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Abstract
The rapid development of large language mod-
els (LLMs) has led to the creation of numerous
benchmarks and leaderboards, assessing models’
performance and ultimately guiding model selec-
tion. A key underlying assumption for model se-
lection based on these benchmarks is that their
measured performance is transferable for an LLM.
More specifically, we expect similar tasks gener-
ated from different source distributions to exhibit
similar rankings on a given set of LLMs. This work
critically examines this assumption by evaluating
the transferability of LLMs’ ranking on common
leaderboards to unseen target tasks. To this end,
we systematically analyze the correlation between
benchmark-based rankings and actual performance
rankings on diverse target tasks, highlighting dis-
crepancies that challenge the reliability of using
the former for model selection. Our results reveal
that benchmark-based rankings, at best, moderately
correlate with real-world performance, with corre-
lation values often falling below 0.5.

1 Introduction
Recent advancements in large language models (LLMs) have
resulted in their wide adoption across fields and expertise
[Wei et al., 2022]. However, keeping up with the rapid release
of new LLMs has become exceedingly challenging due to the
significant cost of exploring the wide range of models [Zhang
et al., 2023]. Moreover, other factors such as compute re-
sources, expert LLM knowledge, etc., prevent practitioners
from finding and utilizing the best model for their novel task.
To address these limitations, LLM researchers have created
benchmarks to compare the performance and capabilities of
LLMs, aiding users in model ranking and selection [Zhang
et al., 2024; Hendrycks et al., 2021]. These evaluations have
resulted in the creation of general-purpose leaderboards (e.g.,
HELM, AlpacaEval, etc.). However, a common underlying
assumption of these benchmarks is that their measured per-
formance is indicative of an LLM’s broader capabilities and
generalizes well to other similar real-world tasks. While ef-
forts have been made to design more efficient and compre-
hensive benchmarks [Polo et al., 2024], the extent to which

Figure 1: Comparison between the performance of the leaderboard’s
top-ranked model and the best-performing model on the target task.

benchmark rankings generalize to other similar tasks remains
an open question [Saxon et al., 2024].

Recently, [Mahowald et al., 2024] investigated the segre-
gation of language and thought in LLMs. They categorized
the linguistic capabilities of LLMs, such as understanding lin-
guistic rules and patterns, as formal competence. In parallel,
they categorized the capability of understanding and using
language in the real world as functional competence. Follow-
ing their work, we classify and distinguish a new task as either
a formally out-of-domain task or functionally out-of-domain.
In this work, we focus on formally out-of-domain tasks. i.e.,
tasks that look different on the surface level (linguistic level)
but require similar functional skills as our in-domain tasks.

Previous studies have explored shortcut learning in LLMs,
particularly their sensitivity to input formats [Alzahrani et
al., 2024]. However, shortcut learning in LLMs remains un-
derexplored, especially in the context of benchmark-driven
evaluation and model ranking. To examine this, we analyze
public benchmarks, specifically those used in leaderboards,
as they serve as a primary data source for evaluating LLM
capabilities. Given LLM publishers’ incentive to optimize
for these benchmarks, we consider benchmark performance
as the key signal for assessing generalizability. We investi-
gate the reliability of this signal by evaluating how well it
transfers to novel and out-of-domain tasks. Our results reveal

https://crfm.stanford.edu/helm/
https://tatsu-lab.github.io/alpaca_eval/


SOURCE TARGET TASK KENDALL-τ PEARSON SPEARMAN
CORRELATION CORRELATION
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AQUA RAT 0.270 0.402 0.349
LOGIQA EN 0.192 0.217 0.266

LSAT AR 0.153 0.145 0.175
LSAT LR 0.118 0.147 0.150
LSAT RC 0.277 0.302 0.449
SAT EN 0.307 0.202 0.418

SAT EN WITHOUT PASSAGE 0.065 -0.005 0.082
SAT MATH 0.328 0.450 0.433
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INTO THE UNKNOWN 0.364 0.528 0.542
MEMO TRAP 0.179 0.264 0.252

MODUS TOLLENS 0.412 0.535 0.557
NEQA 0.430 0.547 0.537

QUOTE REPETITION 0.141 -0.008 0.155
REDEFINE MATH 0.138 0.067 0.144

REPETITIVE ALGEBRA 0.237 0.245 0.388
SIG FIGS 0.488 0.696 0.642

WINOBIAS ANTISTEREOTYPE 0.169 0.298 0.226

Table 1: Ranking correlation between leaderboard rankings and ac-
tual LLM performance on target tasks ranking. For all target tasks,
p-value < 0.05 except LSAT AR.

SOURCE MODEL NAME
# PARAMS
(BILLION)

OPEN LLM
LEADERBOARD SCORE

01-AI YI-1.5-9B-CHAT 9 27.71
ARCEE-AI ARCEE-SPARK 7 25.54
ARGILLA NOTUS-7B-V1 7 18.41
BERKELEY-NEST STARLING-LM-7B-ALPHA 7 20.64
DECI DECILM-7B-INSTRUCT 7 17.46
COGNITIVECOMPUTATIONS DOLPHIN-2.9.2-PHI-3-MEDIUM 3.8 25.66
GOOGLE GEMMA-1.1-7B-IT 7 17.48
GRADIENTAI LLAMA-3-8B-INSTRUCT-GRADIENT-1048K 8 18.25
GRITLM GRITLM-7B 7 19.15
HUGGINGFACE ZEPHYR-7B-ALPHA 7 18.57

ZEPHYR-7B-BETA 7 17.77
IBM MERLINITE-7B 7 16.76
META META-LLAMA-3.1-8B-INSTRUCT 8 27.91

META-LLAMA-3-8B-INSTRUCT 8 20.48
MICROSOFT PHI-3-MEDIUM-4K-INSTRUCT 14 32.67

PHI-3-MINI-4K-INSTRUCT 3.8 27.2
MISTRAL MISTRAL-7B-INSTRUCT-V0.2 7 18.46

MISTRAL-NEMO-INSTRUCT-2407 7 23.53
MISTRAL-7B-INSTRUCT-V0.3 7 19.17

NOUSRESEARCH NOUS-HERMES-2-SOLAR-10.7B 10.7 23.32
HERMES-2-PRO-MISTRAL-7B 7 21.64
HERMES-2-PRO-LLAMA-3-8B 8 21.63

NVIDIA MISTRAL-NEMO-MINITRON-8B-BASE 8 17.66
OPENBUDDY OPENBUDDY-LLAMA3.1-8B-V22.2-131K 8 24.07
OPENCHAT OPENCHAT-3.5-1210 7 22.56
OPEN-ORCA MISTRAL-7B-OPENORCA 7 17.7
QWEN QWEN2-7B-INSTRUCT 7 24.9

QWEN1.5-7B-CHAT 7 16.58
REFUELAI LLAMA-3-REFUELED 8 22.73
UPSTAGE SOLAR-10.7B-INSTRUCT-V1.0 10.7 19.63

Table 2: LLM pool (L) in our experiments.

significant discrepancies when transferring the performances
across tasks, highlighting potential issues such as shortcut
learning [Geirhos et al., 2020].

Moreover, we analyze benchmark signals at both micro and
macro levels (i.e., leaderboard, benchmarks, and benchmark
subtasks), exposing the fragility of skill-based claims over
LLMs [Didolkar et al., 2024]. Many benchmarks, such as
those designed for mathematical reasoning [Hendrycks et al.,
2021], assume a strong correlation with specific competen-
cies. We critically examine these assumptions and assess the
extent to which benchmark-derived rankings truly reflect the
broader capabilities of LLMs. Our results highlight shortcut
learning in LLMs, extending beyond format and style-based
sensitivities. These findings provide valuable insights for re-
searchers aiming to improve benchmark design and develop
more reliable methods for evaluating LLM capabilities.

2 Problem Definition
In the following, we define the LLMs’ ranking generaliz-
ability problem. Let L = {ϕi}ni=1 be a pool of LLMs and
B = {βj}mj=1 denote a set of evaluation benchmarks that are
designed to capture LLMs’ capabilities. Moreover, let E be
an evaluation metric and T be a target task, which is a set of

BENCHMARK # SAMPLES # SUBTASKS

BBH [SUZGUN et al., 2022] 5761 24
GPQA [REIN et al., 2023] 1192 3
MATH [HENDRYCKS et al., 2021] 1324 7
MUSR [SPRAGUE et al., 2024] 756 3
MMLU PRO [WANG et al., 2024] 12032 1

Table 3: Benchmarks (B) in our experiment.

samples with labels from a specific label space. Our objective
is to investigate whether the ranking of LLMs based on their
performance on these benchmarks correlates with their gen-
eralizability. In other words, we examine whether the relative
performance of LLMs on benchmarks is predictive of their
relative performance on a new target task T . Let R, be the
ranking of LLMs in L based on their performance on Bench-
marks B:

R = (ϕf(1), ...., ϕf(n)) such that (1)

E(B, ϕf(i))) > E(B, ϕf(i+1)) for all i < n (2)

We define the LLMs’ ranking generalizability as whether
R aligns with the model performance on the target task T , i.e.

E(T , ϕf(i))) > E(T , ϕf(i+1)) for all i < n (3)

3 Experiment and Analysis
In this section, we evaluate the reliability of benchmarks and
leaderboards in ranking LLMs for a set of formally out-of-
domain target tasks. To this end, we use a set of popular pub-
lic benchmarks and an LLM pool, which are available on the
Huggingface platform. Our experiment setup is as follows:

LLM pool (L). We select 30 open LLMs from the Hug-
gingface platform for our experiments. These models are
chosen based on their performance indicated by the score on
the Open LLM leaderboard (as of Nov 25). To ensure a fair
comparison and account for resource limitations, we focused
on models within a similar range of parameter sizes, specif-
ically those with fewer than 11 billion parameters. Refer to
Table 2 for more information on the LLMs in our pool.

Benchmarks (B). We select 5 benchmarks used in the
Open LLM Leaderboard: bbh, mmlu pro, gpqa, math,
musr. These benchmarks encompass a diverse range of tasks
and include a total of 21606 samples and 38 subtasks. Table
3 shows the statistics of these benchmarks.

Formally Out-of-Domain Target Tasks (T ). We use tasks
from the Inverse Scaling Prize [McKenzie et al., 2023],
AGIEval benchmarks [Zhong et al., 2023] which were intro-
duced as challenging tasks for LLMs. AGIEval is a bench-
mark to evaluate LLM capabilities in a real-world setting. In
particular, it examines the LLMs with standardized tests used
to examine human capabilities. Inverse Scaling Prize tasks
are designed to negate the fact that bigger models are better
in all tasks. However, in our experiment, the range of model
sizes does not vary like the inverse scaling challenge.

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/


Figure 2: Spearman correlation between LLM performance on benchmark subtasks (columns) and target tasks (rows).

Results Table 1 presents the correlation between leader-
board rankings and target task performance-based rankings
of LLMs. We observe that the Pearson correlation between
leaderboard rankings and target task performance is below
0.5 for most tasks, indicating a weak correlation. For 4
target tasks— sig figs, neqa, modus tollens, and
into the unknown—the Pearson correlation falls within
the moderate range. However, we find that their Kendall-
τ < 0.45 and Spearman correlation < 0.65, further suggest-
ing that leaderboard rankings do not consistently reflect LLM
performance on out-of-domain tasks. We also observe that
Kendall-τ and Spearman correlation consistently fall within
the moderate range across all tasks, remaining below 0.49 and
0.65, respectively. Furthermore, we find that the top-ranked
model on the Open LLM Leaderboard, Phi-3-medium-4k-
instruct, is the best-performing model for only one target task.
This discrepancy highlights the limitations of the leaderboard
rankings in reliably predicting model performance across di-
verse tasks. See Figure 1 for more details.

For a thorough analysis, we present the ranking correla-
tion between LLM ranking based on their target task perfor-
mance (expected ranking) and the LLMs’ rankings derived
from benchmarks and individual benchmark subtasks in Fig-
ure 3 and Figure 2, respectively. In Figure 3, we observe
that only sig fig (focused on rounding numbers) exhibits a
strong Spearman correlation with the math benchmark, which
is expected given their conceptual similarity. However, we
find that sig figs has unexpectedly high correlations with
mmlu pro and bbh, raising concerns about the reliability of
these benchmarks for ranking LLMs in out-of-domain tasks.

We observe that in the repetitive algebra task,
where algebraic misleading examples are repeatedly used in

Figure 3: Spearman correlation between LLM performance on
benchmarks (columns) and target tasks (rows).

prompting, we would expect a high correlation with the math
benchmark. However, the correlation is not strong, highlight-
ing potential shortcut learning in LLMs. Similarly, in the
redefine math task, which changes the numerical value
of math symbols, we again find low correlation. This further



signals that LLMs may rely on superficial patterns rather than
truly understanding task semantics.
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