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Abstract

Expanding on recent work on scheduling with predicted job sizes, we consider
the effect of the cost of predictions in queueing systems, removing the assump-
tion in prior research that predictions are external to the system’s resources and/or
cost-free. Additionally, we introduce a novel approach to utilizing predictions,
SkipPredict, designed to address their inherent cost. Rather than uniformly ap-
plying predictions to all jobs, we propose a tailored approach that categorizes
jobs to improve the effectiveness of prediction on performance. To achieve this,
we employ one-bit “cheap predictions” to classify jobs as either short or long.
SkipPredict prioritizes predicted short jobs over long jobs, and for the long jobs,
SkipPredict applies a second round of more detailed “expensive predictions” to
approximate Shortest Remaining Processing Time for these jobs. Importantly, our
analyses take into account the cost of prediction. We derive closed-form formulas
that calculate the mean response time of jobs with size predictions accounting for
the prediction cost. We examine the effect of this cost for two distinct models in
real-world and synthetic datasets. In the external cost model, predictions are gen-
erated by external method without impacting job service times but incur a cost. In
the server time cost model, predictions themselves require server processing time
and are scheduled on the same server as the jobs.

1 Introduction

Machine learning research is advancing rapidly, reshaping even traditional algorithms and data struc-
tures. This intersection has led to the rise of “algorithms with predictions”, also called learning-
augmented algorithms, where classical algorithms are optimized by incorporating advice or predic-
tions from machine learning models (or other sources). These learning-augmented algorithms have
demonstrated their effectiveness across a range of areas, as shown in the collection of papers (git,
[n. d.]) on the subject and as discussed in the surveys (Mitzenmacher and Vassilvitskii, 2020, 2022).

Queueing systems are an example where the learning-augmented algorithm paradigm has been ap-
plied for scheduling. Several studies have examined queues with predicted service times rather
than exact service times, generally with the goal of minimizing the average time a job spends in
the system (Dell’Amico et al., 2015; Dell’Amico, 2019; Mitzenmacher, 2019, 2021; Wierman and
Nuyens, 2008), and additionally some recent works also consider scheduling jobs with deadlines
(Salman et al., 2023b,a). Minimizing response time is crucial in data centers for reduced latency,
in cloud computing for an enhanced user experience and optimized resource utilization, and in real-
time telecommunication systems for maintaining reliability and performance through quick task
processing.

However, existing works do not adequately model the resources required to obtain such predictions.
They often assume that predictions are provided “for free” when a job arrives, which may not be a
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realistic assumption in the practical evaluation of a system. Incorporating the cost of predictions is
essential, as it could be argued that the resources devoted to calculating predictions might be more
effectively used to directly process the jobs themselves. This perspective challenges the potential
efficiency of integrating predictions into real-world queueing systems. As a result, the following
questions arise:

When does the use of predictions, including their computation, justify their costs?
Should all jobs be treated uniformly by computing predictions for each one?

As a simple example, let us consider a model where predictions of the service time arrive with the
job and do not affect the arrival or service times, but do introduce a fixed cost c per job, so the
total cost per job is the sum of the mean response time and fixed prediction cost. When we look
at Shortest Predicted Remaining Processing Time (SPRPT) policy (Mitzenmacher, 2019), which
simply always runs the job with the smallest predicted remaining time, the improvement in the cost
over FCFS naturally varies with the prediction cost.

In this paper, we focus on the cost of predictions in settings where two stages of predictions are
available. We consider the setting of an M/G/1 queueing system: jobs arrive to a single-server queue,
according to a Poisson arrival process with general i.i.d service times. We examine two distinct cost
models. In the first model, referred to as the external cost model, predictions are provided by an
external server, and they do not affect job service time, but we do factor in a fixed 1 cost for these
predictions. The expected overall cost per job in this model is the sum of the job’s expected response
time within the system and the cost associated with the time for prediction. In the second model,
referred to as the server time cost model, predictions themselves require a fixed time from the same
server as the jobs to produce, and hence a scheduling policy involves also scheduling the predictions.
In this model, the expected overall cost per job is determined by the expected response time. As this
model integrates the prediction process within the primary job processing system, it offers a different
perspective on the cost implications of predictions as compared to the external model. (In particular,
for heavily loaded systems, adding time for jobs to obtain predictions could lead to an overloaded,
unstable system.)

As adding a single prediction to an M/G/1 model is relatively straightforward, we consider systems
where we have two stages of prediction. In the first stage, we may simply predict whether a job
is short or long. This type of one-bit prediction (studied in (Mitzenmacher, 2021)) is very natural
for machine learning, and in practice may be much simpler and faster to implement. We therefore
call these “cheap predictions.” In a possible second stage, we predict the service time for a job,
which we refer to as “expensive predictions,” as in practice we expect them to be substantially more
costly. (While we focus on these types of two stages, one could alternatively consider variations
where the two stages could yield the same type of prediction; e.g. service time, with the cheap
prediction being less accurate but consuming fewer resources.) We introduce a scheduling policy,
called SkipPredict (Skip or Predict), which first categorizes jobs into short and long jobs with the
first prediction, prioritizes short jobs over long ones, and restricts additional service time predictions
exclusively to long jobs. We analyze the effect of the cost of prediction by considering SkipPredict
with the previously described external cost model and server cost model. Our approach could be
applied to applications where the cost is critical, such as data centers, cloud computing systems, and
real-time telecommunication systems; in all these applications, we can reduce the expected time in
system, optimizing resources and the user experience while accounting for the overall costs.

We compare SkipPredict with three distinct previously studied policies, re-analyzing them with pre-
diction costs in the two proposed models. First, we consider First Come First Served (FCFS), which
does not require predictions (and hence incurs no cost from predictions). Second, 1bit (Mitzen-
macher, 2021), a policy using only cheap predictions, separates jobs into predicted short and long
jobs, and applies FCFS for each category, thereby eliminating the need for a second stage of pre-
diction. Third, Shortest Predicted Remaining Processing Time (SPRPT) performs expensive predic-
tions for all jobs, and no cheap predictions. We find that service time predictions are particularly
effective in high-load systems. Our analysis shows that SkipPredict potentially outperforms the other
policies (FCFS, 1bit, SPRPT) in both cost models using real-world and synthetic datasets, especially
when there is a cost gap between cheap and expensive predictions. Additionaly, we present another
alternative algorithm called DelayPredict which avoids cheap predictions by running jobs for a fixed
period before executing an expensive prediction. DelayPredict initially schedules all jobs FCFS but

1In Section 4.4 we discuss the case of random costs from a distribution.



limits them to a time L. Jobs exceeding the limit L are preempted, and given lower priority, and
then they are scheduled by SPRPT. We find SkipPredict can also perform better than DelayPredict
when there is a cost gap between these predictions.

While we focus on scheduling, we believe the approach of using multiple layers of predictions may
be useful for other algorithms with predictions problems.

2 Related Work

We make extensive use of the SOAP framework (Schedule Ordered by Age-based Priority) (Scully
and Harchol-Balter, 2018), which was recently developed to analyze age-based scheduling policies.
We use this framework to derive mean response time formulas. We provide a brief background to the
framework in Section B.1. For scheduling with predictions, Mitzenmacher (Mitzenmacher, 2019)
demonstrated that the analyses of various single-queue job scheduling approaches can be generalized
to the context of predicted service times instead of true values. Later, Mitzenmacher (Mitzenmacher,
2021) considered scheduling algorithms with a single bit of predictive advice for whether a job is
“long” or “short”, based on if its size is above or below a certain threshold. This work shows that
even small amounts of possibly inaccurate information can yield significant performance improve-
ments. Scully, Grosof, and Mitzenmacher (Scully et al., 2022) design a scheduling approach for
M/G/1 queues that has mean response time within a constant factor of shortest remaining processing
time (SRPT) when estimates have multiplicatively bounded error, improving qualitatively over sim-
ply using predicted remaining service times. Azar, Leonardi, and Touitou study similar problems
in the online setting, without stochastic assumptions, and consider the approximation ratio versus
SRPT (Azar et al., 2021, 2022).

Our work has a similar flavor to various “2-stage” problems, such as 2-stage stochastic program-
ming and 2-stage stochastic optimization (e.g., (Grass and Fischer, 2016; Kolbin, 1977; Shmoys and
Swamy, 2004; Swamy and Shmoys, 2006)). Here, somewhat differently, our two stages are both
predictions of service time at different levels of specificity.

Two recent works have explored incorporating costly predictions into online algorithms. (Benomar
and Perchet, 2024) examines how online algorithms can optimally use a limited budget to query for
advice. (Drygala et al., 2023) studies the trade-off between the expense of acquiring predictions
and the operational benefits they offer. We note that these papers address traditional online prob-
lems, such as the ski rental problem. However, the queueing setting introduces unique complexities.
Notably, much of the literature in this area focuses on budgeted settings, where the number of pre-
dictions is limited. In contrast, our work seeks to optimize overall costs by considering prediction
and operational expenses.

3 Model

We consider M/G/1 queueing systems with arrival rate λ. The processing times for each arriving job
are independent and drawn based on the cumulative distribution F (x), with an associated density
function f(x).

Scheduling Algorithm: SkipPredict SkipPredict initially categorizes jobs based on a binary pre-
diction of either short or long, which we refer to as a cheap prediction. Only jobs predicted as long
are further scheduled for a detailed expensive prediction to get the predicted processing time. With
SkipPredict, jobs that are predicted short have priority over all other jobs. Specifically, predicted
short jobs are not preemptible and are scheduled based on First-Come, First-Served (FCFS). Jobs
predicted to be long are preemptible and scheduled according to the Shortest Predicted Remaining
Processing Time (SPRPT) with predicted size given by the expensive prediction.

We focus on a model where, given a modulated threshold parameter T , the cheap predictions are
assumed to be independent over jobs, a job of true size x being predicted as short (less than T ) with
probability pT (x). Similarly, the expensive predictions are assumed to be independent over jobs,
and they are given by a density function g(x, y), where g(x, y) is the density corresponding to a job
with actual size x and predicted size y. Hence

∫∞
y=0

g(x, y)dy = f(x). We consider two different
models, external cost, in which the predictions are provided by an external server, and server cost,
in which the predictions are scheduled on the same server as the job.



Single-Queue, External Cost In this model, a job can be described by a triple (x, b, r); we refer
to this as a job’s type. Here x is the service time for the predictor, b is the output from a binary
predictor that determines whether the job is short or long, and for any long job, r is the result of a
service-time predictor that provides a real-number prediction of the service time. If a job is predicted
to be short, we do not consider r, and so we may take r to be null. Again, we refer to b as the cheap
prediction and r as the expensive prediction.

In this model, the predictions do not affect the service time of the job, and we treat the overall arrival
process, still, as Poisson. Accordingly, SkipPredict can be viewed as a two-class priority system:
Class 1 is for short jobs, managed by FCFS within the class. Class 2 is for long jobs, according to
SPRPT using service time prediction. However, we do associate a cost with predictions which is
the mean response time to get the prediction. All jobs obtain a cheap prediction at some constant
fixed cost c1, and all long jobs obtain an expensive prediction at some fixed cost c2. Accordingly,
we can model the total expected cost for predictions per job in equilibrium as C = c1 + c2z, where
z =

∫
f(x)(1 − pT (x))dx is the expected fraction of jobs requiring the second prediction. In

general, both z and c1 will depend on our choice of first layer prediction function, and similarly c2
will depend on the choice of second layer prediction function. Therefore, for some parameterized
families of prediction functions, we may wish to optimize our choice of predictors. Specifically,
letting T be the expected response time for a job in the system in equilibrium, we might typically
score a choice of predictors by the expected overall cost per job, which we model as a function
H(C, T ), such as the sum of the C and T .

Single-Queue, Server Time Cost The server time cost model refers to the setting where predic-
tions are scheduled on the same server as the jobs, so there is a server time cost based on a defined
policy. Jobs predicted as short are categorized as non-preemptible while in execution, thereby pri-
oritizing their completion before predicting new jobs. However, jobs predicted as long are further
scheduled for a detailed expensive prediction. Thus, cheap predictions outrank expensive predictions
and long jobs. Similarly, expensive predictions are prioritized over predicted long jobs.

SkipPredict now can be viewed as a four-class priority preemptive system. Class 1 (highest priority)
is designated for predicted short jobs, managed by FCFS within the class. Consequently, short jobs
are non-preemptible, and are prioritized over predictions for new jobs. This priority is appropriate
because even if new jobs are predicted to be short, they will run after the already running short jobs
(from FCFS). Class 2 is for (entering) jobs awaiting cheap predictions, which are also handled using
FCFS. Class 3 is for jobs awaiting expensive predictions, and also uses FCFS. Finally, Class 4 is
reserved for predicted long jobs, served using SPRPT using the service time predictions the jobs
obtained when they were Class 3. (Note all jobs enter in Class 2, and the either move to Class 1, or
to Class 3 and then Class 4.)
Definition 1. Suppose E[T ]PS

ext, E[T ]PL
ext , E[T ]PS

srv and E[T ]PL
srv are the expected response time for

predicted short job and predicted long job in the external cost model and the server cost model in
equilibrium respectively. Then, the total cost in the external cost model is

(1− z) · E[T ]PS
ext + z · E[T ]PL

ext + C

while the total cost in the server cost model is

(1− z) · E[T ]PS
srv + z · E[T ]PL

srv

where z is the expected fraction of jobs requiring the second prediction and C is the expected cost
for prediction per job.

4 SkipPredict Theorems

For SkipPredict with a given T in both models, the expected mean response times for a pre-
dicted short job (E[T ]PS

<model>) and predicted long job of true size xJ and predicted size
r (E[T (xJ , r)]

PL
<model>) are given in Table 1. We provide proofs in Appendix C in Lem-

mas 1, 2, 3and 4. We get E[T ]PL
<model> using Lemma 5 and by plugging E[T ]PS

<model> and
E[T ]PL

<model> into Definition 1, we get the total cost of SkipPredict in both models. c1 is the cost of
the cheap prediction, c2 is the cost of the expensive prediction and (r − a)+ = max(r − a, 0). The
symbols used in the equations are later expressed and described in Table 2.



Table 1: SkipPredict equations
Predicted External Cost Server Time Cost

Short
λE[S′

<T
2
]

2(1− ρ′<T )
+ E[S′

<T ]
λ ·
(
c21 + 2c1E[S′

<T ] + E[S′
<T

2
]
)

2(1− ρsrvPS )
+ E[S′

<T ]

Long
λ

2(1− ρextr )2

(
E[S′

<T
2
] + E[S′

≥T,r
2
]

+ a(r)

)
+

∫ xJ

0

1

1− ρext
(r−a)+

da

λ

2(1− ρsrvr )2
·

(
E[S′′

<T
2
(c1)]+

(c1 + c2)
2 ·Q(T, r) + E[S′′

≥T,r
2
(c1 + c2)]

+ a(r)

)
+

∫ xJ

0

1

1− ρsrv
(r−a)+

da

Table 2: Description of symbols used in the equations (defined in Appendix C)
Symbol Description

E[S′
<T ] Expected service time of predicted short jobs

E[S′
≥T,r] Expected service time of predicted long jobs with predicted size ≤ r

E[S′′
<T (c1)] Expected service time of predicted short jobs including prediction cost c1

ρ′<T Load due to predicted short jobs
ρextr Load due to predicted short jobs, long jobs with predicted size ≤ r
ρsrvPS Load due to predicted short jobs and their cheap prediction cost
ρsrvr Load due to predicted short, long (with predicted size ≤ r) and prediction jobs

a(r) Integral related to predicted long jobs with predicted size > r
Q(T, r) Probability of a job being predicted as long with predicted size > r

4.1 Proof intuition of SkipPredict

External Cost Model. Response time is defined as the sum of the waiting time in the queue and
the residence time, which is the time from when the job is first processed until completion. For
SkipPredict in the external cost model, a predicted short job has to wait behind only previous short
jobs. This case is straightforward and follows the mean response time in the system for FCFS, which
is given by Equation 23.15 in (Harchol-Balter, 2013). Since there is no preemption in this case, the
residence time is simply the service time for the predicted short job, E[S′

<T ]. A predicted long job
of true size xJ and predicted size r has to wait behind previous short jobs, expressed by the term
E[S′

<T
2
], and long jobs with a shorter remaining time, expressed by the terms E[S′

≥T,r
2
] and a(r)

as well as the final term involving the load. The waiting time is represented by the first term. Since
we perform preemption for predicted long jobs, there is a preemption delay that causes a slowdown
in the residence time due to the load from jobs predicted as short and jobs predicted as long but with
a service time prediction of less than r.

Server Time Cost Model. For the server cost model, a predicted short job has to wait behind
previous short jobs and previous cheap predictions. This addition of the cheap prediction, compared
to the external cost model, is expressed by terms involving c1. In this case, there is no preemption,
so the residence time is simply the service time for the predicted short job, E[S′

<T ].

A predicted long job of true size xJ and predicted size r must wait behind previous short jobs along
with their cheap predictions, expressed by the term E[S′′

<T (c1)]. It must also wait behind cheap and
expensive predictions of long jobs that arrive earlier but with a larger remaining time, expressed by
(c1 + c2)

2 ·Q(T, r), and long jobs with a shorter remaining time frame along with their cheap and
expensive predictions, expressed by E[S′′

≥T,r
2
(c1 + c2)] + a(r). The slowdown due to preemption

is affected by the load from jobs predicted as short, jobs predicted as long but with a service time
prediction less than r, and the load from all predictions.



4.2 SkipPredict Models Comparison

In the server cost model, we observe that the mean response times for both predicted short and
long jobs are consistently higher than those in the external cost model, because predictions are
scheduled on the same server as the jobs. When we set the costs to zero, so there is no cost to
predictions, both models yield identical mean response times. This follows from the definitions
of S′′

≥T,r(c2) and S′′
<T (c1) (Table 3) because with zero costs, these definitions match with those

of S′′
≥T,r and S′′

<T . Additionally, setting the threshold T to zero in SkipPredict results in SPRPT
(Shortest Predicted Remaining Processing Time) scheduling. With this threshold, there are no short
jobs (i.e., E[S′

<T ] = 0), necessitating expensive predictions for all jobs. Thus, the mean response
time for the predicted long jobs aligns with the mean response time of SPRPT (Mitzenmacher, 2019)
(analyzed for both of the two models in Appendix D.1).

We emphasize that while we have derived equations for total costs for both models, comparing
the practical implications of these total costs for the two models is challenging. First, resource
allocation differs between the models: in the external cost model, predictions are scheduled on a
server separate from the one handling the jobs, whereas in the server cost model, both predictions
and jobs are scheduled on the same server. Incorporating a fixed cost into the mean response time for
the external cost model does not translate directly to service time. This leads to potential differences
in the interpretation of the costs of predictions between the two models.

Baselines. As baselines, we compare SkipPredict with three distinct policies in the two proposed
models. These policies are 1) FCFS2, a non-size-based policy that does not require predictions; 2)
SPRPT, which involves performing expensive predictions for all jobs; and 3) 1bit advice (Mitzen-
macher, 2021), which uses only cheap predictions, separating jobs into predicted shorts and pre-
dicted longs, and using FCFS as a scheduling policy for each category. These policies, along with
SkipPredict, can be placed on a spectrum based on their prediction costs. FCFS requires no predic-
tions, while SPRPT requires expensive predictions for each job. The 1bit policy and SkipPredict are
positioned in the middle of this spectrum, with the 1bit policy incurring lower prediction costs than
SkipPredict. The question becomes, given prediction costs, what is the most cost-effective policy?

To compare all these policies, we analyze SPRPT and 1bit policies in the external cost model and
the server cost model. These policies, initially introduced by Mitzenmacher (Mitzenmacher, 2019,
2021), were analyzed without considering the cost of predictions, so in Appendix D.1 we re-analyze
them with prediction costs.

Without looking at the formulas, it is intuitive that under even moderate loads, when the cost of the
expensive prediction is low (close to c1), the total cost of SkipPredict would be greater than that
for SPRPT. Also in this case SPRPT would outperform the 1bit approach, as size-based policies
are generally more effective than non-size-based ones when predictions are reasonably accurate.
However, when the expensive prediction cost c2 is high, SkipPredict or 1bit would be better options
than SPRPT. Note SkipPredict and 1bit have the same response times for jobs predicted to be short,
as both schedule these jobs in the same way. Thus, the efficiency of SkipPredict over the 1bit
approach depends on the value of using an SPRPT-strategy for the remaining jobs.

SkipPredict limitations. SkipPredict’s performance depends on the accuracy of its predictions, as
poor prediction quality would diminish its effectiveness in practical applications. Our experiments
(Section 5) demonstrate a direct correlation between prediction accuracy and overall performance.
Regarding robustness, inaccurate cheap predictions could potentially lead to more long jobs delaying
short jobs, highlighting the importance of achieving high prediction accuracy for cheap predictions.

4.3 What if the cheap predictions are not really cheap?

Another limitation of SkipPredict arises in situations where sufficiently low-cost predictions are not
available or are not substantially less costly than expensive predictions. In such scenarios, Skip-
Predict may be less effective. However, on the positive side, our work could provide insights into
the necessary cost thresholds for achieving performance gains. Here, we also suggest an alternative
algorithm, DelayPredict, as a potential solution in these cases. Rather than apply predictions to all
jobs, DelayPredict does not use cheap predictions, while still avoiding expensive predictions for
short jobs. DelayPredict schedules jobs initially with FCFS, but limits each job to a given limit L

2We could also consider any non-size-based policy such as LCFS or FB.



(a) large cost gap, c1 =
0.5, c2 = 4

(b) small cost gap, c1 =
3.5, c2 = 4

(c) cost vs. threshold

Figure 1: DelayPredict vs. SkipPredict and SPRPT in the external cost model with exponential
service times and exponential predictor as described in Section 5 (a) cost vs. arrival rate with c1 =
0.5, c2 = 4, T = L = 1 (b) cost vs. arrival rate with c1 = 3.5, c2 = 4, T = L = 1 (c) cost vs.
threshold (T for SkipPredict and L for DelayPredict), c1 = 0.5, c2 = 2, λ = 0.9.

of service time, at which point it is preempted, and treated as a long job. At that point, the job can
go through expensive prediction and be scheduled based on SPRPT scheduling. A job that finishes
before L units of service would, in this setting, be a short job that finishes without any prediction.
We define z′ =

∫∞
x=L

f(x)dx as the expected fraction of jobs requiring the expensive prediction and
use it in Definitions 1 to analyze DelayPredict cost in the external cost model and in the server cost
model. We provide mean response times for DelayPredict with proofs in Appendix E.

DelayPredict vs. SkipPredict. The main difference between DelayPredict and SkipPredict is in
the waiting time. In SkipPredict, a predicted short job sees only short jobs while a short job in De-
layPredict sees all jobs in the queue ahead of it, limited to size L. Similarly, in DelayPredict a long
job has to wait behind incoming jobs (including all other long jobs) for at lest time L. Thus, while
DelayPredict saves the cheap predictions, its waiting time can be higher than SkipPredict. Figure 1
shows a setting where there is a cost gap between prediction costs, and SkipPredict outperforms
DelayPredict. However, DelayPredict still performs better than SPRPT (with c1 = 0.5, c2 = 4).
When the costs are close, DelayPredict is better than both SkipPredict and SPRPT, as in this case
SkipPredict is less effective. Since the waiting time of DelayPredict depends on L, we see in Fig-
ure 1(c) that as L increases, the cost of DelayPredict gets higher. (Note for comparison purposes the
L for DelayPredict and the T for SkipPredict are chosen to be the same value.)

4.4 Generalization to Non-Fixed Costs

While we assume that the prediction costs as fixed, our approach naturally generalizes theoretically
to random costs from a distribution, where that distribution may also depend on the service time of
the job. Here we outline the necessary modifications in the analysis for this generalization.

We may consider prediction costs that are assumed to be independent over jobs. The cheap predic-
tion cost is given by a density function k1(x, c1), where k1(x, c1) is the density corresponding to a
job with actual size x and cost of cheap prediction c1. Hence,

∫∞
c=0

k1(x, c)dc = f(x). Similarly,
the expensive prediction cost is given by a density function k2(x, c2), where k1(x, c2) is the density
corresponding to a job with actual size x and the cost of expensive prediction is c2.

In our analysis of the server cost model with fixed costs, for jobs with rank 4 in the first dimension,
we used r−a to encode the second dimension of the rank rather than the predicted remaining service
time, which we noted is technically r − (a − c1 − c2). When c1 and c2 are fixed, doing so does
not change the rankings of jobs, but for non-fixed costs, we would want to use the actual predicted
remaining service time r − (a− c1 − c2) for the rank function.



5 Experimental Results

To gain more insight into when to invest in prediction and how SkipPredict compares to other poli-
cies, in this section we compare SkipPredict, SPRPT, 1bit and FCFS using simulation with real-
world and synthetic traces in the setting of the single queue with Poisson arrivals. For real-world
traces, we used three traces from Amvrosiadis et al. (Amvrosiadis et al., 2018): Twosigma, Google,
and Trinity. Their system leverages machine learning to predict job runtimes in large clusters, uti-
lizing features like user IDs, job names, and input sizes, Appendix F contains more details about
the datasets and the predictor. For the synthetic traces, we considered two job service time dis-
tributions: exponentially distributed with mean 1 (f(x) = e−x) and the Weibull distribution with
cumulative distribution F = 1− e−

√
2x (which also has mean 1). Also, for the synthetic traces, we

use two prediction models where each of the two-stage predictors could be from a different model:
1) Exponential predictions (Mitzenmacher, 2019), where a prediction for a job with service time x is
itself exponentially distributed with mean x. 2) Uniform predictions (Mitzenmacher, 2019), where
a prediction for a job with service time x is uniformly distributed between (1 − α)x and (1 + α)x
for a parameter α. For the synthetic datasets, in this section we present results for the exponen-
tially distributed service time with uniform predictor. Appendix F contains results for the rest of the
combinations.

To handle two-stage predictions, both for the real-world traces and for the synthetic ones, the cheap
predictor here returns a single bit by comparing the predicted value with the threshold; this is not
how an actual prediction would work, but it is just a test model for simulation. We note that, as part
of verifying our equations and our system, we have checked simulation results for single queues
against the equations using the “perfect predictor,” as the integrals are simpler in this case.

Cost vs. arrival rate λ. Figures 2, 3(b), 3(d), 4(b), 4(d) show the cost using real-world and synthetic
datasets. These Figures show that investing in service time predictions is more beneficial at higher
arrival rates. SkipPredict yields the lowest cost above λ = 0.7 in all datasets. We should note, how-
ever, that under extremely high load in the server cost model, prediction-based scheduling (SPRPT,
SkipPredict or 1bit) risks overflowing the system (since the average time per job with predictions is
larger than 1), making FCFS a better option.

Cost vs. T . In Figures 2(g), 2(h), 3(a), 3(c) 4(a), 4(c), we compare the cost vs. T . As T increases,
both SkipPredict and 1bit demonstrate reduced costs. However, past a certain T threshold, which
depends on the dataset, arrival rate, and actual costs, we observe a rise in costs due to the decreasing
number of jobs requiring expensive prediction. This leads to a reduced load for expensive predic-
tions, making job size prediction for scheduling between predicted long jobs less effective. In the
synthetic datasets, as T gets large, SkipPredict and 1bit become the same, as both serve predicted
short jobs similarly, and for large T nearly all jobs are predicted short.

Accuracy/Cost tradeoff. To evaluate a setting where one has to choose accuracy levels by accu-
racy/cost tradeoff, we conducted experiments where we controlled the accuracy, and consequently,
the cost, so higher accuracy corresponded to higher prediction costs. Again, the point here is to show
a possible use case, where a user might decide from a set of possible available accuracies and costs to
optimize the system. The measured total cost is presented as a heat map matrix in Figures 5(a), 5(b)
using exponential service time and T = 1. In this matrix, rows represent the probability of accurate
prediction and associated costs for the cheaper model, columns represent the 1 − α values of the
uniform predictor, and each cell displays the corresponding total cost for that setting. These figures
indicate that reducing the accuracy of the cheap prediction is more crucial since the cheap model’s
prediction is performed for every job. For expensive predictions, the relationship between α values
and the total cost is not strictly linear and the cost can be optimized based on expensive prediction
costs and number of predicted long jobs.

SkipPredict benefit increases with larger cost gaps. We have found that SkipPredict is more cost-
effective than other policies when there is a difference between the costs of the two predictions,
with a greater gap leading to higher improvement. In Figures 5(c) 5(d), we have exponential service
times, T = 1, c1 is fixed to the default value, and we change c2 by varying k where c2 = kc1. For
similar or very close costs (k = 1), SkipPredict is less useful, and SPRPT may be a better option.
However, as c2 values increase, SkipPredict becomes more cost-effective. FCFS and 1bit are not
affected as they do not require expensive predictions.



(a) λ, Twosigma, server (b) λ, Twosigma, external (c) λ, Google, server (d) λ, Google, external

(e) λ, Trinity, server (f) λ, Trinity, external (g) T , Trinity, server (h) T , Trinity, external

Figure 2: Cost in the server time model and in the external model using real-world datasets (a-f) vs.
λ (with T = 4) (g-h) vs. T with Trinity dataset (with λ = 0.6). The default costs for the external
model are c1 = 0.5, c2 = 20, and in the server time are c1 = 0.05, c2 = 0.5.

(a) cost vs T - External (b) cost vs. λ - External (c) cost vs T - Server (d) cost vs. λ - Server

Figure 3: Cost in the external cost and server cost models using uniform predictor, cheap predictor
is configured with α = 0.8, expensive predictor with α = 0.2, service times are exponentially
distributed with mean 1. The default costs for the external model are c1 = 0.5, c2 = 2 and for the
server cost model are c1 = 0.01, c2 = 0.05 (a + c) Cost vs. T when λ = 0.9 (b + d) Cost vs. λ
when T = 1.

6 Conclusion

We have presented SkipPredict, the first prediction-based scheduling policy we are aware of that
takes into account the cost of prediction. SkipPredict is designed for systems where two levels of
prediction are available, good (and cheap) and better (but expensive) prediction. While here we have
focused on having a binary prediction (short/long) and a prediction of the service time, our frame-
work would also work for other settings. For example, both the cheap and expensive predictions
could be for the service time, with the expensive prediction being a more refined, time-consuming
variation of the cheaper process (that even takes the cheap prediction as an input). We considered
the cost of prediction in scheduling in two models; the external cost model with externally generated
predictions, and the server time cost model where predictions require server time and are scheduled
alongside jobs. We derived the response time of SkipPredict and analyzed total cost formulae in the
two cost models for SkipPredict. We similarly derived formulae in these models for previously pro-
posed prediction policies where previous analyses ignored prediction costs, namely 1bit and SPRPT,
as well as a new policy, DelayPredict. We have demonstrated, using both real-world and synthetic
datasets, that SkipPredict potentially outperforms FCFS, 1bit, SPRPT, and DelayPredict in both



(a) cost vs T - External (b) cost vs. λ - External (c) cost vs T - Server (d) cost vs. λ- Server

Figure 4: Cost in the external cost and server cost models using exponential predictor for both cheap
and expensive predictors, service times are distributed exponentially with mean 1. The default costs
for the external model are c1 = 0.5, c2 = 2 and for the server cost model are c1 = 0.01, c2 = 0.05.

(a) External (b) Server (c) External (d) Server

Figure 5: (a+b) cost in external and service time models in setting where one has to choose accuracy
levels by accuracy/cost tradeoff. (c+d) Cost vs. c2 with c1 = 0.5. We use exponential service time
with, λ = 0.9 and T = 1.

cost models, especially when there is a significant cost gap between cheap and expensive predic-
tions. While we focused on analyzing SkipPredict for cases with prediction costs, there are many
potential variations to explore. These include using separate servers for prediction, offering more
than two priority classes, selectively predicting only some jobs with probability to reduce costs while
prioritizing between predicted short and long jobs, as well as employing load-based predictions to
make predictions only when the queue length exceeds a certain threshold.

While scheduling itself is a foundational problem that provides sufficient motivation for our work,
we believe the issue of accounting for the costs of predictions in the “algorithms with predictions”
framework (and arguably other similar problems) is understudied. Our idea of choosing one or more
predictions, and optimizing the overall cost including that choice, is an approach that we believe
will be useful for other similar problems.

Impact Statement. This paper presents work whose goal is to advance the field of Machine Learn-
ing. There are many potential societal consequences of our work, none which we feel must be
specifically highlighted here.
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B Formulas via SOAP Analysis

We employ the SOAP framework (Scully and Harchol-Balter, 2018), a (relatively) recently devel-
oped analysis method, to obtain precise formulas for mean response time3 of SkipPredict in both the
external cost model and in the server cost mode. While we could analyze the external cost model
without SOAP as a two-class system, we choose to use SOAP for a consistent analysis.

B.1 SOAP Background

The SOAP framework can be used to analyze scheduling policies for M/G/1 queues that can be
expressed in terms of rank functions. Recent research by Scully and Harchol-Balter (Scully and
Harchol-Balter, 2018) has classified many scheduling policies as SOAP policies. These policies
determine job scheduling through a rank, always serving the job with the lowest rank. (In cases
where multiple jobs share the lowest rank, the tie is resolved using First Come First Served.) The
rank function determines the rank of each job, and it can depend on certain static characteristics of
the job, often referred to as the job’s type or descriptor. For example, the descriptor could represent
the job’s class (if the model has different classes), and other static attributes, such as its size (service
time). The rank can also depend on the amount of time the job has been served, often referred to
as the job’s age. A key assumption underlying SOAP policies is that a job’s priority depends only
on its own characteristics and its age, an aspect that aligns with our model and scheduling algorithm
SkipPredict. We refer the interested reader to (Scully and Harchol-Balter, 2018) for more details.

SOAP analysis uses the tagged-job technique. That is, we consider a tagged job, denoted by J , of
size xJ and with descriptor dJ . We use aJ to denote the amount of time J has received service. The
mean response time of J is given by the sum of its waiting time (the time from when it enters to
when it is first served) and the residence time (time from first service to completion). To calculate
the waiting time, SOAP considers the delays caused by other jobs, including “old” jobs that arrived
before J and “new” jobs that arrived after J . A key concept in SOAP analysis is the worst future
rank of a job, as ranks may change non-monotonically. The worst future rank of a job with descriptor
dJ and age aJ is denoted by rankworst

dJ
(aJ). When aJ = 0, the rank function is denoted by rworst =

rankworst
dJ

(0). Ranks are written in ⟨angle brackets⟩.
In the SOAP framework, waiting time is shown to be equivalent to the transformed busy period in an
M/G/1 system with arrival rate λ and job size Xnew[rankworst

dJ
(a)] 4. The initial work of this period

represents the delay caused by old jobs. To deal with the delay due to old jobs, SOAP introduced a
transformed system where jobs are categorized based on their rank. Discarded old jobs, exceeding
the rank threshold rworst, are excluded from the transformed system. Original old jobs, with a rank
at or below rworst, are considered as arrivals with rate λ and a specific size distribution Xold

0 [rworst]
5. Recycled old jobs, currently at or below rworst but previously above this threshold, are treated as
server vacations of length Xold

i [rworst]
6 for i ≥ 1 in the transformed system. As explained later, in

SkipPredict jobs could only be recycled once, so we only have Xold
1 [rworst].

SOAP shows that, because Poisson arrivals see time averages, the stationary delay due to old jobs
has the same distribution as queueing time in the transformed M/G/1/FCFS system. This system is
characterized by ’sparse’ server vacations, where (original) jobs arrive at rate λ and follow the size
distribution Xold

0 [rworst].

3We note that SOAP provides for finding the Laplace-Stieltjes transform of the response time distribution;
we focus on the mean response time throughout this paper for convenience in comparisons.

4Xnew[rankworst
dJ

(a)] is a random variable representing how long a new job that just arrived to the system is
served until it completes or surpasses rankworst

dJ
(a)

5Xold
0 [rworst] is a random variable representing how long a job is served while it is considered original with

respect to the rank rworst
6Xold

i [rworst] is a random variable representing how long a job is served while it is considered recycled for
the i time with respect to the rank rworst



Theorem 1 (Theorem 5.5 of (Scully and Harchol-Balter, 2018)). Under any SOAP policy, the mean
response time of jobs with descriptor d and size xJ is:

E[T (xJ , d)] =
λ ·
∑∞

i=0 E[Xold
i [rworst]

2]

2(1− λE[Xold
0 [rworst])(1− λE[Xnew[rworst])

+

∫ xJ

0

1

1− λE[Xnew[rankworst
dJ

(a)]]
da.

B.2 Rank functions of SkipPredict

The relevant attributes to SkipPredict are the size, the 1-bit prediction, and the predicted service
time. We can model the system using descriptor D = [size, predicted short/long, predicted time]
= [x, b, r]. SkipPredict in the external cost model results in the following rank function:

rankext([x, b, r], a) =

{
⟨1,−a⟩ if b = 1,

⟨2, r − a⟩ if b = 0.
(1)

which uses the first dimension to encode the class priority (short or long), and the second dimension
to enforce the priority for each class (FCFS for short jobs, SPRPT for long jobs). In such nested
rank function, the first dimension serves as the primary rank, with the priority ordering following a
lexicographic ordering.

In the server cost model, SkipPredict results in the following rank function:

ranksrv([x, b, r], a) =


⟨2,−a⟩ if 0 ≤ a ≤ c1 (initial rank, and cheap prediction),
⟨1,−a⟩ if b = 1 and a > c1 (short jobs after cheap prediction),
⟨3,−a⟩ if b = 0 and c1 + c2 > a > c1 (long jobs, expensive prediction),
⟨4, r − a⟩ if b = 0 and a ≥ c1 + c2 (long jobs after expensive prediction).

(2)

Note entering jobs have ranked 2 in the first dimension, placing them behind short jobs awaiting
or receiving service. Since after predictions short jobs would simply be placed behind other short
jobs, it makes sense to deprioritize the cheap predictions. On the other hand, we prioritize long
predictions over long jobs to implement SPRPT.

Finally, for jobs with rank 4 in the first dimension, we use r − a as the secondary rank. Technically
the predicted remaining service time is r − (a − c1 − c2), since the job’s age includes service for
predictions of time c1+c2. As c1 and c2 are fixed, using r−a is equivalent to using r−(a−c1−c2)
for ranking, and we use r − a for convenience.



C SkipPredict Analysis

Table 3: Definition and Description of symbols used in the equations
Symbol Description

E[S′
<T ] =

∫∞
0

x · pT (x) · f(x) dx Expected service times of predicted short jobs
E[S′

≥T,r] =
∫ r

y=0

∫∞
x=0

(1− pT (x)) · x · g(x, y)dxdy Expected service times of predicted long jobs with
service time prediction ≤ r

E[S′′
<T (c1)] =

∫∞
0

(x+ c1) · pT (x) · f(x) dx Expected service times of predicted short jobs in-
cluding prediction cost c1

ρ′<T = λ
∫∞
x=0

xf(x)pT (x) dx Load due to predicted short jobs
ρextr = λ

(
E[S′

<T ] + E[S′
≥T,r]

)
Load due to predicted short jobs, predicted long
jobs with service time prediction ≤ r

ρsrvPS = λ
(
c1 + E[S′

<T ]
)

Load due to predicted short jobs and their cheap
prediction cost

ρsrvr = λ
(
E[S′′

<T (c1)] + (c1 + c2) ·Q(T, r)
)

Load due to predicted short jobs, predicted
+λE[S′′

≥T,r(c1 + c2)] long jobs with service time prediction ≤ r,

and prediction jobs

a(r) =
∫∞
t=r

∫∞
x=t−r

(1− pT (x))g(x, t) Integral related to predicted long jobs
·(x− (t− r))2 dx dt

with service time prediction > r
Q(T, r) =

∫∞
y=r

∫∞
x=0

(1− pT (x)) · g(x, y)dxdy Probability of a job being predicted as long with
service time prediction > r

C.1 External cost model

Lemma 1. For SkipPredict in the external cost model, the expected mean response time for a pre-
dicted short job, E[T ]PS

ext is

E[T ]PS
ext =

λE[S′
<T

2
]

2(1− ρ′<T )
+ E[S′

<T ].

Proof. While SOAP can be used to analyze the mean response time for predicted short jobs, this
case is straightforward and follows the mean response time in the system for FCFS, which is given
by Equation 23.15 in (Harchol-Balter, 2013).

Lemma 2. For SkipPredict in the external cost model, if we let a(r) =
∫∞
t=r

∫∞
x=t−r

(1 −
pT (x))g(x, t)(x − (t − r))2 dx dt, the expected mean response time for a predicted long job of
true size xJ and predicted size r is

E[T (xJ , r)]
PL
ext =

λ

2(1− ρextr )2

(
E[S′

<T
2
] + E[S′

≥T,r
2
] + a(r)

)
+

∫ xJ

0

1

1− ρext(r−a)+
da

Where ρextr = λ
(
E[S′

<T ] + E[S′
≥T,r]

)
is the load due to jobs of predicted short and jobs predicted

long but their service time prediction less than r and (r − a)+ = max(r − a, 0).

Proof. To analyze SkipPredict for a predicted long job in the external cost model using SOAP, we
first find the worst future rank and then calculate Xnew[rankworst

dJ
(a)], Xold

0 [rworst] and Xold
i [rworst]

for predicted long job. As described in (1), the rank function for predicted long jobs is monotonic
(here the job descriptor is dJ = [xJ , 1, r]), and every job’s rank is strictly decreasing with age, thus



J’s worst future rank is its initial rank, here: rankworst
dJ

(a) = ⟨2, r−a⟩ and rworst = rankworst
dJ

(0) =
⟨2, r⟩.
Xnew[rankworst

dJ
(a)]: Suppose that a new job K of predicted size rK arrives when J has age aJ . J’s

delay due to K depends on whether K is predicted to be short or long. If K is predicted short then
it will preempt J and be scheduled till completion because it has a higher class. Otherwise, if K has
a predicted job size less than J’s predicted remaining process time (r − aJ ), K will always outrank
J . Thus

Xnew
xK

[⟨2, r − a⟩] =
{
xK K is predicted short
xK1(rK < r − a) K is predicted long

E[Xnew[⟨2, r − a⟩]] =
∫ ∞

0

pT (x)xf(x)dx+

∫ r−a

0

∫ ∞

x=0

x · (1− pT (x))g(x, y)dxdy

Xold
0 [rworst]: Whether another job I is original or recycled depends on its prediction as short or

long, and in the case it is long, it also depends on its predicted size relative to J’s prediction. If I is
predicted short, then it remains original until its completion. Otherwise, if I is predicted long, I is
original only if rI ≤ r, because then until its completion its rank never exceeds r.

Xold
0,xI

[⟨2, r⟩] =
{
xI if I is predicted short
xI1(rI ≤ r) if I is predicted long

E[Xold
0 [⟨2, r⟩]] =

∫ ∞

0

pT (x)xf(x)dx+

∫ r

y=0

∫ ∞

x=0

(1− pT (x)) · x · g(x, y)dxdy

E[(Xold
0 [⟨2, r⟩])2]] =

∫ ∞

0

pT (x)x
2f(x)dx+

∫ r

y=0

∫ ∞

x=0

(1− pT (x)) · x2 · g(x, y)dxdy

Xold
i [rworst]: If another job I is predicted long and if rI > r, then I starts discarded but becomes

recycled when rI − a = r. This starts at age a = rI − r and continues until completion, which will
be xI − aI = xI − (rI − r). Thus, for i ≥ 2, Xold

i,xI
[⟨2, r⟩] = 0. Let t = rI :

Xold
1,xI

[⟨2, r⟩] =
{
0 if I is predicted short
xI − (t− r) if I is predicted long

E[Xold
1 [⟨2, r⟩]2] =

∫ ∞

t=r

∫ ∞

x=t−r

(1− pT (x)) · g(x, t) · (x− (t− r))2dxdt

Applying Theorem 1 leads to the result.

C.2 Server time cost model

To analyze the server cost model, as explained, considering the rank function defined in (2), we first
find the worst future rank of J , denoted as rankworst

dJ
, as follows:

rankworst
dJ

(a) =

{
⟨2,−a⟩ if J is predicted short
⟨4, r − a⟩ if J is predicted long



Lemma 3. For SkipPredict policy in the server time cost model, the expected mean response time
for a predicted short job, E[T ]PS

srv is

E[T ]PS
srv =

λ ·
(
c21 + 2c1E[S′

<T ] + E[S′
<T

2
]
)

2(1− ρsrvPS )
+ E[S′

<T ]

where ρsrvPS = λ
(
c1 + E[S′

<T ]
)

is the load due to jobs of predicted short and their cheap prediction
cost.

Proof. To analyze SkipPredict for predicted short jobs, we calculate Xnew[rankworst
dJ

(a)],
Xold

0 [rworst] and Xold
i [rworst] for these predicted short jobs in the server cost model, where the

job descriptor in this case is (b, r) = (1, ∗).
Xnew[rankworst

dJ
(a)]: Let’s consider a new job K arriving when J is at age aJ (where aJ ≤

min(r, xJ)). The worst rank of J depends on whether J is predicted to be short or long. If J
is predicted short, then J’s worst future rank is its current rank ⟨2,−aJ⟩. Given that K’s initial
rank is ⟨2, 0⟩, at least equivalent to J’s worst future rank, the delay J experiences due to K is:
Xnew

xK
[⟨2,−aJ⟩] = 0

Xold
0 [rworst]: Suppose that J witnesses an old job I of initial size xI . The duration for which

I remains original depends on whether its prediction is short or long. If I is predicted short, it
remains original until completion. Alternatively, if I is predicted long, it would remain original
until the cheap prediction phase (lasting c1), after which its rank shifts to ⟨3, 0⟩.

Xold
0,xI

[⟨2, 0⟩] =
{
c1 + xI if I is predicted short
c1 if I is predicted long

E[Xold
0 [⟨2, 0⟩]] = c1 +

∫ ∞

0

pT (x)xf(x)dx

Xold
i [rworst]: There are no instances of recycled jobs because either I completes its service (if

predicted short) or it is discarded completely (if predicted long), and thus never gets a rank lower
than ⟨2, 0⟩. Thus, for i ≥ 1,

Xold
i,xI

[⟨2, 0⟩] = 0

Applying Theorem 1 yields the result.

Lemma 4. For SkipPredict policy in the server time cost model, the expected mean response time
for a predicted long job of true size xJ and predicted size r is

E[T (xJ , r)]
PL
srv =

λ

2(1− ρsrvr )2
·

(
E[S′′

<T
2
(c1)] + (c1 + c2)

2 ·Q(T, r) + E[S′′
≥T,r

2
(c1 + c2)] + a(r)

)

+

∫ xJ

0

1

1− ρsrv(r−a)+
da

Where Q(T, r) =
∫∞
y=r

∫∞
x=0

(1− pT (x)) · g(x, y)dxdy (r − a)+ = max(r − a, 0)

ρsrvr = λ
(
E[S′′

<T (c1)] + (c1 + c2) ·Q(T, r) + E[S′′
≥T,r(c1 + c2)]

)
is the load due to jobs of predicted short and jobs predicted long but their service time prediction
less than r along with the load of the jobs predictions.

a(r) =

∫ ∞

t=r

∫ ∞

x=t−r

(1− pT (x))g(x, t)(x− (t− r))2 dx dt



Proof. Now we calculate Xnew[rankworst
dJ

(a)], Xold
0 [rworst] and Xold

i [rworst] for predicted long jobs
in the server cost most, here again the J’s descriptor is ((b, r) = (0, r)).

Xnew[rankworst
dJ

(a)]: J’s delay due to K also depends on K is predicted to be short or long.

Xnew
xK

[⟨4, r − aJ⟩] =
{
c1 + xK K is predicted short
c1 + c2 + xK1(rK < r − aJ) K is predicted long

Employing the joint distribution g(x, y), and setting 1(rK < r− aJ) =
∫ r−aJ

y=0
g(xK , y)dy, we can

derive J’s expected delay due to any random new job:

E[Xnew[⟨4, r − aJ⟩]] =c1 +

∫ ∞

0

pT (x)xf(x)dx+

∫ ∞

0

(1− pT (x))c2f(x)dx

+

∫ r−aJ

0

∫ ∞

x=0

(1− pT (x))xg(x, y)dxdy

Xold
0 [rworst]: Regardless of I’s prediction, an old job has higher priority than J , therefore J will be

delayed for the duration of I’s service.

Xold
0,xI

[⟨4, r⟩] =
{
c1 + xI if I is predicted short
c1 + c2 + xI · 1(rI ≤ r) if I is predicted long

E[(Xold
0 [⟨4, r⟩])]] =

∫ ∞

0

pT (x)(c1 + x)f(x)dx+

∫ ∞

y=r

∫ ∞

x=0

(1− pT (x)) · g(x, y) (c1 + c2) dxdy

+

∫ r

y=0

∫ ∞

x=0

(1− pT (x)) · g(x, y) (c1 + c2 + x) dxdy

E[(Xold
0 [⟨4, r⟩])2]] =

∫ ∞

0

pT (x)(c1 + x)2f(x)dx+

∫ ∞

y=r

∫ ∞

x=0

(1− pT (x)) · g(x, y) (c1 + c2)
2
dxdy

+

∫ r

y=0

∫ ∞

x=0

(1− pT (x)) · g(x, y) (c1 + c2 + x)
2
dxdy

Xold
i [rworst]: If J is predicted long, job I may be recycled. This occurs when I is predicted as long

and with an expensive prediction rI > r. I is initially considered as original and is served during
the cheap and expensive prediction phases, then discarded. At age aI = rI − r, I is recycled and
served till completion, which will be xI − aI = xI − (rI − r). For i ≥ 2, Xold

i,xI
[⟨2, r⟩] = 0, let

t = rI :

Xold
1,xI

[⟨4, r⟩] =
{
0 if I is predicted short
xI − (t− r) if I is predicted long

E[Xold
1 [⟨4, r⟩]2] =

∫ ∞

t=r

∫ ∞

x=t−r

(1− pT (x)) · g(x, t) · (x− (t− r))2 · dxdt

Applying Theorem 1 yields the result.

Lemma 5. The mean response time for predicted long jobs in the external cost model is

E[TPL
ext ] =

∫∞
x=0

∫∞
y=0

(1− pT (x))g(x, y)E[T (x, y)]PL
extdydx∫∞

x=0

∫∞
y=0

(1− pT (x))g(x, y)dydx



and in the server cost model is:

E[TPL
srv ] =

∫∞
x=0

∫∞
y=0

(1− pT (x))g(x, y)E[T (x, y)]PL
srvdydx∫∞

x=0

∫∞
y=0

(1− pT (x))g(x, y)dydx



D Baselines Analysis

D.1 SPRPT Analysis

In SPRPT the job descriptors only include the job size and service time predictions, e.g. D = [size,
predicted time] = [x, r]. Thus, the rank function in the external cost model is:

rankext([x, r], a) = r − a. (3)

In the server cost model:

ranksrv([x, b], a) =

{
⟨1,−a⟩ if 0 ≤ a ≤ c1 (initial rank, scheduling prediction),
⟨2, r − a⟩ if a > c1 (jobs after prediction).

(4)

Lemma 6. For SPRPT in the external cost model, the expected mean response time for a job of true
size xJ and predicted size r is

E[T (xJ , r)]
SPRPT
ext =

λ

2(1− ρ′r)
2

(∫ r

y=0

∫ ∞

xI=0

x2
I · g(xI , y)dxIdy

+

∫ ∞

t=r

∫ ∞

xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt

)
+

∫ xJ

0

1

1− ρ′(r−a)+
da,

where ρ′r = λ
∫ r

y=0

∫∞
xI=0

xI · g(xI , y)dxIdy.

Proof. SPRPT has a rank function rank(r, a) = r−a for job of size x and predicted size r. As this
rank function is monotonic, J’s worst future rank is its initial prediction:

rankworst
dJ ,xJ

(a) = r − a.

When aJ = 0, the rank function is denoted by rworst = rankworst
dJ ,xJ

(0) = r.

Xnew[rankworst
dJ ,xJ

(a)] computation: Suppose that a new job K of predicted size rK arrives when
J has age a. If K has a predicted job size less than J’s predicted remaining process time (r− a), K
will always outrank J . Thus

Xnew
xK

[r − a] = xK1(rK < r − a)

E[Xnew[r − a]] =

∫ r−a

0

∫ ∞

xK=0

xK · g(xK , y)dxKdy

Xold
0 [rworst] computation: Whether job I is an original or recycled job depends on its predicted

size relative to J’s predicted size. If rI ≤ r, then I is original until its completion because its rank
never exceeds r.

Xold
0,xI

[r] = xI1(rI ≤ r).

E[Xold
0 [r]] =

∫ r

y=0

∫ ∞

xI=0

xI · g(xI , y)dxIdy.

E[(Xold
0 [r])2]] =

∫ r

y=0

∫ ∞

xI=0

x2
I · g(xI , y)dxIdy.



Xold
i [rworst] computation: If rI > r, then I starts discarded but becomes recycled when rI−a =

r. This means at age a = rI − r and served till completion, which will be xI − aI = xI − (rI − r),
let t = rI :

Thus, we have
Xold

1,xI
[r] = xI − (t− r).

For i ≥ 2,
Xold

i,xI
[r] = 0.

E[Xold
1 [r]2] =

∫ ∞

t=r

∫ ∞

xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt.

Applying Theorem 5.5 of SOAP (Scully and Harchol-Balter, 2018) yields that the mean response
time of jobs with descriptor (r) and size xJ is as follows. Let

ρ′r = λ

∫ r

y=0

∫ ∞

xI=0

xI · g(xI , y)dxIdy.

Then

E[T (xJ , r)]
SPRPT
ext =

λ
(∫ r

y=0

∫∞
xI=0

x2
I · g(xI , y)dxIdy +

∫∞
t=r

∫∞
xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt
)

2(1− ρ′r)
2

+

∫ xJ

0

1

1− ρ′(r−a)+
da.

Let fp(y) =
∫∞
x=0

g(x, y)dx. Then the mean response time for a job with size xJ , and the mean
response time over all jobs are given by

E[T (xJ)] =

∫ ∞

y=0

fp(y)E[T (xJ , y)]dy,

E[T ]SPRPT
ext =

∫ ∞

x=0

∫ ∞

y=0

g(x, y)E[T (x, y)]dydx.

Lemma 7. For SPRPT in the server time cost model, the expected mean response time for a job of
true size xJ and predicted size r is

E[T (xJ , r)]
SPRPT
srv =

λ

2(1− ρ′′r )
2

(∫ ∞

y=r

∫ ∞

x=0

c22 · g(x, y)dxdy +
∫ r

y=0

∫ ∞

xI=0

(c2 + xI)
2 · g(xI , y)dxIdy

+

∫ ∞

t=r

∫ ∞

xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt)

)
+

∫ xJ

0

1

1− ρ′′(r−a)+
da,

where ρ′′r = λ
(
c2 +

∫ r

y=0

∫∞
xI=0

xI · g(xI , y)dxIdy
)

.

Proof. Xnew[rankworst
dJ

(a)]: J’s worst future rank is ⟨2, r− aJ⟩. In this case, J’s delay due to a new
job K is c2 plus xK is its predicted service time less than J’s remaining process time.

Xnew
xK

[⟨2, r − aJ⟩] = c2 + xK1(rK < r − aJ).

E[Xnew[⟨2, r − aJ⟩] = c2 +

∫ r−a

0

∫ ∞

xK=0

xK · g(xK , y)dxKdy.



Xold
0 [rworst] computation: In this model, old job I delays J at least c2. In addition, If rI ≤ r,

then I is original until its completion because its rank never exceeds r.

Xold
0,xI

⟨2, r − aJ⟩ = c2 + xI1(rI ≤ r).

E[Xold
0 ⟨2, r − aJ⟩] = c2 +

∫ r

y=0

∫ ∞

xI=0

xI · g(xI , y)dxIdy.

E[(Xold
0 ⟨2, r − aJ⟩)2]] =

∫ ∞

y=r

∫ ∞

x=0

c22 · g(x, y)dxdy +
∫ r

y=0

∫ ∞

xI=0

(c2 + xI)
2 · g(xI , y)dxIdy.

Xold
i [rworst] computation: If rI > r, then I starts discarded but becomes recycled when rI−a =

r. This means at age a = rI − r and served till completion, which will be xI − aI = xI − (rI − r),
let t = rI :

Thus, we have

Xold
1,xI

⟨2, r − aJ⟩ = xI − (t− r).

For i ≥ 2,

Xold
i,xI

⟨2, r − aJ⟩ = 0,

E[Xold
1 ⟨2, r − aJ⟩2] =

∫ ∞

t=r

∫ ∞

xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt.

Applying Theorem 5.5 of SOAP (Scully and Harchol-Balter, 2018) yields that the mean response
time of jobs with descriptor (r) and size xJ is as follows. Let

ρ′′r = λ

(
c2 +

∫ r

y=0

∫ ∞

xI=0

xI · g(xI , y)dxIdy

)
.

Then

E[T (xJ , r)]
SPRPT
srv =

λ

2(1− ρ′′r )
2

(∫ ∞

y=r

∫ ∞

x=0

c22 · g(x, y)dxdy +
∫ r

y=0

∫ ∞

xI=0

(c2 + xI)
2 · g(xI , y)dxIdy

+

∫ ∞

t=r

∫ ∞

xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt)

)
+

∫ xJ

0

1

1− ρ′′(r−a)+
da

Let fp(y) =
∫∞
x=0

g(x, y)dx. The mean response time for a job with size xJ and the mean time for
a general job are give by

E[T (xJ)] =

∫ ∞

y=0

fp(y)E[T (xJ , y)]dy,

E[T ]SPRPT
ext =

∫ ∞

x=0

∫ ∞

y=0

g(x, y)E[T (x, y)]dydx.



D.2 1bit Analysis

For the 1bit policy, we define the rank function of this approach and then analyze it using SOAP
framework. Here the job descriptors only include the job sizes and binary predictions, e.g. D =
[size, predicted short/long = [x, b].

rankext([x, b], a) =

{
⟨1,−a⟩ if b = 1,

⟨2,−a⟩ if b = 0.
(5)

In the server cost model, this approach results in the following rank function:

ranksrv([x, b], a) =


⟨2,−a⟩ if 0 ≤ a ≤ c1 (initial rank, and cheap prediction),
⟨1,−a⟩ if b = 1 and a > c1 (short jobs after cheap prediction),
⟨3,−a⟩ if b = 0 and a > c1 (long jobs after cheap prediction).

(6)

The mean response time for predicted short jobs of this approach is similar to predicted short jobs
of SkipPredict as nothing has changed.
Lemma 8. For the 1bit policy in the external cost model, the expected mean response time for a
predicted long job of true size xJ is

E[T (xJ)]
1bit,PL
ext =

λ

2(1− ρ)(1− ρextnew)
E[S2] +

∫ xJ

0

1

1− ρextnew

da,

where ρextnew = λ
∫∞
0

pT (x)xf(x)dx, the load due to predicted short jobs.

Proof. To analyze 1-bit advice for predicted long job in the external cost model using SOAP, we
first find the worst future rank and then calculate Xnew[rankworst

dJ
(a)], Xold

0 [rworst] and Xold
i [rworst]

for predicted long job. For predicted long jobs, the rank function is monotonic as described in (5),
therefore J’s worst future rank is its initial rank.

rankworst
dJ

(a) = ⟨2,−a⟩,

and rworst = rankworst
dJ

(0) = ⟨2, 0⟩.

Xnew[rankworst
dJ

(a)]: Suppose that a new job K arrives when J has age aJ . J’s delay due to K
depends on K is predicted to be short or long.

Only if K is predicted short then it will preempt J and be scheduled till completion because it has
a higher class as long jobs are scheduled also according to FCFS so in case of K predicted long it
will not preempt J

Xnew
xK

[⟨2,−a⟩] =
{
xK K is predicted short.

E[Xnew[⟨2,−a⟩]] =
∫ ∞

0

pT (x)xf(x)dx.

Xold
0 [rworst]: Now if old job I either predicted short or long is an original job then it remains original

until its completion (regardless of if it is predicted long or short). Thus, for i ≥ 1, Xold
i,xI

[⟨2, 0⟩] = 0.

Xold
0,xI

[⟨2, 0⟩] = xI .

E[Xold
0 [⟨2, 0⟩]] =

∫ ∞

0

xf(x)dx.

E[(Xold
0 [⟨2, 0⟩])2]] =

∫ ∞

0

x2f(x)dx.



Applying Theorem 5.5 of SOAP (Scully and Harchol-Balter, 2018) yields the result:

E[T (xJ)]
PL
ext =

λ

2(1− ρ)(1− ρextnew)

∫ ∞

0

x2f(x) dx+

∫ xJ

0

1

1− ρextnew

da,

where ρextnew = λ
(∫∞

0
pT (x)xf(x)dx

)
.

As a second way of thinking about this proof, it can be said that this is the original FCFS system
with slowdowns caused by subsystem 1 (predicted short jobs) which is 1

1−ρext
new

.

Lemma 9. For the 1bit policy in the server time cost model, the expected mean response time for a
predicted long job of true size xJ is

E[T (xJ)]
1bit,PL
srv =

λ

2(1− ρc1)(1− ρsrvnew)

∫ ∞

0

(x+ c1)
2f(x) dx+

∫ xJ

0

1

1− ρsrvnew

da,

where ρsrvnew = λ
(
c1 +

∫∞
0

pT (x)xf(x)dx
)

and ρc1 = λ
(∫∞

0
(x+ c1)f(x)dx

)
.

Proof. In this case, according to (6), J’s worst future rank is

rankworst
dJ

(a) = ⟨3,−a⟩

and rworst = rankworst
dJ

(0) = ⟨3, 0⟩.

Xnew[rankworst
dJ

(a)]: Let’s say J has age aJ when K arrives. The delay caused by K for J depends
on whether it is predicted to be short or long for K. If K is predicted short then it will preempt J
and be scheduled along with its cheap prediction till completion. Otherwise, if K is predicted long,
it will delay J only for the cheap prediction.

Xnew
xK

[⟨3,−aJ⟩] =
{
c1 + xK K is predicted short,
c1 K is predicted long.

E[Xnew[⟨3,−a⟩]] =c1 +

∫ ∞

0

pT (x)xf(x)dx.

Xold
0 [rworst]: Each old job is scheduled for cheap prediction (which costs c1), and an old job I ,

regardless of whether it is predicted long or short remains original until its completion. Thus, for
i ≥ 1, Xold

i,xI
[⟨3, 0⟩] = 0.

Xold
0,xI

[⟨3, 0⟩] = c1 + xI

E[Xold
0 [⟨3, 0⟩]] =

∫ ∞

0

(c1 + x)f(x)dx

E[(Xold
0 [⟨3, 0⟩])2]] =

∫ ∞

0

(c1 + x)2f(x)dx

Using Theorem 5.5 of SOAP (Scully and Harchol-Balter, 2018) yields the result:

E[T (xJ)]
1bit,PL
srv =

λ

2(1− ρc1)(1− ρsrvnew)

∫ ∞

0

(x+ c1)
2f(x) dx+

∫ xJ

0

1

1− ρsrvnew

da,

where ρsrvnew = λ
(
c1 +

∫∞
0

pT (x)xf(x)dx
)

ρc1 = λ
(∫∞

0
(x+ c1)f(x)dx

)
.



E DelayPredict Analysis

Rank function of DelayPredict: We model the system using D = [size, predicted time] = [x, r].
Here we assume that the service time prediction r is greater than L, because jobs that require expen-
sive prediction are longer than L. Since a job’s age is L when it is preempted and obtains a predic-
tion, in the external model, the predicted remaining time for long jobs is r − L− (a− L) = r − a.
For the service time model their age after being predicted starts at L+c2, so the predicted remaining
time is r − L− (a− L− c2) = r − a− c2. As c2 is fixed among all jobs, instead of the predicted
remaining time we can use r − a as the rank for convenience. Accordingly, DelayPredict in the
external cost model has the following rank function:

rankext([x, r], a) =

{
⟨1,−a⟩ if 0 ≤ a < L

⟨2, r − a⟩ if a ≥ L
(7)

In the server cost model, DelayPredict results in the following rank function:

ranksrv([x, r], a) =


⟨1,−a⟩ if 0 ≤ a < L (initial rank),
⟨2,−a⟩ if L ≤ a ≤ L+ c2 (expensive prediction calculation),
⟨3, r − a⟩ if a > L+ c2 (long jobs after expensive prediction).

(8)

Lemma 10. For DelayPredict in both the external cost model and the server time cost model, the
expected mean response time for a short job is

E[T ]DelayPredict,S
ext = E[T ]DelayPredict,S

srv =
λ

2(1− ρL)

(∫ L

0

x2f(x) dx+

∫ ∞

L

L2f(x)dx

)
+

∫ L

0

xf(x)dx,

where ρL = λ
(∫ L

0
xf(x)dx+

∫∞
L

Lf(x)dx
)

, the load due to jobs while limiting their sizes to L.

Proof. We first find the worst future rank and then calculate Xnew[rankworst
dJ

(a)], Xold
0 [rworst] and

Xold
i [rworst] for short jobs. As both the external cost model and the server cost model treat short

jobs the same, and their worst future rank is the same, the analysis holds for both.

For short jobs, the rank function is monotonic, therefore J’s worst future rank is its initial rank:
rankworst

dJ
(a) = ⟨1,−a⟩

and rworst = rankworst
dJ

(0) = ⟨1, 0⟩.

Xnew[rankworst
dJ

(a)]: Since short jobs have higher priorities than long jobs, and they are scheduled
FCFS, a new job does not preempt J . Hence Xnew

xK
[⟨1,−a⟩] = 0.

Xold
0 [rworst]: If an old job I is short, it remains original until it is completed. Otherwise, it remains

original only for L times. Thus, for i ≥ 1, Xold
i,xI

[⟨1, 0⟩] = 0 and

Xold
0,xI

[⟨1, 0⟩] =
{
xI if I is short
L if I is long

E[Xold
0 [⟨1, 0⟩]] =

∫ L

0

xf(x)dx+

∫ ∞

L

Lf(x)dx

E[(Xold
0 [⟨1, 0⟩])2]] =

∫ L

0

x2f(x)dx+

∫ ∞

L

L2f(x)dx

Applying Theorem 5.5 of SOAP (Scully and Harchol-Balter, 2018) yields the result

E[T ]DelayPredict,S
ext =

λ

2(1− ρL)

(∫ L

0

x2f(x) dx+

∫ ∞

L

L2f(x)dx

)
+

∫ L

0

xf(x)dx,

where ρL = λ
(∫ L

0
xf(x)dx+

∫∞
L

Lf(x)dx
)

.



Lemma 11. For DelayPredict in the external cost model, the expected mean response time for a
long job of true size xJ and predicted size r is

E[T (xJ , r)]
DelayPredict,L
ext =

λ

2(1− ρextL,r)
2

(∫ L

x=0

x2f(x)dx

+

∫ r

y=0

∫ ∞

x=L

x2 · g(x, y)dxdy +
∫ ∞

y=r

∫ ∞

x=L

L2 · g(x, y)dxdy

+

∫ ∞

t=r

∫ ∞

x=L+t−r

g(x, t) · (x− L− (t− r))2 · dxdt

)
+

∫ xJ

0

1

1− ρextL,(r−a)+
da,

where ρextL,r = λ
(∫ L

x=0
xf(x)dx+

∫ r

y=0

∫∞
x=L

x · g(x, y)dxdy +
∫∞
y=r

∫∞
x=L

L · g(x, y)dxdy
)

is the
load due to short jobs, long jobs predicted to be less than r, and other long jobs with their size
limited at L. Here (r − a)+ = max(r − a, 0).

Proof. To analyze DelayPredict for a long job in the external cost model using SOAP, we first find
the worst future rank and then calculate Xnew[rankworst

dJ
(a)], Xold

0 [rworst] and Xold
i [rworst] for long

job. As described in (7), the rank function for long jobs is monotonic, and every job’s rank is strictly
decreasing with age, thus J’s worst future rank is its initial rank, here: rankworst

dJ
(a) = ⟨2, r − a⟩

and rworst = rankworst
dJ

(0) = ⟨2, r⟩.

Xnew[rankworst
dJ

(a)]: Suppose that a new job K of predicted size rK arrives when J has age aJ . J’s
delay due to K depends on whether K is short or long. If K is short then it will preempt J , since it
has a higher priority, and be scheduled till completion. If K is long and has a predicted job size less
than J’s predicted remaining process time (r−aJ ), K will preempt J and proceed until completion.
Otherwise, If K is long and has a predicted job size more than J’s predicted remaining process time,
it will preempt J but will be scheduled only for L time.

Thus

Xnew
xK

[⟨2, r − a⟩] =
{
xK K is short
xK1(rK < r − a) + L · 1(rK ≥ r − a) K is long

E[Xnew[⟨2, r − a⟩]] =
∫ L

x=0

xf(x)dx+

∫ r−a

y=0

∫ ∞

x=L

x · g(x, y)dxdy +
∫ ∞

y=r−a

∫ ∞

x=L

L · g(x, y)dxdy

Xold
0 [rworst]: Whether another job I is original or recycled depends on whether it is short or long,

and in the case it is long, it also depends on its predicted size relative to J’s prediction. If I is short,
then it remains original until its completion. Alternatively, if I is long, it is original until completion
if rI ≤ r, otherwise, it is original until L.

Xold
0,xI

[⟨2, r⟩] =
{
xK K is short
xK1(rK < r) + L · 1(rK ≥ r) K is long

E[Xold
0 [⟨2, r⟩]] =

∫ L

x=0

xf(x)dx+

∫ r

y=0

∫ ∞

x=L

x · g(x, y)dxdy +
∫ ∞

y=r

∫ ∞

x=L

L · g(x, y)dxdy

E[(Xold
0 [⟨2, r⟩])2]] =

∫ L

x=0

x2f(x)dx+

∫ r

y=0

∫ ∞

x=L

x2 · g(x, y)dxdy +
∫ ∞

y=r

∫ ∞

x=L

L2 · g(x, y)dxdy

Xold
i [rworst]: If another job I is long and if rI > r, then I starts discarded but becomes recycled

when rI − a = r. This starts at age a = rI − r and continues until completion, which will be
xI − L− aI = xI − L− (rI − r). Thus, for i ≥ 2, Xold

i,xI
[⟨2, r⟩] = 0. Let t = rI :



Xold
1,xI

[⟨2, r⟩] =
{
0 if I is short
xI − L− (t− r) if I is long

E[Xold
1 [⟨2, r⟩]2] =

∫ ∞

t=r

∫ ∞

x=L+t−r

g(x, t) · (x− L− (t− r))2 · dxdt

Applying Theorem 1 leads to the result.

E[T (xJ , r)]
DelayPredict,L
ext =

λ

2(1− ρextL,r)
2

(∫ L

x=0

x2f(x)dx

+

∫ r

y=0

∫ ∞

x=L

x2 · g(x, y)dxdy +
∫ ∞

y=r

∫ ∞

x=L

L2 · g(x, y)dxdy

+

∫ ∞

t=r

∫ ∞

x=L+t−r

g(x, t) · (x− L− (t− r))2 · dxdt

)
+

∫ xJ

0

1

1− ρextL,(r−a)+
da

Where ρextL,r = λ
(∫ L

x=0
xf(x)dx+

∫ r

y=0

∫∞
x=L

x · g(x, y)dxdy +
∫∞
y=r

∫∞
x=L

L · g(x, y)dxdy
)

.

Lemma 12. For DelayPredict policy in the server cost model, the expected mean response time for
a long job of true size xJ and predicted size r is

E[T (xJ , r)]
DelayPredict,L
srv =

λ

2(1− ρsrvL,r)
2

(∫ L

x=0

x2f(x)dx+

∫ r

y=0

∫ ∞

x=L

(x+ c2)
2 · g(x, y)dxdy

+

∫ ∞

y=r

∫ ∞

x=L

(L+ c2)
2 · g(x, y)dxdy

+

∫ ∞

t=r

∫ ∞

x=L+t−r

g(x, t) · (x− L− (t− r))2 · dxdt

)
+

∫ xJ

0

1

1− ρsrvL,(r−a)+
da,

where ρsrvL,r = λ
(∫ L

x=0
xf(x)dx+

∫ r

y=0

∫∞
x=L

(x+ c2) · g(x, y)dxdy +
∫∞
y=r

∫∞
x=L

(L+ c2) · g(x, y)dxdy
)

is the load due to short jobs, predictions for long jobs, long jobs predicted to be less than r, and
other long jobs with their size limited at L. Here (r − a)+ = max(r − a, 0).

Proof. In this case, J’s worst future rank is rankworst
dJ

(a) = ⟨3, r− a⟩ and rworst = rankworst
dJ

(0) =

⟨3, r⟩. Now we calculate Xnew[rankworst
dJ

(a)], Xold
0 [rworst] and Xold

i [rworst] for long jobs in the
server cost most.

Xnew[rankworst
dJ

(a)]: J’s delay due to K also depends on K is short or long. If I is short, then it
remains it is scheduled until its completion. Alternatively, if I is long its prediction is scheduled for
c2. In addition, if rI ≤ r then it is scheduled until completion, otherwise it is scheduled until L.

Xnew
xK

[⟨3, r − aJ⟩] =
{
xK K is short
(c2 + xK) · 1(rK < r − aJ) + (c2 + L) · 1(rK ≥ r − aJ) K is long

E[Xnew[⟨3, r − a⟩]] =
∫ L

x=0

xf(x)dx+

∫ r−a

y=0

∫ ∞

x=L

(x+ c2) · g(x, y)dxdy

+

∫ ∞

y=r−a

∫ ∞

x=L

(L+ c2) · g(x, y)dxdy



Xold
0 [rworst]: The analysis is similar to the new arrival job. Whether another job I is original or

recycled depends on whether it is short or long, and in the case it is long, it also depends on its
predicted size relative to J’s prediction.

Xold
0,xI

[⟨3, r⟩] =
{
xK K is short
(c2 + xK) · 1(rK < r) + (c2 + L) · 1(rK ≥ r) K is long

E[Xold
0 [⟨3, r⟩]] =

∫ L

x=0

xf(x)dx+

∫ r

y=0

∫ ∞

x=L

(x+ c2) · g(x, y)dxdy +
∫ ∞

y=r

∫ ∞

x=L

(L+ c2) · g(x, y)dxdy

E[(Xold
0 [⟨3, r⟩])2]] =

∫ L

x=0

x2f(x)dx+

∫ r

y=0

∫ ∞

x=L

(x+ c2)
2 · g(x, y)dxdy

+

∫ ∞

y=r

∫ ∞

x=L

(L+ c2)
2 · g(x, y)dxdy

Xold
i [rworst]: As described before, if another job I is long and if rI > r, then I starts discarded but

becomes recycled when rI − a = r. This starts at age a = rI − r and continues until completion,
which will be xI − L− aI = xI − L− (rI − r). Thus, for i ≥ 2, Xold

i,xI
[⟨3, r⟩] = 0. Let t = rI :

Xold
1,xI

[⟨3, r⟩] =
{
0 if I is short
xI − L− (t− r) if I is long

E[Xold
1 [⟨3, r⟩]2] =

∫ ∞

t=r

∫ ∞

x=L+t−r

g(x, t) · (x− L− (t− r))2 · dxdt

Applying Theorem 1 leads to the result.

E[T (xJ , r)]
DelayPredict,L
srv =

λ

2(1− ρsrvL,r)
2

(∫ L

x=0

x2f(x)dx+

∫ r

y=0

∫ ∞

x=L

(x+ c2)
2 · g(x, y)dxdy

+

∫ ∞

y=r

∫ ∞

x=L

(L+ c2)
2 · g(x, y)dxdy

+

∫ ∞

t=r

∫ ∞

x=L+t−r

g(x, t) · (x− L− (t− r))2 · dxdt

)
+

∫ xJ

0

1

1− ρsrvL,(r−a)+
da

Where ρsrvL,r = λ
(∫ L

x=0
xf(x)dx+

∫ r

y=0

∫∞
x=L

(x+ c2) · g(x, y)dxdy +
∫∞
y=r

∫∞
x=L

(L+ c2) · g(x, y)dxdy
)

.



F Simulation

F.1 Datasets descriptions

F.1.1 Real-world datatsets

For real-world traces, we use datasets from Amvrosiadis et al. (Amvrosiadis et al., 2018).

TwoSigma Dataset: The workload traces originate from two data centers of TwoSigma, a hedge
fund company. The workload comprises data analytics jobs processing financial information. A
portion of these jobs utilize Spark (Salloum et al., 2016), while the remaining jobs are handled
by proprietary data analytics frameworks developed in-house. The dataset spans a period of 9
months, starting in January 2016, across the two data centers’ operations, encompassing a total
of 1313 identical compute nodes equipped with 31512 CPU cores and 328TB of RAM. The logs
contains 265, 029 jobs and were collected by an internally-developed job scheduler running on top
of Mesos (Hindman et al., 2011).

Google Dataset: In 2012, Google released a trace of jobs that ran on one of their compute clusters.
The workload encompasses both long-running services and batch jobs (Verma et al., 2015). Some
of these were issued through the MapReduce framework, and executed on 12583 heterogeneous
nodes in May 2011. The dataset we used contains 385, 072 jobs. Google has not disclosed the exact
hardware specifications of each cluster node in this trace.

Trinity Dataset: Trinity is the largest supercomputer at Los Alamos National Laboratory (LANL),
dedicated to capability computing. Capability clusters are large-scale, high-demand resources intro-
ducing cutting-edge hardware technologies that aid in achieving significant computing milestones,
such as higher-resolution climate and astrophysics models. Trinity’s hardware was deployed in two
pre-production phases before being fully operational, and the trace was collected before the comple-
tion of the second phase. Trinity consisted of 9408 identical compute nodes, totaling 301056 Intel
Xeon E5-2698v3 2.3GHz cores and 1.2PB of RAM, making it the largest cluster with a publicly
available trace by number of CPU cores. The dataset we used contains 18, 872 jobs collected by the
MOAB scheduler.

Their system leverages machine learning to predict job runtimes in large clusters, utilizing features
like user IDs, job names, and input sizes. For each job, we have the actual runtime and predicted
runtime in seconds, with runtimes summed across tasks for multi-task jobs. We only consider suc-
cessfully completed jobs and normalize runtimes to a mean of 1, consistent with the synthetic traces.

Service time predictor for the real-world datasets

For these datasets, (Amvrosiadis et al., 2018) used JVuPredict, the job service time predictor of the
JamaisVu scheduling system (Tumanov et al., 2016).

JVuPredict is a runtime (service time) prediction module that is part of the JamaisVu system. Its
primary objective is to predict the runtime of a job when it is submitted, utilizing historical data
regarding past job characteristics and runtimes. JVuPredict deviates from conventional approaches
by attempting to identify jobs that repeat, even when successive runs are not explicitly declared
as repeats. This approach proves to be more effective because only the relevant historical data
pertaining to the newly submitted job is utilized to generate the runtime estimate. To achieve this,
JVuPredict leverages various features of submitted jobs, such as user identifiers and job names, to
construct multiple independent predictors. These predictors are then evaluated based on the accuracy
they achieve on historical data, and the most accurate predictor is selected for generating future
predictions. Once a prediction is made for a new job, that job’s data is added to the historical dataset,
and the accuracy scores of each predictor model are recalculated. Based on the updated accuracy
scores, a new predictor is chosen, and the process is repeated for subsequent job submissions. In
general, JVuPredict employs a dynamic approach, continuously refining its prediction models by
incorporating new job data and selecting the most accurate predictor for each new job submission.

F.1.2 Synthetic datasets

For the synthetic traces, we considered two job service distributions; exponentially distributed with
mean 1 (f(x) = e−x) and the Weibull distribution with cumulative distribution F = 1−e−

√
2x. The

Weibull distribution is heavy-tailed, so that while the average service time remains 1, there are many



more very long jobs than with the exponential distribution. For predictions, we used two prediction
models; exponential and uniform predictions. Table 4 summarizes the quantities pT (x) and g(x, y)
for our prediction models. Each of the two-stage predictors could be from a different model.

F.1.3 Simulation

In our simulation, each data point is obtained by simulating initially empty queues over 1, 000, 000
time units. The average response time is calculated for all jobs that terminate after time 100, 000.
This process is repeated over 100 simulations, and the reported data point represents the average
response time across these 100 simulations. We implemented the simulation in Python 3.7.6. The
evaluation was performed on an AMD EPYC 7313 16-Core Processor running Ubuntu 20.04.6 LTS
with Linux kernel 5.4.0− 172-generic.

Model pT (x) g(x, y)
Perfect Prediction 1 if x < T e−x

Exponential Prediction 1− e−(T
x ) e

−x−y
x

Uniform Prediction


0 if T ≤ (1− α)x,

1 if T ≥ (1 + α)x,
T−(1−α)x

2αx otherwise

1
2αxe

−x

Table 4: Prediction Models and their Functions

F.2 Simulation with real-world datasets

Here we present the cost vs. T simulations of the the rest of the real-world datasets, Twosigma and
Google.

(a) Twosigma, server (b) Twosigma, external (c) Google, server (d) Google, external

Figure 8: Cost vs. T (with λ = 0.6) in real-world datasets (Twosigma and Trinity) in both the
external and service time models. The default costs for the external model are c1 = 0.5, c2 = 20,
and in the server time are c1 = 0.05, c2 = 0.5.

F.3 Simulation with synthetic datasets

Here we present some additional simulations of the the Weibull distribution using both predictors.



(a) cost vs c2 - External (b) cost vs T - External (c) cost vs. λ - External

(d) cost vs c2- Server (e) cost vs T - Server (f) cost vs. λ- Server

Figure 9: Cost in the external cost and server cost models using exponential predictor for Weibull
service time. The default costs for the external model are c1 = 0.5, c2 = 2 and for the server cost
model are c1 = 0.01, c2 = 0.05 (a + d) Cost vs. c2 when λ = 0.9 and T = 1 (b + e) Cost vs. T
when λ = 0.9 (c + f) Cost vs. λ when T = 1.

(a) cost vs c2 - External (b) cost vs T - External (c) cost vs. λ - External

(d) cost vs c2- Server (e) cost vs T - Server (f) cost vs. λ- Server

Figure 10: Cost in the external cost and server cost models using the uniform predictor for Weibull
service time. The default costs for the external model are c1 = 0.5, c2 = 2 and for the server cost
model are c1 = 0.01, c2 = 0.05 (a + d) Cost vs. c2 when λ = 0.9 and T = 1 (b + e) Cost vs. T
when λ = 0.9 (c + f) Cost vs. λ when T = 1.
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