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Abstract

This work tackles a challenging problem: stochastic human motion prediction
(SHMP), which aims to forecast diverse and physically plausible future pose
sequences based on a short history of observed motion. While autoregressive
sequence models have excelled in related generation tasks, their reliance on vector-
quantized tokenization limits motion fidelity and training stability. To overcome
these drawbacks, we introduce WaveAR, a novel AR based framework which is
the first successful application of a continuous autoregressive generation paradigm
to HMP to our best knowledge. WaveAR consists of two stages. In the first
stage, a lightweight Spatio-Temporal VAE (ST-VAE) compresses the raw 3D-
joint sequence into a downsampled latent token stream, providing a compact
yet expressive foundation. In the second stage, we apply masked autoregressive
prediction directly in this continuous latent space, conditioning on both unmasked
latents and multi-scale spectral cues extracted via a 2D discrete wavelet transform.
A fusion module consisting of alternating cross-attention and self-attention layers
adaptively fuses temporal context with low- and high-frequency wavelet subbands,
and a small MLP-based diffusion head predicts per-token noise residuals under a
denoising loss. By avoiding vector quantization and integrating localized frequency
information, WaveAR preserves fine-grained motion details while maintaining fast
inference speed. Extensive experiments on standard benchmarks demonstrate that
our approach delivers more accurate and computationally efficient predictions than
prior state-of-the-art methods.

1 Introduction

Human Motion Prediction (HMP) involves forecasting future human poses or motions from an
observed sequence of historical poses. This capability not only deepens our understanding of human
behavior patterns but also underpins a wide range of applications [10, 22, 31, 41, 51, 54, 55, 57, 60,
62]—autonomous driving [23, 39], robotics [16], human–computer interaction [25], virtual reality [13,
24, 30], and assisted healthcare [44]—making HMP a rapidly advancing frontier in computer vision
and artificial intelligence interaction. Early HMP methods were largely deterministic[8, 28, 34],
which predicted the single most likely future trajectory. While effective in some settings, these
approaches neglect the inherent uncertainty and fail to capture the rich diversity of possible action
sequences. Recently, the field has increasingly embraced stochastic generative frameworks such
as variational autoencoders (VAEs)[9, 35, 58], generative adversarial networks (GANs)[19], and
diffusion-based models[6, 43]. In this work, we focus on the Stochastic Human Motion Prediction
(SHMP) problem that targets generating diverse yet accurate future pose sequences conditioned on
the observed history.
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Traditional variational autoencoder (VAE) and generative adversarial network (GAN) methods, while
effective at modeling uncertainty and diversity, can sometimes produce futures that contradict the
observed history—even generate abrupt, physically implausible transitions[61]. Diffusion-based
approaches yield high-fidelity trajectories but incur substantial computational overhead that hampers
real-time applicability. Autoregressive (AR) modeling, in contrast, generates each future pose sequen-
tially conditioned on past context, inherently preserving temporal coherence, capturing multimodal
uncertainty, and producing faithful, diverse outputs. However, existing AR formulations have two key
limitations: (1)Most AR models rely on vector quantization (VQ) to discretize continuous motion se-
quences into finite token sets, which can introduce quantization artifacts and training instability (e.g.,
codebook collapse) that degrade motion fidelity and continuity, as analyzed in recent studies[18][61]
; (2) They lack the capacity to represent fine-grained dynamics such as sudden accelerations and
intricate motion transitions. These issues motivate us to design a continuous, quantization-free AR
paradigm for motion modeling. Besides, prior works have also attempted to leverage frequency-
domain representations—most commonly via the Discrete Cosine Transform (DCT)—to capture
temporal patterns, but DCT only preserves low-frequency content and omits high-frequency content
that captures motion details, thus impairing prediction accuracy.

Recent studies have shown that images can be generated with pure autoregressive models—omitting
vector quantization entirely[29]—and in doing so suggest novel directions for AR-based generative
methods[11, 49]. In this paper, we propose WaveAR (Fig 1), a novel AR based framework for
human motion prediction that operates entirely in continuous space. This continuous formulation
naturally aligns with the temporal characteristics of motion sequences, enabling the model to capture
long-range dependencies more effectively and maintain stable training dynamics. Specifically, it
consists of two stages: In the first stage, we employ a Spatial-Temporal Variational AutoEncoder
which simultaneously captures both spatial and temporal dependencies. This VAE can project the
observed motion sequence into a smooth latent embedding in a continuous space, eliminating the
quantization errors inherent in token-based schemes. In the second stage, we perform step-wise
autoregressive forecasting over these latents, while simultaneously extracting low- and high-frequency
components via multiscale discrete wavelet transforms (DWT) to guide each prediction. A fusion
module consisting of alternating cross-attention and self-attention layers adaptively merges the time-
domain latents with their wavelet-derived counterparts, preserving the VAE’s learned trajectory trends
and injecting sharp, transient motion details—yielding future pose sequences that are both temporally
coherent and richly expressive.

Our contributions can be summarized as follows:

• We propose WaveAR, a novel framework for stochastic human motion prediction based
on a continuous autoregressive paradigm that avoids quantization artifacts and effectively
captures long-range temporal dependencies for accurate forecasting.

• We design a Masked Autoregressive Diffusion module with Wavelet Guidance, where multi-
scale wavelet subbands are extracted by DWT and fused with masked future latents via
alternating cross-attention and self-attention layers. Afterwards, a compact MLP-based
diffusion predicts per-token noise distribution under a denoising loss.

• We introduce a lightweight Spatio-Temporal VAE (ST-VAE) that temporally downsamples
the raw 3D-joint sequence into latent tokens, preserving joint structure while reducing
sequence length for efficient downstream modeling.

• We validate WaveAR on standard HMP benchmark datasets: Human3.6M and HumanEva-I.
Both quantitative and visualization results show that our method achieves more accurate
performance with faster inference time compared to the state-of-the-art baselines.

2 Related Works

Human Motion Prediction. Early human motion prediction methods were predominantly deter-
ministic, producing a single “most likely” future trajectory. Most of these frameworks cast forecasting
as a direct mapping from past poses to a fixed-length future sequence, using architectures such
as RNNs [21, 36] or self-attention Transformers [1, 37, 46]—often enhanced with graph convolu-
tional layers [8, 27] to capture spatial dependencies among joints. However, all of these solutions
disregard the intrinsic uncertainty of human behavior. The advent of deep generative models has
catalyzed a paradigm shift toward stochastic prediction frameworks through three principal avenues:
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Figure 1: Overall architecture of our proposed WaveAR. (a) During training, a lightweight Spatio-
Temporal VAE encodes the raw 3D-joint sequence (past H + future F frames) into a compact latent
token stream via temporal downsampling. (b) shows the process of the wavelet-guided autoregressive
masked generation model. First, the VAE latents are randomly masked, while the original input
sequence’s history undergoes a 2D discrete wavelet transform for wavelet frequency-domain feature
extraction, and linear projection into the same embedding space. Next, the masked latents and
projected wavelet features are fused through a fusion module consisting of alternating cross-attention
and self-attention layers. Finally, a compact MLP-based diffusion predictor takes the autoregressive
model’s output as a conditioning vector and estimates the noise residual for each token, modeling its
diffusion distribution and acting as a prediction head.

(1) GAN-based methods [3, 19, 26, 56] which generate diverse trajectories through adversarial
training, (2) VAE-based methods [5, 9, 14, 35, 47, 53, 57, 58] that encode motion multimodality via
latent distributions and most recently (3) Diffusion based methods [2, 6, 7, 43, 48, 50]. Among these
methods, CoMusion [43] integrates a single-stage diffusion model with Transformer reconstruction
and GCN refinement in DCT space for history-consistent stochastic forecasting; SkeletonDiffusion
[7] introduces nonisotropic Gaussian diffusion via typed-graph convolutions with skeleton-aware
noise covariance; BeLFusion [2] employs conditional latent diffusion [40] by sampling disentangled
behavior codes to drive motion; HumanMAC [6] reframes prediction as masked DCT-based diffusion
completion, jointly denoising observed and future frames for controllable, diverse outputs. Neurosci-
entific studies have shown that human motion exhibits strong frequency-domain characteristics, which
benefit tasks such as motion editing and motion synthesis. Accordingly, many of the aforementioned
motion-prediction approaches exploit frequency-domain representations—particularly the Discrete
Cosine Transform (DCT)—to model motion distributions. MotionWavelet [12] applies wavelet
manifold learning to motion prediction. Inspired by these findings, we integrate wavelet-domain cues
into our latent-space prediction pipeline, resulting in more accurate and temporally coherent future
poses.

Autoregressive Modeling without Vector Quantization. Traditional autoregressive models for
sequential data generation, such as images or motion, heavily rely on discrete tokenization via vector
quantization (VQ) [45], which introduces quantization artifacts and training instability. Different
from vector-quantization based AR models, which represent the probability distribution of each token
as a discrete multinomial distribution through a VQ codebook, MAR [29] circumvents these discrete
representations’ limitations by operating directly in continuous-valued spaces and representing the
probability distribution of each token through a diffusion process. Such continuity avoids the loss of
information during quantization, thus greatly enhances its generative quality. Building on MAR’s
continuous, quantization-free foundation, a growing body of work has applied its framework across
diverse domains. MARRS [49] extends MAR’s autoregressive framework to action–reaction synthesis
by replacing discrete codecs with continuous representations and variational sampling. DART [15]
extends MAR’s diffusion-driven autoregressive framework to a non-Markovian paradigm, enabling
high-resolution image synthesis in a unified Transformer sequence. MARDM [38] extends MAR’s
masked autoregressive diffusion framework to text-conditioned motion synthesis, restructuring motion
latents via a bidirectional masked diffusion.
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3 Method

3.1 Problem Formulation

Given an observed sequence of human motion with P historical poses, denoted as X =
[p−P+1, p−P+2, . . . , p0]. ∈ RP×J×3, where pt represents the 3D coordinates of J body joints at
timestep t, the goal of Human Motion Prediction (HMP) is to forecast the subsequent F future poses
Y = [p1, p2, . . . , pF ] ∈ RP×J×3. For Stochastic Human Motion Prediction (SHMP), the objec-
tive extends to generating N plausible future trajectories Ỹ = {Y1, Y2, . . . , YN} ∈ RN×F×J×3,
where each Yi maintains temporal coherence while exhibiting distinct motion patterns. The key
challenges in HMP include improving prediction accuracy for long-term motions, avoiding unnatural
movements like sudden joint twists or behaviours that break physical laws.

3.2 Overview of WaveAR

Our method is the first framework for stochastic human motion prediction that employs an autoregres-
sive model within a continuous space encoding paradigm. It consists of two stages to predict future
poses from H observed frames: First, we encode the input sequence into a smooth latent embedding
using a lightweight Spatio-Temporal VAE (ST-VAE). This step reduces the input dimension and
creates continuous-valued tokens. In parallel, the raw 3D-joint sequence is fed into our Wavelet
Feature Extractor, which applies a 2D discrete wavelet transform to generate four spectral subbands.
These subbands help extract finer details in the motion dynamics, which are then linearly projected
into the same embedding space as the latents, enabling more accurate predictions. We then recover
the F future tokens with our Masked Autoregressive Diffuser: at each iteration, a subset of tokens is
masked, and the Wavelet guided fusion module fuses spectral cues (keys/values) with token queries
to get latent motion information. It is used to denoise the masked positions through several MLP
layers together with a diffusion loss. After all tokens are restored, a Latent Decoder reconstructs the
full 3D joint trajectories. The overall structure of our network is shown in Fig. 1.

3.3 Spatio-Temporal VAE

To eliminate the dependency of prior autoregressive approaches on discrete VQ-VAE codes, we
employ a lightweight Spatio-Temporal VAE (ST-VAE) that produces fully continuous latent to-
kens, simultaneously obtaining a vector representation that integrates both temporal and spatial
information . In the first stage, we use this ST-VAE (see Fig. 1(a)) to compress the raw 3D-joint
trajectory—comprising H past frames and F future frames—into a shorter sequence of continuous
latents. Specifically, given a mini-batch X ∈ RB×T×C ,where T is the sum of the historical and
predicted frames, and C is the number of joints multiplied by 3 (representing the 3D position vector
at each time step), we reshape it to B × C × T and pass it through the encoder, which consists of a
1D convolution, several ResNet1D blocks [59], whose role is to integrate spatial information, and
strided convolutions that downsample time by a factor r to effectively integrate temporal information.
The encoder then outputs µ and σ for each latent token, and we sample via the reparameterization
trick:

z = µ(X) + σ(X)⊙ ϵ, ϵ ∼ N (0, I), (1)

where µ1:L and ϵ1:L are output of the encoder. To get the reconstructed original sequence X̂ , Z is
first passed through a post-quantization and then through the Decoder. The ST-VAE is trained to
minimize the following loss:

LVAE = ∥X̂−X∥1 + βKL
(
q(Z | X) ∥N (0, I)

)
, (2)

where β balances reconstruction fidelity against latent regularization. By temporally downsampling
the input token, the ST-VAE produces a sequence of latent vectors that both compress redundant
frames and encode the underlying motion dynamics [17], yielding a compact token stream that
supports more efficient and accurate downstream prediction.

3.4 Autoregressive Masked Generation with Wavelet Guidance

Wavelet Feature Extraction. Prior motion prediction works typically employ the Discrete Cosine
Transform (DCT) for frequency-domain processing of motion. While DCT captures the low-frequency
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motion trends, it overlooks high-frequency dynamics critical for subtle or rapid movements. To avoid
this limitation, we employ the Discrete Wavelet Transform (DWT), which yields both low- and high-
frequency subbands by contrast, furnishing richer spectral cues and improving prediction accuracy. To
inject these spectral cues into our autoregressive diffusion backbone, we apply vanilla DWT operation
to the raw 3D–joint history sequence along both temporal and channel axes. The transform uses a
pair of ℓ-length filters: a low-pass filter and a high-pass filter derived from a chosen discrete wavelet
basis such as Harr. Specifically, given a motion sequence x[i, j] (i ∈ [1, H + F ], j ∈ [1, 3J ]) and
a, b ∈ {L, H}, we compute four subbands (YL,L, YL,H , YH,L, YH,H ) as follows:

Ya,b[k1, k2] =

H+F∑
i=1

3J∑
j=1

fa
(
i− 2k1

)
fb
(
j − 2k2

)
x[i, j], (3)

where fL and fH represent the low-pass and high-pass filters, respectively. Here, each subband
Ya,b ∈ RK×D, K =

⌊
H+F+ℓ−1

2

⌋
, D =

⌊
3J+ℓ−1

2

⌋
, k1 ∈ [1,K], k2 ∈ [1, D]. Concretely,

YL,L captures the low-frequency coefficients, YL,H , YH,L capture the temporal- or spatial-detail
coefficients, and YH,H captures high-frequency detail in both axes. Then we concatenate the four
subbands along the channel axis to get Y = [YL,L, YL,H , YH,L, YH,H ] ∈ RK×4D following the
approach in [12]. Finally, we use a learned linear projection to map these 4D-dimensional features
into the same d-dimensional latent space as the ST-VAE tokens as follows:

Fwave[b] = LN
(
W Y + b

)
∈ RK×D, (4)

where LN denotes the layer normalization and W is the learned linear matrix.

By explicitly computing both approximation and detail coefficients, the processed wavelet subbands
provide the later Transformer fusion block with direct access to multi-scale, time-frequency motion
patterns—enabling more precise recovery of masked future tokens that better align with the input
historical information.

Wavelet-guided Masked Fusion Module. To organically fuse spectral cues with mask embeddings
for more precise modeling of the original motion, during training, the original motion input is first
processed by ST-VAE to produce continuous-valued tokens. We first mask out a random subset of
the tokens with a learnable [MASK] embedding to obtain Xmasked ∈ RT ′×d. We then add a shared
positional encoding Epos ∈ RT ′×d to form the initial token stream.

In parallel, the wavelet branch produces frequency-domain features Fwave ∈ RK×d. We then design
a fused Transformer to learn interactions between frequency-domain features and time-domain
motion tokens. Specifically, we partition the Transformer stack into two phases—early local fusion
with cross-attention, followed by later global aggregation via self-attention. 1) The first Nlocal

Transformer blocks are local fusion layers, each consisting of a cross-attention sublayer followed
immediately by a self-attention sublayer. At layer ℓ = 1, . . . , Nlocal, these local layers tightly fuse
time-domain tokens with frequency cues via cross-attention before letting them attend globally to
one another. 2) After the Nlocal local fusion layers, the remaining L−Nlocal Transformer blocks act
as global context layers, each containing only a standard self-attention sublayer plus feed-forward
network—no further cross-attention to the wavelet branch. This mechanism enables the model to
first inject complementary frequency information into the masked latents, and then to refine the joint
representation through additional layers of purely temporal self-attention before projecting back to
the diffusion MLPs. Specially, for local fusion layers, we first calculate the fusion of frequency
features and latent features:

X
′
= CrossAttn(Q,K, V ) = softmax

(
(QWQ) · (KWK)T√

dk

)
(VWV ),

Xout = SelfAttn(Q,K, V ) = softmax

(
(X

′
W

′

Q) · (X
′
WK

′)T
√
dk

)
(X

′
WV

′),

(5)

where WQ,W
′

Q, WK ,W
′

K ,W
′

V and WV are trainable weight matrices. dk is the dimensionality of the
key vector K. The query Q comes from the latent representations, while the keys K and values V
are derived from the frequency-domain features. For the rest layers, the lth layer’s result is calculated
as follows:

X(l) = SelfAttn(Q,K, V ) = softmax
(
(X(l−1)WQ) · (X(l−1)WK)T√

dk

)
(X(l−1)WV ) (6)
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where X(l−1) is the output of previous layer.

Diffusion for Autoregressive Prediction. As shown in MAR [29], relying solely on autoregressive
model (without diffusion prediction head) cannot capture chained token dependencies, resulting in
poor generation quality. Inspired by its success in image synthesis, we incorporate the MAR diffusion
loss into our human motion prediction framework. Given the fused representation X(L) of masked
latents and wavelet embeddings, we perform autoregressive diffusion to reconstruct the original
motion tokens. Instead of modeling the full joint distribution in a single pass, we generate each token
conditioned on all previously generated tokens, following the continuous-valued MAR paradigm
adapted to motion data:

p(x1, . . . , xN ) =

N∏
i=1

p
(
xi | x1:i−1

)
, (7)

where {xi}ni=1 is the sequence of tokens, and the index i runs from 1 to n, specifying their order.

We use our wavelet-guided fused Transformer to produce, for each position i, a conditioning vector
zi = f

(
X

(L)
1:i−1; DWT

)
∈ Rd for the diffusion network in MAR. To learn p(xi | zi) in continuous

space, we corrupt the ground-truth token xi under the standard DDPM schedule and train a noise
predictor to recover the added noise via a diffusion loss objective:

x
(t)
i = ᾱt xi +

(
1− ᾱt

)
ϵ, ϵ ∼ N (0, I), t = 1, . . . , T. (8)

Ldiff = Ei,t,ϵ

[
∥ϵ− ϵθ(x

(t)
i | t, zi)∥22

]
. (9)

where ᾱt is a noise schedule indexed by time step t, and ϵθ(x
(t)
i | t, zi) denotes the neural network’s

prediction of the noise, taking x
(t)
i as input and being conditioned on both the time t and the

conditioning variable zi. We implement ϵθ as a three-block MLP with residual connections and
LayerNorm.

3.5 Inference

At test time, we first encode the observed history x1:H ∈ RH×3J with the ST-VAE encoder to obtain
continuous latents X′

1:H = Enc(x1:H). We then form a full-length token sequence u(0) ∈ R(H+F )×d

by setting its first H rows to z1:H and masking all F future positions with a learnable [MASK]
embedding. Over K autoregressive iterations, at autoregressive step k we compute the unmasking
ratio ρk = cos

(
π k
2K

)
and select ρk F of the still-masked tokens to predict in this round. We feed the

current u(k−1) together with the precomputed wavelet embeddings DWT(x1:H) into the diffusion
network fθ. Only the newly unmasked positions i are updated by denoising sampler at diffusion time
step t:

u
(k)
i =

1
√
αt

(
u
(k−1)
i − 1− αt√

1− ᾱt
ϵθ
(
u
(k−1)
i | t, zi

))
+ σt ϵ, ϵ ∼ N (0, I), (10)

where k = 1, . . . ,K indexes the autoregressive iterations, and t = 1, . . . , T indexes the diffusion
timestep. Here, αt, ᾱt, and σt are the diffusion noise schedule parameters at diffusion step t, and
ϵθ(· | t, z) is the noise predictor conditioned on latents z. while all other tokens remain fixed. After
T rounds, every future token has been filled in. Finally, we extract u(T )

H+1:H+F and decode it via the
ST-VAE decoder to get the final prediction result:

x̂H+1:H+F = Dec
(
u
(T )
H+1:H+F

)
∈ RF×3J . (11)

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our method on two widely adopted benchmarks for stochastic human motion
prediction (SHMP): Human3.6M [20], HumanEva-I [42] and AMASS[33]. Human3.6M is a large-
scale benchmark containing 3.6 million frames of 3D human joint positions captured at 50 Hz,
featuring seven actors performing 15 diverse activities (e.g., walking, eating, and discussing). To
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Table 1: Quantitative comparison on HumanEva-I and Human3.6M.

Method HumanEva-I Human3.6M

APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

DeLiGAN[19] 2.177 0.306 0.322 0.385 0.371 6.509 0.483 0.534 0.520 0.545
DSF[57] 4.538 0.273 0.290 0.364 0.340 9.330 0.493 0.592 0.550 0.599
BoM [4] 2.846 0.271 0.279 0.373 0.351 6.265 0.448 0.533 0.514 0.544
DLow[58] 4.855 0.251 0.268 0.362 0.339 11.741 0.425 0.518 0.495 0.531
GSPS[35] 5.825 0.233 0.244 0.343 0.331 14.757 0.389 0.496 0.476 0.525
DivSamp[9] 6.109 0.220 0.234 0.342 0.316 15.310 0.370 0.485 0.475 0.516
STARS[52] 6.031 0.217 0.241 0.328 0.321 15.884 0.358 0.445 0.442 0.471
MotionDiff[50] 5.931 0.232 0.236 0.352 0.320 15.353 0.411 0.509 0.508 0.536
BeLFusion[2] – – – – – 7.602 0.372 0.474 0.473 0.507
HumanMAC[6] 6.554 0.209 0.223 0.342 0.320 6.301 0.369 0.480 0.509 0.545
CoMusion[43] – – – – – 7.632 0.350 0.458 0.494 0.506

Ours 3.128 0.199 0.201 0.354 0.337 4.458 0.347 0.452 0.513 0.535

ensure compatibility with prior studies, we follow the protocol of [6, 43], modeling each pose with a
16-joint skeleton. Given the first 0.5 seconds (25 frames) of observed motion, the task is to forecast
the subsequent 2 seconds (100 frames). HumanEva-I provides 3D motion captured at 60 Hz from
three actors each performing five distinct movements, with poses encoded as 15-joint skeletons.
Following common practice, we use the first 0.25 s (15 frames) of each sequence as input and task
our model with forecasting the next 1 s (60 frames) of motion. Results on AMASS dataset can be
seen in supplementary materials.

Baselines. We compare our method against eleven representative baselines, covering VAE-based,
GAN-based, and diffusion-based approaches: DeLiGAN, DSF, BoM, DLow, GSPS, DivSamp,
STARS, MotionDiff, BeLFusion, HumanMAC, and CoMusion. Belfusion and Comusion didn’t
perform experiments on HumanEva-I dataset.

Metrics. We evaluate our model using five established metrics for stochastic human motion pre-
diction. The Average Pairwise Distance (APD) quantifies diversity by computing the mean L2
distance between all generated motion samples. Average Displacement Error (ADE) measures overall
sequence accuracy as the minimum average L2 distance between predictions and the ground truth,
while Final Displacement Error (FDE) focuses on precision at the final predicted frame. To address
multi-modal scenarios, Multi-Modal ADE (MMADE) and Multi-Modal FDE (MMFDE) extend these
metrics by grouping ground truth sequences based on similar initial observations, ensuring robust
evaluation of plausible diverse outcomes. These metrics collectively assess accuracy, temporal
consistency, and diversity, critical for real-world applications requiring both precision and variability.

4.2 Implementation Details

We employ a lightweight ST-VAE with a two-layer encoder-decoder architecture. Each hidden layer
has a dimension of 128, and we apply a temporal downsampling rate of 2. It is trained for 500 epochs
with a batch size of 128. Spectral cues are injected by applying a vanilla Haar wavelet transform
to the raw 3D-joint history. For the Human3.6M dataset, the diffusion backbone consists of 12
Transformer layers: the first 6 layers each combine self-attention and cross-attention over the wavelet
embeddings, while the remaining 6 layers use only self-attention. We set the latent dimension to
256. For HumanEva-I, we use the same overall design but employ only 3 layers with both self- and
cross-attention, followed by 3 self-attention layers, also with a latent dimension of 256. The noise
prediction network in the diffusion model is a 3-layer MLP with a hidden dimension of 1024. We
optimize the model for 200 epochs using the AdamW optimizer [32] with β1 = 0.5, β2 = 0.99, and
an initial learning rate of 2× 10−4. A multi-step learning-rate scheduler with decay factor γ = 0.9 is
applied, and the batch size is increased to 256 to stabilize training.

4.3 Comparison with the State-of-the-Arts

Quantitative Comparison. Table 1 reports quantitative results on HumanEva-I and Human3.6M,
comparing our method against recent baselines. It can be seen that our approach achieves the best
ADE and FDE values on both the HumanEva-I and Human3.6M datasets, indicating that our method
provides the most accurate predictions. While our method yields a lower APD, we note that many
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Figure 2: Qualitative comparisons: The first line is input history and ground truth motion, both
methods predict ten predictions based on the same input history.

high-diversity models tend to sacrifice accuracy by generating trajectories that deviate from the
observed history or true motions. These methods prioritize variety at the expense of fidelity. In
contrast, our approach deliberately emphasizes producing the most plausible sequences, resulting
in highly accurate predictions with more concentrated samples. As a consequence, although our
method shows lower diversity, also reflected in the slightly worse MMADE and MMFDE scores
compared to some competitors, it maintains a stronger adherence to the dominant motion modes.
This highlights the trade-off between diversity and accuracy, with our model prioritizing precision
while still ensuring an appropriate level of diversity.

Qualitative Comparison. To further illustrate the effectiveness of our approach, Figure 4 presents
qualitative predictions on two different actions. In each sequence, our model faithfully reproduces
the nuanced joint trajectories of the ground truth, accurately capturing both smooth cyclic motions
(e.g., walking) and rapid transitions. Moreover, our predictions exhibit superior stability: in the first
example, the HumanMAC baseline produces an abrupt motion jump at the end of its forecast, whereas
our model maintains coherent and physically plausible dynamics throughout. These visualizations
demonstrate that our continuous-latent, wavelet-conditioned diffusion framework not only excels in
numerical accuracy but also delivers compellingly realistic motion prediction.

Table 2: Comparison of inference time of different model sizes.

Model Params (M) Inference Time (s) APD↑ ADE↓ FDE↓

HumanMAC 28.4 1.25 6.301 0.369 0.480
WaveAR (tiny) 26.8 0.21 4.952 0.354 0.465
WaveAR (small) 51.9 0.43 4.458 0.347 0.452
WaveAR (base) 86.5 0.65 4.633 0.342 0.450

Efficiency and Computational Analysis To demonstrate the efficiency and scalability of WaveAR,
we provide three variants of our model with approximately 27M, 52M, and 87M parameters, re-
spectively. We observe that enlarging the model size improves prediction accuracy but comes at the
cost of reduced diversity. We provide a comparison of parameters and inference time for WaveAR
and HumanMAC. The results are shown in Tab2. Thanks to the reduced number of denoising steps,
WaveAR performs inference substantially faster than HumanMAC, while maintaining high prediction
accuracy and realistic motion quality.

4.4 Motion In-Betweening via Flexible Masking

Beyond pure forecasting, our flexible masking strategy enables natural motion in-betweening between
two distinct action sequences. By masking out an intermediate span of latent tokens and unmasking
them progressively, the model seamlessly “fills in” a transition that respects both the initial and
target poses. This adaptability arises from our autoregressive diffusion framework’s ability to treat
any masked interval—whether at the end of a sequence or in the middle—as a generation problem
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  Turn 
around

Standing to sitting

Sitting to standing

Figure 3: Motion in-betweening results of our proposed WaveAR model on the Human3.6M dataset.
The first two columns represent the given initial motion, and the last two columns represent the target
motion to be transitioned to. The visualization demonstrates that our model smoothly transitions
from one motion to another. Both the initial and target motions consist of 20 frames.

Table 3: Ablation studies on proposed components, conducted on the Human3.6M dataset. Here,
“w/o ST-VAE” indicates applying the downstream model directly on the raw input space; “w/ ST-
VAE (γ = 1)” denotes an ST-VAE with a single downsampling (our implementation uses two
downsamplings); “w/o DWT” removes the DWT branch.

Method APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓
w/o ST-VAE 8.625 0.492 0.641 0.570 0.692
w/o DWT 4.781 0.381 0.503 0.535 0.549
w/ ST-VAE (γ = 1) 5.263 0.446 0.586 0.564 0.597
Ours 4.458 0.347 0.451 0.513 0.535

conditioned on its surrounding context. The visualization results are presented in Figure 3. Our model
smoothly transitions between motions. Each joint follows realistic physical constraints, ensuring the
coherence and plausibility of the generated in-between frames. Not only can it handle simple motion
transitions, such as turning, but it can also manage more complex sequences involving multiple action
changes. For example, in the first row, the model successfully generates a sequence that transitions
from a sitting posture to standing, followed by a turn and an exit motion. This demonstrates the
model’s ability to capture and generate dynamic transitions across varied motion types.

4.5 Ablation Study

In this section, we perform an ablation analysis on the Human3.6M dataset to investigate the impact
of various design choices in our model, examining how each component contributes to its motion
forecasting performance. Specifically, we conduct ablation experiments on the proposed frequency-
domain module, the VAE module, the use of continuous latent vectors, and the diffusion settings.
These experiments help us understand the individual contributions of each module and design choice,
highlighting their influence on the overall performance of the model.

Network Architecture Component. We first conduct network component ablation experiments to
evaluate the roles of different submodules in our architecture. The results are shown in Table 3.

Diffusion for Autoregressive Prediction. We next explore the contributions of diffusion-related
components for our autoregressive prediction framework. First, we replace our continuous ST-VAE
tokens with discrete codes from a VQ-VAE—this substitution leads to a marked degradation in both
ADE and FDE, as shown in Table 4. Second, we remove the diffusion process entirely and instead
use the output of the masked Transformer directly to reconstruct the original motion sequence via an
L2 loss; this baseline also performs poorly, confirming that the diffusion mechanism is essential for
accurate, smooth motion generation.
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Wavelet-based Frequency Module We further analyze the impact of the proposed Discrete Wavelet
Transform (DWT) module, which replaces the conventional Discrete Cosine Transform (DCT) used
in prior frequency-based motion models. As shown in Table 5, introducing the DWT consistently
improves motion prediction accuracy compared with both the baseline without any frequency module
and the DCT-based variant. This demonstrates that the adaptive representation of wavelets better
aligns with the temporal characteristics of motion sequences and provides more precise predictions.

Table 4: Performance comparison of different loss functions.

Loss APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓
VQ-VAE 7.233 0.477 0.589 0.544 0.631
L2 Loss 5.330 0.422 0.548 0.539 0.581
Ours 4.458 0.347 0.451 0.513 0.535

Table 5: Ablation study on different frequency-domain designs.

Method APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓
w/o DWT & DCT 4.781 0.381 0.503 0.535 0.549
w/ DCT 5.016 0.362 0.478 0.521 0.537
w/ DWT (Ours) 4.458 0.347 0.451 0.513 0.535

5 Conclusion

In this paper, we propose WaveAR, a novel AR based framework, which is the first successful
application of a continuous autoregressive generation paradigm to human motion prediction. Unlike
prior methods that rely on discrete VQ-VAE codes, WaveAR employs a lightweight Spatio-Temporal
VAE to encode raw 3D-joint sequences into smooth, quantization-free latents. Complementary
spectral cues are injected via a 2D discrete wavelet transform and fused into the latent stream
through local cross-attention layers, after which purely temporal self-attention layers refine the joint
representation. A masked autoregressive diffusion process then generates each new token conditioned
on its predecessors and rich wavelet features, yielding highly accurate, physically plausible motion
forecasts. Extensive experiments on HumanEva-I and Human3.6M show that WaveAR achieves the
lowest ADE and FDE among all baselines, confirming its superior precision.

6 Limitations

Our masked autoregressive diffusion module is primarily optimized to minimize reconstruction error
over the average trajectory, which can lead to conservative or “safe” predictions, with diversity
confined to a narrow range of motion variations.Besides, our current framework relies on standard
joint-coordinate datasets containing only about 17–32 keypoints, which restricts its ability to capture
subtle or fine-grained body movements. Addressing these limitations will be an important direction
for our future work.
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Supplementary Materials

A Per-Class Performance Comparison on Human3.6M

We conduct extensive experiments on the Human3.6M dataset, which encompasses 13 diverse action
categories including Directions, Discussion, Eating, Greeting, Phoning, Photo, Posing, Purchases,
Sitting, SittingDown, Smoking, Waiting, Walking, WalkDog, and WalkTogether. Table 6 presents
a detailed comparison of our method against several state-of-the-art approaches across all action
categories.From Table 6, it can be observed that our method demonstrates strong performance in
terms of both ADE and FDE across a wide range of action categories. In particular, our approach
achieves significant improvements on two walking-related actions — Walking and WalkTogether —
where precise motion prediction is crucial. This indicates the model’s enhanced ability to capture
and forecast dynamic motion patterns, especially in scenarios involving coordinated or continuous
movement.

B Wavelet guided masked fusion module

The detailed structure of our proposed Wavelet-guided masked fusion module is shown in Fig 4.
The module consists of a hierarchical arrangement of two distinct layer types. The lower section
comprises N local fusion layers, each built with a sophisticated architecture incorporating CrossAttn,
SelfAttn, and FFN components. Within these local fusion layers, the cross-attention mechanism
facilitates information exchange between frequency domain features and masked vectors in the latent
space, enabling effective multi-modal integration at a fine-grained level. The upper section contains
N global context layers, constructed exclusively with self-attention mechanisms and feed-forward
networks. These layers are specifically designed to consolidate global information, progressively
refining representations to produce a condition vector z that encapsulates comprehensive contextual
understanding. In our implementation, we set N = 6, creating a balanced architecture with sufficient
capacity for both local feature fusion and global context integration.

Local fusion layer

Local fusion layer

... *N

global context layer

global context layer

... *N

frequency features
�����

��������� � 

CrossAttn
FFN

SelfAttn

FFN SelfAttn

FFN

Figure 4: The detailed architecture of the Wavelet guided masked fusion module

C More ablation study

In this part, we conduct additional ablation studies to further analyze the effectiveness of key
components in our method. Specifically, we examine: (1) the impact of varying the number of
layers in the masked fusion module, and (2) the design of the denoising steps within the diffusion
process.For the first ablation study, we investigate how different configurations of local fusion layers
and total layers affect model performance. As shown in Table 7, we systematically vary the number
of local fusion layers (ranging from 4 to 12) while adjusting the total number of layers (ranging
from 8 to 14). The results demonstrate that a proper configuration of these architectural components
significantly impacts model performance. Specifically, the model achieves optimal performance
on our task when using 6 local fusion layers within a total of 12 layers, yielding the best overall
performance. For the second ablation study, we examine different noise schedule configurations on
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Classes APD ADE FDE MMADE MMFDE Classes APD ADE FDE MMADE MMFDE

Directions

TPK 6.510 0.447 0.482 0.523 0.544

Sitting

TPK 6.417 0.400 0.547 0.461 0.548
DLow 11.874 0.415 0.465 0.499 0.514 DLow 11.425 0.364 0.513 0.440 0.523
GSPS 15.398 0.407 0.477 0.492 0.522 GSPS 14.966 0.323 0.454 0.411 0.484

DivSamp 15.663 0.389 0.463 0.502 0.523 DivSamp 15.614 0.317 0.465 0.417 0.490
BelFusion 7.090 0.378 0.422 0.484 0.494 BelFusion 6.495 0.306 0.446 0.400 0.461

HumanMAC 6.357 0.391 0.456 0.475 0.475 HumanMAC 5.941 0.312 0.456 0.404 0.472
CoMusion 7.527 0.372 0.417 0.454 0.435 CoMusion 6.237 0.307 0.448 0.406 0.468

Ours 4.673 0.371 0.421 0.467 0.461 Ours 4.080 0.302 0.443 0.437 0.492

Discussion

TPK 6.966 0.511 0.581 0.570 0.600

SittingDown

TPK 7.393 0.496 0.678 0.531 0.666
DLow 11.872 0.472 0.536 0.533 0.549 DLow 12.044 0.451 0.605 0.495 0.606
GSPS 14.099 0.448 0.541 0.526 0.563 GSPS 13.725 0.406 0.561 0.461 0.565

DivSamp 15.310 0.432 0.526 0.534 0.557 DivSamp 14.899 0.413 0.579 0.478 0.586
BelFusion 9.172 0.420 0.507 0.512 0.530 BelFusion 9.026 0.413 0.585 0.468 0.587

HumanMAC 7.496 0.434 0.533 0.547 0.571 HumanMAC 6.871 0.381 0.530 0.471 0.568
CoMusion 8.747 0.409 0.497 0.527 0.523 CoMusion 7.253 0.378 0.546 0.472 0.578

Ours 5.420 0.402 0.489 0.534 0.541 Ours 4.993 0.395 0.581 0.504 0.589

Eating

TPK 6.412 0.388 0.473 0.452 0.472

Smoking

TPK 6.522 0.422 0.529 0.509 0.560
DLow 11.603 0.358 0.433 0.439 0.452 DLow 11.549 0.400 0.515 0.490 0.537
GSPS 15.570 0.334 0.419 0.424 0.448 GSPS 14.822 0.466 0.485 0.472 0.530

DivSamp 15.681 0.321 0.419 0.428 0.445 DivSamp 15.688 0.353 0.486 0.475 0.523
BelFusion 5.954 0.310 0.381 0.418 0.420 BelFusion 6.780 0.341 0.467 0.467 0.512

HumanMAC 4.817 0.305 0.374 0.411 0.409 HumanMAC 5.415 0.339 0.475 0.445 0.501
CoMusion 6.149 0.295 0.366 0.408 0.395 CoMusion 6.802 0.311 0.443 0.427 0.458

Ours 3.461 0.303 0.371 0.420 0.413 Ours 4.222 0.322 0.447 0.451 0.486

Greeting

TPK 6.779 0.555 0.615 0.571 0.598

Waiting

TPK 6.631 0.480 0.584 0.526 0.568
DLow 11.897 0.530 0.590 0.561 0.564 DLow 11.680 0.441 0.541 0.497 0.534
GSPS 14.974 0.502 0.592 0.532 0.577 GSPS 15.000 0.400 0.514 0.475 0.529

DivSamp 15.447 0.489 0.575 0.535 0.562 DivSamp 15.455 0.387 0.517 0.486 0.535
BelFusion 8.482 0.482 0.544 0.524 0.540 BelFusion 7.747 0.390 0.507 0.471 0.511

HumanMAC 7.939 0.499 0.571 0.573 0.592 HumanMAC 6.506 0.385 0.532 0.496 0.557
CoMusion 8.946 0.481 0.556 0.558 0.552 CoMusion 7.690 0.358 0.484 0.487 0.476

Ours 5.444 0.473 0.551 0.554 0.551 Ours 4.434 0.368 0.506 0.515 0.538

Phoning

TPK 6.410 0.377 0.475 0.468 0.507

WalkDog

TPK 7.384 0.560 0.694 0.592 0.665
DLow 11.542 0.343 0.444 0.451 0.487 DLow 11.882 0.490 0.566 0.539 0.570
GSPS 15.050 0.311 0.413 0.436 0.476 GSPS 13.746 0.459 0.564 0.530 0.587

DivSamp 15.751 0.296 0.400 0.437 0.471 DivSamp 15.616 0.439 0.555 0.532 0.577
BelFusion 6.649 0.283 0.375 0.426 0.445 BelFusion 9.335 0.432 0.530 0.527 0.569

HumanMAC 5.069 0.287 0.383 0.405 0.431 HumanMAC 7.741 0.441 0.547 0.543 0.591
CoMusion 6.427 0.268 0.363 0.390 0.399 CoMusion 9.154 0.426 0.540 0.520 0.554

Ours 4.013 0.264 0.363 0.404 0.421 Ours 5.823 0.431 0.536 0.566 0.601

Photo

TPK 6.894 0.541 0.689 0.548 0.633

WalkTogether

TPK 6.718 0.443 0.548 0.535 0.573
DLow 11.931 0.507 0.655 0.516 0.596 DLow 11.951 0.395 0.495 0.503 0.530
GSPS 14.310 0.485 0.663 0.502 0.606 GSPS 15.030 0.316 0.440 0.473 0.516

DivSamp 15.330 0.474 0.665 0.506 0.607 DivSamp 16.095 0.321 0.458 0.486 0.525
BelFusion 8.446 0.434 0.601 0.462 0.546 BelFusion 6.378 0.296 0.393 0.484 0.495

HumanMAC 7.505 0.438 0.600 0.511 0.619 HumanMAC 4.336 0.298 0.387 0.447 0.454
CoMusion 8.923 0.422 0.606 0.503 0.611 CoMusion 6.512 0.270 0.372 0.435 0.431

Ours 5.522 0.445 0.591 0.531 0.590 Ours 4.128 0.256 0.357 0.449 0.451

Posing

TPK 6.520 0.466 0.538 0.542 0.565

Walking

TPK 6.708 0.455 0.533 0.538 0.558
DLow 11.875 0.442 0.521 0.510 0.525 DLow 11.904 0.428 0.518 0.516 0.539
GSPS 15.149 0.415 0.527 0.498 0.543 GSPS 14.797 0.351 0.469 0.490 0.528

DivSamp 15.429 0.395 0.499 0.510 0.541 DivSamp 15.964 0.373 0.535 0.508 0.547
BelFusion 8.438 0.406 0.510 0.498 0.531 BelFusion 5.116 0.367 0.471 0.530 0.546

HumanMAC 7.320 0.407 0.530 0.512 0.553 HumanMAC 4.306 0.321 0.447 0.472 0.485
CoMusion 8.236 0.393 0.501 0.492 0.499 CoMusion 6.487 0.308 0.443 0.447 0.465

Ours 5.143 0.389 0.497 0.532 0.537 Ours 3.522 0.263 0.406 0.452 0.474

Purchases

TPK 7.450 0.505 0.522 0.535 0.538
DLow 11.947 0.430 0.422 0.493 0.477
GSPS 13.969 0.414 0.429 0.497 0.497

DivSamp 14.967 0.388 0.404 0.502 0.478
BelFusion 10.272 0.410 0.409 0.494 0.472

HumanMAC 8.601 0.403 0.410 0.506 0.439
CoMusion 9.484 0.405 0.426 0.496 0.425

Ours 5.185 0.403 0.421 0.542 0.460

Table 6: Comparison of different methods on various classes and metrics.
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model performance and inference efficiency. Table8 shows that reducing both noising steps during
training and DDIM steps during inference to 10 maintains competitive performance while drastically
reducing computational costs compared to larger step configurations. This demonstrates our approach
can maintain high prediction accuracy even with a significantly accelerated sampling process, making
it more practical for real-time applications.

local_layer total_layer APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓
4 8 5.013 0.372 0.484 0.529 0.542
5 10 4.766 0.361 0.467 0.515 0.533
6 12 4.458 0.347 0.452 0.513 0.535
12 12 4.229 0.354 0.461 0.520 0.536
7 14 4.587 0.362 0.458 0.522 0.540

Table 7: Performance comparison with different configurations of local fusion layers and total layers.

Noising steps DDIM steps APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓
1000 100 5.172 0.350 0.454 0.518 0.533
100 10 4.574 0.363 468 0.520 0.536
10 10 4.458 0.347 0.452 0.513 0.535

Table 8: Experiment results of the ablation study on diffusion steps

D Experiments on AMASS dataset

In Table 9 ,we report quantitative results on AMASS dataset[33]. As shown below, our model still
achieves the best accuracy metrics (ADE&FDE), demonstrating strong generalization capability.

Model APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓
Belfusion 9.376 0.513 0.560 0.569 0.585

HumanMAC 9.321 0.511 0.554 0.593 0.591
CoMusion 10.848 0.494 0.547 0.469 0.466

Ours 7.022 0.485 0.538 0.562 0.587
Table 9: Performance comparison across different models on AMASS dataset
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have clearly included the motivations, important
assumptions, and contributions made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:The authors have discussed the limitations of the work in the supplementary
material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer:[Yes]
Justification: The authors have clearly provided the full set of assumptions and complete
proofs in the Method section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The authors have presented all the experimental details in the Implementation
Details section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will open-source the code after the paper is published.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The authors have presented all the training and test details in the Implementa-
tion Details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification:Since the evaluation metrics are computed deterministically based on fixed
procedures, without random components or repeated trials, we do not report error bars or
statistical significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The authors have included sufficient information on the computer resources in
the Implementation Details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:The authors conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The authors have explained the broader impacts of the work at the end of the
introduction and conclusion section.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors have cited the original paper that produced the code package or
dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:The new assets introduced in the paper are accompanied by detailed documen-
tation, which is provided in the supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper describe the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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