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Abstract

Variable binding—the ability to associate vari-
ables with values—is fundamental to symbolic
computation and cognition. Although classical
architectures typically implement variable bind-
ing via addressable memory, it is not well under-
stood how modern neural networks lacking built-
in binding operations may acquire this capacity.
We investigate this by training a Transformer to
dereference queried variables in symbolic pro-
grams where variables are assigned either numer-
ical constants or other variables. Each program
requires following chains of variable assignments
up to four steps deep to find the queried value,
and also contains irrelevant chains of assignments
acting as distractors. Our analysis reveals a de-
velopmental trajectory with three distinct phases
during training: (1) random prediction of numeri-
cal constants, (2) a shallow heuristic prioritizing
early variable assignments, and (3) the emergence
of a systematic mechanism for dereferencing as-
signment chains. Using causal interventions, we
find that the model learns to exploit the resid-
ual stream as an addressable memory space, with
specialized attention heads routing information
across token positions. This mechanism allows
the model to dynamically track variable bindings
across layers, resulting in accurate dereferencing.
Our results show how Transformer models can
learn to implement systematic variable binding
without explicit architectural support, bridging
connectionist and symbolic approaches.

1. Introduction

Variable binding, the ability to associate abstract variables
with specific values, is a fundamental operation in compu-
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Figure 1. Example 3-Hop Program. While our programs have 17
lines, this example only has 7 lines for illustration. The variable
chain of the query variable (w) includes 3 variable assignments or
“hops.” This program also includes 3 irrelevant variable assign-
ments that act as distractors. An interactive version of this plot for
any program can be viewed on 4 variablescope.org.

tation and cognition. It enables systems to represent and
manipulate structured information by maintaining relation-
ships between abstract roles and their concrete instantiations.
In classical computer architectures, variable binding is im-
plemented through addressable read/write memory, where
variables serve as addresses pointing to memory locations
containing their bound values. This mechanism separates
computational machinery from specific values, allowing
general-purpose algorithms to operate on arbitrary inputs
without requiring dedicated computations for each possible
input-output pairing.

The question of how neural networks might implement vari-
able binding, if at all, has been a central point of contention
in debates between classicist and connectionist theories of
cognitive architecture (Smolensky, 1990; Gallistel & King,
2011; Alhama & Zuidema, 2019). Classicists argue that
connectionist models face significant challenges in account-
ing for the systematic and compositional processing that
variable binding enables in symbolic systems. Although
some theorists acknowledge that neural networks could in
principle exhibit systematic behavior, they suggest that this
would merely result from implementing a classical archi-
tecture with explicit variable binding operations (Marcus
1998; Marcus et al. 1999; Marcus 2001; cf. Elman 1999;
Seidenberg & Elman 1999a;b; Geiger et al. 2023).

The advent of the Transformer architecture provides a new
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Figure 2. Behavioral results showing the learning dynamics of our model across training steps. (a) Overall test set accuracy demonstrates
three distinct learning phases, with rapid improvements at and steps. (b) Accuracy breakdown by correct answer line position (1-16)
(c) Average accuracy of model checkpoints depending on the number of “hops” of the query variable chain in test set programs. (d)
Distribution of model predictions across numerical constants. Vertical dashed lines (at step 800 and 14000) identify the beginning of each

major nonlinear transition phase in the developmental trajectory.

avenue for exploring these questions about variable binding
in neural networks. Transformers can be seen as imple-
menting a form of read/write memory through their residual
stream—the high-dimensional vector space at each token po-
sition that acts as a communication channel between layers.
This space is addressable through learned linear projections,
allowing attention heads to read from and write to specific
subspaces (Vaswani et al., 2017). This raises the possibility
that Transformers might learn to use their residual stream
to implement variable binding operations without explicit
architectural support for symbol manipulation.

Recent mechanistic interpretability research has begun to in-
vestigate the internal mechanisms underlying variable bind-
ing in Transformers. Davies et al. (2023) and Prakash et al.
(2024) uncover variable binding circuitry by learning binary
masks over model components that mediate variables and
values. Additional studies have shown the presence of “bind-
ing ID vectors” that associate entities with their attributes,
with these vectors occupying a specific “binding subspace”
within the activation space (Feng & Steinhardt, 2024b;a; Dai
et al., 2024). These findings suggest that variable binding
may emerge as a necessary capability for language models
to satisfy their training objectives.

In this paper, we investigate the open question of how the
capacity for variable binding emerges in neural networks
during training. We focus on a variable dereferencing task
using synthetic programs with a Python-like syntax. These
programs consist of 17 lines, where each line (except the
last) contains a variable assignment statement of the form
var = const or var = var. The final line contains a query
instruction #var: that asks the network to output the value
bound to the specified variable. Fig. 1 illustrates this task
with a simplified 5-line example.

Our analysis uncovers a distinct three-phase developmen-
tal trajectory in the model’s learning process. The model
begins with (1) random predictions of numerical constants,
then progresses to (2) shallow heuristics that prioritize early
variable assignments, before finally developing (3) a system-
atic mechanism for variable dereferencing. Through careful
causal interventions, we demonstrate that the model learns
to use its residual stream as an addressable memory space,
with specialized attention heads routing information across
token positions to track variable assignments. Notably, we
find that the model’s final solution builds upon, rather than
replaces, its earlier heuristics. This finding challenges tradi-
tional narratives suggesting that neural networks abandon
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early strategies when they discover a systematic solution to a
task. The observed developmental trajectory provides a new
perspective on how neural networks can acquire structured
reasoning capabilities without explicit symbolic machin-
ery. Our results show that Transformer models can imple-
ment fundamental aspects of symbolic computation through
learned mechanisms, contributing valuable evidence to on-
going debates about connectionist and symbolic approaches
to computation and cognition.

To facilitate transparent and reproducible interpretability
research, we developed Variable Scope, an interactive web
platform that allows researchers to explore and verify our
experimental findings. The platform includes interactive
visualizations of the program structure, training checkpoint
evaluation, model developmental trajectory, causal interven-
tion experiments, and subspace experiments. This platform
builds on previous efforts to present experimental results
interactively, such as the Distill Circuits Thread, while pro-
viding more granular tools to visualize and analyze the
evolution of a neural network over the course of training
(Cammarata et al., 2020). Through Variable Scope, we aim
to establish a new standard for open and collaborative mech-
anistic interpretability research: 8 variablescope.org.

2. Training a Transformer to Run Programs
2.1. The Task

Our task requires a model to process programs with variable
assignments and determine the final value of a queried vari-
able. Fig. 1 shows an abbreviated 7-line example program.
The final line queries variable w, which has a value of 2. To
determine this value, the model must trace through a chain
of variable assignments: w = j, j = k, and finally k¥ = 2.
This dereferencing process requires the model to track and
retrieve variable bindings throughout the program.

Referential Depth We define referential depth as the num-
ber of assignment steps needed to reach a numerical value
from a queried variable v, where for a chain of assignments
v = v1,V1 = V2,...,Up_1 = ¢ (With ¢ being a numerical
constant), the referential depth is n. Our programs contain
variable chains with depths ranging from 1 to 4. These
chains form a directed graph structure where variables are
nodes and assignments are edges. To correctly dereference
a queried variable, the model must traverse this graph along
the relevant path while ignoring irrelevant branches. For
instance, the program in Fig. 1 has a referential depth of
3, as three steps or “hops” are required to trace from the
queried variable to its final value (w — j — k — 2).

Distractors Our programs include distractor variable
chains that are either wholly independent from the queried
variable chain or branch out from it. A distractor chain is any

sequence of variable assignments that does not contribute
to determining the final value of the queried variable but
might complicate the task by introducing irrelevant variable
relationships. These distractors prevent the network from
solving the task through simple pattern matching, instead
requiring it to accurately track the relevant variable bind-
ings. For example, in the program shown in Fig. 1, the chain
b — j — k — 2 represents a distractor that branches from
the queried variable’s referential chain at variable j.

Program Sampling Procedure We generate a dataset of
500,000 programs. Our splits are: training (450,000 pro-
grams, 90%), validation (1,000 programs, 0.2%), and testing
(49,000 programs, 9.8%). Programs use 26 lowercase letters
(a-z) as variables and single-digit numbers (0-9) as values.
Every line follows a four-token structure: (1) a variable on
the left-hand side, (2) an equality “=", (3) either a variable
or a value on the right-hand side, and (4) a newline token.

Each line has a 30% chance of having a numerical constant
on the right-hand side of the equality sign, and a 70% chance
of having a variable reference, provided that previously
defined variables exist. When a variable appears on the
right-hand side, multiple variable chains could potentially be
extended. We deliberately favor longer chains by sampling
with probability proportional to the cube of the chain length.
The query variable is selected using the same weighting
scheme. Finally, we use rejection sampling to balance the
dataset across the four possible referential depths (1-4 hops).
This sampling procedure ensures the presence of sufficiently
long distractor chains in the data, preventing the model
from achieving high performance simply by selecting values
associated with the longest chains. Instead, the model must
learn to follow the referential paths of each query.

2.2. Training a Transformer

We train a Transformer model from scratch on our task. Our
model is architecturally similar to GPT-2 (Radford et al.,
2019), with 37.8M parameters. The model has 12 layers,
each with 8 attention heads with a head dimension of 64
and a residual stream dimension of 512. We implement
LayerNorm (Ba et al., 2016) before each attention and MLP
block, use rotary positional embeddings (RoPE) (Su et al.,
2024), apply GELU activations between layers (Hendrycks
& Gimpel, 2016), and a dropout rate of 0.1. We do not tie
the input and output embedding weights. After training, our
model achieves near-perfect performance on the held-out
test set (over 99.9% accuracy), showing it has learned a
robust mechanism for variable binding and dereferencing.

2.3. Phase 1: Predicting Numbers Instead of Letters

In the first phase (training steps 0 to 800), the model per-
forms at approximately chance level, achieving only around
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12% accuracy (Fig. 2a). During this phase, the model only
learns that the answer should be a numerical value rather
than a variable name or special token. This is reflected in
the model’s prediction distribution, where numerical tokens
receive a higher probability mass, though in a notably imbal-
anced and unstable pattern (Fig. 2d). Despite recognizing
that it should output numbers, the model has not yet devel-
oped any systematic strategy to identify which particular
numerical constant is the correct answer.

2.4. Phase 2: Learning Early Line Heuristics

The second phase (training steps 1200 to 14000) begins
with a sharp performance jump from 12% to 56% accuracy.
During this phase, the model develops two primary predic-
tion strategies or heuristics—simplified decision rules that
approximate a solution without fully solving the task. These
include: (1) a “line-1 heuristic” that selects the numerical
constant from the first program line, and (2) a “line-2 heuris-
tic” that selects the numerical constant from the second line
(when the right-hand side of that line contains a number).
Fig. 2c illustrates this development by showing the model’s
accuracy over time for programs where the correct answer
appears on specific lines. Accuracy for programs with an-
swers on line 1 increases dramatically to over 90%, while
accuracy for programs with answers on line 2 reaches ap-
proximately 65%. The line-1 heuristic proves particularly
effective because our program generation process tends to
place the root values of longer reference chains in earlier
lines. This is evident in the model’s higher Phase 2 accuracy
on programs with longer query variable chains (Fig. 2c). For
multi-hop programs, the root value—the numerical constant
at the end of the chain—frequently appears in the first or
second line, making these early-line heuristics surprisingly
successful. Conversely, 1-hop programs show slower con-
vergence because their answer (a numerical constant directly
assigned to the queried variable) could appear on any line,
making these position-based heuristics less reliable.

2.5. Phase 3: Systematic Variable Binding

In Phase 3 (training steps 34000 to 105400), we observe
another sharp performance transition, with accuracy jump-
ing from 56% to 99%. During this phase, accuracy rapidly
improves across all reference depths and distractor config-
urations, eventually exceeding 99.9% on the test set. The
model demonstrates robust performance regardless of query
variable chain length (Fig. 2c) or the position of the cor-
rect answer within the program (Fig. 2b). This dramatic
improvement suggests that the model has acquired a gen-
eral solution capable of tracing variable chains to any depth
while appropriately ignoring distractor assignments.

3. Causal Analysis

To understand how the model learns to solve our variable
binding task, we use mechanistic interpretability techniques
(Cammarata et al., 2020; Saphra & Wiegreffe, 2024; Sharkey
et al., 2025) grounded in causal analysis (Cao et al., 2020;
2022; Csordss et al., 2021; Geiger et al., 2021; 2024; Chan
etal., 2022; Mueller et al., 2024). These methods allow us to
reverse engineer the model’s internal mechanisms and pro-
vide insights into how neural networks implement symbolic
operations. An important feature of our experiment is its
developmental perspective (Lovering et al., 2021; Liu et al.,
2022; Nanda et al., 2023; Merrill et al., 2023): we track
how the network’s internal mechanisms evolve throughout
training instead of analyzing only the fully trained model.

At the core of our approach is the interchange intervention
method (Vig et al., 2020; Geiger et al., 2020). This tech-
nique involves taking specific components from the model’s
computation graph and replacing them with values they
would have if the model were processing a different, care-
fully constructed counterfactual input—a modified version
of the original input that differs in a controlled way. By
observing how these interventions affect the model’s out-
put, we can identify causal relationships between internal
components and model behavior.

Constructing Counterfactual Inputs We use inter-
change interventions to conduct a causal tracing experiment
(Meng et al., 2022), allowing us to track how information
about specific tokens flows through the model from input
to output. While Meng et al. injected noise into activa-
tions, our approach instead replaces activations with values
from specially constructed counterfactual inputs. For each
program in our dataset, we create a counterfactual by first
identifying the “root” of the variable chain (the original
numerical value that determines the final value of the query
variable), and then modifying this root value to a different
number. When we intervene by replacing components with
their counterfactual values, a successful intervention causes
the model to output this new number instead of the original
one. This provides a clear signal indicating which model
components are responsible for propagating the root value
through the network to the final prediction.

3.1. Final Checkpoint Analysis

We intervene at two strategic locations in the model archi-
tecture. First, we intervene on the residual stream of the
Transformer—the block of hidden vectors for each token
that serves as input to each layer. Second, we intervene on
the outputs of individual attention heads to trace how infor-
mation moves across token positions. These complementary
interventions allow us to pinpoint where and how variable
binding information flows through the network.
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(b): Aggregated patching results targeting only the query vari-
able, the following colon, and the right-hand-side (RHS) to-
kens at different depths of the query assignment chain (e.g.,
“8”, “b”, and “q” in Fig. 3(a)). Patching success rate measures
how often the intervention causes the model to predict the
new number as its top choice, averaged across test programs.
A high success rate indicates that the intervened component
contains causally relevant information about the output.

Figure 3. Patching analysis results on the final model checkpoint. In all experiments, logits are computed by passing the patched hidden
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(c): Patching results targeting individual attention heads. For
each (head, token) position, we replace only that head’s contri-
bution to the residual stream with its counterfactual value and
compute logits. We analyze only programs where the correct
answer appears after line 2. Layers without significant signals
are excluded but shown in Appendix K.

states through the unembedding matrix to measure how interventions affect token predictions.
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Tracing a Single Example Consider the example pro-
gram and its pre-residual stream patching results shown in
Fig. 3(a). This program contains a query referential chain
(z = ¢ — b — 8) formed by three assignment statements:
b =38, q=0",and z = ¢q. Our patching analysis reveals that
token locations with high logit difference values across lay-
ers correspond precisely to the right-hand side positions of
these assignment statements, along with the query variable
and colon token in the final query line. This clear pattern of
information flow, visible in Fig. 3(b), motivates us to per-
form systematic pre-residual stream patching experiments
on the inputs to each layer.

Intervening on the Residual Stream The attention mech-
anisms in each layer can move information in the residual
stream between different tokens. This path of information
flow depends on the specific input provided to the model.
When performing interchange interventions on the residual
stream, we dynamically select token locations rather than
intervening at fixed token indices. Our Transformer model
uses causal attention, meaning that information can only
flow from left to right; consequently, later tokens contain
information about earlier tokens. Based on this property, we
conduct intervention experiments on tokens that appear on
the right-hand side (RHS) of the equality token “=".

Specifically, we intervene along the variable chain that leads
to the correct answer, labeling each intervention point ac-
cording to the referential depth of its line in the chain. For
example, in the program shown in Fig. 3(b), we refer to
the token “8” as the Ref. Depth 1 RHS token, the second
occurrence of “b” as the Ref. Depth 2 RHS token, and so
on. We also target the query variable and the colon token
following it for intervention. The results in Fig. 3 show two
rough patterns. In the first pattern, the number is immedi-
ately moved to the colon token at layer 1, which happens
for 2-, 3-, and 4-hop programs when the correct answer is
on line 1. In the second pattern, the number travels along
the query variable chain, which happens in all other graphs
to some extent. Notable exceptions are 1-hop programs
where the answer is on line 1, which seem split between the
two patterns, and 4-hop programs, where the signal is lost
entirely after the Ref. Depth 2 RHS token.

These results show that the model develops its general mech-
anism on top of existing line-specific heuristics from Phase
2, overriding them only when needed.

Intervening on Attention Heads We apply the same root
value replacement intervention to individual attention heads
and present the results in Fig. 3(c). Specifically, we inter-
vene on each head’s output as it contributes to the residual
stream at specific token positions, allowing us to trace infor-
mation flow through the network. To isolate the systematic
variable binding mechanism, we focus our analysis on pro-

grams where the early-line heuristic (predicting values from
initial program lines) fails. For clarity, we exclude layers
where all heads show signal below a significance threshold.
We use Y.X to denote the Xth head in layer Y.

The attention head patching results reveal a pattern consis-
tent with the information movement observed in the residual
stream analysis (Fig. 3(b), third row). For the first hop in
the variable reference chain, heads 6.5 and, to a lesser ex-
tent, 7.7 play crucial roles. The second and third hops are
mediated primarily by heads 7.2, 8.3, and 9.4. In the final
processing stage, heads 11.2, 11.3, and 11.7 transfer this
information to the output token position.

Interestingly, head 8.3 participates in both the second and
third hops of the reference chain. While the first hop pro-
cessing spans layers 6—7 and the second hop spans layers
7-8, head 8.3 handles both transitions rather than having
separate specialized heads for each hop. This is evidence
that similar representations are used across hops and token
positions for the systematic solution.

3.2. Circuit Development Throughout Training

To understand how the systematic mechanism for variable
binding emerges over time, we conducted residual stream in-
tervention experiments across different training checkpoints.
We track intervention success rates at key (layer, token posi-
tion) combinations and observe both the persistent influence
of early-developed heuristics and the gradual emergence of
a systematic variable-tracing mechanism.

We focus on three critical interventions in the network at po-
sitions that serve distinct computational roles: (1) Variable
value information transferred to the final colon token imme-
diately after layer 1 indicates the operation of line-specific
heuristics that bypass multi-step variable tracking. (2) Suc-
cessful interventions at RHS tokens in layers 6-9 reveal how
the model traces variable values by propagating information
along reference chains step by step. (3) At the query variable
token in layer 10, the model performs the final matching
between the query variable and its dereferenced value.

Fig. 4 illustrates the developmental trajectory of our model’s
variable binding mechanism across programs of different
complexity. For 1-hop programs (Fig. 4(a)), we first ob-
serve activity at the layer 6 RHS token position (tracing to
referential depth 1), followed by the layer 10 query variable
position, with patching success rates reaching high levels by
training step 60000. For 2-hop programs (Fig. 4(b)), a simi-
lar but delayed developmental pattern emerges, with layer
7 and 8 RHS token positions (corresponding to referential
depth 2) becoming important.

The developmental pattern becomes more complex for pro-
grams with higher referential depths. In 3- and 4-hop pro-
grams (Fig. 4(c) and (d)), deeper RHS token positions in
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Figure 4. Evolution of patching success rates across training steps, revealing the development of line-specific heuristics and a general
variable binding mechanism. Vertical dashed lines at steps 800 and 14,000 mark the transitions between major phases identified in our
behavioral analysis in Fig. 2. (a)—(d) show patching success rates for programs where the correct answer is not on line 1 or 2, separated by
the number of hops in the program. We selectively intervene on key (layer, token position) combinations: the query variable token (layer
10), final token (layer 2), and depth-specific RHS tokens (layers 6-9) that our analysis identified as important causal mediation locations
for tracking variable bindings where most of the information movement occurs. This highlights the emergence of the general circuit. (e)
shows patching results aggregated across all programs where the answer is on line 1. The heuristic is consistently used throughout training.
(f) shows patching results aggregated across all programs where the answer is on line 2. The heuristic is used only in the initial phase.



How Do Transformers Learn Variable Binding in Symbolic Programs?

layers 8 and 9 show both delayed emergence and dimin-
ished activation strength. These positions, corresponding
to referential depths 3 and 4, exhibit attenuated activation
patterns reflecting the increased difficulty of tracking longer
reference chains. This systematic correspondence between
network layer depth and reference chain length suggests the
model develops a specialized circuit that propagates variable
binding information through successive layers.

The contrast between Fig. 4(e) and Fig. 4(f) provides valu-
able insight. Fig. 4(e), depicting programs where the answer
appears on line 1, shows that early-learned line-specific
heuristics persist throughout training, as evidenced by con-
sistently high success rates (over 80%) when patching the
layer 2 final colon token position. In contrast, Fig. 4(f),
which focuses on programs where the answer does not ap-
pear on line 1, reveals a different pattern: while the heuristic
(measured at the layer 2 final colon token) shows initial suc-
cess, the systematic mechanism (measured at depth 2 RHS
locations) develops more slowly compared to Fig. 4(b)—(d).

This contrast reveals that the model builds its variable
binding mechanism on top of simpler line-specific heuris-
tics rather than replacing them. The line-specific heuris-
tic (tracked at layer 2’s final colon token) remains active
throughout training, with the general mechanism (tracked
through the RHS token positions) only overriding it when
necessary to predict the correct answer. This composite
approach enables the model to process simple cases using
the heuristic while using more sophisticated algorithms for
programs that require them.

3.3. Numerical and Variable Subspaces

To investigate how the final model represents and tracks nu-
merical constants and variable names, we hypothesized that
these are encoded in separate subspaces within the residual
stream. Given that our model uses causal attention, we fo-
cus our analysis on the residual streams at token positions
corresponding to the right-hand side of each program line
in the query chain.

To test this hypothesis, we first aimed to identify these po-
tential subspaces. We applied principal component analysis
(PCA) to reduce the 512-dimensional residual stream ac-
tivations to 256 principal components at the target RHS
locations. We performed this analysis on a subset of test
samples selected to exclude cases solvable by a line-1 heuris-
tic (where the correct answer is on the first line). This fil-
tering ensures that the observed internal states reflect the
systematic mechanism rather than a shallow heuristic.

To isolate the components most relevant to each hypothe-
sized subspace, we trained two linear classifiers with L1
regularization on these 256 principal components. One clas-
sifier predicted the numerical constant on the RHS of the

line (targeting the numerical constant subspace). The other
predicted the variable name typically found on the LHS
(targeting the variable name subspace, probed via the RHS
token’s residual stream). The L1 penalty encourages spar-
sity, effectively selecting a small subset of components most
predictive for each task. This process yielded 10 principal
components for numerical constants and 26 for variable
names.

Using these components, we then extracted activations from
the residual stream feeding into layer 6 across a subset of
programs. To visualize the structure within these subspaces,
we projected the vectors in 2D using UMAP (Mclnnes et al.,
2018). We generated visualizations at three distinct training
checkpoints (steps 1200, 17600, and 105400) to observe
their evolution, as shown in Fig. 5. The UMAP projections
demonstrate increasing separation over training. By the
final checkpoint, distinct clusters emerge for different nu-
merical values (Fig. 5(a)) and variable identities (Fig. 5(b)),
revealing the numerical and variable subspaces.

To validate the causal role of these subspaces, we performed
interchange interventions on each one. Unlike earlier inter-
ventions, these swapped only the residual stream subspaces
spanned by the selected component sets (10 for numerical
constants, 26 for variable names) between original and coun-
terfactual programs targeting either the numerical constant
or the variable name. These interventions had high suc-
cess rates: 92.17% for numerical constants and 87.08% for
variable names. This provides strong causal evidence that
the identified subspaces encode their respective information
types, confirming our hypothesis.

4. Discussion

Our study shows how neural networks can acquire capa-
bilities traditionally associated with symbolic computation,
particularly variable binding and dereferencing. Analysis of
the model’s learning trajectory reveals that the path to sys-
tematic variable binding proceeds through distinct phases
with qualitatively different strategies.

Notably, we find that the model’s final solution builds
upon, rather than replaces, the heuristics learned in ear-
lier phases. This adds nuance to the traditional narrative
about “grokking”, where models are thought to discard su-
perficial heuristics in favor of more systematic solutions.
Instead, our model maintains its early-line heuristics while
developing additional mechanisms to handle cases where
these heuristics fail, suggesting cumulative learning where
sophisticated capabilities emerge by augmenting simpler
strategies.

Causal interventions show the model uses its residual stream
as addressable memory, with specialized attention heads
routing information to track variable assignments. This



How Do Transformers Learn Variable Binding in Symbolic Programs?

Checkpoint Step 1200 Checkpoint Step 17600 Checkpoint Step 105400

Number
e 0 1 o 2 3 o 4 5 ® 6 7 e 38 9

(a): 2D UMAP projection of the 10 principal components identified as predictive of numerical constants. PCA was first
applied to RHS token residual streams (from non-heuristic test samples) reducing dimensionality from 512 to 256. An
L1-regularized linear classifier then selected these 10 components. The projection visualizes these residual stream activations
(from the input to layer 6) across three training checkpoints: steps 1200, 17600, and 105400.
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(b): 2D UMAP projection of the 26 principal components identified as predictive of variable names. PCA was first applied to
RHS token residual streams (from non-heuristic test samples) reducing dimensionality from 512 to 256. An L1-regularized linear
classifier then selected these 26 components. The projection visualizes these residual stream activations (from the input to layer 6)
across three training checkpoints: steps 1200, 17600, and 105400.

Figure 5. Evolution of 2D UMAP for numerical-constant and variable-name residual stream subspaces (input to layer 6) across training.

provides concrete evidence for how symbolic computation 5. Conclusion
can emerge from continuous vector operations. Importantly,
our probing experiments suggest that the model develops
an efficient strategy focused on tracking only the informa-
tion necessary for dereferencing, rather than maintaining

complete program state.

Our study reveals how Transformers can learn to per-
form variable binding and dereferencing—a capability tra-
ditionally associated with symbolic computation—without
built-in symbolic operations. Through mechanistic anal-
ysis, we demonstrate that the model implements variable
binding by repurposing its residual stream as an address-
able memory space. These findings contribute to ongo-

These findings have implications for cognitive science and
machine learning, showing how symbolic capabilities can

emerge from neural architectures without built-in symbolic
operations. This also suggests that the development of so-
phisticated reasoning capabilities might be better supported
by training regimes that allow progressive refinement and
composition of simpler strategies.

ing debates about connectionist and symbolic approaches
to computation. We present an interactive web platform
4 variablescope.org to support reproducible research.


https://variablescope.org
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A. Expanded Related Works

Synthetic Tasks. Our work expands on previous research
using synthetic tasks to investigate how Transformers handle
highly structured data, including reference chains. Zhang
et al. (2023) showed through their LEGO task that Trans-
formers can develop specialized attention heads for match-
ing identical tokens and processing local operations, sug-
gesting mechanisms for tracking variable relationships. the
hashhop benchmark (Magic, 2024) assesses whether mod-
els can learn to resolve chains of references in long con-
texts while avoiding pattern-matching shortcuts. while these
works focus on length generalization and path-finding in
graphs, our task emphasizes sequential execution order and
memory operations, providing a focused test bed for in-
vestigating variable binding mechanisms in Transformer
architectures.

Variable Binding in Pretrained Transformers. Recent
work has also made progress in understanding how pre-
trained Transformer-based language models may implement
variable binding mechanisms. Our work builds on and com-
plements these findings by providing a detailed mechanistic
account of how variable binding emerges during training.

Davies et al. (2023) developed an automated approach to
identify shared variable binding circuitry in LLaMA-13B
that retrieves variable values for multiple arithmetic tasks.
Using causal mediation experiments with carefully designed
desiderata, they localized variable binding to 9 attention
heads and one MLP in the final token’s residual stream.
This suggests that variable binding capabilities can be im-
plemented by a sparse subset of model components working
together.

Feng & Steinhardt (2024a) analyzed LM representations
and identified a general binding ID mechanism present in
every sufficiently large model from the Pythia and LLaMA
families. They showed that LMs’ internal activations rep-
resent binding information by attaching binding ID vectors
to corresponding entities and attributes, with these vectors
forming a continuous subspace. Through careful causal in-
tervention experiments, they found that binding IDs are used
consistently across different tasks and can be transplanted
between tasks, suggesting the emergence of a general bind-
ing mechanism.

Building on this work, Dai et al. (2024) discovered that LMs
encode ordering information in a low-rank subspace that
causally determines binding behavior. By using dimension-
ality reduction techniques, they identified an “Ordering ID”
subspace distinct from pure positional information, provid-
ing a novel geometric view of how binding is implemented.
Their causal intervention experiments showed that editing
activations in this subspace could systematically alter which
attributes are bound to which entities.
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Feng et al. (2024) introduced “propositional probes” to mon-
itor how language models internally represent relationships
between entities and their attributes. Using a Hessian-based
algorithm, they identified a binding subspace where tokens
that should be bound together (like a person and their oc-
cupation) have high similarity, while unbound tokens do
not. This binding subspace was found to be fairly robust,
maintaining accurate representations even when the model’s
outputs became unfaithful due to biases or adversarial at-
tacks.

Prakash et al. (2024) studied how fine-tuning affects en-
tity tracking mechanisms, finding that fine-tuning enhances
existing mechanisms rather than creating new ones. They
showed that the same circuit implementing entity tracking
in the base model persists in fine-tuned versions with im-
proved performance, suggesting that binding capabilities
can be strengthened through targeted training.

Our work complements these findings by providing a de-
tailed analysis of how variable binding emerges during train-
ing. While prior work has focused on identifying binding
mechanisms in pretrained models, we examine the devel-
opmental trajectory through which these mechanisms are
learned. Our results show that the model progresses through
distinct phases—from random prediction to shallow heuris-
tics to systematic binding—with rapid nonlinear transitions
between phases. This developmental perspective provides
new insights into how neural networks acquire structured
reasoning capabilities.

B. Program Structure

A sample synthetic program (abbreviated from the full 17-
line version) looks like this:

1
a

a
b

The lines highlighted in green form the reference chain for
the queried variable c, while the lines in orange show an
independent distractor chain.

The synthetic program structure can be formally described
by the following grammar:
program — stmt*® query
stmt — var = (const | var)
query — #var:
var — [a-z]
const — [0-9]
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The design of our synthetic programs intentionally uses
a minimal symbolic vocabulary, with only numerical con-
stants (0-9) and single-character variables (a—z). This con-
trolled environment enables precise causal analysis of how
variable binding mechanisms emerge during training.

Despite its apparent simplicity, the task demands sophis-
ticated computational capabilities: the model must track
multi-step variable dependencies through chains of refer-
ences while ignoring distractor assignments.

C. Tokenization Details

We employ a simple character-level tokenizer where each
individual character is treated as a single token, including all
variable names, numerical constants, and special characters
like #, \n and =.

D. Choice of Sampling Strategy

We carefully selected the program sampling strategy to en-
sure it would effectively test the model’s capacity to track
variable assignments. Early experiments with simpler dis-
tributions showed that models could solve the task without
developing genuine variable binding mechanisms, instead
relying on surface-level heuristics.

We found that several distribution characteristics made the
task too simple. Programs with fewer distractor chains,
uniform sampling of variables, or shorter reference chains
allowed models to develop shortcuts. For instance, without a
weighted sampling approach, models could simply learn to
associate the correct answer with the variable appearing in
the longest chain, bypassing the need to track actual variable
bindings.

To address this, we implemented a sampling strategy where
chains are selected for extension with probability propor-
tional to the chain length cubed. This cubic weighting cre-
ates programs with multiple lengthy chains, preventing the
model from relying solely on chain length as a heuristic.
Additionally, we used rejection sampling to balance our
dataset across the four referential depths while maintain-
ing sufficient distractor chains that branch from the main
query chain. The resulting distribution effectively forces the
model to track specific variable bindings through the pro-
gram’s execution rather than using pattern matching based
on surface features.

E. Training Setup

We train our model from scratch using standard causal lan-
guage modeling on complete sequences, where each se-
quence consists of the 17-line program string (16 lines of
variable assignments and a final query line) and its expected
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result. Importantly, the model has no prior exposure to
natural language or programming data, and must learn a
mechanism for variable binding and dereferencing purely
from our synthetic data. The model is trained for 15 epochs
using the AdamW optimizer with 5; = 0.95, B2 = 0.999,
and a base learning rate of 1 x 10~* (Loshchilov & Hutter,
2017) with a batch size of 64 programs.

The learning rate follows a linear decay schedule with
warmup. Starting from zero, the learning rate linearly in-
creases to 1 x 10~ over 750 warmup steps, then linearly
decays to zero over the remaining training period. For reg-
ularization, we applied dropout with a rate of 0.1 and a
weight decay coefficient of 1 x 1074,

F. Training Accuracy Across Multiple Random
Seeds

We examined the stability of the observed learning phenom-
ena by performing multiple training runs, each initialized
with a different random seed (specifically, seeds 42, 256,
416, 512, 1024, and 3407). Seed 42 corresponds to the
original training run analyzed earlier in the main text. The
evolution of test accuracy during training for each of these
runs is shown in Fig. 6. All runs exhibit a learning dy-
namic characterized by three distinct phases with similar
transition points, consistent with the pattern identified in
Fig. 2. This reproducibility strongly suggests that the ob-
served three-phase learning dynamic is a robust property
of the training process rather than an artifact of a specific
random initialization.

Test Accuracy Across Model Seeds
100% Model
= Seed 42 (original model)
Seed 1024
—— Seed 256
—— Seed 3407
Seed 416
Seed 512

80% -

60% - —

Accuracy

40%

20%

0% T T T
10*
Training Steps

Figure 6. Comparison of test set accuracy curves across multiple
training runs initiated with different random seeds. All runs exhibit
similar three-phase learning dynamics and transition points with
slightly different convergence speeds.

G. Generalization to Unseen Combinations

We explicitly checked for potential memorization by train-
ing a model on a subset of the original training data. Specifi-
cally, 10% of variable/number combinations were randomly
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sampled and excluded from the training set but added to the
test set. As illustrated in Fig. 7, the accuracy progression
and final performance of this model closely mirror those of
the model trained on the complete dataset. This indicates
that the model effectively generalizes to novel combinations
it was not exposed to during training, confirming its ability
for compositional reasoning rather than mere memorization.

Original vs. Compositional Model Accuracy

100% Model
—— Original

Compositional generalization
80% -

60% -

Accuracy

40%

20% -

0% T T T
10*
Training Steps

Figure 7. Training accuracy comparison for evaluating composi-
tional generalization. The model trained with 10% of variable/num-
ber combinations held out achieves comparable test accuracy
throughout training to the model trained on the full dataset.

H. Generalization to Longer Programs

To assess generalization beyond the training distribution, we
evaluated the model on programs with lengths varying from
2 to 25 lines, contrasting with the fixed training length of
16 lines. Fig. 8 presents the model accuracy stratified by
the line number containing the correct answer. The results
indicate robust generalization when the correct answer is
located on line 2 or beyond, where high accuracy is main-
tained across diverse program lengths. However, when the
correct answer is on line 1, the model appears to rely on a
shallow line-1 heuristic. Consequently, the model exhibits
poor generalization for programs substantially different in
length from the training regime, with accuracy dropping
sharply for lengths below 14 and above 17 lines, since the
learned heuristic itself does not generalize well beyond the
specific 16-line structure seen during training.

I. Generalization to Programs with More Hops

We also evaluated the model’s ability to generalize to pro-
grams with significantly more hops than encountered during
training. While trained on programs with a maximum of
4 hops, the model was tested on programs ranging from
1 to 13 hops. The results are shown in fig. 9. For pro-
grams where the correct answer lies beyond the first line,
the model demonstrates high accuracy across all hop counts
tested. This suggests the acquisition of a systematic mech-
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Model Accuracy by Program Length
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Figure 8. Generalization performance across varying program
lengths (2-25 lines). Performance is broken down by the line
number containing the correct answer. While the model (trained
on length 16) generalizes well when the answer is on line 2 or later,
accuracy drops significantly for first-line answers in programs
shorter or longer than the training length, as the model leans on
line-1 heuristic that failed to generalize on program lengths.

anism rather than reliance on memorized patterns that is
specific to up to programs with up to 4 hops in the training
set.

On the other hand, when the correct answer is located on
the first line, the accuracy degrades faster as the number
of hops increases. This performance drop aligns with the
limitations of a shallow heuristic, similar to the results on
program length generalization.

Model Accuracy by Number of Hops
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Figure 9. Generalization performance across varying program hop
counts. The model maintains high accuracy on programs up to 13
hops (far exceeding the maximum of 4 seen during training) when
the correct answer is not on lines 1 or 2, indicating a systematic
solution. In contrast, accuracy degrades for programs where the
answer resides on line 1 or line 2 as hop count increases.

J. Linear Probing Results

The model’s strong performance suggests it might develop
structured internal representations of program states, poten-
tially simulating the execution of variable assignments line
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by line. To investigate this hypothesis, we applied linear
probes to the output of each Transformer layer, specifically
at newline token positions (\n) where program state updates
occur. These probes attempt to extract information about
the current program state after each line of code.

For our analysis, we represented program states as (26, 11)
tensors—one dimension for each possible variable name
(26 lowercase letters) and another for each possible value
(digits 0-9 plus nil for unassigned variables). We trained
separate linear probes for each layer using the final model
checkpoint.

The results presented in Table 1 do not support our hy-
pothesis of explicit program state representation: even the
best-performing layer (layer 6) achieves only 30.87% accu-
racy when predicting variable values (excluding unassigned
variables) and merely 8.90% accuracy when predicting com-
plete program states. These poor results suggest the model
does not maintain a complete program state in a linearly
decodable format at any single vector location.

This finding is particularly significant when contrasted with
our successful causal intervention experiments. While linear
probing attempted to extract a complete program state from
individual vectors, our patching experiments revealed the
dynamic flow of specific information through the network.
The success of these causal interventions indicates that the
model implements variable binding not as static state repre-
sentations but as a dynamic process of information routing.
The model appears to have learned a more efficient strat-
egy that tracks only the relevant variable bindings through
specialized attention patterns, rather than representing the
entire program state—a hypothesis further explored in our
main analysis.

Layer State Acc (%) Var. Acc (Excl. Nil) (%)
1 7.71 21.28
2 8.42 25.36
3 8.78 28.56
4 8.87 28.52
5 8.73 29.80
6 8.90 30.87
7 8.88 30.72
8 8.83 30.03
9 8.85 29.61
10 8.73 28.90
11 8.72 28.66
12 8.77 28.51

Table 1. Linear probing accuracy at program state and variable
(excluding nil values) levels by layer.

K. Single Head Activation Patching Results for
All Layers
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Figure 10. Patching results targeting individual attention heads across all 12 layers of the model. For each (head, token) position, we
replace only that head’s contribution to the residual stream with its counterfactual value and compute logits.
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