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Abstract

The most popular approaches for off-policy deep reinforcement learning (DRL)
with continuous action spaces include policy improvement steps where a learned
state-action value (Q) function is maximized over selected batches of data. These
algorithms also use the Q-function in the target of its own update, and end up
overestimating the Q-values as a result. To combat this overestimation, these algo-
rithms take a minimum over multiple Q estimates in the value update target. We
examine a setting, common in real-world applications, where improperly balancing
these opposing sources of bias may have disastrous consequences: stochastic envi-
ronments with reward functions comprised of multiple negatively-correlated terms.
Reward terms corresponding to conflicting objectives will be negatively correlated;
in expectation, gains in one will be accompanied by losses in the other. We find
that standard approaches consistently fail to approach optimal performance when
applied to a suite of robotic tasks in this category. We trace the failure to erroneous
Q estimation and propose a novel off-policy actor-critic algorithm that remediates
the problem through the use of a policy gradient. Our algorithm significantly out-
performs baseline approaches across such tasks, drastically reducing the total cost
incurred by the agent throughout training.

1 Introduction

Motivated by real-world applications, we here consider off-policy learning in systems that have
continuous action spaces, stochastic dynamics, and force the agent to meaningfully consider both
incentives and costs. Application areas where this setting is relevant include robotics (e.g., navigation
in the presence of obstacles, robotic surgery), resource allocation under uncertainty (e.g., when both
performance and efficiency must be considered), and financial decision-making (e.g., where the risk
of losses exists in the pursuit of gains).

We find that current state-of-the-art off-policy approaches for continuous action spaces may struggle
when applied to such problems. We trace the failure to opposing sources of bias in the learned
state-action value (Q) function, derive an algorithm that largely avoids such bias, and show our
approach to be a broadly robust method for DRL.

2 Preliminaries

We consider the standard MDP reinforcement learning setting (Sutton & Barto, 1998). For off-policy
learning, we can write the RL objective for a policy π with parameters θ as

J(θ) ≈ Es∼D
[
V πθ (s)

]
= Es∼D,a∼πθ(·|s)

[
Qπθ (s,a)

]
. (1)

One strategy for maximizing J(θ) is to compute a policy gradient for Eq. (1) (Degris et al., 2012):

∇θJ(θ) ≈ E s∼D
a∼πθ(·|s)

[
∇θ log

(
πθ(a|s)

)
Qπθ (s,a)+∇θQπθ (s,a)

]
≈ E s∼D

a∼πθ(·|s)

[
∇θ log

(
πθ(a|s)

)
Aπθ (s,a)

]
,

(2)
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where Aπθ (s,a) = Qπθ (s,a) − V πθ (s) is the advantage function. There are two commonly-used
alternatives to Eq. (2). The first is the deterministic policy gradient (Silver et al., 2014, DPG),
which considers a deterministic πθ and is used by TD3:

∇θJ(θ) ≈ Es∼D

[
∇θπθ(s)∇aQ

πθ (s,a)
∣∣
a=πθ(s)

]
. (3)

The second is the reparameterization trick (used by SAC), which results in a lower variance gradient
estimate than Eq. (2) (Kingma et al., 2015):

∇θJ(θ) = Es∼D,ξ∼N (0,I)

[
∇θ min

i=1,2
Qπθ

ϕi

(
s,aθ(s, ξ)

)
− α∇θ log

(
πθ(aθ(s, ξ) | s)

)]
. (4)

where the policy is implicitly parameterized by a neural network aθ(s, ξ) = tanh
(
µθ(s) +σθ(s)⊙ ξ

)
.

3 Addressing Biases in Off-Policy Deep Reinforcement Learning

Figure 1: Learning diagnos-
tics on PointGoal2. SAC and
TD3 suffer from significant
value underestimation error.
Qtrue is estimated using dis-
counted Monte Carlo returns.

In this work, we consider Safety Gym, a suite of robotic navigation
tasks with obstacles originally proposed for studying safe RL (Ray
et al., 2019). These environments separately yield rewards (incen-
tives), for making progress toward the goal, and costs, for colliding
with obstacles. This is a frequently-used testbed for constrained RL
methods, which consider the task of maximizing rewards subject
to constraint conditions on the accumulated costs (Altman, 1999).
Alternatively, we can modify these environments to work with stan-
dard (unconstrained) RL methods by constructing a reward function
r(s,a) = i(s,a)− βc(s,a), with incentives i(s,a), nonnegative costs
c(s,a), and fixed scalar weight β.

We find this seemingly straightforward setting to be a catastrophic
failure mode for common off-policy algorithms, characterized by sig-
nificant Q-value underestimation and high temporal differ-
ence (TD) error (Fig. 1).

3.1 Why Do Current Approaches Fail?

Most state-of-the-art off-policy methods both regress the Q-function
toward itself in its own update and train a policy to maximize Q.
Combining these elements induces Q overestimation bias (Thrun
& Schwartz, 1993; Hasselt, 2010; Fujimoto et al., 2018). Positive
estimation error induces a preference in the policy update toward
actions whose Q-values are overestimated. This may prevent the
discovery of optimal actions and leads to preferential selection of
actions with erroneously large Q-values in the target of the value
update.

To address this bias, modern off-policy approaches employ Clipped
Double Q-learning (Fujimoto et al., 2018). That is, they train twoQ-functions with initial parameters
ϕ1, ϕ2 and use the minimum of their respective target networks (delayed; parameters ϕ̄1, ϕ̄2) in the
target of the value updates. Other algorithms go further by taking the minimum over an ensemble
of Q-functions in the value update (Lan et al., 2020; Chen et al., 2021). In all cases, the idea is to
introduce Q underestimation bias to combat the accumulation of overestimation errors (Fujimoto
et al., 2018).

As noted in Fujimoto et al. (2018), Q-value estimates may be written as a combination of rewards
provided by the environment, and error terms. That is, Qπϕ(s,a) = Eπ

[ ∑∞
i=t γ

i−t(ri − δi) | s,a
]
,

where δ(s,a) ≡ r + γQπϕ(s′,a′) − Qπϕ(s,a) is the temporal difference (TD) error. Variance in Q-
value estimates may therefore be attributed to either variance in future rewards assigned by the
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environment or function approximation error. Aleatoric uncertainty—for instance, from stochas-
ticity in the environment or partial observability—contributes through variance of future rewards.
Regardless of the source, increased variance in Q-value estimates leads to more significant under-
estimation bias from Clipped Double Q-learning, since the expected minimum of a set of ran-
dom variables decreases as the variance of the random variables increases (Fujimoto et al., 2018).

Figure 2: Our approach,
OPAC2, collects the highest
levels of total reward (consid-
ering incentives and costs; top
panel), outperforming all base-
lines. SAC and TD3 completely
fail to learn.

The authors of Chen et al. (2021) show that as long as the amount
of Q estimation error is bounded, the minimum of a sufficiently
large number of Q estimates will be an underestimate. With only
one Q network, only overestimation bias is present and learning is
generally poor (Fig. 4). If Q-values are problematically underesti-
mated when taking the minimum of two Q networks, minimizing
over additional Q estimates will only exacerbate the problem.

3.2 An Algorithm that (Mostly) Avoids Bias

To address the potentially harmful effects of opposing Q estima-
tion bias highlighted above, we revisit the policy gradient update
(Eq. 2) proposed by Degris et al. (2012). We first observe that this
update is not as prone to overestimation bias as those based on
the deterministic policy gradient (Eq. 3) or reparameterization
trick (Eq. 4). This, in turn, allows us to omit Clipped Double
Q-learning and avoid its associated underestimation bias entirely.

Additionally, we may configure the updates to the value networks
in our approach to mitigate estimation bias. Similar to Haarnoja
et al. (2018) (but without Clipped Double Q-learning), we use

EQ(B) =
∑
i

[
Q(si,ai)−

(
ri + γ(1− di)Vψ̄(s′

i)
)]2

EV (B) =
∑
i

[
V (si)−Q(si,ai,π)

]2

as the losses to minimize in the Q and V updates, with a target
network for V providing stability. Here ai,π indicates an action
sampled from π(·|si); the subscript i runs over a batch sampled
from the replay buffer. Note that the policy update (Eq. 2)
will reinforce positive error on Q but negative error on V . In
using Q and V in each other’s targets, we provide a counterbalance for these potential sources of
error. Additionally, the use of V in the learning target for Q provides smoothness, which may be
beneficial. Finally, we employ tanh activations in our neural networks, removing a potential source
of poor numerical stability. Empirically, we found this strategy to result in only very slight Q
overestimation in every environment tested. This did not adversely impact policy learning; hence
Clipped Double Q-learning was not required. We refer to our approach as Off-Policy Actor-Critic,
SQUAshed and REgularizeD (OPAC2), and provide pseudocode in Appendix A.

4 Experiments

We evaluated all robots and tasks for the most obstacle-rich (level 2) Safety Gym environments.
Full details are given in Appendix B. SAC and TD3 largely fail to learn competent policies in this
set of environments (Fig. 2 and Appendix F). In addition to measuring the error in the learned Q
estimates, we also report the variance of the validation TD error, which is computed as the square of
the TD error δ of the learned Q-function over held-out batches of experience not seen in training (Li
et al., 2023). In every environment, SAC and TD3 have greater validation TD error variance, greater
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Q estimation error, and converge to policies with lower cost but far lower accumulation of incentives.
Critically, SAC and TD3 significantly underestimate Q-values in most of these environments. By
considering only the costs incurred by the agents (Fig. 2, bottom), we can determine that SAC and
TD3 are incurring very little cost while also receiving little incentives (i.e., they have learned to do
nothing). This may be a result of Clipped Double Q-learning providing targets that are, on average,
too low. Since reward enters the learning algorithm only through this target, the end result is overly
conservative behavior.

4.1 Partial Remediation through Resetting

Periodic network resets have recently been studied as a strategy for reducing Q estimation error
(Nikishin et al., 2022; Li et al., 2023). We found this addition to be hugely beneficial for SAC and
TD3 in some of the environments where they fail. Resetting allows SAC and TD3 to consistently
achieve smaller Q estimation error than OPAC2, but not as strong overall performance (Fig. 2).
Typically, SAC and TD3 with resetting still act more conservatively than OPAC2 (Appendix F).

4.2 Algorithm Analysis

Figure 3: Ablation of OPAC2

We performed a systematic ablation of the algorithmic compo-
nents of OPAC2 in order to elucidate their impact on Safety
Gym performance. We additionally included the original ver-
sion of SAC (Haarnoja et al., 2018), augmented with opti-
mized entropy regularization (as introduced in Haarnoja et al.
(2019)). We find the inclusion of both a value network and a
policy gradient to be critical in this setting; including only one
is insufficient (Fig. 3). Interestingly, we found that we were
able to remove the target value network from OPAC2 entirely
without significantly compromising its learning stability. We
also found that OPAC2 did not benefit from resetting, likely
because its minimal value estimation errors did not require cor-
rection (Appendix D).

5 Related Work

Our method builds on the off-policy actor-critic introduced in Degris et al. (2012), applied in differing
forms over the past decade (Wang et al., 2017; Espeholt et al., 2018; Gu et al., 2017), and summarized
in Levine et al. (2020). We compare it with more popular methods for off-policy DRL with continuous
action spaces (Haarnoja et al., 2019; Fujimoto et al., 2018). The resetting strategy that we employ
was explored by Nikishin et al. (2022) and subsequently further evaluated and extended (D’Oro
et al., 2023; Schwarzer et al., 2023). Its ability to curtail TD error, as well as the role of TD error
in limiting off-policy DRL more generally, was discussed in Li et al. (2023).

6 Conclusion

In this work, we identify a failure mode of popular off-policy DRL methods for continuous action
spaces. In contrast to the typical problem of value overestimation, we present environments that
induce underestimation errors in current algorithms. These findings illustrate the utility of exploring
different problem settings when designing algorithms; the conditions responsible for the failures we
observe are not present in more popular simulation benchmarks (Tunyasuvunakool et al., 2020).

Motivated by real-world applications, we provide a novel algorithm that is much less prone to value
estimation error, enabling learning on these environments. Our algorithm uses the same number of
networks (and fewer parameters, owing to V requiring only a state as input) while providing strong
learning in environments with high aleatoric uncertainty and conflicting objectives.
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Broader Impact Statement

While our work is immediately targeted at making safer robotic agents, it is true that others could
repurpose our work for malicious applications. We encourage the authors of any subsequent work
to consider the societal impacts of future results.
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A Pseudocode

Algorithm 1 Off-Policy Actor-Critic, SQUAshed and REgularizeD (OPAC2)
1: Input: Initial policy parameters θ; Q parameters ϕ; V parameters ψ, entropy weight α
2: Initialize V target network parameters: ψ̄ ← ψ
3: for iteration k ∈ [0, . . . ,K − 1] do
4: for step s ∈ [0, . . . , S − 1] do ▷ Typically take just one step (S = 1)
5: Sample a ∼ πθk

(·|s); observe s′ ∼ p(s′ | s,a) ▷ One step in MDP
6: D ← D ∪ {(s,a, s′, r(s,a))} ▷ Update replay buffer
7: end for
8: for gradient step g ∈ [0, . . . , G− 1] do
9: Sample batch B = {(si,ai, s′

i, ri, di)} from D
10: Update Q: ϕ← ϕ− λϕ∇ϕEQ(B)
11: Sample ai,π ∼ π(a|si)
12: Update V : ψ ← ψ − λψ∇ψEV (B)
13: Compute A(si,ai,π) = Q(si,ai,π)− V (si) ▷ Normalize
14: Sample arp,π ∼ π(·|si) with reparameterization trick
15: Compute π loss: Eπ(B) =

∑
i [α log πθ(arp,π|si)−A(si,ai,π) log(πθ(ai,π|si)]

16: Update π: θ ← θ − λθ∇θEπ(B)
17: Compute α loss: Eα(B) = −α [log(π(ai,π|si)) +Htarget]
18: Update α : α← α− λα∇αEα(B)
19: Update target V network parameters: ψ̄ ← ρψ̄ + (1− ρ)ψ
20: end for
21: end for

B Experimental Details

Hyperparameters are listed in Table 1. For experiments in Safety Gym (which are described more
fully below), we used a learning rate of 10−4 for all “Car” and “Point” experiments (matching the
setting in the OpenAI safety-starter-agents accompanying the suite). Because we observed
instability in all algorithms when using the “Doggo” robot on the “Button” task, we employed a
learning rate of 5×10−5 for all experiments with Doggo. All methods shared the same learning rate
for the logarithm of the entropy weight α (5× 10−4).

Throughout, all neural networks considered were multilayer perceptrons, with two hidden layers of
256 units each. As is standard, ReLU activations were used for SAC and TD3. We chose tanh
activations for OPAC2 in order to match on-policy methods with a similar policy update. We
evaluated tanh activations on SAC and TD3 as well, but found them to typically perform slightly
worse than the ReLU activations. For experiments involving resetting, we followed the practice of
Nikishin et al. (2022) of resetting all networks and optimizers (except for those corresponding to the
learned temperature) every 200k environment steps.

The policy networks output the mean values of a multivariate normal distribution with diagonal
covariance. For OPAC2, control variances were optimized. Variances were independent of state for
all experiments for Car and Point robots in the Goal and Push tasks. They varied with state for all
experiments with the Doggo robot, as well as for the Car and Point robots on the Button task. For
SAC, control variances always varied with state.

As mentioned in Section 4 of the main text, we chose to evaluate our approach using the OpenAI
Safety Gym (Ray et al., 2019). This choice was governed by our desire to test in conditions with
clear cost-incentive trade-offs, significant stochasticity, and adequate complexity. Additionally, many
popular algorithms have already been evaluated on Safety Gym.
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PARAMETER VALUE

Discount 0.99
Replay Buffer Size 106

Optimizer Adam (Kingma & Ba, 2015)
Network Hidden Layers 2
Network Hidden Units (per layer) 256
Batch Size 256
Target Network Update Interval 1
τ (target network averaging) 0.995
Initial Exploration (steps) 10000

Table 1: Shared hyperparameters for SAC, TD3, and OPAC2

The environments chosen were the most obstacle-rich of the publicly available environments. We
considered all combinations of the 3 robots and 3 tasks, for a total of 9 different environment
configurations. The Point robot is constrained to the 2D plane and has two control dimensions: one
for moving forward/backward and one for turning. The Car robot also has two control dimensions,
corresponding to independently actuated parallel wheels. It has a freely rotating wheel and, while
it is not constrained to the 2D plane, typically remains in it. The Doggo robot is a quadrupedal
robot with bilateral symmetry and 12 control dimensions. Several types of obstacles and tasks were
present in the environments we evaluated. In all cases, the robot is given a fixed amount of time
(1000 steps) to complete the prescribed task as many times as possible and is motivated by both
sparse and dense reward contributions. In the “Goal” environments, the robot must navigate to a
series of randomly-assigned goal positions, with a new target being assigned as soon as a goal is
reached. In the “Button” environments, the robot must reach and press a sequence of goal buttons
while avoiding other buttons. In the “Push” task, the robot must push a box to a series of goal
positions. The set of obstacles are different for each task; among the three environments there are a
total of five different constraint elements (hazards, vases, incorrect buttons, pillars, and gremlins),
each with different dynamics. See Ray et al. (2019) for further details.

All of our experiments used a single indicator for overall cost at each time step (the Safety Gym
default). Each cost event (i.e., the robot contacting an obstacle) was assigned a fixed (negative)
weight in the reward function. The Car and Point configurations used penalty weights that matched
Markowitz et al. (2023), and the penalty weights for Doggo configurations are listed in Table 2.

We report all results over 5 random seeds. Per-environment learning curves are reported with shaded
regions representing ± standard deviation. For aggregating performance across tasks, we report the
interquartile mean (IQM) with 95% bootstrapped confidence intervals, as described in Agarwal et al.
(2021). In order to aggregate results on Safety Gym, we scale the rewards from tasks relative to the
final incentive level achieved by an agent trained on these environments without considering costs.
That is, if we write rewards r as the difference of incentives i and costs c ≥ 0 scaled by constant β,
r = i−βc, we compare the reward r achieved by our agents for β > 0 with the incentives i achieved
by agents trained with β = 0. For IQM plots of costs, we scale relative to the cost levels incurred
by those same agents. The specific agents used for comparison were the better of PPO (Schulman
et al., 2017) or TRPO (Schulman et al., 2015) on each environment after 10M steps, as reported
by Ray et al. (2019). For rewards, this was chosen to serve as a loose upper bound on the possible
performance of an agent trained with costs. For costs, the choice was made for consistency.

B.1 Implementation Details

Our code is written for Python 3.9 (Van Rossum & Drake Jr, 1995, PSF). The environments we use
depend on the OpenAI Safety Gym (Ray et al., 2019, MIT) and MuJoCo version 2.1.0 (Todorov
et al., 2012, Apache 2.0). Other major dependencies are PyTorch version 2.3.0 (Paszke et al., 2019,
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ENVIRONMENT PENALTY

DoggoGoal2 0.025
DoggoButton2 0.0125
DoggoPush2 0.00625

Table 2: Penalty weights for Doggo environments. The “2” indicates these were the highest difficulty
environments.

BSD-3), numpy version 1.23.5 (Harris et al., 2020, BSD-3), scipy version 1.13.10 (Virtanen et al.,
2020, BSD-3), and matplotlib version 3.3.4 (Hunter, 2007, BSD-3).

Safety Gym experiments (with 5 seeds each) can be run to 5M steps on CPU (AMD EPYC 9654;
internal cluster) in 40–60 hours. Since we tested other configurations of our algorithm during devel-
opment that are not included in the paper, it is difficult to estimate the total amount of compute
used for the project. A rough estimate is 1500 CPU core-days.
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C Overestimation and Underestimation Biases in SAC and TD3

With only 1 Q function, SAC and TD3 tend to drastically overestimate Q-values (Fig. 4, right).
With Clipped Double Q-learning this tendency is reduced, and may even result in underestimation.

s

Figure 4: Reward and diagnostics showing the drastic effect of Clipped Double Q-learning in SAC
and TD3 on TD error variance and Q error.

D Resetting OPAC2

Given the performance gains we observed from augmenting SAC and TD3 with resetting, we con-
sidered its application in conjunction with OPAC2. Unsurprisingly, we found that resetting actually
had a negative effect on the performance of OPAC2 (Figure 5). Resetting is intended to correct
value estimation error, which is less of a concern with OPAC2 than SAC or TD3. Without this
benefit, the primary impact of resetting on OPAC2 is a periodic disruption in training.
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Figure 5: Periodically resetting OPAC2 results in worse performance across environments.

E Entropy Regularization Strategies

Below we illustrate the effect of different entropy regularization strategies paired with OPAC2 on
two Doggo Safety Gym environments. We find that an entropy bonus slightly outperforms the
“maximum-entropy” approach of SAC (or no entropy regularization at all) on these environments.

Figure 6: Evaluation of different entropy regularization strategies on Doggo Safety Gym environ-
ments.
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F Full Safety Gym Results

In Fig. 7, we present per-environment reward curves for our experiments on Safety Gym. Note that
these traces incorporate both incentives and costs (i.e., we plot r = i − βc). We observe that SAC
and TD3 struggle to learn at all. Their performance improves when resetting is added, but not to
the level of OPAC2. In Fig. 8, we show the costs accumulated by the agents in each environment.
Notice that SAC and TD3 always accumulate less cost than OPAC2. Because the optimization
goal is rewards, this amounts to overly conservative behavior by SAC and TD3. The mechanism
underlying this is described in Section 3. Note that resetting raises the cost levels of SAC and TD3
somewhat, enabling them to collect more incentives.

Figure 7: Per-environment learning curves for all nine Level 2 Safety Gym navigation environments.
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Figure 8: Per-environment learning curves depicting costs incurred on all nine Level 2 Safety Gym
navigation environments.


