
Under review as a conference paper at ICLR 2022

RETHINKING PARETO APPROACHES IN CONSTRAINED
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Constrained Reinforcement Learning (CRL) burgeons broad interest in recent
years, which pursues both goals of maximizing long-term returns and constrain-
ing costs. Although CRL can be cast as a multi-objective optimization problem, it
is still largely unsolved using standard Pareto optimization approaches. The key
challenge is that gradient-based Pareto optimization agents tend to stick to known
Pareto-optimal solutions even when they yield poor returns (i.e., the safest self-
driving car that never moves) or violates the constraints (i.e., the record breaking
racer that crashes the car). In this paper, we propose a novel Pareto optimization
method for CRL with two gradient recalibration techniques to overcome the chal-
lenge. First, to explore around feasible Pareto optimal solutions, we use gradient
re-balancing to let the agent improve more on under-optimized objectives at each
policy update. Second, to escape from infeasible solutions, we propose gradient
perturbation to temporarily sacrifice return to save costs. Experiments on the Safe-
tyGym benchmarks show that our method consistently outperforms previous CRL
methods in return while satisfying the cost constraints.

1 INTRODUCTION

By virtue of the close relationship to real-world applications, Constrained Reinforcement Learn-
ing (CRL) burgeons broad interest in recent years. Unlike the traditional RL, which targets maxi-
mizing cumulative rewards only, CRL pursues rewards while satisfying specific constraints (Achiam
et al., 2017; Ding et al., 2020; Wachi & Sui, 2020; Satija et al., 2020). For example, in the scenario
of auto-pilot, the well-trained agent should arrive at the destination accurately and meets the safety
constraints in the meantime (Kong et al., 2021).

Most existing works formulate the CRL problem as a Constrained Markov Decision Pro-
cess (CMDP) (Altman, 1999), which incorporates constraints and rewards into the same framework.
Aside from returning a scalar reward after each action like conventional MDPs, CMDPs send back
one or multiple cost signals independent of reward. Constraints are expressed explicitly in CMDPs
by limiting the expected sum of each cost in the corresponding region.

Essentially, the purpose of CRL is to maximize rewards while controlling costs, which would be
naturally associated with the Multi-objective optimization (Deb, 2014). In recent years, Pareto
approaches (Sener & Koltun, 2018; Lin et al., 2019), which find a steep gradient that benefits to
all objective, have been generally leveraged to multi-objective optimization. The ultimate goal of
Pareto approaches is finding a Pareto-optimal (Pareto, 1897) solution, in which no objective can
be advanced without harming any other objectives. However, algorithms for CRL seldom consider
experience from the Pareto optimization area because existing Pareto approaches perform poorly in
practical CRL problems (Tessler et al., 2018).

According to our analysis, existing Pareto approaches are not practical at CRL because they can only
find trivial Pareto-optimal policy. As shown in Fig.1(b), when the gradients to optimize reward and
cost disagree, Pareto approaches will synthesize a new gradient biased to the shorter one in direction.
Suppose the policy is near-optimal about one objective (i.e. short gradient) while underdeveloped in
another objective. In that case, this biased gradient will instead pay more attention to the objective
with better performance. Policy updated by this biased gradient will be either too risky to be aware
of the constraint on cost or too conservative to interact with the environment, which leads to an
imbalanced development in rewards and costs. Meanwhile, restricted by the feature of simultaneous

1

Under review as a conference paper at ICLR 2022

improving all objectives, Pareto approaches cannot sacrifice one objective in exchange to advance
another, which is a necessary skill to find a policy feasible to cost constraint in CRL. Thus, though
existing Pareto approaches are able to find Pareto-optimal policy, the results not only have imbalance
performance in terms of rewards and costs, but also are unable to guarantee that the constraint is met.

To tackle the aforementioned defects, we import gradient re-balancing and gradient perturbation
mechanism to apply Pareto approaches in CRL. Gradient re-balancing re-defines the length of gra-
dient and ensures we focus more on the objective in need. While gradient perturbation forces the
Pareto optimizer to take confined attention on reward to improve cost by a bounded extent.

In this paper, we propose a novel CRL paradigm from the perspective of Pareto-optimal. With
definitions on CRL and Pareto-optimal (Section 2), we rethink the connections between existing
CRL methods and the concept of Pareto-optimal (Section 3.1). Then we analyze the pros and cons
of applying Pareto optimization approaches to the CRL problem (Section3.2). Furthermore, we
design a practical algorithm for CRL (Section 4) named CONTROL (abbr. for Constraints adaptive
Pareto Reinforcement Learning) with two radient recalibration techniques. At last, we conduct
experiments on a benchmark of CRL, the SafetyGym environment, the results of which demonstrate
the superiority of CONTROL comparing to the state-of-the-art baselines (Section 5).

2 PRELIMINARY

2.1 CONSTRAINED MARKOV DECISION PROCESS

Markov Decision Process A normal Markov Decision Process (Sutton & Barto, 1998) can be
described as a quadruple (S,A, P,R). Precisely, S denotes the state set; A denotes the action set;
P is the distribution returning the probability of transiting to s′ assuming we take action a in s,
denoted as P (s′|s, a); R : S × A × S → R is the reward function, which delivers reward r as
soon as the transition s → s′ is accomplished. We make decisions for choosing actions by a policy
π : S → ∆A, which is a distribution over A. In this work, we parameterize our policy πω by a
neural network with parameters ω ∈ Rk.

In an MDP, we take an action a ∼ π from initial state s0 ∼ ρ0 (s0) iteratively, and transit to a
new state according to P , yielding a finite or infinite trajectory τ = (s0, a0, r1, s1, a1, r2, . . .) ∼ π.
Given a policy π, we are able to evaluate the goodness of a state or action by state-value function
V (s), action-value function Q(s, a), and advantage-value function A(s, a):

V πR (st) = Eat,st+1,...

[∞∑
l=0

γlrt+l

]
, QπR (st, at) = Est+1,at+1,...

[∞∑
l=0

γlrt+l

]
,

AπR(s, a) =QπR(s, a)− V πR (s).

(1)

In Eq(1), γ ∈ [0, 1] is the discount factor, which weighs the future reward and instant reward. The
goal of reinforcement learning is to discover an optimal policy π∗ for MDP by solving:

arg max
π

Es0∼ρ0,τ∼π [V πR (s0)] . (2)

Constrained MDP In this paper, we concentrate on CMDP with only one kind of cost, which is
consistent with the settings in Achiam et al. (2017); Tessler et al. (2018); Yang et al. (2019). The
main difference between CMDP and MDP is CMDP has a cost function C : S × A × S → R.
Therefore, the feedback of the environment in one transition is a vector (r, c) ∈ R2, where c ∈ R+

is the value of cost. Similarly, we have value functions for cost: V πC (st) , Q
π
C (st, at) , A

π
C(s, a) by

switching the reward r to the cost c in Eq(1).

Formally, the policy optimization problem in CMDP is

max
π

JR(π) = Es0∼ρ0,τ∼π [V πR (s0)] ,

s.t. JC(π) = −Es0∼ρ0,τ∼π [V πC (s0)] ≥ ζ,
(3)

where ζ < 0 denotes the predefined constraint threshold. In Eq.(3), JR(π) and JC(π) represents
the performance of π with respect to reward and cost, respectively. Specifically, here we let JC(π)
negative for readability.

2

Under review as a conference paper at ICLR 2022

(a) (b) (c)

Figure 1: An illustration of Pareto
direction ∆(ω).
(a): ∆(ω) generalizes both gra-
dients when they converge in
direction.
(b): ∆(ω) is biased to the shorter
gradient when ∇ωJR(πω) and
∇ωJC(πω) disagree in direction.
(c): ∆(ω) coincides with one
gradient in some cases.

2.2 PARETO-OPTIMAL

To make clearer definitions, we introduce related concepts under the problem settings of CRL di-
rectly. To understand Pareto-optimal, we need a rule to compare which policy is better first.

Definition 2.1 (Dominate). For two policies π, π′, we say π dominates π′, denoted as π � π′ i.i.f
JR(π) ≥ JR(π′), JC(π) ≥ JC(π′) and and at least one inequation is strictly holds.

By Definition 2.1, we know that a policy π is better than π′ when π is not worse than π′ over reward
and cost, and outperforms π′ on at least one objective.

Definition 2.2 (Pareto-optimal Policy). We call an policy πω is global Pareto-optimal i.i.f. ∀ω′ ∈
Rk, πω′ � πω is invalid, i.e. ∀ω′ ∈ Rk, πω′ � πω;We call an policy πω is local Pareto-optimal i.i.f.
there exists a neighborhood U ⊂ Rk of ω s.t. ∀ω′ ∈ U, πω′ � πω is invalid, i.e. ∀ω′ ∈ U, πω′ � πω .

Without otherwise specification, we use Pareto-optimal referring to local Pareto optimal hereafter.
A local Pareto-optimal policy is guaranteed to be a global Pareto-optimal policy only if JR(πω) and
JC(πω) are concave over ω in Rk, which is invalid in most Deep RL setting. From the angle of
optimizing target, we notice that if π is a Pareto-optimal policy we cannot advance any J(π) while
keeping the performance of another. This leads to the definition of Pareto direction:

Definition 2.3 (Pareto direction). Given a parameterized policy πω , if an vector v ∈ Rk is an
updating direction of ω which can boost at least one J(πω) without harming another J(πω), then
v is a Pareto direction of πω . Namely, if 〈∇ωJR(πω),v〉, 〈∇ωJC(πω),v〉 ≥ 0, then v is a Pareto
direction of π, where 〈 , 〉 is the standard inner product and at least one inequation strictly holds.

Pareto-optimal Searching To search a Pareto-optimal policy, the most straightforward idea is
designing an iteration ω′ = ω + η(ω)∆(ω), where ∆(ω) is a Pareto direction of ω, and η(ω) ∈ R+

is stepsize. With appropriate η, we could ensure πω′ � πω in each updating until πω is Pareto-
optimal. Intuitively, ∆(ω) should be a linear combination of gradients of JR(πω), JR(πω), i.e.
∆(ω) = βR∇ωJR(πω) + βC∇ωJC(πω), in which βR, βC are called Pareto weights.

Both Fliege & Svaiter (2000) and Désidéri (2012) are established works for Pareto-optimal search-
ing. Under the problem settings of CRL, the Pareto weights are obtained in Désidéri (2012) by
solving following Quadratic Programming (QP):

min
βR,βC∈R

||βR∇ωJR(πω) + βC∇ωJC(πω)||22

s.t. βR, βC ≥ 0, βR + βC = 1.
(4)

Fig.1 illustrates the geometric relationship among∇ωJR(πω),∇ωJC(πω) and ∆(ω) by three cases.
As a result of constraints in Problem(4), ∆(ω) ends on the line segment determined by endpoints
of ∇ωJR(πω) and ∇ωJC(πω). Since we minimize the length of ∆(ω), ∆(ω) is normally a perpen-
dicular vector of ∇ωJR(πω) − ∇ωJC(πω) (Fig.1a,b) and sometimes it coincides with one of the
gradient vectors (Fig.1c).

In Appendix A, we first re-elaborate the algorithms proposed in Fliege & Svaiter (2000) and Désidéri
(2012) under the CRL framework. Furthermore, we provide concise proofs for their effectiveness in
finding Pareto direction and show that they are fundamentally identical in CRL problems. Finally,
we make completeness proof for possible extreme situations when applying Pareto-optimal in CRL.

3

Under review as a conference paper at ICLR 2022

Figure 2: An illustration of how various methods find Pareto-optimal policies. (a): Linear scalar-
ization can find Pareto-optimal policy but need may not be Pareto-feasible; (b): Lagrangian meth-
ods can find feasible policy, while they may fails for too conservative to explore the environment;
(c):CPO can find Pareto-optimal policy but cannot find Pareto-feasible policy if initial policy is too
fat to reach the feasibility region; (d) Our method can find Pareto-feasible policy, while not each
step is a Pareto direction.

3 PARETO-OPTIMAL IN CRL

3.1 CONNECTIONS TO PRIOR CRL WORKS

The mainstream approaches to solve such problems could be grouped into two genres: (i) La-
grangian methods (Borkar, 2005; Tessler et al., 2018; Stooke et al., 2020); (ii) Trust Region meth-
ods (Achiam et al., 2017; Yang et al., 2019). Lagrangian methods combine primal reward-oriented
and cost-oriented objectives into one dual min-max problem, converting CMDPs into unconstrained
MDPs. While Trust Region methods attempt to determine a trust region in parameter space, where
policies updated inside would not violate constraints with worst-case bound on reward performance.

Prior CRL algorithms are fundamentally finding Pareto-optimal policy (See proofs in Appendix C),
which is a conclusion that unifies our work and existing works in methodology. To be consequen-
tialism, any non-Pareto-optimal policy is unworthy of being regarded as a solution to a CMDP, since
there must be a better one. Nevertheless, not every Pareto-optimal policy makes sense in a CMDP.
What we truly need is Pareto-feasible policy:

Definition 3.1 (Pareto-feasible Policy). We call an policy πω is Pareto-feasible if πω is local Pareto-
optimal while satisfying constraints.

Fig.2 (a), (b) and (c) illustrate how prior CRL algorithms search Pareto-optimal policy. However,
only in some occasions they are capable of finding a Pareto-feasible policy. In Fig.2 (a), we scalarize
(r, c) per transition with random or preset weights linearly. With diverse selection of weights, the
final policy may be different. Under such conditions, the search route could only reach a Pareto-
feasible policy with weights good enough (route 2). As shown in Fig.2 (b), Lagrangian methods
ensures that JC(π) is stable near the threshold. But they may fail to search Pareto-optimal policy
because they are too conservative to explore and fall into local optima (route 2). For CPO (Achiam
et al., 2017) in Fig.2 (c), it is able to maintain the policy within the feasibility region while increase
JR(π) (route 1). Yet, it may fail to satisfy constraint when initial policy is not feasible. Results in
experiments and proofs in Appendix C could corroborate that above interpretation is not heuristic.

3.2 PROS AND CONS FOR PARETO-OPTIMAL IN CRL

Advantages of Pareto-optimal Searching in CRL Based on the preceding analysis, we conclude
three advantages for Pareto-optimal searching in CRL:

4

Under review as a conference paper at ICLR 2022

• Preeminent: Any Pareto-optimal policy ensures its superiority considering both reward and cost.
• Reachable: Pareto-optimal policy is not unique, and even simple algorithms (e.g. Linear Scalar-

ization) can reach it.
• Knowledge-free: No prior knowledge is needed to apply Pareto approaches in CRL.

Disadvantages of Pareto-optimal Searching in CRL Despite noting the advantages of Pareto-
optimal Searching, we found two main disadvantages from practical.

First, existing Pareto-optimal algorithms optimize all objectives with consistent extent (Proven in
Theorem 4.2), which will lead to an imbalanced development of JR(πω) and JC(πω). This fact im-
plies that the updating in this iteration would focus on rewards, which is already the better-optimized
objective comparing to cost. Suppose our policy πω is in a situation where JR(πω) is near the lo-
cal optima while JC(πω) is still under-optimized. In this circumstance, ∇ωJC(πω) is steeper and
longer than ∇ωJR(πω), which is similar to Fig.1(b). As demonstrated in Fig.1(b), the Pareto direc-
tion ∆(ω) is biased to ∇ωJR(πω) and its component in the direction of ∇ωJR(πω) is longer than
∇ωJC(πω)’s. In extreme cases, if our policy reaches or approaches a trivial Pareto-optimal policy,
it has no chance to escape and find feasible policy.

Second, existing Pareto-optimal approaches overemphasize the simultaneous growth of two ob-
jectives. In fact, in CRL, we need to sacrifice JR(πω) in exchange for improvement in JC(πω)
to satisfy constraint in certain situations. Suppose we already reached Pareto frontier with a non-
feasible policy. Instead of finding a Pareto direction to advance reward and cost, we prefer to search
policies with less reward performance. Similarly, when our policy is too conservative, we should
encourage it to take risks and pursue higher rewards. Thus, this defect will restrict our control to the
parameter updating route and finally return a trivial policy without guarantee of satisfying constraint.

4 CONTROL: CONSTRAINTS ADAPTIVE PARETO RL

4.1 GRADIENT RECALIBRATION MECHANISMS

Gradient Re-balancing This is the corresponding improvement for imbalanced development is-
sue. To tackle this issue, we should adapt ∇ωJR(πω) and ∇ωJC(πω) to achieve a similar degree
of improvement in reward and cost at each iteration of policy parameters. Motivated by recent
works about normalization in gradient (Chen et al., 2018; Mahapatra & Rajan, 2020), we reform
Problem(4) as:

min
βR,βC∈R

||βR∇Nω JR(πω) + βC∇Nω JC(πω)||22,

s.t. βR, βC ≥ 0, βR + βC = 1,
(5)

where∇Nω JR(πω),∇Nω JC(πω) are normalized gradients and defined as:

∇Nω JR(πω) =
∇ωJR(πω)

||∇ωJR(πω)||22
,∇Nω JC(πω) =

∇ωJC(πω)

||∇ωJC(πω)||22
. (6)

In Eq (5), the length of normalized gradient vectors becomes the reciprocal of its original length,
which makes the original longer vector shorter. With solution β∗N = (βNR , β

N
C) ∈ R2

+, we can find a
better Pareto direction comparing to the Pareto direction derived from Problem (4).
Lemma 4.1. If πω is not Pareto-optimal, ∆N (ω) := βNR∇ωJR(πω) + βNC∇ωJC(πω) is a Pareto
direction of πω .
Theorem 4.2. Suppose the iteration paradigm is ω′ = ω + η(ω)∆N (ω) and η(ω)→ 0. Then:
(i) if we use ∆(ω) derived from Problem (4), the improvements in reward and cost are consistent.

Specifically, when β∗R ∈ (0, 1),
JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→ 1. (ii) if we use ∆N (ω) derived from Prob-

lem (5), the improvements in reward and cost are proportional to the square length of corresponding

gradient. Specifically, when βNR ∈ (0, 1),
JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→
||∇ωJR(πω)||22
||∇ωJC(πω)||22

.

The proofs to Lemma 4.1 and Theorem 4.2 are provided in Appendix D.

5

Under review as a conference paper at ICLR 2022

According to Theorem 4.2, now we can pay more attention to the objective which needs more
optimization. Note that it is imbalanced even if the improvement ratio is 1, because in practical the
scales of JR(π), JC(π) may be quite different.

Gradient Perturbation This is the corresponding improvement for assisting us to sacrifice re-
wards to satisfy constraint. A naive method for this idea is only optimizing cost when constraint is
violated. But this is not realistic because: (i) focusing on cost too much may drive the agent to be too
conservative to explore and fall into local optima; (ii)sometimes reward and cost are not competitive,
totally ignoring reward is unwise.

In fact, manipulating Pareto weights can achieve the goal of sacrificing rewards when necessary. If
current Pareto direction is unable to promote cost to a desirable extent, we must pay more attention
to cost by raising βC . Motivated by PPO (Schulman et al., 2017), we design a mechanism to control
Pareto weight: when βR is too big, we clip it to a smaller number. Since βR + βC = 1, the range of
βR can influence βC , and an upper bound for βR is also a lower bound for βC .

Specifically, given a clipping threshold t ∈ [0, 1], the original Pareto weight βNR will be clipped to
min(t, βNR). With fixed η(ω)→ 0, we can deduce a lower bound for the growth of JC(π):
Theorem 4.3 (The lower bound of JC(π) improvement). Given the parameter updating paradigm
ω′ = ω + η(ω)∆N (ω) and clipping threshold a, we have the lower bound for JC(π′ω)− JC(πω):

JC(πω′)− JC(πω) ≥
η(ω)

[
t||∇ωJC(πω)||22〈∇Nω JR(πω)−∇Nω JC(πω),∇Nω JC(πω)〉+ 1

]
− CDmax

KL (πω′ , πω) ,
(7)

where C = 4εγ/(1 − γ)2 and ε = maxs|Ea∼πω′ [Aπω (s, a)] |. And this bound is strictly positive
related to t.

The proof to Theorem 4.3 are provided in Appendix D, in which we also prove that this lower bound
is tighter than the situation without clipping. Specifically, this theorem holds if swapping JC , JR.

The clipping operation ensures enough Pareto weight on the objective underdeveloped and perturb
the weight if not meeting the clipping threshold. As clipping operation is imported to Problem (5),
∆N (ω) may not be a Pareto direction. But it ensures a lower bound for the improvement on JC(π),
which is vital to find a feasible solution. To obtain a nice lower bound, we must choose proper t and
η(ω). For t we can search by grid and search η(w) by line backtracking (Armijo, 1966).

4.2 PRACTICAL IMPLEMENTATION

Base RL model Our method is adaptable and can be applied with any policy-gradient-based RL
algorithm. In this paper, we adopt Actor-critic-based PPO (Schulman et al., 2015) as the base model
of CONTROL. To estimate value functions for both reward and cost, we have two critics to ap-
proach QπR (st, at) , Q

π
C (st, at), separately. Under the framework of PPO, ∇ωJR(πω),∇ωJC(πω)

is determined as:

∇ωJR(πω) =
∂Es∼πold,a∼πω

[Aπold

R (s, a)]

∂ω
,∇ωJC(πω) =

∂Es∼πold,a∼πω
[−Aπold

C (s, a)]

∂ω
. (8)

Pareto-Optimal to Pareto Feasible With Theorem 4.3, policy updating in CONTROL is guaran-
teed to converge to a Pareto-optimal optimal policy with a fixed clipping threshold t. However, this
policy may not be Pareto-feasible. In this case, a search for t and η(ω) is necessary but this will
affect the efficiency of our algorithm.

To choose t and η(ω) with efficiency, we devise a heuristic mechanism which keeps η(ω) as a con-
stant and changes t according to the change of JR(π), JC(π). If the improvement of the performance
about cost in one iteration is not good enough, we decrease t by a little quantity to make a stricter
clip. Similarly, if the performance about reward has not been improved within certain epochs, we
increase t by identical quantity. Particularly, we clip βNC to encourage risky exploration when the
performance about cost reflects that our policy is too conservative. The indicators of performance
are acquired in an on-policy way.

We introduce how CONTROL trains an agent and modifies t in a pseudo-code, which can be found
in Appendix E.

6

Under review as a conference paper at ICLR 2022

Model Goal-Lvl 1 Goal-Lvl 2 Button-Lvl 1 Button-Lvl 2 Push-Lvl 1 Push-Lvl 2

Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

TRPO 25.12 56.14 23.58 213.17 25.83 138.36 25.59 172.61 7.90 47.11 4.69 75.16
PPO 24.99 58.09 22.27 198.65 26.01 150.12 23.93 188.17 3.41 67.12 2.21 71.25

TRPOL 17.03 25.47 5.49 25.27 8.18 32.59 3.73
::::
22.51 4.19 26.31 1.30 23.38

PPOL 13.58
:::::
14.21 1.15 31.66 4.84

::::
23.01 2.38

::::
17.99 2.15 40.20 1.52

:::::
17.27

CPO 23.21 42.52 14.37 60.11 18.25 80.25 16.78 74.43 7.21 38.94 1.84 29.37

MGDA 25.61 40.15 7.31 60.91 6.02 54.62 1.99
::::
11.20 0.80

:::::
16.93 0.89 29.77

CONTROL 21.86
:::::
23.12 8.39

::::
20.84 9.38

::::
22.67 6.44

::::
23.83 2.39

:::::
17.17 2.98

:::::
20.92

CONTROL-R 13.21 30.80 1.51 50.57 5.94 35.29 2.18
::::
17.21 0.75

:::
8.89 1.61

:::::
17.75

CONTROL-P 17.89 45.22 2.23 42.49 3.90 52.05 3.50 54.74 1.36 31.11 2.25 28.77

Table 1: Comparison Results of CONTROL and other baselines with cumulative threshold <25.

Model Goal-Lvl 1 Goal-Lvl 2 Button-Lvl 1 Button-Lvl 2 Push-Lvl 1 Push-Lvl 2

Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

TRPOL 24.57
:::::
28.01 8.72 50.15 12.90

:::::
48.97 7.27 69.21 6.13

:::::
44.72 2.09 54.41

PPOL 25.11
:::::
26.12 4.73 63.02 10.65 73.15 4.14 62.02 3.67

:::::
33.62 1.62

:::::
41.74

CONTROL 25.29
:::::
40.68 16.38

:::::
48.41 14.66

:::::
46.57 13.89

:::::
48.81 4.15

:::::
44.71 2.52

:::::
43.03

Table 2: Comparison Results of CONTROL and other baselines with cumulative threshold <50.

5 EXPERIMENTS

We test CONTROL in SafetyGym (Ray et al., 2019), a CRL benchmark with 3 tasks:

• Goal: In this task, the agent wins rewards by reaching the destinations (green cylinders) and gains
cost for passing traps (blue circles) and hitting movable vases (cyan cubes).

• Button: In this task, the agent wins rewards by pushing a stationary button (orange balls) and
gains cost for passing traps (blue circles) and hitting obstacles (purple cubes) with a fixed moving
trajectory.

• Push: In this task, the agent wins rewards by pushing a crossing workpiece (a yellow column) to
a specific destination (green cylinders) and gains cost for passing traps (blue circles) and hitting
towers (Blue cylinders).

For each task, we have two difficulty levels, level-2 environments have more cost-consuming items
than level-1 environments. Each environment is simulated in Mujoco (Todorov et al., 2012) with a
point agent. To better explain the tasks, we provide screenshots for each environment in Fig.3.

We compare CONTROL to baselines from three domains: traditional policy-based RL meth-
ods (TRPO (Schulman et al., 2015),PPO Schulman et al. (2017)); Constrained RL methods (TRPO-
Lagrangian, PPO-Lagrangian, CPO (Achiam et al., 2017)); Pareto approach(MGDA (Désidéri,
2012)). Moreover, we make ablation study by CONTROL-R (without gradient re-balancing) and
CONTROL-C (without gradient clipping). We consider mean reward and mean cost as two met-
rics to weigh the effectiveness of models. For all methods we conduct 5 runs (1000 episodes each,
10000 steps each episode) with different random seeds and 5× 100 episodes of test runs on another
5 random seeds. The threshold for cumulative cost is 25, as recommended in Ray et al. (2019). In
order to show that our method is adaptive to various thresholds, we make another experiment with
threshold 50.

For reproducibility, we list all architectures and hyper-parameters used in experiments in Ap-
pendix F.

(a) Goal-Lvl 1 (b) Goal-Lvl 2 (c) Button-Lvl 1 (d) Button-Lvl 2 (e) Push-Lvl 1 (f) Push-Lvl 2

Figure 3: Illustration of tasks in SafetyGym

7

Under review as a conference paper at ICLR 2022

R
ew

ar
ds

 P
er

 E
pi

so
de

Goal-Lvl 1 Button-Lvl 1 Push-Lvl 1

1000 1000 1000

R
ew

ar
ds

 P
er

 E
pi

so
de

Goal-Lvl 2 Button-Lvl 2 Push-Lvl 2

1000 1000 1000

CPOPPO PPO-LargrangianTRPO TRPO-Largrangian CONTROLMGDA

C
os

ts
 P

er
 E

pi
so

de

Episodes (× 10000 steps) Episodes (× 10000 steps) Episodes (× 10000 steps)1000 1000 1000

C
os

ts
 P

er
 E

pi
so

de

Episodes (× 10000 steps) Episodes (× 10000 steps) Episodes (× 10000 steps)
1000 1000 1000

Figure 4: Reward and cost curves in all 6 tasks. A dashed line in cost curves represents the threshold.
All lines are averaged over 5 runs and shaded areas indicate one standard deviation.

5.1 EXPERIMENTAL ANALYSIS

Learning curves are provided in Fig. 4 and results of final tests are listed in Table. 1.

Comparison study In comparison, we prefer policies feasible to constraint, which means, any pol-
icy that fails to satisfy constraint is considered to be worse than any feasible policy. In all tasks, we
can find a feasible policy even in all Lvl2 tasks, in which even Lagrangian methods sometimes fail
to meet the threshold. Moreover, our method outperforms all baselines which find feasible policies
in all tasks except Push-Lvl1. We argue that it is because our base model, PPO, also performs poorly
in this task. In fact, all baselines learn limited experience in push tasks. By learning curves, we can
notice that CONTROL’s performance on reward improves quickly at the beginning of training and
then decreases apparently. This decline indicates the effectiveness of gradient perturbation.

Baselines analysis (i) Lagrangian methods can find feasible or near-feasible policies in most tasks,
but their performance on Lvl2 tasks are unsatisfactory (ii) CPO is fails to find feasible or even near-
feasible policy, this is because reaching feasibility region in SafetyGym is challenging. (iii) As a
deputy of existing Pareto approaches, MGDA’s final policy has biased performance in reward and
cost, which is either high reward and high cost or low reward and low cost.

8

Under review as a conference paper at ICLR 2022

Ablation study By comparing the performance of CONTROL and its variants, we can find that:
(i) both gradient recalibration techniques is vital and effective for CONTROL (ii) the overall perfor-
mance of CONTROL-P is better than CONTROL-R.

Adaptability analysis To demonstrate the adaptability of CONTROL, we compare it with La-
grangian methods under another threshold (<50). We can observe that our method shows consistent
ability in satisfying predefined threshold and pursuing rewards.

6 RELATED WORK

6.1 CONSTRAINED REINFORCEMENT LEARNING

Constrained Reinforcement Learning is a generalized RL with regard to constraints in the environ-
ment. Conventionally, CRL is formulated as CMDP (Altman, 1999), in which the environment
returns both a reward and non-negative costs state-wise. Such problems could be solved by Lin-
ear Programs when the set of states and actions are finite (see Chapter1.6 in Altman (1999)). But
CMDPs with more complex environments are very tricky to handle.

CRL is broadly leveraged in several real-world applications, such as networks (Hou & Zhao, 2017),
smart grids (Gao et al., 2020), and robotics (Dalal et al., 2018). Among all CRL scenarios, safety is
the most common constraint. Safety CRL (Sui et al., 2015; Wachi et al., 2018) has more strict de-
mand in constraints, which also raises the problem of safe exploration(Moldovan & Abbeel, 2012).

As aforementioned, mainstreams of the CRL literature are (i) Lagrangian methods (Borkar, 2005;
Tessler et al., 2018; Stooke et al., 2020); (ii) Trust Region methods (Achiam et al., 2017; Yang
et al., 2019). Besides, model-based CRL methods (Chow et al., 2017; Berkenkamp et al., 2017;
Wachi & Sui, 2020) are worthy of being mentioned, which guarantee agents to explore in states
with traceable from known low-cost states. Notably, Chow et al. (2018; 2019) utilizes Lyapunov
functions techniques to analyze the stability of dynamical systems as safety constraints. However,
most model-based CRL algorithms are restricted to discrete-action domains for their value-based
modeling to environments.

6.2 PARETO OPTIMIZATION

At present, Pareto optimizing (Fliege & Svaiter, 2000; Désidéri, 2012) provides a novel and time-
economical way to solve multi-objective optimization problem by returning gradient descent direc-
tions that are beneficial to all objectives. This gradient is a linear combination of gradients of each
objective, whose weights, called Pareto weight, are computed alongside the training process. Sener
& Koltun (2018) first adapted the Pareto optimizer in Désidéri (2012) to deep learning by designing
an approximate solver of Pareto weights. Similarly, Lin et al. (2019) improved Fliege & Svaiter
(2000) in order to comply with multi-objective optimization problem with preference vector.

7 CONCLUSION

In this paper, we introduced a novel CRL paradigm named CONTROL from the perspective of
Pareto optimization. The main challenges of applying existing Pareto approaches are imbalanced im-
provement over reward and cost and incapability of escaping from trivial Pareto-optimal policy. To
overcome these challenges, we devise two gradient recalibration techniques, gradient re-balancing
and gradient perturbation. To be specific, gradient re-balancing redefines original calculation method
of Pareto weight and distributes more weights to underdeveloped objective; while gradient pertur-
bation empowers us to temporarily sacrifice return to save costs when necessary. Experiments on
a CRL benchmark, SafetyGym, validate the superiority of CONTROL and demonstrate a stable
performance in satisfying constraint.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific
Journal of mathematics, 16(1):1–3, 1966.

Felix Berkenkamp, Matteo Turchetta, Angela P Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In NIPS, 2017.

Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems &
control letters, 54(3):207–213, 2005.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, pp. 794–803. PMLR, 2018.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained re-
inforcement learning with percentile risk criteria. The Journal of Machine Learning Research, 18
(1):6070–6120, 2017.

Yinlam Chow, Ofir Nachum, Edgar A Duéñez-Guzmán, and Mohammad Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In NeurIPS, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. In International
Conference on Learning Representations, 2019.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pp. 403–449. Springer,
2014.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo R Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. In NeurIPS, 2020.

Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for multicriteria optimization. Mathe-
matical methods of operations research, 51(3):479–494, 2000.

Yuanqi Gao, Wei Wang, Jie Shi, and Nanpeng Yu. Batch-constrained reinforcement learning for
dynamic distribution network reconfiguration. IEEE Transactions on Smart Grid, 11(6):5357–
5369, 2020.

Chen Hou and Qianchuan Zhao. Optimization of web service-based control system for balance
between network traffic and delay. IEEE Transactions on Automation Science and Engineering,
15(3):1152–1162, 2017.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

Qi Kong, Liangliang Zhang, and Xin Xu. Constrained policy optimization algorithm for autonomous
driving via reinforcement learning. In 2021 6th International Conference on Image, Vision and
Computing (ICIVC), pp. 378–383. IEEE, 2021.

10

Under review as a conference paper at ICLR 2022

Xiao Lin, Hongjie Chen, Changhua Pei, Fei Sun, Xuanji Xiao, Hanxiao Sun, Yongfeng Zhang,
Wenwu Ou, and Peng Jiang. A pareto-efficient algorithm for multiple objective optimization in
e-commerce recommendation. In Proceedings of the 13th ACM Conference on Recommender
Systems, pp. 20–28, 2019.

Debabrata Mahapatra and Vaibhav Rajan. Multi-task learning with user preferences: Gradient de-
scent with controlled ascent in pareto optimization. In International Conference on Machine
Learning, pp. 6597–6607. PMLR, 2020.

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision processes. In
ICML, 2012.

Vilfredo Pareto. The new theories of economics. Journal of political economy, 5(4):485–502, 1897.

John C Platt and Alan H Barr. Constrained differential optimization. In Proceedings of the 1987
International Conference on Neural Information Processing Systems, pp. 612–621, 1987.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 2019.

Harsh Satija, Philip Amortila, and Joelle Pineau. Constrained markov decision processes via back-
ward value functions. In International Conference on Machine Learning, pp. 8502–8511. PMLR,
2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems, pp. 525–536,
2018.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with
gaussian processes. In International Conference on Machine Learning, pp. 997–1005. PMLR,
2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained markov decision pro-
cesses. In International Conference on Machine Learning, pp. 9797–9806. PMLR, 2020.

Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization of
constrained mdps using gaussian processes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representations, 2019.

11

Under review as a conference paper at ICLR 2022

A ASSUMPTIONS

For the purpose of simplifying analysis, we make following assumptions:

Assumption 1. ∇ωJR(πω),∇ωJC(πω) ∈ Rk exist ∀ω ∈ Rk.

Assumption 2. The feasible policy set is not empty, i.e. ∃ a policy π s.t. JC(π) ≥ ζ.

Assumption 3. ∀ω∗ ∈ Rk which is a local optima in JR(πω), exists a neighborhood U ⊂ Rk of ω
s.t. ∀ω′ ∈ U, JR(πω) > JR(π′ω).

Assumption 4. ∀ω∗ ∈ Rk which is a local optima in JC(πω), exists a neighborhood U ⊂ Rk of ω
s.t. ∀ω′ ∈ U, JC(πω) > JC(π′ω).

Assumption 5. An conservative policy πc which yields no reward and cost always exist and is
accessible.

To analyze all assumptions, Assumption 1 is common in Deep Learning and guarantees the existence
of gradient; Assumption 2 is the weakest prerequisite to ensure that a solution to a CMDP exists;
Assumption 3 and Assumption 4 are requirements for completeness proof in Section B. Assumption
5 is common in many CMDPs, where a policy to stay and make no actions is πc.

B PARETO-OPTIMAL SEARCHING IN CRL

In this section, we first re-elaborate the algorithms proposed in Fliege & Svaiter (2000) and Désidéri
(2012)with concise proofs for their effectiveness under the settings of CRL problem. Furthermore,
we show that those two methods are highly similar fundamentally. Notably, existing methods can
only find Pareto-stationary policy, which would be defined later. For completeness, we further
prove that each Pareto-stationary policy is a Pareto-optimal policy with possibility 1 under
Assumption 3,4 to CRL.
Definition B.1 (Pareto-stationary Policy). For a policy πω , πω is Pareto stationary i.i.f. @ a Pareto
direction v of πω s.t. 〈∇ωJR, v〉 > 0 and 〈∇ωJC , v〉 > 0 .

As a necessary condition of Pareto-optimal, Pareto-stationary supplies a stronger condition for
Pareto directions by strict inequations. Moreover, if a policy πω is not Pareto-stationary,
∇ωJR(πω),∇ωJC(πω) 6= 0, otherwise 〈∇ωJR, v〉 = 0 or 〈∇ωJR, v〉 = 0 holds ∀v ∈ Rk.

B.1 STEEPEST DESCENT METHOD (FLIEGE & SVAITER, 2000) IN CRL

As mentioned in Section 2, To search a Pareto optimal policy, the key is designing an iteration
ω′ = ω + η(ω)∆(w), where ∆(ω) is update vector, and η(ω) ∈ R+ is the stepsize. In Steepest
Descent Methods (SDM), η ∈ R+ is obtained by line backtracking searching in a Armijo-Goldstein
way(Armijo, 1966), we omit this part because it is not concerned in CONTROL. Now we are pre-
senting how SDM searches ∆(ω).

For a vector v ∈ Rk, define a function fω(v):

fω(v) := min(〈∇ωJR(πω),v〉, 〈∇ωJC(πω),v〉). (9)

Then ∆(ω) is one of the solution of the problem below:

max
v

fω(v)− 1

2
||v||22. (10)

Theorem B.1. If πω is Pareto-stationary, then ∆(ω) is unique and ∆(ω) = 0 ∈ Rk. Otherwise,
each ∆(ω) is a Pareto direction of πω .

Proof. As defined, ∆(ω) is the solution of Problem(10). According to Definition B.1, if πω is
Pareto-stationary, then maxv fω(v) ≤ 0. Thus:

max
v

fω(v)− 1

2
||v||22 ≤ max

v
fω(v) +max

v
(−1

2
||v||22) ≤ 0 + 0 = 0. (11)

12

Under review as a conference paper at ICLR 2022

Note that when v = 0, fω(v) − 1
2 ||v||

2
2 = 0. So maxv fω(v) − 1

2 ||v||
2
2 = 0. In addition,

∀v 6= 0,maxv fω(v)− 1
2 ||v||

2
2≤ maxv − 1

2 ||v||
2
2 < 0, so 0 is the only solution, i.e. ∆(ω) = 0.

Now let’s consider the situation when πω is not Pareto-stationary, where ∃v s.t. fω(v) > 0.

For a randomly selected δ ∈ (0, 2fω(v)
||v||22

):

fω(δv)− 1

2
||δv||22 = δ(fω(v)− δ

2
||v||22) > 0

Thus:
fω(∆(ω))− 1

2
||∆(ω)||22 = max

v
fω(v)− 1

2
||v||22 > 0

Then fω(∆(ω)) > 1
2 ||∆(ω)||22 ≥ 0, which means 〈∇ωJR(πω),v〉, 〈∇ωJC(πω),v〉 > 0. Thus,

∆(ω) is a Pareto direction of πω by Definition 2.3.

B.2 MULTIPLE-GRADIENT DESCENT ALGORITHM (DÉSIDÉRI, 2012) IN CRL

Multiple-gradient descent algorithm (MGDA) is introduced in Section 2.2, which attains Pareto
weights by solving:

min
βR,βC∈R

||βR∇ωJR(πω) + βC∇ωJC(πω)||22,

s.t. βR, βC ≥ 0, βR + βC = 1.

According to the Chapter.4 of Boyd et al. (2004), the Problem (4) is a convex optimization problem,
so the solution β∗ = (β∗R, β

∗
C) ∈ R2 exists. Furthermore, if ∇ωJR(πω),∇ωJC(πω) 6= 0, then

Problem (4) is strongly convex and β∗ is unique.

After finding the solution of this problem, i.e. β∗, MGDA determine the Pareto direction ∆(ω) as
β∗R∇ωJR(πω) + β∗C∇ωJC(πω).
Theorem B.2. If πω′ is a Pareto-stationary policy then ∆(ω′) = 0.

Proof. If ∇ω′JR(πω′) = 0 or ∇ω′JC(πω′) = 0, then (1, 0) or (0, 1) is a trivial solution of Prob-
lem (4).

Now let us discuss the situation that ∇ω′JR(πω′),∇ω′JC(πω′) 6= 0. Under such conditions, β∗
is unique. Since πω′ is Pareto-stationary, by definition ω is one of the solution of the following
problem:

min
ω∈U

− Jr0(πω)

s.t. JR(πω) ≥ JR(πω′), JC(πω) ≥ JC(πω′)
(12)

We can write the Lagrangian of Problem (12):

L(ω, µ) = −JR(πω)− µR [JR(πω)− JR(πω′)]− µC [JC(πω)− JC(πω′)] (13)

where µ = (µR, µC) ∈ R2
+ is the vector of Lagrange multipliers. By Karush–Kuhn–Tucker(KKT)

conditions, for a saddle point (ω′, µ∗), where µ∗(µ∗R, µ
∗
C) ∈ R2

+, we have:

∂L
∂ω
|ω=ω′ = 0

⇒∇ω′JR(πω′) + µ∗R∇ω′JR(πω′) + µ∗C∇ω′JC(πω′) = 0

⇒ 1 + µ∗C
1 + µ∗R + µ∗C

∇ω′JR(πω′) +

n∑
j=1

µ∗C
1 + µ∗R + µ∗C

∇ω′JC(πω′) = 0

(14)

As || · ||22 ≥ 0 and the uniqueness of β∗, (
1+µ∗C

1+µ∗R+µ∗C
,

µ∗C
1+µ∗R+µ∗C

) is the only solution of Problem (14).

Then ∆(ω′) =
1+µ∗C

1+µ∗R+µ∗C
∇ω′JR(πω′) +

µ∗C
1+µ∗R+µ∗C

∇ω′JC(πω′) = 0.

13

Under review as a conference paper at ICLR 2022

Theorem B.3. If πω′ is not a Pareto stationary policy, then ∆(ω′) 6= 0 and ∆(ω′) is a Pareto
direction of πω′ .

Proof. We first prove that ∆(ω′) 6= 0. By definition, ∃v ∈ Rk s.t.〈∇ωJR, v〉 > 0, 〈∇ωJC , v〉 > 0.
So 〈v,∆(ω′)〉 = β∗R〈∇ω′JR(πω′), v〉 > 0 + β∗C〈∇ω′JC(πω′), v〉 > 0, which implies ∆(ω′) 6= 0.

The Lagrangian of the Problem 4 is :

L(β, λ, µ) = ||βR∇ω′JR(π′ω) + βC∇ω′JC(π′ω)||22 + λ(βR + βC − 1)− µRβR − µCβC

where λ, µ = (µR, µC) are Lagrange multipliers and µR, µC ≥ 0, µRβR, µCβC = 0.

Say (β∗, λ∗, µ∗) is a saddle point of above problem, by KKT conditions, we have:
2∆(ω′) · ∇ω′JR(πω′) + λ∗ − µ∗R = 0,

2∆(ω′) · ∇ω′JC(πω′) + λ∗ − µ∗C = 0,

µ∗R, µ
∗
C ≥ 0, µ∗Rβ

∗
R = µ∗Cβ

∗
C = 0.

Multiply the first two equations with corresponding βR, βC and sum:

2∆(ω′) ·∆(ω′) + λ(β∗R + β∗C)− µ∗Rβ∗R − µ∗Cβ∗C = 0.

Since µ∗i β
∗
i = 0 and β∗R + β∗C = 1, we have λ∗ = −2||∆(ω′)||22. Note that ∆(ω′) 6= 0, so λ∗ < 0.

Thus:

〈∆(ω′),∇ω′JR(πω′)〉 = µ∗R − λ∗ ≥ −λ∗ > 0,

〈∆(ω′),∇ω′JC(πω′)〉 = µ∗C − λ∗ ≥ −λ∗ > 0,
(15)

By definition, ∆ω′ is a Pareto direction of πω′ .

MGDA could be very efficiency because Problem (4) has explicit solution:

β∗R =

{
0, β0 < 0
β0, 0 ≤ β0 ≤ 1
1, β0 > 1

, β∗C = 1− β∗R, (16)

where β0 =
∇ωJC(πω) · (∇ωJC(πω)−∇ωJR(πω))

||∇ωJC(πω)−∇ωJR(πω)||22
.

B.3 DISCUSSION OF EXISTING METHODS

SDM and MGDA are basically solving the same optimization problem. Actually, if we transform
the Problem (10) into a constrained optimization problem:

max
v

α− 1

2
||v||22

s.t. 〈∇ωJR(πω),v〉 ≥ α, 〈∇ωJC(πω),v〉 ≥ α.
(17)

It is easy to prove that Problem (17) and Problem (4) are primal-dual problem. As the Slater condi-
tion holds, these two optimization will yield identical optima (Boyd et al., 2004).

In addition, Lemma 1 in Fliege & Svaiter (2000) also points that the Pareto direction ∆(ω) derived
from Problem (17) and Problem (4) is the steepest gradient in MOOP settings.

In the body part, we choose MGDA to represent Pareto-optimal searching algorithm. Because
MGDA is more efficient and comprehensible.

14

Under review as a conference paper at ICLR 2022

B.4 COMPLETENESS PROOF

So far we can only search Pareto-stationary policy instead of Pareto-optimal. To fill the gap, we
make some proof for completeness.
Lemma B.4. For a policy πω , if∇ωJR(πω) or∇ωJC(πω) is 0, then πω is Pareto-optimal.

Proof. If ∇ωJR(πω) = 0, then ω is a local optima as for Jπω
. According to Assumption 4, there

is a neighborhood U ⊂ Rk of ω s.t. ∀ω′ ∈ U, JC(πω) > JC(π′ω). Then πω is Pareto-optimal since
∀ω′ ∈ UJC(π′ω) � JC(πω). It is similar to the case of∇ωJC(πω) = 0.

Theorem B.5. If a policy πω is Pareto-stationary, it is Pareto-optimal with possibility 1.

Proof. Suppose we have a policy πω′ which is Pareto-stationary but not Pareto-optimal. Then, by
Lemma B.4 we know∇ωJR(πω),∇ωJC(πω) = 0, otherwise πω′ is Pareto-optimal.

By solving Problem (4), we can obtain a Pareto direction ∆(ω′). By Theorem (B.2), ∆(ω′) = 0,
which implies that∇ωJR(πω),∇ωJC(πω) are co-linear.

Note that the reward and cost are independent, which means we can regard ∇ωJR(πω),∇ωJC(πω)
as random vectors with regard to ω. As our model has many parameters, i.e. k >> 2, the possibility
that∇ωJR(πω),∇ωJC(πω) are co-linear is 0.

Thus, a Pareto-stationary πω′ is Pareto-optimal with possibility 1.

C CONNECTIONS TO PRIOR WORKS

In this section, we prove that existing CRL algorithms are fundamentally searching Pareto optimal
policy. In other words, if these algorithms converge at a policy πω , then πω is Pareto-optimal, or
even Pareto-feasible when constraint is satisfied in practical. The proofs below follow the notation
and problem definition in Section 2.

C.1 LINEAR SCALARIZATION

Linear scalarization method aggregate all optimizing targets into one by linear summation with
predefined weight vector λ = (λR, λC) ∈ R2

+. So now the optimizing problem is:

max
ω

λRJR(πω) + λCJC(πω). (18)

Proposition C.1. If ω∗ is one of a local optima of above problem, then πω∗ is Pareto optimal.

Proof. Assume πω∗ is one of the local optima of Problem (18) but not Pareto optimal, then ∃ω′ ∈ U
s.t. πω′ � πω∗ , where U ∈ Rk is a neighborhood of ω∗. Then, λRJR(πω′) + λCJC(πω′) >
λRJR(πω∗) + λCJC(πω∗), which is contradict with the original assumption. Thus, the original
proposition holds.

This proposition suggests that accessing a Pareto optimal policy is simple and feasible. However,
the policy generated by linear scalarization is strongly related to the choose of λR, λC and may not
satisfies the constraint.

C.2 LAGRANGIAN METHODS

Lagrangian methods (Tessler et al., 2018; Ray et al., 2019) transform a constrained optimization
problem into a normal min-max optimization problem by adding Lagrange multipliers λ ∈ R+:

max
π

min
λ≥0

L(π, λ) := JR(π) + λ · (JC(π)− ζ),

s.t. JC(π) ≥ ζ.
(19)

To solve this problem, we can apply gradient ascend on π ‘s parameters and gradient descent on λ.
of which the convergence proof is in (Platt & Barr, 1987). Similarly, we have:

15

Under review as a conference paper at ICLR 2022

Proposition C.2. If π∗, λ∗ is one of the solution of Problem (19), then π∗ is Pareto-optimal.

Proof. Assume (πω∗ , λ
∗) is one of the saddle points of above problem but πω∗ is not Pareto optimal,

then ∃ω′ ∈ U s.t. πω′ � πω∗ , where U ∈ Rk is a neighborhood of ω∗. Then:

JR(πω′) + λ∗ · (JC(πω′)− ζ) ≥ JR(πω∗) + λ · (JC(πω∗)− ζ).

This suggests that (πω∗ , λ
∗) is not a saddle point, which is contradict with original assumption.

Though provide a strong reliable guarantee to satisfy constraint, Lagrangian methods may be too
conservative to explore effectively. This is because λwould control the optimization when (JC(π)−
ζ) is big, which is common at the beginning of the CRL training session.

C.3 CONSTRAINED POLICY OPTIMIZATION (ACHIAM ET AL., 2017)

Constrained Policy optimization (CPO) is a CRL algorithm by updating policy within a constraint
satisfying region. It updates policy by solving:

πk+1 = arg max
π
Es∼πk,a∼π [Aπk

R (s, a)]

s.t. JCi
(πk)− Es∼πk,a∼π [Aπk

C (s, a)] ≥ ζ,
D̄KL (π‖πk) ≤ δ.

(20)

To prove that CPO is searching Pareto-optimal policy, we need some basic conclusion in RL:
Lemma C.1 (Kakade (2001)). Given an existing policy πold, then:

JR(π)− JR(πold) = Es∼π,a∼π [Aπold

R (s, a)] ,

JC(π)− JC(πold) = Es∼π,a∼π [−Aπold

C (s, a)] .

Lemma C.2 (Theorem 1 in Schulman et al. (2015)). Let ε = maxs|Ea∼π [Aπold(s, a)] |,then:

Es∼π,a∼π [Aπold

R (s, a)] > Es∼πold,a∼π [Aπold

R (s, a)]− Cmax
s

Ds
KL (πold, π) ,

Es∼π,a∼π [Aπold

C (s, a)] > Es∼πold,a∼π [Aπold

C (s, a)]− Cmax
s

Ds
KL (πold, π) .

where C = 4εγ/(1 − γ)2 and Ds
KL denotes the Kullback–Leibler divergence of two policies when

making decisions in state s.
Proposition C.3. If CPO converges at πω∗ , then πω∗ is Pareto-optimal.

Proof. Suppose πω∗ is Pareto-optimal is not Pareto-optimal, then ∃ω′ ∈ U s.t. πω′ � πω∗ , where
U ∈ Rk is a neighborhood of ω∗.

The original Problem (20) can absorb one constraint, and transform into:

πk+1 = arg max
π
Es∼πk,a∼π [Aπk

R (s, a)]− Cmax
s

Ds
KL (πk, π) ,

s.t. JCi
(πk)− Es∼πk,a∼π [Aπk

C (s, a)] ≥ ζ,
(21)

where the C is consistent with Lemma C.2. As CPO converges at πω∗ , so:

πω∗ = arg max
π
Es∼πω∗ ,a∼π [Aπω∗

R (s, a)]− Cmax
s

Ds
KL (πω∗ , π) . (22)

Since Es∼πω∗ ,a∼πω∗ [Aπω∗
R (s, a)]− CmaxsDs

KL (πω∗ , πω∗) = 0, then:

Es∼πω∗ ,a∼πω′ [Aπω∗
R (s, a)]− Cmax

s
Ds

KL (πω∗ , πω′) ≤ 0. (23)

So we have:
JR(πω′)− JR(πω∗)

=Es∼πω′ ,a∼πω′ [Aπω∗
R (s, a)] Lemma C.1

<− Es∼πω′ ,a∼πω∗

[
A
πω′
R (s, a)

]
+ Cmax

s
Ds

KL (πω′ , πω∗) Lemma C.2

=Es∼πω∗ ,a∼πω′ [Aπω∗
R (s, a)]− Cmax

s
Ds

KL (πω∗ , πω′) ≤ 0 Formula (23)

(24)

The Formula (24) is contradict to πω′ � πomega∗ , thus πω∗ is Pareto-optimal.

16

Under review as a conference paper at ICLR 2022

D PROOFS ABOUT CONTROL

D.1 PROOFS FOR GRADIENT NORMALIZATION

Lemma 4.1. If πω is not Pareto-optimal, ∆N (ω) := βNR∇ωJR(πω) + βNC∇ωJC(πω) is a Pareto
direction of πω .

Proof. As a Pareto-optimal policy, πω is Pareto-stationary. By Theorem B.3, we know that
〈∆N (ω),∇Nω JR(πω)〉 > 0 and 〈∆N (ω),∇Nω JC(πω)〉 > 0.

Thus, 〈∆N (ω),∇Nω JR(πω)〉 > 0 and 〈∆N (ω),∇Nω JC(πω)〉 > 0. By definition, ∆N (ω) is a Pareto
direction of πω .

Before proceeding to prove Theorem 4.2, we need a lemma to estimate JR(πω′) − JR(πω) and
JC(πω′)− JC(πω).

Lemma D.1. With the iteration paradigm ω′ = ω + η(ω)∆(ω), if η(ω) → 0, then JR(πω′) −
JR(πω) = η(ω)〈∆(ω),∇ωJR(πω)〉 and JC(πω′)− JC(πω) = η(ω)〈∆(ω),∇ωJC(πω)〉.

Proof. We only need to prove one of JR(πω), JC(πω), because the other one can be proved in a
similar way. Make a first-order Taylor expansion of JR(πω) at ω∗:

JR(πω′) = JR(πω) + (ω′ − ω) · ∇ωJR(πω) +O
[
(ω′ − ω)2

]
,

where O
[
(ω′ − ω)2

]
→ 0 if ω′ − ω → 0. Apply Gram-Schmidt orthogonalization to ∆(ω), we

have ∆(ω) =
〈∆(ω),∇ωJR(πω)〉
||∇ωJR(πω)||2||∆(ω)||2

∇ωJR(πω) + c∇⊥R(ω), where c is a coefficient we are not

interested and∇⊥R(ω) is a vector orthogonal to∇ωJR(πω). Thus:

JR(πω′)− JR(πω) = +(ω′ − ω) · ∇ωJR(πω) +O
[
(ω′ − ω)2

]
= η(ω)

[
〈∆(ω),∇ωJR(πω)〉
||∇ωJR(πω)||22

∇ωJR(πω) + c∇⊥R(ω)

]
· ∇ωJR(πω)

+O
[
(ω′ − ω)2

]
= η(ω)〈∆(ω),∇ωJR(πω)〉+O

[
(ω′ − ω)2

]
.

(25)

Since η(ω) → 0 ⇒ ω′ − ω → 0, then we have: JR(πω′) − JR(πω) = η(ω)〈∆(ω),∇ωJR(πω)〉.
Similarly, we can infer JC(πω′)− JC(πω) = η(ω)〈∆(ω),∇ωJC(πω)〉.

Theorem 4.2 Suppose the iteration paradigm is ω′ = ω + η(ω)∆N (ω) and η(ω)→ 0. Then:
(i) if we use ∆(ω) derived from Problem (4), the improvements in reward and cost are similar.

Specifically, when β∗R ∈ (0, 1),
JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→ 1. (ii) if we use ∆N (ω) derived from Prob-

lem (5), the improvements in reward and cost are proportional to the square length of corresponding

gradient. Specifically, when βNR ∈ (0, 1),
JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→
||∇ωJR(πω)||22
||∇ωJC(πω)||22

.

Proof. By Lemma D.1, we have:

JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→

η(ω)〈∆(ω),∇ωJR(πω)〉
η(ω)〈∆(ω),∇ωJC(πω)〉

=
〈∆(ω),∇ωJR(πω)〉
〈∆(ω),∇ωJC(πω)〉

, (26)

(i) when β∗R ∈ (0, 1), ∆(ω) is perpendicular to ∇ωJR(πω) − ∇ωJC(πω), which indicates that
〈∆(ω),∇ωJR(πω)−∇ωJC(πω)〉 = 0. Thus:

JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→
〈∆(ω),∇ωJR(πω)〉
〈∆(ω),∇ωJC(πω)〉

= 1. (27)

17

Under review as a conference paper at ICLR 2022

(ii) when βNR ∈ (0, 1), ∆(ω) is perpendicular to ∇Nω JR(πω) − ∇Nω JC(πω), which indicates that
〈∆(ω),∇Nω JR(πω)−∇Nω JC(πω)〉 = 0. Thus:

JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→
〈∆(ω),∇Nω JR(πω)〉
〈∆(ω),∇Nω JC(πω)〉

=
||∇ωJR(πω)||22〈∆(ω),∇ωJR(πω)〉
||∇ωJC(πω)||22〈∆(ω),∇ωJC(πω)〉

=
||∇ωJR(πω)||22
||∇ωJC(πω)||22

.

(28)

D.2 PROOFS FOR GRADIENT PERTURBATION

Lemma D.2 (Theorem.1 in Schulman et al. (2015)). Let ε = maxs|Ea∼πω′ [Aπω (s, a)] |, then:

JC(πω′)− JC(πω) ≥ Es∼πω,a∼πω′ [−Aπω

C (st, at)]− CDmax
KL (πω′ , πω) , (29)

where C = 4εγ/(1− γ)2.

Theorem 4.3 (The lower bound of JC(π) improvement) Given the parameter updating paradigm
ω′ = ω + η(ω)∆N (ω) and clipping threshold t, we have the lower bound for JC(π′ω)− JC(πω):

JC(πω′)− JC(πω) ≥
η(ω)

[
t||∇ωJC(πω)||22〈∇Nω JR(πω)−∇Nω JC(πω),∇Nω JC(πω)〉+ 1

]
− CDmax

KL (πω′ , πω) ,
(30)

where C = 4εγ/(1 − γ)2 and ε = maxs|Ea∼πω′ [Aπω (s, a)] |. And this bound is strictly positive
related to t.

Proof. By Lemma D.2,

JC(πω′)− JC(πω) ≥
Es∼πω,a∼πω′ [−Aπω

C (st, at)]− Es∼πω′ ,a∼πω′ [−Aπω

C (st, at)]− CDmax
KL (πω′ , πω) .

(31)

The C in last inequation is consistent with the setting in Lemma D.2. Since ∇ωJC(πω) is differen-
tiated from Es∼πω,a∼πω′ [−Aπω

C (st, at)], consider Lemma D.1, then:

JC(πω′)− JC(πω)

≥η(ω)〈∆N (ω),∇ωJC(πω)〉 − CDmax
KL (πω′ , πω)

=η(ω)〈min(t, βNR)∇Nω JR(πω) +
[
1−min(t, βNR)

]
∇Nω JC(πω),∇ωJC(πω)〉 − CDmax

KL (πω′ , πω)

≥η(ω)〈t∇ωJR(πω) + (1− t)∇ωJC(πω),∇ωJC(πω)〉 − CDmax
KL (πω′ , πω)

=η(ω)
[
t||∇ωJC(πω)||22〈∇Nω JR(πω)−∇Nω JC(πω),∇Nω JC(πω)〉+ 1

]
− CDmax

KL (πω′ , πω)
(32)

This bound is sensitive to both a and η(ω), and it strictly positive correlated with t, because accord-
ing to Eq (16), 〈∇Nω JR(πω) − ∇Nω JC(πω),∇Nω JC(πω)〉 is strictly positive. Otherwise, βNR = 0,
the clipping is not working.

This lower bound is consistent with the lower bound when clipping is not working (i.e. For-
mula (D.2)) and tighter when clipping is working (i.e. βNR > t) and we perturb the ∆N (ω) to
bias to ∇ωJC(πω).

18

Under review as a conference paper at ICLR 2022

E PSEUDO-CODE OF CONTROL

Algorithm 1: CONTROL
input : Threshold c0 for cumulative cost, initial clipping threshold t0, mean cumulative reward

of last epoch rLE , mean cumulative cost of last epoch cLE
1 Initialize actor parameters ω, cost critic θC , reward critic θR randomly;
2 Initialize t0 → 0.5, rLE → 0, cLE → 0 for B = 0, 1, ... do
3 for E = 0, 1, ...N − 1 do
4 Sample d episodes {τ1, τ2, ...τd}, τi ∼ πω;
5 Record mean cumulative reward and cost r̂, ĉ in {τ1, τ2, ...τd};
6 Update θR, θC by MSE loss;
7 Obtain ∇ωJR(πω),∇ωJC(πω) by Eq (8);
8 Obtain βNR , β

N
C by solving Problem (5);

9 if ĉ > c0 and ĉ > cLE; // Constraint is not satisfied and ĉ is worse
10 then
11 βNR → min(t, βNR), βNC → 1− βNR ; // Clip βN

R

12 Update ω with gradient βNR∇ωJR(πω) + βNC∇ωJC(πω);
13 t0 → t0 − t′; // Decrease clipping threshold
14 rLE → r̂, cLE → ĉ
15 else if ĉ < c0 and cLE < c0 and r̂ < rLE; // Constraint is satisfied in a

row and r̂ is worse
16 then
17 βNC → min(t, βNC), βNR → 1− βNC ; // Clip βN

C

18 Update ω with gradient βNR∇ωJR(πω) + βNC∇ωJC(πω);
19 t0 → t0 + t′; // Increase clipping threshold
20 rLE → r̂, cLE → ĉ
21 else
22 Update ω with gradient βNR∇ωJR(πω) + βNC∇ωJC(πω); // No clipping
23 rLE → r̂, cLE → ĉ
24 end
25 end
26 end

return: A policy πω

19

Under review as a conference paper at ICLR 2022

F EXPERIMENT DETAILS

F.1 ARCHITECTURE DETAILS

CONTROL is built on an Actor-Critic framework. To model state value functions with regard to
rewards and costs separately, we adopt two critics. For both actor and critic networks, we use
identical structure, which is an MLP with a 64-dimension hidden layer. Except the output layer, we
apply tanh() as the activation function. For all code-level implementation we used PyTorch.

F.2 HYPER-PARAMETERS

Model training For learning rate, we choose 0.0012 for the actor and 0.001 for the critics. Once
sample enough episodes, we reuse the buffers for 50 times. To adapt MDPs in SafetyGym, which
is with continuous states and actions, the output of the actor network is all means of a Multivariate
Gaussian distribution, and the standard deviation is locked as 0.6. While in testing, we resize all
standard deviation to 0.4 to low down the agent’s desire to explore. Besides, we apply GAE (Schul-
man et al., 2016) to estimate advantage with γ = 0.99 and λ = 0.95.

Clipping threshold evolving We initialize the clipping threshold t0 as 0.5, and check if we should
update it every 100000 steps. If so, we increase or decrease it by 0.05.

20

	Introduction
	Preliminary
	Constrained Markov Decision Process
	Pareto-optimal

	Pareto-optimal in CRL
	Connections to Prior CRL Works
	Pros and Cons for Pareto-optimal in CRL

	CONTROL: Constraints adaptive Pareto RL
	Gradient Recalibration mechanisms
	Practical Implementation

	Experiments
	Experimental Analysis

	Related Work
	Constrained Reinforcement Learning
	Pareto Optimization

	Conclusion
	Assumptions
	Pareto-optimal searching in CRL
	Steepest descent method fliege2000steepest in CRL
	Multiple-gradient descent algorithm desideri2012multiple in CRL
	Discussion of existing methods
	Completeness proof

	Connections to prior works
	Linear scalarization
	Lagrangian methods
	Constrained Policy optimization achiam2017constrained

	Proofs about CONTROL
	Proofs for Gradient Normalization
	Proofs for Gradient Perturbation

	Pseudo-code of CONTROL
	Experiment Details
	Architecture details
	Hyper-parameters

