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Abstract

Monotone missingness is commonly encountered in practice when a missing measurement
compels another measurement to be missing. Because of the simpler missing data pattern,
monotone missing data is often viewed as beneficial from the perspective of practical data
analysis. However, in graphical missing data models, monotonicity has implications for the
identifiability of the full law, i.e., the joint distribution of actual variables and response
indicators. In the general nonmonotone case, the full law is known to be nonparametrically
identifiable if and only if specific graphical structures are not present. We show that while
monotonicity may enable the identification of the full law despite some of these structures, it
also prevents the identification in certain cases that are identifiable without monotonicity.
The results emphasize the importance of proper treatment of monotone missingness in the
analysis of incomplete data.

1 Introduction

Missing data is ubiquitous across all fields of scientific study and it has the potential to severely impact
the results of statistical analyses. In particular, monotone missingness occurs when a missing measurement
implies that another measurement must also be missing. In longitudinal studies, a monotone missing data
pattern is encountered when dropout is permanent, meaning that subjects do not return to the study after
missing one measurement. For instance, in a clinical trial where response variables Y1, Y2 and Y3 are measured
at three consecutive monthly visits, a subject who drops out after the first visit will have both Y2 and Y3
missing. Monotone missing data also arise if there are logical constraints or technical restrictions between
the measurements. For instance, if the information on the number of children (of a person) is missing, the
information on the children’s ages will be missing as well.

The missing data literature has been moving from the classical characterization: missing completely at random
(MCAR), missing at random (MAR) and missing not at random (MNAR) (Rubin, 1976; Little & Rubin,
2002) towards more sophisticated assumptions which are often expressed using graphical models (Daniel
et al., 2012; Mohan et al., 2013; Mohan & Pearl, 2014b; Karvanen, 2015). One of the major goals related
to nonparametric missing data models has been to characterize the set of missing data distributions that
are identifiable as functionals of the observed data distribution. Several graphical criteria and identifiability
algorithms have been developed for this purpose (e.g., Tian, 2017; Bhattacharya et al., 2020; Mohan & Pearl,
2021; Guo et al., 2023), including a sound and complete graphical criterion by Nabi et al. (2020). As a result
of these efforts, it is known when the joint distribution variables and response indicators is identifiable in
nonparametric MNAR models with nonmonotone missingness.

In contrast, identifiability under monotone missingness is far less studied despite the prevalence of monotone
missing data mechanisms in real-world scenarios. Identification strategies for monotone missingness usually
consider MCAR or MAR settings, and identifiability is achieved by imposing identifying restrictions, such as
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the complete case missing value restriction (Little, 1993), available case missing value restriction (Molenberghs
et al., 1998), neighboring-case missing value restriction (Thijs, 2002), and specific donor-based identification
restrictions (Chen & Sadinle, 2019). Identifying restrictions have also been developed for specific MNAR
settings (e.g., Kenward et al., 2003; Tang et al., 2003).

Inference under monotone missingness is often viewed as a simpler problem than scenarios involving non-
monotone missingness. For instance, Sikov (2018) states that “The advantage of the monotone missingness
condition is that it considerably simplifies the analysis of the data.” It turns out, that identification under
monotone missingness is far from simple and it is not a subset of general nonparametric identification under
missing data, but a distinct problem that only partially overlaps the general problem. The presence of
monotonic relationships in the missingness mechanism implies that the probability of some combinations of
values of the response indicators is exactly zero. This reduces the number of parameters in the missingness
mechanism to be identified, leading to new identification results. On the other hand, monotonicity violates the
positivity assumptions that are explicitly or implicitly needed in many identification results with nonmonotone
missing data rendering them inapplicable under monotone missingness (Nabi et al., 2024).

In this paper, we consider missing data models represented by directed acyclic graphs (DAGs) and scenarios
where the assumption of a monotonic relationship between response indicators enables us to identify distri-
butions of interest that would otherwise be nonidentifiable, and the converse, where the same assumption
renders otherwise identifiable distributions nonidentifiable. To the best of our knowledge, there are no
previous graphical criteria or algorithms for determining identifiability or nonidentifiability of the missing
data distribution under monotone missing data in nonparametric MNAR settings for missing data DAGs.

The rest of the paper is organized as follows. Section 2 introduces the notation and the relevant definitions.
Section 3 considers missing data models and monotone missingness. Section 4 discusses identifiability in
missing data models and the applicability of previous identifiability results for nonmonotone missingness
under monotone missingness. Sections 5 and 6 present new results for identifiability and nonidentifiability
under monotone missingness, respectively. Section 7 concludes the paper with a discussion.

2 Notations and Definitions

We use capital letters to denote random variables or vertices, and small letters to denote the values or value
assignments of random variables. We use bold letters to denote sets and vectors of random variables, vertices,
or values.

A directed graph G is a pair (V, E) where V is the vertex set and E is the set of directed edges (i.e., pairs
(Vi, Vj), Vi ̸= Vj , Vi, Vj ∈ V). An edge from Vi to Vj is also denoted by Vi → Vj . A directed graph over a set
of vertices V is denoted by G(V). If the edge (Vi, Vj) exists in G, we say that Vi is a parent of Vj and Vj is a
child of Vi. The set of parents of a vertex Vi in G is denoted by paG(Vi) and the set of children is denoted by
chG(Vi), respectively. If the graph G is clearly determined by the context, we will simply write pa(Vi) and
ch(Vi) for clarity.

A directed path is a sequence of distinct edges (Ei)k
i=1 such that Ei = (Vi, Vi+1) and each vertex Vi may have

at most one incoming and one outgoing edge in the sequence. A directed path where the first and the last
vertex are the same is called a cycle. If a directed path exists in G from Vi to Vj , then Vi is an ancestor of Vj

and Vj is a descendant of Vi. The set of ancestors of a vertex Vi in G is denoted by anG(Vi) and the set of
descendants by deG(Vi), respectively (omitting again the graph if the context is clearly defined). A directed
acyclic graph (DAG) is a directed graph that contains no cycles.

We consider DAGs whose vertices represent random variables. For simplicity, we will denote both vertices
and the associated random variables using the same symbols. A statistical model of a DAG G(V) is a set of
distributions that factorize according to the structure of the DAG as follows

p(V) =
∏

Vi∈V

p(Vi | paG(Vi)), (1)

Whenever a joint distribution is compatible with a DAG, the conditional independence constraints of the
distribution can be derived from the DAG using the d-separation criterion (Pearl, 1995; 2009). In general,
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we do not make a distinction between d-separation statements (such as X is d-separated from Y given Z)
from conditional independence statements (such as X is independent of Y given Z). However, we will also
consider models that contain deterministic relationships between the variables of interest, meaning that
d-separation will not imply conditional independence in all instances for such models. Thus, we will only
denote conditional independence constraints as X ⊥⊥ Y |Z and explicitly explain when such statements are
not implied by the DAG due to deterministic relationships.

3 Missing Data Models

Missing data models are sets of distributions over a set of random variables V where V can be partitioned
into four distinct sets: the set of fully observed variables O, the set of partially observed variables X(1), the
set of observed proxy variables X, and the set of response indicators R (sometimes referred to as missingness
indicators or simply indicators). Each partially observed variable X(1) ∈ X(1) has a corresponding observed
proxy and a response indicator that have the following deterministic relationship

X =
{

X(1) if RX = 1,

NA if RX = 0,
(2)

where NA (not available) denotes a missing value. In other words, RX = 1 means that the true value of the
variable X(1) was observed, and RX = 0 indicates that it is missing. For a set Y(1) ⊆ X(1) of partially observed
variables, we denote the corresponding set of response indicators by RY defined as RY = ∪

Y
(1)

i
∈Y(1){RYi}.

By (2), we can factorize the joint distribution of V as

p(V) = p(O, X, X(1), R) = p(X|X(1), R)p(O, X(1), R),

where the nondeterministic term p(O, X(1), R) is the full law which can be further partitioned into two terms:
the target law p(O, X(1)) and the missingness mechanism p(R|O, X(1)). Finally, the information available
under missing data is represented by the observed data law p(O, X, R). This distribution is the one we
actually have access to. We note that the term “missingness mechanism” is sometimes used to refer to the
set of response indicators R or its members instead of their conditional distribution. Similarly, the target law
is sometimes simply referred to as the joint distribution (see e.g., Mohan et al., 2013; Mohan & Pearl, 2014a),
but to avoid ambiguity, we use the terms “target law” and “full law” to distinguish between the two joint
distributions p(O, X(1)) and p(O, X(1), R), respectively.

Missing data models can be represented by missing data DAGs (m-DAGs). A DAG G is a missing data DAG if
it has the following properties: the vertex set of G is O∪X∪X(1)∪R; for each X ∈ X, paG(X) = {X(1), RX}
and chG(X) = ∅; and for each RX ∈ R, deG(RX) ∩ (O ∪X(1)) = ∅. A missing data model associated with a
missing data DAG G is the set of joint distributions p(O, X, X(1), R) that factorize as

p(O, X, X(1), R) =
∏

X∈X

p(X|RX , X(1))
∏

V ∈O∪X(1)∪R

p(V | paG(V )). (3)

Conditional independence constraints of p(O, X(1), R) can be determined via d-separation in m-DAGs
analogously to DAGs.

The missingness mechanism of a missing data model may contain monotonic relationships between response
indicators, meaning that missingness in one variable always renders another variable to be missing as well.
We define this property as follows.
Definition 1. The missingness mechanism of a missing data model associated with an m-DAG G(V) is
locally monotone with respect to (RZ , RW ) if the edge RZ → RW exists in G and p(R = r|O, X(1)) = 0 for
all value assignments r to R where rZ = 0 and rW = 1. Furthermore, we say that such a value assignment r
to R violates monotonicity.

As a shorthand notation, we will denote the assumption that the missingness mechanism is locally monotone
with respect to (RZ , RW ) as RZ ≥ RW . Graphically, we denote the same assumption as RZ

≥−→ RW or
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RZ −→
≥

RW . Furthermore, we say that a missing data model is monotone if the missingness mechanism is
locally monotone with respect to at least one pair of response indicators.

We note that the concept of monotone missingness is used to refer to different properties of the missingness
mechanism in literature. For example, Cui et al. (2017) use the term “monotone missing data mechanism”
to describe that the missingness probability is a monotonic function of a set of covariates and a response
variable. Miao et al. (2016) define a “monotone missing mechanism” in a similar way. In this paper, we will
only consider monotonicity in accordance with Definition 1.

4 Identifiability in Missing Data Models

In this section, we revisit some identifiability results for nonmonotone missingness and discuss their applicability
under monotone missingness. We begin by defining the notion of identifiability, which is also referred to as
recoverability in missing data models (Mohan et al., 2013; Mohan & Pearl, 2014a;b)
Definition 2. Given a missing data modelM associated with an m-DAG G(V), an estimand or a probabilistic
query Q is said to be identifiable if Q can be expressed in terms of the observed data distribution p(X, O, R),
that is, if Q1 = Q2 for every pair of distributions p1, p2 ∈M such that p1(X, O, R) = p2(X, O, R).

The query of interest Q for nonparametric identification in missing data models is typically either the target
law p(O, X(1)), the full law p(O, X(1), R), or some functional of them, but other quantities such as causal
effects can also be considered (Shpitser et al., 2015). Because the component

∏
X∈X p(X|RX , X(1)) in (3) is

deterministic, we can ignore it in all identifiability considerations. For the same reason, we also omit the
observed proxy variables and the corresponding deterministic edges related to them from all figures.

Typically, definitions of identifiability also include a positivity assumption such as p(X = x, O = o, R = r) > 0
(Tian, 2017), which we omit from our definition because our goal is to consider identifiability not only under
nonmonotone missingness but also under monotone missingness, where some events have zero probability.
This means that we must consider a different positivity assumptions depending on whether the missingness
mechanism is assumed to be locally monotone or not. Thus, for the remainder of the paper, we will assume
that p(X = x, O = o, R = r) > 0 for all value assignments in scenarios where monotonicity is not assumed,
and for the scenarios where monotonic relationships between response indicators are present, we assume
that p(X = x, O = o, R = r) > 0 for only those value assignments r to R that do not violate monotonicity.
In simpler terms, we will assume a positive probability for events whose probability is not zero due to
deterministic relationships between response indicators.

The missingness mechanism p(R|O, X(1)) is a key component for the identification of both the target law
and the full law due to the following identities:

p(O, X(1)) = p(O, X(1), R = 1)
p(R = 1|O, X(1))

,

p(O, X(1), R) = p(O, X(1), R = 1)
p(R = 1|O, X(1))

p(R|O, X(1)),

where R = 1 means that all response indicators have a value assignment of 1. In other words, identifiability
of the target law is equivalent to the identifiability of p(R = 1|O, X(1)) and identifiability of the full law is
equivalent to the identifiability of the missingness mechanism as the numerator p(O, X(1), R = 1) is always
identified from the observed data distribution. This is why methods for identification in missing data models
often target the missingness mechanism instead of the full law or target law directly. These identities also
hold for locally monotone missingness mechanisms under the corresponding positivity assumption.

There are two important graphical structures related to nonidentifiability in missing data DAGs. The first is
a self-censoring edge where a partially observed variable is a parent of its corresponding response indicator,
i.e., X(1) → RX (also referred to as “self-masking”, e.g., Mohan et al., 2018). The second is a colluder where
a partially observed variable and its response indicators are the parents of a response indicator of another
partially observed variable, i.e., X(1) → RY ← RX . Self-censoring edges and colluders are the only structures
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that render the full law nonparametrically nonidentifiable in missing data DAGs (Bhattacharya et al., 2020;
Nabi et al., 2020). Self-censoring also renders the target law non-identifiable (Mohan et al., 2013). We say
that a response indicator RY is colluded if a colluder structure X(1) → RY ← RX is present in the m-DAG.

Building on the seminal works of Mohan et al. (2013) and Mohan & Pearl (2014a;b), Nabi et al. (2020) provided
a sound and complete criterion for full law identifiability under a general nonparametric setting without
assumptions of monotonicity. Importantly, when no colluders or self-censoring edges are present, this criterion
provides an identifying functional that relies on the odds ratio (OR) parameterization of the missingness
mechanism (Yun Chen, 2006). Denote R−k = R \Rk, R≺k = {R1, . . . , Rk−1}, and R≻k = {Rk+1, . . . RK}.
Now we can write

p(R |O, X(1)) = 1
Z

K∏
k=1

p(Rk |R−k = 1, O, X(1))
K∏

k=2
OR(Rk, R≺k |R≻k = 1, O, X(1)), (4)

where

OR(Rk, R≺k |R≻k = 1, O, X(1)) = p(Rk |R≻k = 1, R≺k, O, X(1))
p(Rk = 1 |R≻k = 1, R≺k, O, X(1))

p(Rk = 1 |R−k = 1, O, X(1))
p(Rk |R−k = 1, O, X(1))

,

and Z is the normalizing constant. However, this identifying functional is no longer valid if the missingness
mechanism is locally monotone as this implies that some of the terms in the denominator of the OR terms will
be zero. This will occur even if we restrict our attention to value assignments that do not violate monotonicity,
because the term p(Rk = 1 |R≻k = 1, R≺k, O, X(1)) will be zero for some k as Rk is conditioned on all other
response indicators, and the normalizing term evaluates this probability for all value assignments of R≺k.
In contrast, an earlier identifiability result by Bhattacharya et al. (2020) based on propensity scores can be
applied under monotone missingness, as it only involves terms related to response indicators of the form
p(Rk = 1|paG(Rk))

∣∣
(paG(Rk)∩R)=1 in a denominator term, meaning that only nonzero probabilities (assuming

positivity) are considered in the denominator of the identifying functional.

There are also methods for target law identification that can be applied under monotone missingness. The
propensity score approach of Bhattacharya et al. (2020) is equally valid for target law identification. The
MID algorithm by Shpitser et al. (2015) also remains applicable under monotone missingness as it attempts
to identify p(Rk = 1|paG(Rk))

∣∣
(paG(Rk)∩R)=1 for each response indicator Rk. A graphical criterion by Mohan

et al. (2013) states that if no partially observed variable is an ancestor of its own response indicator, then the
target law is identifiable, and its expression is

p(X(1), O) =
∏

Vi∈X(1)∪O

p(Vi| paG(Vi) ∩ (X(1) ∪O))

The conditional independence restrictions implied by the non-ancestrality assumption also hold if monotonicity
is assumed.

Outside of graphical missing data models, the impact of functional relationships on identification has been
studied in the context of causal inference by Chen & Darwiche (2024). In their approach, some variables
are assumed functionally dependent (i.e., deterministic) on their parents and subsequently removed via
functional elimination. Unfortunately, this approach does not directly generalize to the setting of full law
identifiability and monotone missingness, as monotonicity does not impose a true deterministic relationship
between response indicators.

While identification strategies such as the propensity score based method of Bhattacharya et al. (2020) or the
MID algorithm of Shpitser et al. (2015) remain valid under monotone missingness, their scope is simultaneously
limited by the standard positivity assumption. Intuitively, because p(X = x, O = o, R = r) = 0 for values
assignments that violate positivity, the missingness mechanism has fewer parameters (and consequently the
full law), and thus identification is easier in a sense when the missingness model is monotone. Importantly, the
crucial colluder structure does not always prohibit identification under monotone missingness. In the following
sections, we will focus on these special instances where monotonicity makes otherwise nonidentifiable quantities
identifiable, and the converse, where monotonicity makes otherwise identifiable quantities nonidentifiable.
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X(1) Y (1)

RX RY

≥

Figure 1: An example m-DAG where the monotonicity assumption enables the full law to be identified.

5 Identifiability Gained under Monotonicity

A locally monotone missingness mechanism can enable us to identify the full law in scenarios where iden-
tifiability could not be achieved otherwise. As an example, we consider the graph of Figure 1 where the
monotonicity assumption allows us to identify the full law. The full law is not identifiable without this
assumption because of the colluder X(1) → RY ← RX (Bhattacharya et al., 2020).

As a practical example of Figure 1, consider an intervention program to improve the physical condition of the
participants. Variable X(1) stands for the result of a physical test at the beginning of the intervention and
Y (1) represents the result of the same test after the intervention. The pre-interventional physical condition
X(1) affects both the post-interventional condition Y (1) and the participant’s decision RY to complete the
intervention and the final test. The monotonicity RX ≥ RY occurs because the measurement of X(1) is a
prerequisite for participating in the intervention.

We begin by considering the identifiability of the full law under the assumption of monotonicity, meaning
that that RX ≥ RY . This means that

p(X(1), Y (1), RX = 0, RY = 1) = 0

from which we obtain that

p(X(1), Y (1), RX = 0, RY = 0) = p(X(1), Y (1), RX = 0)

and consequently
p(X(1), Y (1), RX = 0, RY = 0)
= p(X(1), Y (1), RX = 0)
= p(Y (1) |X(1), RX = 0)p(X(1) |RX = 0)p(RX = 0)
= p(Y (1) |X(1), RX = 1, RY = 1)p(X(1) |RX = 1)p(RX = 0)
= p(Y |X, RX = 1, RY = 1)p(X |RX = 1)p(RX = 0)

where we used the following facts
X(1) ⊥⊥ RX ,

Y (1) ⊥⊥ RX |X(1),

Y (1) ⊥⊥ {RY , RX} |X(1).

Thus p(X(1), Y (1), RX = 0, RY = 0) is identifiable. The term p(X(1), Y (1), RX = 1, RY = 1) is directly
identifiable from the complete cases. It remains to show that p(X(1), Y (1), RX = 1, RY = 0) is also identifiable.
To show this, we can write

p(X(1), Y (1), RX = 1, RY = 0)
= p(Y (1) |X(1), RX = 1, RY = 0)p(X(1), RX = 1, RY = 0)
= p(Y (1) |X(1), RX = 1, RY = 1)p(X(1), RX = 1, RY = 0)
= p(Y |X, RX = 1, RY = 1)p(X, RX = 1, RY = 0)
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where we again used the fact that Y (1) ⊥⊥ {RX , RY } |X(1). Thus p(X(1), Y (1), RX = 1, RY = 0) is identifiable.
By combining the above cases, we conclude that the full law p(X(1), Y (1), RX , RY ) is identifiable in the
m-DAG of Figure 1 under the assumption of monotonicity.

It is evident that we cannot leverage monotonicity when self-censoring edges are present for identifiability
purposes. However, as the previous example shows, monotonicity can be beneficial when colluders are present.
We present several generalizations of the previous example in the form of graphical criteria and show how
identifiability can be regained when the m-DAG contains colluders. We defer all proofs in Sections 5 and
6 to Appendices A and B, respectively. As a starting point, the following definition characterizes multiple
simultaneous colluders affecting the same response indicator.

Definition 3. A pair (C(1), RY ) is a maximal colluder in an m-DAG G if G contains the edges C
(1)
i → RY

and RCi → RY for all C
(1)
i ∈ C(1) and there does not exist Z(1) ∈ X(1) \C(1) such that G contains the edges

Z(1) → RY and RZ → RY .

For convenience, we use the notation min RC to denote the random variable that takes the smallest value
among members of RC. In other words, min RC is 0 if at least one response indicator in RC is 0 and otherwise
its value is 1, i.e., when all response indicators in RC have the value 1. The following result is immediate.
Theorem 1. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY then
p(RY | paG(RY ))

∣∣
min RC=0, i.e., p(RY | paG(RY )) under the value assignment min RC = 0, is identifiable,

and
p(RY = 1 | paG(RY ))

∣∣
min RC=0 = 0,

p(RY = 0 | paG(RY ))
∣∣
min RC=0 = 1.

Theorem 1 essentially states that we can always identify the conditional distribution of RY for those value
assignments of the relevant response indicators where the monotonicity is violated. Thus it remains to
consider value assignments that do not violate monotonicity, i.e., the case with RC = 1.

When RY has parents that include partially observed variables whose response indicators are not parents of
RY , we can identify the conditional distribution of RY if RY is conditionally independent of the respective
response indicators of the partially observed variables that are parents of RY .
Theorem 2. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and

RY ⊥⊥ R′ | paG(RY ),

where R′ = RpaG(RY )∩X(1) \ paG(RY ), then p(RY | paG(RY ))
∣∣
RC=1 is identifiable, and

p(RY | paG(RY ))
∣∣
RC=1 = p(RY | paG(RY ), R′)

∣∣
RC=1,R′=1

In other words, R′ is a set of response indicators for those partially observed variables that are parents of RY

but that are not themselves parents of RY .

Figure 2a illustrates a scenario considered by Theorem 2. In this m-DAG (X(1), RY ) is a maximal colluder
such that RX ≥ RY , and we have that RY ⊥⊥ R′ | paG(RY ) which in this case translates to RY ⊥⊥
RZ |X(1), Z(1), RX . Now, we can write

p(RY |X(1), Z(1), RX = 1) = p(RY |X(1), Z(1), RX = 1, RZ = 1),

where the right-hand side is identifiable from the observed data distribution.

Another way to identify the conditional distribution of RY is to instead identify the conditional distribution
of the other partially observed variables that are parents of RY given RY and the other parents of RY , but
whose response indicators are not parents of RY .
Theorem 3. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and

Z ⊥⊥ RZ |RY ∪ (paG(RY ) \ Z)
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X(1) Y (1) Z(1)

RX RY RZ

≥

(a)

X(1) Y (1) Z(1)

RX RY RZ

≥

(b)

X(1) Y (1) Z(1) W

RX RY RZ

≥

(c)

X(1) Y (1) Z(1) W (1)

RX RY RZ RW

≥

(d)

X(1) Y (1) Z(1) W (1)

RX RY RZ RW

≥

(e)

Figure 2: Example m-DAGs for Theorems 2–5 where the conditional distribution of RY is identifiable when
the missingness mechanism is locally monotone with respect to (RX , RY ) but not otherwise.

where Z(1) = {Z(1) ∈ X(1) | Z(1) ∈ paG(RY ), RZ ̸∈ paG(RY )}, then p(RY | paG(RY ))
∣∣
RC=1 is identifiable,

and

p(RY | paG(RY ))
∣∣
RC=1

=
p(Z(1) |RZ, RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))∑
RY

p(Z(1) |RZ, RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1,RZ=1

.

An example use case of Theorem 3 is shown in Figure 2b. In contrast to Figure 2a, there is now an
additional edge from RY to RZ , which means that we can no longer use Theorem 2 to identify the conditional
distribution of RY . Again, (X(1), RY ) is a maximal colluder such that RX ≥ RY , but now we have that
Z(1) ⊥⊥ RZ |RY ∪ (paG(RY ) \ Z(1)) which reads as Z(1) ⊥⊥ RZ |RX , RY , X(1) in this instance. By Theorem 3,
we can write

p(RY |X(1), Z(1), RX = 1)

= p(Z(1)|RZ = 1, RY , RX = 1, X(1))p(RY , RX = 1, X(1))∑
RY

p(Z(1)|RZ = 1, RY , RX = 1, X(1))p(RY , RX = 1, X(1))
.

Another strategy is to identify the conditional distribution of RY is analogous to the previous but also
employs a fully observed proxy variable.

Theorem 4. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and there exists
W ⊂ (O \ paG(RY )) such that

Z(1) ⊥⊥ RZ |W ∪RY ∪ (paG(RY ) \ Z(1))

8
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where Z(1) = {Z(1) ∈ X(1) | Z(1) ∈ paG(RY ), RZ ̸∈ paG(RY )}, then p(RY | paG(RY ))
∣∣
RC=1 is identifiable,

and
p(RY | paG(RY ))

∣∣
RC=1

=
∑

W p(Z(1) |W, RY , paG(RY ) \ Z(1), RZ)p(W, RY , paG(RY ) \ Z(1))∑
W,RY

p(Z(1) |W, RY , paG(RY ) \ Z(1), RZ)p(W, RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1,RZ=1

.

Figure 2c depicts a scenario where Theorems 2 and 3 cannot be applied to identify the conditional distribution
of RY , but Theorem 4 applies. The required conditional independence Z(1) ⊥⊥ RZ |W∪RY ∪ (paG(RY )\Z(1))
corresponds to Z(1) ⊥⊥ RZ |W, X(1), RX , RY , which holds in this m-DAG. We can write

p(Z(1), X(1), RY , RX = 1)

=
∑
W

p(Z(1)|RZ = 1, RY , RX = 1, X(1), W )p(X(1), W, RX = 1, RY ),

and we have that
p(RY |X(1), Z(1), RX = 1)

=
∑

W p(Z(1)|RZ = 1, RY , RX = 1, X(1), W )p(X(1), W, RX = 1, RY )∑
RY ,W p(Z(1)|RZ = 1, RY , RX = 1, X(1), W )p(X(1), W, RX = 1, RY )

.

If a fully observed proxy variable required by Theorem 4 does not exist, it may still be possible to use a partially
observed variable instead. However, in this case we must also be able to identify the conditional distribution of
this partially observed variable, thus we employ another assumption of conditional independence, as outlined
by the next theorem.
Theorem 5. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and there exists
W(1) ⊂ (X(1) \ paG(RY )) such that

Z(1) ⊥⊥ RZ ∪ (RW \ paG(RY )) |W(1) ∪RY ∪ (paG(RY ) \ Z(1)), and
W(1) ⊥⊥ RW \ paG(RY ) | {RY } ∪ (paG(RY ) \ Z(1)),

where Z = {Z(1) ∈ X(1) | Z(1) ∈ paG(RY ), RZ ̸∈ paG(RY )}, then p(RY | paG(RY ))
∣∣
RC=1 is identifiable, and

p(RY | paG(RY ))
∣∣
RC=1 =

∑
W(1) Q∑

W(1),RY
Q

∣∣∣∣∣
RC=1,RZ=1,RW=1

,

where
Q = p(Z(1) |W(1), RZ, RW, RY , paG(RY ) \ (Z(1) ∪RW))

× p(W(1) |RW, RY , paG(RY ) \ (Z(1) ∪RW))p(RY , paG(RY ) \ Z(1))

As the conditions of Theorem 5 are rather complicated, we will illustrate the theorem using two examples
where W(1) is a singleton {W (1)}. The first example considers the case where RW ∈ paG(RY ) and the
corresponding m-DAG is shown in Figure 2d. In this scenario, the first required conditional independence
is Z(1) ⊥⊥ RZ |W (1), X(1), RX , RW , RY which holds in the m-DAG, and the second condition is trivially
satisfied. This allows us to write

p(Z(1), X(1), RY , RW = 1, RX = 1)

=
∑
W (1)

p(Z(1)|RY , RZ = 1, RW = 1, RX = 1, X(1), W (1))p(RY , W (1), X(1), RX = 1, RW = 1),

and we have that
p(RY |X(1), Z(1), RW = 1, RX = 1)

=

∑
W (1)

p(Z(1)|RY , RZ =1, RW =1, RX =1, X(1), W (1))p(RY , W (1), X(1), RX =1, RW =1)∑
RY ,W (1)

p(Z(1)|RY , RZ =1, RW =1, RX =1, X(1), W (1))p(RY , W (1), X(1), RX =1, RW =1)
.

9
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Intuitively, Theorems 4 and 5 operate almost identically when RW ⊂ paG(RY ), because the partially observed
variables W(1) essentially act as an observed proxy in Theorem 5 in such cases. In the second example
scenario depicted in Figure 2e, we have that RW ̸∈ paG(RY ). Now, the required conditional independence
restrictions are

Z(1) ⊥⊥ {RZ , RW } |W (1), X(1), RX , RY ,

W (1) ⊥⊥ RW |X(1), RX , RY ,

which hold in the m-DAG. We can write

p(Z(1), X(1), RY , RX = 1)

=
∑
W (1)

p(Z(1)|RY , RZ = 1, RW = 1, RX = 1, X(1), W (1))

× p(W (1)|RY , X(1), RX = 1, RW = 1)p(RY , X(1), RX = 1)

and thus obtain p(RY |X(1), Z(1), RW = 1, RX = 1) as in the first example.

It is important to keep in mind the functional relationships between response indicators when considering
d-separation statements under monotone missing data. For example, in Figure 3a it is the case that
Y (1) ⊥⊥ RY |RX if there is no monotonic relationship between RX and RY irrespective of the values of RX

and RY . However, if the monotonic relationship is present, the conditional independence only holds only if
RX = 1 because only then is RY a true random variable. We note that in Theorems 2–5, we only use the
conditional independence statements implied by d-separation under the value assignment of min RC = 1,
thus avoiding false implications of conditional independence due to the functional relationships arising from
monotone missingness. However, if there are other monotonic relationships present in the missing data model
than those related to the colluder structure, then it may be the case that the required conditional independence
properties no longer hold even if implied by d-separation due to the functional relationships induced by
monotonicity. One might also consider D-separation (Geiger et al., 1990) that takes into account deterministic
variables. However, D-separation may also lead to false conclusions about conditional independence under
monotonicity, as monotonicity only enforces determinism for a subset of value assignments of the response
indicators.

As a tool for full law identification, Theorems 1–5 should be applied to identify the conditional distributions
of response indicators that are colluded. If all conditional distributions of colluded response indicators can
be identified in this way, we can attempt to identify the remaining conditional distributions of response
indicators using existing methods (e.g., Bhattacharya et al., 2020).

6 Identifiability Lost under Monotonicity

Monotonicity is not always beneficial for identification tasks in missing data models. As an example, we
consider the m-DAG of Figure 3a. Without assumptions of monotonicity, the full law is identifiable as the
m-DAG does not contain self-censoring edges or colluders. The identifying formula can be derived as follows:

p(X(1), Y (1), RX , RY )
= p(X(1)|Y (1), RX , RY )p(Y (1)|RX , RY )p(RX , RY )
= p(X(1)|Y (1), RX = 1, RY = 1)p(Y (1)|RX , RY = 1)p(RX , RY )
= p(X|Y, RX = 1, RY = 1)p(Y |RX , RY = 1)p(RX , RY ) (5)

where we used the facts that X(1) ⊥⊥ {RX , RY } |Y (1) and Y (1) ⊥⊥ RY |RX . However, if monotonicity is
assumed, i.e. RX ≥ RY , the response indicators RX and RY become functionally dependent, and the
conditional independence Y (1) ⊥⊥ RY |RX that is critical for obtaining the identifying functional no longer
holds. The nonidentifiability construction provided in Appendix C shows that neither the full law nor even
the marginal distributions p(X(1)) and p(Y (1)) are identifiable under the monotonicity constraint. This
example has been considered previously by e.g., Mohan (2022).

10
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X(1) Y (1)

RX RY

≥

(a)

X
(1)
1 X

(1)
2 X

(1)
3 X

(1)
4

RX1 RX2 RX3 RX4≥ ≥ ≥

(b)

Figure 3: Example m-DAGs where the monotonicity assumption (RX ≥ RY in (a) and RX1 ≥ RX2 ≥ RX3 ≥
RX4 in (b)) renders the full law nonidentifiable.

As a practical example of Figure 3a, consider an epidemiological study on hobbies and cognitive abilities
in elderly people. At the first stage of the study, the participants are asked to fill out a questionnaire on
their hobbies and activities during the past ten years (variable X(1)). Those who returned the questionnaire
are then invited to participate in measurements of cognitive abilities (variable Y (1)). Restricting these
measurements to those who returned the questionnaire implies the monotonic relationship RX ≥ RY . It is
reasonable assume that past hobbies and activities have an effect on the current cognitive abilities (edge
X(1) → Y (1)). Cognitive abilities may affect the ability and motivation to fill out the questionnaire (edge
Y (1) → RX) but past hobbies and activities do not have a direct effect on the filling of the questionnaire (the
absence of self-censoring for X(1)). Neither past hobbies and activities nor cognitive abilities have a direct
effect on whether cognitive abilities are measured or not because this part of the study is not self-administrated
(absence of edges X(1) → RY and Y (1) → RY ).

The monotonicity assumption RX ≥ RY means that the cognitive abilities can be measured only from those
individuals who returned the questionnaire. This breaks identifiability because the observed data do not
provide information on the relation of cognitive abilities Y (1) and the decision to return the questionnaire RX .
Regarding (5), this means that we are not able to identify p(Y (1)|RX = 0, RY = 1) from p(X, Y, RX , RY ).

It is well known that self-censoring edges, i.e., edges of the form X(1) → RX render the corresponding
marginal distribution p(X(1)) nonidentifiable (Mohan et al., 2013). Intuitively, monotonicity can induce
analogous structures which we call self-censoring paths in an m-DAG due to the functional dependency
between the response indicators, i.e., a path from a partially observed variable to its own response indicator
via other response indicators, all of which have a monotonic relationship. An example of a self-censoring
path is presented in Figure 3b. A self-censoring path renders the marginal distribution of the corresponding
partially observed variable nonidentifiable under monotonicity (and consequently the target law and the full
law). This notion is formalized by the following theorem.

Theorem 6. Let G be an m-DAG that contains the edge X
(1)
k → RX1 and the edges RXj−1 → RXj

for all
j = 2, . . . , k (a self-censoring path). If RXj−1 ≥ RXj

for all j = 2, . . . , k, then p(X(1)
k ) is not identifiable.

The following corollary is immediate.
Corollary 1. If an m-DAG G contains a self-censoring path where the response indicators have a monotonic
relationship, then neither the full law nor the target law is identifiable.

In addition, if there is a true dependency between the partially observed variables whose response indicators
are part of the self-censoring path, it may not be possible to identify even the marginal distributions of these
variables, as demonstrated in Appendix C.

7 Discussion

We considered monotone missing data and its implications on nonparametric full law identifiability from a
graphical modeling perspective. Specifically, we showed that the colluder structure is not always a detriment
to identification under missing data, and conversely, how the self-censoring path structure emerges as a
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barrier to identification, analogously to self-censoring. These findings emphasize that monotone missing data
must be properly accounted for both in identification and estimation, and not merely dismissed as a special
instance of missing data.

In the present work, we focused on missing data models associated with DAGs. In other words, we assumed
that no hidden variables are present. Missing data models with hidden variables are often represented via
acyclic directed mixed graphs (ADMG) where bidirected edges are used to denote the effects of hidden
confounders (Richardson et al., 2023). We note however, that our results directly generalize to such models
because Theorems 1–5 only make use of d-separation properties of m-DAGs to derive conditional independence
properties, which can be accomplished analogously via m-separation in missing data ADMGs (under value
assignments of response indicators where monotonicity is not violated). Similarly, the construction used to
prove Theorem 6 is also valid for missing data ADMGs.

The presented work leaves some avenues for potential future research. It may be possible to devise an
identifiability algorithm or a graphical criterion for monotone missingness similar to those for nonmonotone
missingness. However, this approach would face several challenges. First, the deterministic relationships
implied by a locally monotone missingness mechanism make it impractical to leverage d-separation for
conditional independence constraints. Furthermore, the deterministic relationships are dependent on the
particular value assignment to the response indicators. Second, while the result by Nabi et al. (2020) provides
a complete characterization of full law identifiability under nonmonotone missingness, the result relies on the
OR factorization in (4) meaning that it does not directly translate to monotone settings. Similarly, there is
currently no complete characterization of target law identifiability even under nonmonotone missingness.

The question remains whether the self-censoring path is the only new structure under monotone missing data
that renders the full law (and the target law) nonparametrically nonidentifiable. We hypothesize that this is
the case. It also seems that monotonicity is only beneficial for full law identification and not for target law
identification. Intuitively, this would seem to be true as identification of the target law does not necessitate
identification of the entire missingness mechanism, but only the fully observed portion where all response
indicators have a value assignment of one, and monotonicity does not have an impact on positivity.
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A Proofs for Section 5 (Identifiability Gained under Monotonicity)

Theorem 1. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY then
p(RY | paG(RY ))

∣∣
min RC=0, i.e., p(RY | paG(RY )) under the value assignment min RC = 0, is identifiable,

and
p(RY = 1 | paG(RY ))

∣∣
min RC=0 = 0,

p(RY = 0 | paG(RY ))
∣∣
min RC=0 = 1.

Proof. The claim follows directly from Definition 1, as the missingness mechanism is locally monotone with
respect to each pair (RC , RY ), C(1) ∈ C(1).

Theorem 2. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and

RY ⊥⊥ R′ | paG(RY ),

where R′ = RpaG(RY )∩X(1) \ paG(RY ), then p(RY | paG(RY ))
∣∣
RC=1 is identifiable, and

p(RY | paG(RY ))
∣∣
RC=1 = p(RY | paG(RY ), R′)

∣∣
RC=1,R′=1

Proof. If paG(RY ) ∩X(1) = ∅, the claim is immediate because paG(RY ) is fully observed. Suppose now that
paG(RY ) ∩X(1) ̸= ∅. Then, by the assumed conditional independence, we have that

p(RY | paG(RY ))
∣∣
RC=1 = p(RY | paG(RY ), R′)

∣∣
RC=1,R′=1 ,

where the right-hand side is a function of the observed data distribution.

Theorem 3. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and

Z ⊥⊥ RZ |RY ∪ (paG(RY ) \ Z)

where Z(1) = {Z(1) ∈ X(1) | Z(1) ∈ paG(RY ), RZ ̸∈ paG(RY )}, then p(RY | paG(RY ))
∣∣
RC=1 is identifiable,

and
p(RY | paG(RY ))

∣∣
RC=1

=
p(Z(1) |RZ, RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))∑
RY

p(Z(1) |RZ, RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1,RZ=1

.

Proof. If Z(1) = ∅, the claim follows by observing that p(RY | paG(RY ))
∣∣
RC=1 is directly identifiable from

the observed data distribution, as the right-hand side may only contain observed proxies, response indicators,
and partially observed variables whose response indicators are also parents of RY .

Suppose now that Z(1) ̸= ∅. Then, by the assumed conditional independence, we have that

p(Z(1), RY , paG(RY ) \ Z(1))
∣∣∣
RC=1

= p(Z(1) |RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))
∣∣∣
RC=1

= p(Z(1) |RZ, RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))
∣∣∣
RC=1,RZ=1
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where both terms on the last line are identifiable from the observed data distribution. Thus
p(Z(1), RY , paG(RY ) \ Z(1))

∣∣
RC=1 is identifiable, and we can write

p(RY | paG(RY ))
∣∣
RC=1

=
p(RY , paG(RY ))∑
RY

p(RY , paG(RY ))

∣∣∣∣∣
RC=1

=
p(Z(1), RY , paG(RY ) \ Z(1))∑
RY

p(Z(1), RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1

=
p(Z(1) |RZ, RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))∑
RY

p(Z(1) |RZ, RY , paG(RY ) \ Z(1))p(RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1,RZ=1

,

and the claim follows. Note that despite the monotonicity min RC ≥ RY , the denominator in the identifying
functional is always positive because of the value assignment RC = 1.

Theorem 4. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and there exists
W ⊂ (O \ paG(RY )) such that

Z(1) ⊥⊥ RZ |W ∪RY ∪ (paG(RY ) \ Z(1))

where Z(1) = {Z(1) ∈ X(1) | Z(1) ∈ paG(RY ), RZ ̸∈ paG(RY )}, then p(RY | paG(RY ))
∣∣
RC=1 is identifiable,

and
p(RY | paG(RY ))

∣∣
RC=1

=
∑

W p(Z(1) |W, RY , paG(RY ) \ Z(1), RZ)p(W, RY , paG(RY ) \ Z(1))∑
W,RY

p(Z(1) |W, RY , paG(RY ) \ Z(1), RZ)p(W, RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1,RZ=1

.

Proof. By the assumed conditional independence, we have that

p(Z(1), RY , paG(RY ) \ Z(1))
∣∣∣
RC=1

=
∑
W

p(Z(1), W, RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1

=
∑
W

p(Z(1) |W, RY , paG(RY ) \ Z(1))p(W, RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1

=
∑
W

p(Z(1) |W, RY , paG(RY ) \ Z(1), RZ)p(W, RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RC=1,RZ=1

thus the claim follows by using the same reasoning as in the proof of Theorem 3.

Theorem 5. Let G be an m-DAG with a maximal colluder (C(1), RY ). If min RC ≥ RY and there exists
W(1) ⊂ (X(1) \ paG(RY )) such that

Z(1) ⊥⊥ RZ ∪ (RW \ paG(RY )) |W(1) ∪RY ∪ (paG(RY ) \ Z(1)), and
W(1) ⊥⊥ RW \ paG(RY ) | {RY } ∪ (paG(RY ) \ Z(1)),

where Z = {Z(1) ∈ X(1) | Z(1) ∈ paG(RY ), RZ ̸∈ paG(RY )}, then p(RY | paG(RY ))
∣∣
RC=1 is identifiable, and

p(RY | paG(RY ))
∣∣
RC=1 =

∑
W(1) Q∑

W(1),RY
Q

∣∣∣∣∣
RC=1,RZ=1,RW=1

,
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where
Q = p(Z(1) |W(1), RZ, RW, RY , paG(RY ) \ (Z(1) ∪RW))

× p(W(1) |RW, RY , paG(RY ) \ (Z(1) ∪RW))p(RY , paG(RY ) \ Z(1))

Proof. Let D = C(1) ∪ {W (1) ∈ X(1) | W (1) ∈ W(1), RW ∈ paG(RY )}. By the assumed conditional
independence properties, we have that

p(Z(1), RY , paG(RY ) \ Z(1))
∣∣∣
RD=1

=
∑

W(1)

p(Z(1), W(1), RY , paG(RY ) \ Z(1))

∣∣∣∣∣
RD=1

=
∑

W(1)

p(Z(1) |W(1), RY , paG(RY ) \ Z(1))p(W(1) |RY , paG(RY ) \ Z(1))

× p(RY , paG(RY ) \ Z(1))
∣∣∣
RD=1

=
∑

W(1)

p(Z(1) |W(1), RZ, RW, RY , paG(RY ) \ (Z(1) ∪RW))

× p(W(1) |RW, RY , paG(RY ) \ (Z(1) ∪RW))p(RY , paG(RY ) \ Z(1))
∣∣∣
RC=1,RZ=1,RW=1

thus the claim follows by using the same reasoning again as in the proof of Theorem 3.

B Proofs for Section 6 (Identifiability Lost under Monotonicity)

Theorem 6. Let G be an m-DAG that contains the edge X
(1)
k → RX1 and the edges RXj−1 → RXj

for all
j = 2, . . . , k (a self-censoring path). If RXj−1 ≥ RXj

for all j = 2, . . . , k, then p(X(1)
k ) is not identifiable.

Proof. Without loss of generality, we may assume that O = ∅. If k = 1 the claim is immediate due to the self-
censoring edge X1 → RX1 . Suppose now that k > 1. We construct two models (parametrizations) such that the
observed data laws agree but the full laws disagree between the models. We denote Z = {X(1)

k , RX1 , . . . , RXk
}

and let W = (X(1) ∪R) \ Z. We let the effects of variables in W on those in Z be null effects and vice versa
for all value assignments. Further, we assume that following probability is constant and the same in both
models ∏

Vi∈W

p(Vi | paG(Vi)) = α.

Next, we define the parametrizations along the self-censoring path in both models (we assume that X
(1)
k is

binary):

β0,1 = p1(X(1)
k = 0 | paG(X(1)

k )) = γ,

β0,2 = p2(X(1)
k = 0 | paG(X(1)

k )) = 1− γ,

β1,0,1 = p1(RX1 = 0 | paG(RX1))
∣∣
X

(1)
k

=0 = γ,

β1,0,2 = p2(RX1 = 0 | paG(RX1))
∣∣
X

(1)
k

=0 = 1− γ,

β1,1,1 = p1(RX1 = 0 | paG(RX1))
∣∣
X

(1)
k

=1 = 1− γ,

β1,1,2 = p2(RX1 = 0 | paG(RX1))
∣∣
X

(1)
k

=1 = γ,
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where γ can be chosen freely as long as γ ̸= 0.5, and

β2,0,i = p1(RX2 = 0 | paG(RX2))
∣∣
RX1 =0 = 1,

β2,1,i = p2(RX2 = 0 | paG(RX2))
∣∣
RX1 =1 = 0.5,

...
βj,0,i = p1(RXj

= 0 | paG(RXk
))

∣∣
RXk−1 =0 = 1,

βj,1,i = p2(RXj
= 0 | paG(RXk

))
∣∣
RXk−1 =1 = 0.5,

for i = 1, 2. First, we must ensure that the observed data laws agree. To simplify the exposition, we define
the following functions for the models:

fi(x(1)
k , rX1 , . . . , rXk

)

=
∏

Vi∈Z

pi(Vi | paG(Vi))

∣∣∣∣∣
X

(1)
k

=x
(1)
k

,RX1 =rX1 ,...,RXk
=rXk

= β
1−x

(1)
k

0,i (1− β0,i)x
(1)
k β

1−rX1

1,x
(1)
k

,i
(1− β1,x

(1)
k

,i
)rX1

k∏
j=2

β
1−rXj

k,rXj−1 ,i(1− βk,rXj−1 ,i)rXj .

We can simplify these functions by writing them separately for the two models

f1(x(1)
k , rX1 , . . . , rXk

) = 1
2c(r2,...,rk)


γ2 x

(1)
k = 0, rX1 = 0,

(1− γ)2 x
(1)
k = 1, rX1 = 0,

γ(1− γ) rX1 = 1, rXj
≥ rXj+1 , j = 1, . . . , k − 1

0 otherwise

f2(x(1)
k , rX1 , . . . , rXj ) = 1

2c(r2,...,rk)


γ2 x

(1)
k = 1, rX1 = 0,

(1− γ)2 x
(1)
k = 0, rX1 = 0,

γ(1− γ) rX1 = 1, rXj
≥ rXj+1 , j = 1, . . . , k − 1

0 otherwise

where c(r2, . . . , rk) =
∑k

j=2 rXj
. Denote f∗

i = 2c(r2,...,rk)fi. We can now express the full law as follows for
both models

pi(X(1) = x, R = r) = 2−c(rX2 ,...,rXk
)αf∗

i (x(1)
k , rX1 , . . . , rXk

).

We have the following system of equations for the observed data law, where the following functions must
have the same value for i = 1 and i = 2 for all value assignments X = x.

hi(x)
= pi(X = x, R = r(x))

=
∑

(x′(1),r′) s.t. (x
′(1)
j

,r′
Xj

)∈

{
(xj , 1) if Xj ̸= NA
{(0, 0), (1, 0)} if Xj = NA

pi(X(1) = x′, R = r′).

Because the factors α and c(·) agree between the models, it suffices to focus on the functions f∗
i . If Xk ̸= NA,

then it must be that X1 ̸= NA also, and it is easy to see that the value of the functions hi agree as
f∗

1 (·) = f∗
2 (·) = γ(1− γ) (or equal to zero) for all value assignments. When Xj = NA and X1 ̸= NA, we have

again f∗
1 (·) = f∗

2 (·) = γ(1− γ) (or equal to zero) for all value assignments, thus all terms in the sum agree
between the models. When Xk = NA and X1 = NA the terms in the sum can be split into pairs such that
each pair has a term with the factor γ2 and a term with the factor (1− γ)2 (corresponding to either Xk = 0
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or Xk = 1 depending on the model). Thus the expression of hi is symmetric with respect to γ and (1− γ).
Thus h1(x) = h2(x) for all value assignments.

Next, we consider the marginal distribution of X
(1)
k in both models

pi(X(1)
k = xk) =

∑
x\{x

(1)
k

}

∑
r

pi(X = x, R = r)

=
∑

x\{x
(1)
k

}

∑
r

2−c(rX2 ,...,rXk
)αf∗

i (x(1)
k , rX1 , . . . , rXk

)

We may again ignore the factors α and c(·) and focus on the following expression∑
x\{x

(1)
k

}

∑
r

f∗
i (x(1)

k , rX1 , . . . , rXk
)

Without loss of generality, we assume that the number of partially observed variables is k and that all other
partially observed variables are also binary. When at least one of RX1 , . . . , RXk

is not zero, the functions f∗
i

always output the value 0 for value assignments that violate monotonicity and the value γ(1− γ) otherwise.
When all of RX1 , . . . , RXk

are equal to 0, then f1(x(1)
k = 0, ·) = γ2 and f2(x(1)

k = 0, ·) = (1 − γ)2. There
are 2k−1 ways to choose the values of X

(1)
1 , . . . , X

(1)
k−1 and k value assignments to R that do not violate

monotonicity where at least one partially observed variable is not missing. Thus we have that∑
x\{x

(1)
k

}

∑
r

f∗
i (x(1)

k , rX1 , . . . , rXk
)

= 2k−1
∑

rX1 ,...,rXk

f∗
i (x(1)

k , rX1 , . . . , rXk
)

= 2k−1


γ2 + kγ(1− γ) i = 1, x

(1)
k = 0,

(1− γ)2 + kγ(1− γ) i = 1, x
(1)
k = 1,

(1− γ)2 + kγ(1− γ) i = 2, x
(1)
k = 0,

γ2 + kγ(1− γ) i = 2, x
(1)
k = 1.

Because we can freely choose the value of γ (as long as γ ̸= 0), there are infinitely many models that agree on
the observed data law, but disagree on the marginal distribution of X

(1)
k .

C Nonidentifiability construction for a bivariate self-censoring path

We consider a scenario with a locally monotone missingness mechanism with respect to (RX , RY ) and a
self-censoring path where there is also a true dependency between X(1) and Y (1). Thus we assume that b ≠ d
and c ̸= e in the parametrization below.

X(1) Y (1)

RX RY

X Y

X(1) p(X(1))
1 a
0 1 − a

X(1) Y (1) p(Y (1)|X(1))
1 1 b
1 0 1 − b
0 1 d
0 0 1 − d

Y (1) RX p(RX |Y (1))
1 1 c
1 0 1 − c
0 1 e
0 0 1 − e

RX RY p(RY |RX )
1 1 f
1 0 1 − f
0 1 0
0 0 1
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RX RY X(1) Y (1) p(X(1), Y (1), RX , RY ) X Y p(X, Y, RX , RY )

1 1
1 1 abcf 1 1 abcf = p11
1 0 a(1 − b)ef 1 0 a(1 − b)ef = p10
0 1 (1 − a)dcf 0 1 (1 − a)dcf = p01
0 0 (1 − a)(1 − d)ef 0 0 (1 − a)(1 − d)ef = p00

1 0
1 1 abc(1 − f) 0

NA
a[bc + (1 − b)e](1−f) = p0NA1 0 a(1 − b)e(1 − f)

0 1 (1 − a)dc(1 − f) 1 (1−a)[dc+(1−d)e](1−f) = p1NA0 0 (1 − a)(1 − d)e(1 − f)

0 1
1 1 0

NA
0 01 0 0

0 1 0 1 00 0 0

0 0
1 1 ab(1 − c)

NA NA
(1 − a)[(1 − d)(1 − e) + d(1 − c)]
+ a[(1 − b)(1 − e) + b(1 − c)]
= pNANA

1 0 a(1 − b)(1 − e)
0 1 (1 − a)d(1 − c)
0 0 (1 − a)(1 − d)(1 − e)

The probabilities p11, p10, p01, p00, p0NA + p1NA, and pNANA are observed and they sum to 1. Note that
p0NA and p1NA cannot be specified separately because they are functionally dependent on other probabilities.
We use shortcut notations γ1 = p11/p01 and γ0 = p10/p00. When parameter a is fixed, the other parameters
can be solved from the observed probabilities as follows:

b =
γ0 − a

1−a γ1γ0

γ0 − γ1
,

c = p11(γ0 − γ1)
(1− a)γ0γ1 − aγ1

,

d =
γ0 − a

1−a

γ0 − γ1
,

e = p10(γ0 − γ1)
aγ0 − (1− a)γ0γ1

,

f = p11 + p10 + p01 + p00

p11 + p10 + p01 + p00 + p1NA + p0NA
.

It remains to check that the solutions for b, c, d, e, f are between 0 and 1. This directly holds for parameter f
that does not depend on parameter a. The constraints 0 < b < 1 and 0 < d < 1 induce a necessary condition
min(γ0, γ1) < a/(1− a) < max(γ0, γ1).

In order to present a specific construction for nonidentifiability, consider the observed probabilities p11 = 1/5,
p10 = 1/10, p01 = 1/10, p00 = 1/5, p1NA = 1/20 and p0NA = 1/10. We obtain γ1 = 2 and γ0 = 1/2, which
implies 1/3 < a < 2/3. Investigation of the constraints 0 < c < 1 and 0 < e < 1 reduces this interval
to 9/20 < a < 11/20. This means that we may define two models by picking two different values of a
from this interval and then solve the values of the other parameters. The two models will agree on all
observed distributions but differ by unobserved distributions. As an illustration consider the models M1
with a = 7/15 ≈ 0.47 and M2 with a = 8/15 ≈ 0.53.

Parameter M1 M2
a 7/15 8/15
b 12/21 3/4
c 15/16 5/8
d 1/4 9/21
e 5/8 15/16
f 4/5 4/5

The table below shows the probabilities of the full law underM1 andM2. It can be seen that the distributions
differ when RX = 0 and RY = 0 and are otherwise the same. This means the full laws differ between the
models M1 and M2 while the observed data law are the same. By summing the probabilities over RX and
RY it can be confirmed that also the target laws and the marginal distributions P (X(1)) and P (Y (1)) differ
between the models M1 and M2.
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RX RY X(1) Y (1) p(X(1), Y (1), RX , RY ) M1 M2

1 1
1 1 abcf 1

5
1
5

1 0 a(1 − b)ef 1
10

1
10

0 1 (1 − a)dcf 1
10

1
10

0 0 (1 − a)(1 − d)ef 1
5

1
5

1 0
1 1 abc(1 − f) 1

20
1

20
1 0 a(1 − b)e(1 − f) 1

40
1

40
0 1 (1 − a)dc(1 − f) 1

40
1

40
0 0 (1 − a)(1 − d)e(1 − f) 1

20
1

20

0 1
1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

0 0
1 1 ab(1 − c) 1

60
3

20
1 0 a(1 − b)(1 − e) 3

40
1

120
0 1 (1 − a)d(1 − c) 1

120
3

40
0 0 (1 − a)(1 − d)(1 − e) 3

20
1

60
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