 88.49 43.60 71.00 72.73 36.97
W4A16+GlowQ 26.96 51.12 38.84 88.67 43.44 71.00 73.50 36.92

G SELECTIVE RESTORATION ACROSS MODEL FAMILY
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Figure 12: Perplexity versus fraction of restored groups for different restoration metrics. For each
metric, we sort the groups according to its score (GSVD singular-value sum, normalized error ratio,
Frobenius-norm error, cosine similarity, or simple layer order), progressively restore groups back to
full precision, and record the resulting perplexity.

Importance metric selection. The performance of GlowQ-S depends on the policy used to rank
groups for restoration. In Fig. 12, we evaluate five saliency metrics from quantization and pruning
literature. These include: (1) gsvd singular value sum, our gec score (Eq. 9), which measures the
captured error “energy” (∥A∥2F ) in the low-rank factors and follows the standard practice of using
singular-value energy to summarize PCA components (Jolliffe & Cadima, 2016; Halko et al., 2011);
(2) normalized error ratio, our gner score ( Eq. 10), a widely used PTQ-style proxy based on relative
weight error ∥Eg∥F /∥Wg∥F (Nagel et al., 2021; Gholami et al., 2021; Krishnamoorthi, 2018); (3)
frobenius norm error, the absolute error ∥Eg∥F (Nagel et al., 2021; Pouransari & Tuzel, 2020; Zhao
et al., 2025); (4) cosine similarity, measuring angular deviation between pre- and post-quantization
weights or activations, which has been shown to be a strong pruning/quantization proxy (Mason-
Williams & Dahlqvist, 2024; Chang et al., 2023); and (5) layer order as a simple baseline. The
results show that gsvd singular value sum and normalized error ratio are consistently the most ef-
fective, yielding the steepest perplexity reduction. However, as noted in Sec. 3.3, no single metric is
universally optimal. Therefore, our final policy (Sec. 4.6) pragmatically evaluates both gec and gner
for a given model and selects the one that performs best, providing a robust, data-driven approach.

Results on Fig. 13. Across the four panels, LLaMA models exhibit a clear knee: perplexity drops
steeply once a relatively small fraction of groups is restored, then plateaus. In contrast, Qwen and
OPT show a gradual, near-linear descent as the restored fraction increases. The two evaluation
curves in each subplot (ppl gsvd vs. ppl NER) track each other closely, differing mainly in the
sharpness of the early descent.
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(c) Qwen3-8B

8.8

8.85

8.9

8.95

9

9.05

9.1

0 20 40 60 80 100
P

P
L

Restored Group(%)

ppl_gsvd ppl_NER

(d) Qwen3-14B
A

Figure 13: Perplexity as a function of restored group percentage for dif- ferent model families
(LLaMA 3.1-8B, Qwen 3-8B, Qwen 3-14B, OPT-1.3B). We compare GSVD- based restoration (ppl
gsvd) against NER-based restoration (ppl NER).

These curves suggest selecting the error-recovery metric per model family: outlier/energy rank-
ing with small budgets for knee-shaped profiles, and Hessian-/loss-weighted ranking with broader
budgets for diffuse profiles. This family-aware policy aligns with known outlier, anisotropy, and
curvature phenomena in modern LLMs.
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Table 16: Zero-shot results on LLaMA 3.2-3B.

Method Rank PIQA ARC-C ARC-E HellaS WinoG BoolQ LAMBADA C4 AVG

Acc ↑ Acc ↑ Acc ↑ Acc-norm ↑ Acc ↑ Acc ↑ Acc ↑ word PPL ↓ Acc ↑

FP16 - 72.33 39.33 72.33 63.67 70.33 77.00 71.00 10.30 67.14

ZeroQuant-V2

64

75.33 39.33 73.33 60.67 68.67 74.67 65.67 11.45 65.38
QERA 76.67 38.67 72.33 61.67 68.67 72.33 64.67 11.04 65.48
L2QER 75.33 40.00 71.67 64.00 68.33 73.33 68.33 11.04 66.19
GlowQ 77.67 39.67 72.00 64.00 70.33 74.33 70.33 10.98 66.90
GlowQ-S 77.33 39.67 71.67 64.00 69.67 71.67 70.33 11.07 66.33

Table 17: Zero-shot results on LLaMA 3.1-8B.

Method Rank PIQA ARC-C ARC-E HellaS WinoG BoolQ LAMBADA C4 AVG

Acc ↑ Acc ↑ Acc ↑ Acc-norm ↑ Acc ↑ Acc ↑ Acc ↑ word PPL ↓ Acc ↑

FP16 - 78.67 51.67 80.67 67.67 74.67 80.67 79.00 9.00 73.29

ZeroQuant-V2

64

78.00 51.33 81.67 68.67 76.00 84.33 74.33 9.87 73.48
QERA 77.00 51.33 80.33 69.00 74.33 82.67 75.33 9.68 72.86
L2QER 79.67 49.33 80.67 66.67 74.33 80.33 76.00 9.63 72.43
GlowQ 79.67 51.00 81.33 66.00 74.33 82.00 79.00 9.59 73.33
GlowQ-S 79.00 50.33 81.67 66.33 72.00 82.00 77.00 9.78 72.62

Table 18: Zero-shot results on Qwen 3-8B.

Method Rank PIQA ARC-C ARC-E HellaS WinoG BoolQ LAMBADA C4 AVG

Acc ↑ Acc ↑ Acc ↑ Acc-norm ↑ Acc ↑ Acc ↑ Acc ↑ word PPL ↓ Acc ↑

FP16 - 77.33 53.00 83.00 63.67 68.67 87.00 67.67 14.52 71.48

ZeroQuant-V2

64

75.67 52.33 80.33 63.00 71.00 85.33 63.67 15.00 70.19
QERA 76.33 51.33 79.00 62.33 69.67 85.67 64.67 14.78 69.86
L2QER 75.67 51.33 79.33 62.67 67.67 85.33 64.67 14.82 69.52
GlowQ 76.67 52.33 80.33 64.67 71.00 86.33 63.67 14.60 70.71
GlowQ-S 76.33 50.67 80.67 63.33 70.67 85.00 65.33 14.77 70.29

Table 19: Zero-shot results on Qwen 3-14B.

Method Rank PIQA ARC-C ARC-E HellaS WinoG BoolQ LAMBADA C4 AVG

Acc ↑ Acc ↑ Acc ↑ Acc-norm ↑ Acc ↑ Acc ↑ Acc ↑ word PPL ↓ Acc ↑

FP16 - 78.33 59.33 80.33 66.67 75.67 92.00 66.33 13.08 74.10

ZeroQuant-V2

64

78.33 59.33 78.00 65.67 73.00 92.00 62.00 13.79 72.62
QERA 76.98 57.67 79.33 67.00 74.00 92.00 65.00 13.29 73.14
L2QER 78.33 56.33 79.67 66.67 75.33 91.67 64.67 13.80 73.24
GlowQ 77.67 56.67 80.00 68.87 75.67 91.33 66.67 13.26 73.84
GlowQ-S 77.67 57.00 79.33 67.67 74.33 91.33 65.33 13.48 73.24
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Table 20: Zero-shot results on Vicuna-7B.

Method Rank PIQA ARC-C ARC-E HellaS WinoG BoolQ LAMBADA C4 AVG

Acc ↑ Acc ↑ Acc ↑ Acc-norm ↑ Acc ↑ Acc ↑ Acc ↑ word PPL ↓ Acc ↑

FP16 - 76.00 41.33 70.33 66.00 68.00 80.33 72.33 8.70 67.76

ZeroQuant-V2

64

75.67 43.00 71.00 65.00 65.33 80.00 68.33 9.07 66.90
QERA 76.00 42.67 70.67 67.00 67.33 81.00 69.67 8.91 67.76
L2QER 76.33 42.33 70.00 66.00 67.00 80.67 68.00 8.93 67.19
GlowQ 75.67 41.67 70.00 66.67 67.00 80.33 69.67 8.87 67.29
GlowQ-S 76.00 43.67 69.33 66.00 66.67 82.00 70.00 8.99 67.67

Table 21: Zero-shot results on Vicuna-13B.

Method Rank PIQA ARC-C ARC-E HellaS WinoG BoolQ LAMBADA C4 AVG

Acc ↑ Acc ↑ Acc ↑ Acc-norm ↑ Acc ↑ Acc ↑ Acc ↑ word PPL ↓ Acc ↑

FP16 - 77.33 49.33 73.67 67.33 74.33 86.00 74.33 7.76 71.76

ZeroQuant-V2

64

77.67 46.67 76.00 66.33 75.00 86.00 74.00 7.86 71.67
QERA 78.00 47.33 76.33 67.33 75.33 86.00 73.00 7.88 71.90
L2QER 77.67 48.67 75.67 67.00 74.00 84.67 74.00 7.79 71.67
GlowQ 78.33 47.67 75.67 67.33 74.67 85.33 74.00 7.85 71.86
GlowQ-S 77.67 57.00 79.33 67.67 74.33 91.33 65.33 7.86 73.24
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LLM USAGE DISCLOSURE

WRITING POLISH

After completing the full draft, we used a large language model (LLM) purely to aid proofreading
and light copy-editing. Specifically, the LLM suggested fixes for grammar, spelling, punctuation,
typographical errors, and minor wording for clarity and consistency.

RETRIEVAL AND DISCOVERY

We also used an LLM as a literature discovery assistant to broaden our search beyond papers we had
already identified. The LLM helped generate alternative keywords and surface potentially relevant
works.
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