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ABSTRACT

AdamW is ubiquitous in deep learning, yet its behavior remains poorly under-
stood. We analyze its dynamics through the lens of dynamical systems and show
that AdamW admits an implicit objective: its fixed points coincide with the sta-
tionary points of a constrained and regularized optimization problem. However,
not all of these fixed points are stable under AdamW’s dynamics, and stability
depends sensitively on curvature, weight decay, and momentum parameters. Even
in simple one-dimensional settings, AdamW can exhibit surprisingly complex be-
havior: equilibria may be unstable and trajectories can fall into persistent limit
cycles. We further extend the analysis to higher dimensions, deriving sufficient
conditions for stability, and validate empirically that when AdamW converges in
neural network training, it converges to stable equilibria. These results clarify
what optimization problem AdamW is associated with, when convergence can be
expected, and how its curious dynamics could inspire the development of more
reliable optimization algorithms in the future.

1 INTRODUCTION

The Adam optimizer with decoupled weight decay (AdamW; (Loshchilov & Hutter,|2017)) has been
the workhorse of modern deep learning. From large language models (Grattafiori et al., 2024} |[Liu
et al.| 2024)), to vision architectures (Ravi et al.[2024), to generative models (Esser et al.), AdamW
powers today’s most influential systems and is widely regarded as the default optimizer for deep
learning.

Yet beneath this ubiquity lies a fundamental gap: while the convergence of Adam (without weight
decay; (Kingma & Ba, [2014)) is already subtle to analyze, no general convergence proof is avail-
able for Adam The difficulty arises from the use of decoupled weight decay, which is essential in
practice for stability and generalization (Kosson et al., 2023;|D’ Angelo et al.,2024), but remains dis-
connected from the objective, misaligned with the gradient, and fundamentally alters the algorithm’s
dynamics.

Our contributions. We present two central findings that clarify AdamW’s behavior: what it im-
plicitly optimizes, and how the stability of its dynamics informs its convergence.

* Implicit objective of AdamW. We show that the fixed points of AdamW coincide exactly
with the stationary points of a constrained and regularized optimization problem.

* Stability of AdamW. We further show that not all stationary points of this implicit objec-
tive correspond to stable equilibria of AdamW. This gap enables simple counterexamples
where AdamW is non-convergent, failing even on benign static objectives.

Implicit objective. Contrary to the common view that weight decay acts as “adaptive regular-
ization,” we argue that an optimizer’s objective should depend only on parameters, not on internal
states. By analyzing AdamW’s fixed-point conditions, we identify an implicit objective F' whose
stationary points coincide AdamW'’s equilibria. This construction connects to a special case of the
Lion-KC algorithm (Chen et al.}[2023a) and extends the conclusions of Xie & Li|(2024). However, the
equivalence is only first-order: AdamW does not necessarily minimize F, since some local minima
of I’ may be unstable under AdamW’s dynamics, and the algorithm may fail to converge to them.

'See section E] for discussion.
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Figure 1: AdamW with n = 1072, 51 = 0.99, 8, = 0.9, A = 1, e = 1072, Left: quadratic
objective f(z) = (z — 3)%. Middle: implicit objective F (z) whose stationary point coincides with
AdamW’s equilibrium. Right: AdamW iterates x(7") over time, showing non-convergence despite

the simple convex objective.
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Figure 2: AdamW with n = 1072, 31 = 0.9, 83 = 0.99, A = 1, e = 102. (a) Target objective
f(x) with fixed point at * = 0.99. (b) Implicit objective F'(x) whose stationary point coincides
with the AdamW fixed point. (c) Discrete-time trajectory :(T"). (d) Continuous-time counterpart
z(t). (e) Phase portrait in (x, m, v) space. Together, (c—e) show that AdamW does not converge but
instead enters a stable limit cycle around the equilibrium.

Stability of AdamW. Our analysis shows that stability and stationarity need not coincide for
AdamW. This misalignment creates a stability gap that produces explicit counterexamples to con-
vergence: when 31 > (2, AdamW diverges even on the simple quadratic (z — %)2, regardless of
step size (see figure m); in the common regime 3; < (32, convergence also fails, as iterates on simple
one-dimensional polynomials settle into stable limit cycles, orbiting indefinitely rather than converg-
ing (see figure [2). These behaviors are not artifacts of adversarial hyperparameters or pathological

online objectives (cf.Reddi et al.,2019), but intrinsic to AdamW’s update rule.

We study these dynamics through the lens of stability analysis. If AdamW converges, it necessarily
converges to a local minima of the implicit objective, but sufficiency requires additional constraints
on the Hessian of the original objective. If the only equilibrium in the domain is unstable, con-
vergence is impossible and trajectories spiral into oscillations. In one dimension, when 51 > [a,
stability requires an upper bound on curvature, which is often violated even for quadratics; when
B1 < PBa, stability requires a lower bound, so convergence occurs only if the Hessian is not too
negative. In higher dimensions the situation is more involved, but local Lyapunov analysis yields
tractable sufficient conditions. For neural networks, the Hessian is too large to characterize exactly,
yet experiments reveal a consistent pattern: whenever AdamW converges, it does so at a stable equi-
librium. Whether this requirement for stability explains AdamW’s empirical success or conceals
hidden pitfalls remains open, but what is clear is that convergence is not guaranteed, and the curious
dynamics of AdamW open intriguing directions for future research.
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Algorithm 1 AdamW Update Rules[]

Require: initial parameters o, hyperparameters {1, }7_,, 81, B2, e, weight decay strength A > 0
1: Initialize moment mg < 0, wvg < 0
2: fort=1,2,...,T do
3: Compute gradient g; < V f(@1—1)

4: Update moment: my; < Symy—1 + (1 — B1)gs, v¢ < Povp—1 + (1 — 52)992
5:  Bias correction: 1y < my(1 — BY), 0 < vy(1 — 3)
6: Parameter update:
— m A
T Tp_ 1 — Np———— 1) - NTy_
t t—1 It \/’E*" . It t—1
7: end for

2 BACKGROUND

We review the classical notions of Lyapunov stability and the Lyapunov indirect method (or lin-
earization method), which provide standard tools for analyzing the stability of dynamical systems.

First, we establish a notion of stability of an equilibrium in a dynamical system. Formally, it is
characterized with the following definition of Lyapunov stability.

Definition 2.1 (Lyapunov stability). Consider the autonomous system z(t) = T(z(t)), where T :
D — R is locally Lipschitz with domain D C R%. Let z, € D be an equilibrium, i.e. T(z,) = 0.
Then:

* z, is Lyapunov stable if for every € > 0 there exists 6 > 0 such that ||z(0) — z,|| < §
implies ||z(t) — z.|| < eforallt > 0.

* z, is asymptotically stable if it is Lyapunov stable and there exists &' > 0 such that ||z(0) —
zi|| < & implies lim;_, o 2(t) = 2.

* z. isunstable if it is not Lyapunov stable, i.e., there exists ¢ > 0 such that for every § > 0
one can find ||z(0) — z.|| < 0 but ||z(t) — z.|| > € for some t > 0.

Lyapunov’s stability establishes the notion of global stability, while the following Hurwitz stability
states how the linearized neighborhood near an equilibrium point behaves.

Definition 2.2 (Hurwitz stability). Let z. be an equilibrium of z = T(z) and let J(z.) =
[0T;/ 8zj]z denote the Jacobian at z.. Then z, is Hurwitz stable if every eigenvalue s of J(z.)

satisfies R(s) < 0.

Lyapunov’s indirect method gives the following characterization. If J(z,.) is Hurwitz stable,
then the equilibrium z, is asymptotically stable. If J(z,) has an eigenvalue with R(s) > 0, the
equilibrium is unstable. When all eigenvalues satisfy R(s) < 0 with some lying on the imaginary
axis, the test is inconclusive and higher-order terms must be examined. We direct readers to |[Khalil
(2002) for further details.

While Lyapunov’s indirect method addresses continuous-time systems, a parallel criterion applies
to discrete dynamics of the form z;11 = T'(z:). In this case, an equilibrium z. is Schur stable
if all eigenvalues of J(z,) lie strictly inside the unit disk, i.e. |[A\| < 1 for every eigenvalue A.
This condition ensures asymptotic stability. If any eigenvalue satisfies |\| > 1, the equilibrium
is unstable. Thus, stability analysis for discrete-time optimization algorithms is analogous to the
continuous-time setting.

Notation We denote the parameter vector by x, the first-order momentum by m, and the second-
order momentum by v. The objective function is f : R¢ — R, defined over the parameter domain.
We use F'(-) to denote the implicit objective, which will be introduced later. Unless stated otherwise,

>We use the default Adamw implementation from PyTorch (PyTorch Contributors| 2025), which computes
the denominator as v/0; + e rather than v/0; + 2. While the alternative will lead to a slightly different implicit
objective, our main conclusions remain unaffected.



Under review as a conference paper at ICLR 2026

all operations are elementwise. To avoid ambiguity, we use the following terminology: equilibria are
stationary points of continuous-time dynamical systems, fixed points are update-invariant states of
discrete-time algorithms, and stationary points are points where the gradient of a function vanishes.

3 THE IMPLICIT OBJECTIVE OF ADAMW

We start from the fixed-point conditions of AdamW, which characterize the relations that conver-
gence points must satisfy if convergence were to occur. For gradient descent or Adam, these fixed
points coincide with the stationary points of the objective f(x). In contrast, the decoupled weight
decay alters this relationship: equilibria no longer align directly with stationary points of f(x) but
also depend on the weight decay strength.

Formally, let [x;, m;, v;| denote the AdamW iterates. As ¢ — oo, bias corrections vanish so that
m; — my and v — vy, At a fixed point, the updates are stationary, and the iterates satisfy

V%iﬁam:m m=Vf(z), v=Vf(z)®. 1)
Eliminating m and v yields the necessary condition
Vi)
IVf(x)|+e
Equation equation [2] exactly describes the fixed-point set of AdamW. These equilibria turn out to

coincide with the stationary points of a constrained and regularized optimization problem, which we
refer to as the implicit objective of AdamW.

Theorem 3.1. Let f : R? — R be continuously differentiable, and let \,e > 0. Then x €
R? satisfies the fixed-point condition equation 2| if and only if x is a stationary point of the {-
constrained and regularized problem

min F(x) = f(2) + § $02), subject 1o [z < &, @
xe

+Az = 0. )

where ®(x) = Zle o(x;) with
o(x) = —|x| —log(1l — |z|), |z <1.
Moreover, since ¢p(x) — +oo as |x| — 1, the regularizer ® serves as a barrier function that

naturally enforces the constraint ||x||oc < 3.

This implicit objective coincides with the Softsign case VK = x/(]z| + €) of Lion-K (Appendix A,
Chen et al.|(2023a)), and it reduces to the pure ¢, constraint of Xie & Li|(2024) when e — 0. Addi-
tionally, this view of AdamW’s implicit objective contrasts with prior interpretations (Loshchilov &
Hutter, 2017} Zhou et al.,[2024)), which describe weight decay as an adaptive /5 penalty that depends
on optimizer states and therefore deviates from the standard notion of an optimization objective. In
contrast, our construction produces a static objective F'(x) that depends only on the parameters.

3.1 FIXED-POINT COINCIDENCE IS INSUFFICIENT

The fact that AdamW’s fixed points coincide with the stationary points of equation [3|does not imply
that AdamW actually minimizes F'(x). Beyond this first-order consistency, we require:

The stable equilibria of AdamW must coincide with the local minima of F'.
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Figure 3: Left: an objective function f that AdamW-is applied on. Middle: ¢. Right: f(z)+$¢(\x)
withe =0.1and A = 1.
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For many standard optimization algorithms this alignment holds, often guaranteed by a global Lya-
punov function: stable equilibria coincide exactly with local minima. As proved in previous works
(Maddison et al 2018} |Chen et al.l 2023a)), this property is shared across the Lion-K family, in-
cluding SGD with momentum, Lion (Chen et al.| 2023b), and Muon (Jordan et al.| 2024)). AdamW,
however, is different. A global Lyapunov function may not exist, and the equivalence between sta-
ble equilibria and local minima holds unconditionally only in the degenerate case 51 = B2. When
B1 # Ba2, as will be shown in the next section, being a local minimum of F' is necessary but not
sufficient for stability.

Stable equilibria of AdamW C Local minima of F’

Consequently, some local minima of F' are unstable under AdamW. Since Theorem shows that
any implicit objective minimized by AdamW must be I’ (up to composition with a strictly mono-
tone C'! function), this misalignment implies that AdamW may not minimize any general objective
function. It also enables explicit counterexamples where the dynamics fail to converge to a fixed
point and instead evolve into stable limit cycles.

4 STABILITY CONDITIONS AND NON-CONVERGENCE OF ADAMW

We work in the deterministic (batch) gradient setting and analyze AdamW in the continuous-time
limit, corresponding to infinitesimal step size. This removes the intervention from gradient noise
and learning rate schedules. Importantly, a sound optimization method should at least converge
in this idealized regime; instability here indicates a fundamental issue in the design. Continuous-
time dynamics also require weaker conditions for convergence: gradient flow converges to local
minima even without smoothness assumptions (Lojasiewicz, |1984), whereas discrete-time methods
such as gradient descent require smoothness and step-size control (Lee et al., [2016). While an
analogous discrete-time analysis is possible, the presence of learning rates introduces additional
complications that render the resulting expressions far less interpretable; we therefore defer this
analysis to Appendix [A.4] In practice, learning rates are often small, so continuous-time analysis
provides a useful proxy for understanding the behavior of discrete algorithms.

We model the continuous-time dynamics of AdamW by the ODE

my

_ht+€

Itt:

— )\(Bt, mt = a(Vf(mt) — mt), ’:Lt = 9 (W — ht> . (4)
2 h,

The discrete-time update of AdamW corresponds to a semi-implicit Euler discretization of this sys-
tem with v; = h?Q and the identifications n = At, 81 = 1 — aAt, B2 = 1 — bAt. For large t we
adopt the standard approximation m; ~ m;, U; ~ v;.

It is convenient to rewrite the system in vector form (suppressing ¢ for clarity):

d x —m/(h+e) — Az
Fra T(z), z:= lm} , T(z)= a(Vf(x)—m) |. (5)
t h L(Vf(x)®2/h - h)
Let z, = [x., M., h,] denote an equilibrium point of the dynamics, that is, a point satisfying

T(z.) = 0. Differentiating T and evaluating at z, gives the Jacobian

-\ —Diag(1/(h. +¢)) Diag(m./(h. +¢€)?)
J(z,) = aV2if(z.) —al 0 . (6)
bDiag(V f(x.)/h.) V2 f(x.) 0 —bI

4.1 LOCAL STABILITY OF ADAMW IN 1D

We first analyze the one-dimensional (1D) case, deferring the higher-dimensional analysis to sec-
tion 5] Here “1D” refers only to the dimension of z, while the full dynamics remain three-
dimensional in [x,m, h]. As discussed in section 2| the local stability of an equilibrium is deter-
mined by the spectrum of J(z,). To study this spectrum, we use the characteristic polynomial
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Figure 4: Left: lower bound on f”(x.) (equation E[) as a function of z, when a = 10, b = 1.
Middle: the bound as a function of gradient norm |V f(z.)|. Right: case « = 1, b = 10, where the
condition yields either a lower or an upper bound depending on |x,|. Weuse A = 1, ¢ = 1072 in
both cases.

xJ(s) == det(sI — J(z.)), whose roots coincide with the eigenvalues of J(z,). In the 1D case,
this polynomial simplifies to a cubic:

(a—b)H, beH, abeH,

xg(8) =5+ (a+b+N)s®+ |ab+a)+ P + 2 s+ 2

)

Here the coefficients are expressed in terms of the following quantities:
B =he +e, H,:=f"(z.), H, = F'(zy),

where F is the implicit objective introduced in equation[3] Since z, is an equilibrium point, we also
use the relations

he = V(@) =|ml, Ho=H.+ 20

To analyze the signs of the eigenvalues, we recall this following fact.
Lemma 4.1 (Routh—Hurwitz criterion for cubics). All roots of the cubic equation B4+ aos?+ais+
ag = 0 have negative real part (i.e., the system is Hurwitz stable) if and only if

ag, a1, ag >0 and asaq > ag.

Stable equilibria of AdamW C Local minima of I We first show that any stable equilibrium of
the AdamW dynamics must correspond to a local minimum of the implicit objective F'.

Corollary 4.2. Assume a,b, \,e > 0 and consider the one-dimensional case. If z, is a Hurwitz sta-
ble equilibrium of the AdamW ODE, then it must be a strict local minimum of the implicit objective
F,ie F'"(z,) > 0.

Proof. If z, is Hurwitz stable, then ag = abeH, /h? > 0, which implies H, = F"(x,) > 0. O

The subtlety, however, is that F"'(x,) > 0 is necessary but not sufficient. Even strict local minima
of F' may correspond to unstable equilibria of AdamW. An additional bound on the Hessian of the
original objective f”(x,) is required.

Proposition 4.3. Assume a,b,e > 0 and X\ > 0. Let [x., m., hy] be an equilibrium of the AdamW
ODE in equation[3| Then [z, m., h.] is Hurwitz stable if and only if F" (z..) > 0 and

o 7 1z
(@+b+A) ab+a)\+(ab7)iw +(b+A)bth(f*)>o, ®)
which can be rearranged into
(ala+X) = b+ N)|Az|) [ (x) > e 9
" ) (1= [Az.|)’

where C' = (a + b+ X)(ab+ aX + bX) — ab) > 0.
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Thus, stability requires two conditions: first, the implicit Hessian must satisfy F”/(z,) > 0; second,
the inequality in equation[9]must hold, which imposes an additional constraint on the Hessian f”(z..)
of the original loss f. We illustrate this constraint in figure ff] showing how the bound behaves for
both a < band @ > b, and how it depends on the gradient norm |V f(x,)|. In this sense, one may
say

AdamW is a faithful but selective optimizer of F'(x).

Equivalently, AdamW can be interpreted as minimizing F'(z), but only under the additional con-
straint specified by equation [9]

Remark 4.4 (When the additional condition vanishes). The extra requirement in equation[9 disap-
pears in two important cases:

1. Adam limit (A — 0). The implicit objective reduces to F'(x) = f(z) as the regularizer and
constraint vanishes. The extra requirements becomes a® f" (x,) > —eC, which is automat-
ically implied by F"'(z.) = f"(x) > 0. Thus stability reduces to the usual requirement
that x, be a strict local minimum of f, explaining that the additional complication arises
entirely from the weight-decay term.

2. Equal momentum coefficients (a = b). In this case, equationsimpliﬁes into F''(x,) >
—L for L > 0, which is implied by F" (z..) > 0. Hence stability holds if and only if x, is
a strict local minimum of F. (See more in appendix[A.8])

In both cases stability reduces to F"(x,) > 0, so the extra bound arises only from weight decay
combined with unequal momentum coefficients a and b.

4.2 EXAMPLES OF NON-CONVERGENCE

Whenever a # b, one can construct objectives f that violate the stability condition equation [§| while
still satisfying F”/(x,) > 0. This creates local minima of F’ that are stable in the usual optimization
sense but unstable under AdamW dynamics. If such a point is the only minimum of F' in the domain,
the system has no stable fixed point; since trajectories remain bounded, this necessarily yields non-
convergent behavior such as limit cycles or other recurrent dynamics. The type of violation depends
on the relation between a and b: when a < b (equivalently, 82 < fi), the condition fails for
sufficiently large f”, so even strongly convex functions can break stability, which explains this
regime is rarely used in practice. By contrast, when a > b (equivalently, 82 > (), which is the
regime most common in practice, non-convergence arises only for non-convex objectives. We now
provide simple counterexamples illustrating both cases.

Example 4.5. When 35 < (1 (so a < b), the extra condition in equation[9|imposes an upper bound
f"(z«) < U. This can fail even for simple convex functions. Consider the quadratic

f(z) = (z —0.5)2

With A = 1 and e = 1072, the equilibrium is ., ~ 0.49. Choosing 1 = 0.99, 32 = 0.9, and step
sizen = 1072 gives a = 1, b = 10. Then equation@]requires f"(x,) < 9.1 x 1072, while in fact
/" = 2. Hence the only equilibrium is unstable, and AdamW fails to converge (see figure .

Example 4.6. When (5 > (1 (so a > b), the condition imposes a lower bound f"(x,) > — L. This
can be violated with a carefully chosen non-convex quartic. Consider

f(z) = 20(x — 0.99)* — 0.60(z — 0.99)% — 0.099(z — 0.99) + 0.018.

With a = 10, b = 1 (corresponding to 31 = 0.90, fo = 0.99), n = 1072, e = 1073, and \ = 1,
the equilibrium at x, = 0.99 has f"(x.) = —0.60, violating the required bound f"(x,) > —0.22.
Thus the equilibrium is unstable, and AdamW again fails to converge (see figure2).

We emphasize that these counterexamples are primarily of theoretical interest, meant to highlight the
intricate dynamics of AdamW. In practice, realizing such cases in neural networks would typically
require extreme settings, such as unusually large weight decay (e.g., A > 20 to drive some |A\x| close
enough to 1) or deliberately enforcing the atypical regime 3; > (5. Neither choice reflects standard
training practice. This is unsurprising: modern recipes for network training have been shaped by
years of trial and error and by the coevolution of optimizers and architectures, which has naturally
filtered out such pathological configurations.
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5 MULTI-DIMENSIONAL STABILITY OF ADAMW

In the multi-dimensional setting, the analysis becomes more involved and there is no simple stability
criterion. We adopt an alternative approach: we transform the linearized system into a third-order
ODE and then derive a sufficient condition for convergence using a Lyapunov function, which in
turn yields a sufficient condition for stability of equilibria. The linearized dynamics are given by the
following lemma.

Lemma 5.1. Ler z, = (x., m,, h,) be an equilibrium point of the AdamW ODE equation |5 If
a # b, then the linearized dynamics z; = J(z.)z; imply that x, satisfies

Ty + Ay + A1y + Aoz, = 0, (10)
where
Ay =(a+b+ NI Ay =ab|Diag(e/(h. +€)*)V?f(z,) + M |
A; = (ab+ a\ + b\ I + (a — b) Diag(1/(h. + €))V? f(z.) + bDiag(e/(h. + €)*)V* f(x.),

We can further rewrite equation [10|as a 3d-dimensional first-order ODE system:
Te =Y, Yr=2t, 2= —Aoxi— A1y — Azz.
To analyze stability, we construct a Lyapunov function of the form

Vz,y.2) = 5| As@ + ylp + | ey + 2113 + lyl% )

where P, Q, K are defined as P = QAoA; ', K = Q(A; — ApA; '), and L = AJQ(A, —
AgA; 1), with @ chosen so that P, @, K are positive definite. With these definitions, we obtain

d
av(ﬂﬁtayt, z) = —%yT(L +L")y.

Thus V < 0 whenever L + LT is positive definite, leading to the following result.

Proposition 5.2. Consider the system in equation The dynamics are asymptotically stable if
there exists a symmetric positive definite matrix Q such that 1. QAg and Q A1 are symmetric, and
2. QAp, QA,, and Q(A1As — Ay) are positive definite.

To complement the multidimensional analysis, we provide a small empirical check on a neural net-
work. We train a three-layer network with hidden dimension 256 and GELU activations (Hendrycks
& Gimpel, [2016) on a 5000-sample subset of MNIST, using batch gradients and a continuous-time
simulation with Runge—Kutta 4 (step size 2 x 1073, 100k steps). We vary the weight decay \ and
report the update size || Af)||2 between consecutive steps (Fig. |5 left). For small A (A = 0 reduc-
ing to Adam or 0.1), updates remain steady and bounded; for large A (A = 100), updates fluctuate
strongly, indicating non-convergence; for an intermediate A = 5, updates quickly decay to machine
precision, suggesting convergence.

We further repeat this A = 5 setting with 20 random seeds and compute the spectral abscissa of the
Jacobian equation |6 at the final equilibrium, i.e. the eigenvalue with largest real part. The histogram
in Fig. [3 (right) shows all values strictly negative, indicating that the equilibrium is Hurwitz and
consistent with AdamW reaching a stable equilibrium when convergence occurs.

—— =0

0 50 100 150 200 -0.16  -0.12  —0.08  —0.04 0.00
t Final spectral abscissa a(.J)

Figure 5: Left: Update size ||Af)||2 during training with varying weight decay A. Right: Histogram
of the spectral abscissa of J(z,) at the final equilibrium for A = 5 over 20 runs.



Under review as a conference paper at ICLR 2026

6 RELATED WORKS

Convergence analysis of Adam. Adam was introduced by Kingma & Ba (2014} with a conver-
gence proof for convex functions in online convex optimization, but this argument was later shown to
contain a gap by Reddi et al.|(2019). Their counterexample, however, relies on carefully constructed
adversarial online objectives, and thus does not preclude convergence under standard settings (Zhang
et al.,|2022)). Follow-up work established several positive results: De et al.|(2018) and|Défossez et al.
(2020) proved convergence for non-convex functions under bounded gradients and consistent gra-
dient signs, while |Zhang et al.|(2022)) relaxed the bounded-gradient requirement. More recently, [Li
et al.| (2023); Jin et al.[(2024) demonstrated convergence under weaker assumptions, narrowing the
gap with SGD. A complementary line of work studies Adam’s implicit bias and seeks to explain its
empirical success (Xie et al.,[2024; [Vasudeva et al.} 2025} L1 et al.).

Adam with decoupled weight decay. In practice, AdamW (Loshchilov & Hutter, 2017)), the de-
coupled weight decay variant of Adam, has become the default choice over the original Adam.
Weight decay itself was introduced by [Hanson & Pratt|(1988)), and while it is equivalent to Lo regu-
larization in SGD, |Loshchilov & Hutter| (2017)) showed this equivalence breaks for adaptive methods
and that decoupling improves performance. Since then, the effectiveness of weight decay has been
confirmed across architectures and scales (Kosson et al., [2023; D’ Angelo et al.l [2024; Wang &
Aitchison, 2024; Bergsma et al., 2025; He et al.| |2025)).

No conflicts with previous studies of AdamW’s convergence. Several works have analyzed
AdamW’s convergence, but under assumptions that depart from the algorithm as commonly used.
Zhou et al.| (2024) considered exponentially decaying weight decay A\, = A(1 — ), in contrast

to the standard constant choice, and defined convergence through 7 25;01 E[||V Fx(xk)||3], where
F}, is a state-dependent “dynamically regularized” objective. Recently |Li et al.|(2025) established a

rate of O(d'/>T—1/4) for the criterion L S/~ E[||[V f(z1)[1] < €2, but their result requires that

the iterates already satisfy the /., constraint and assumes small weight decay (A < O(d'/2T—3/4))
together with large momentum coefficients (5; = O(T’l/ 2)). Xie & Li[(2024) examined AdamW’s
implicit objective in the limit e — 0, showing convergence to KKT points under suitable learning-
rate conditions, but only conditional on AdamW itself converging. In contrast, our results demon-
strate that AdamW fails to converge under standard hyperparameters without additional assump-
tions, and thus are in no conflicts with previous analyses.

7 CONCLUSIONS

We studied the dynamics of AdamW and showed that, despite admitting an implicit objective, its
equilibria can be unstable, leading to persistent limit cycles on simple problems. Extending the anal-
ysis to higher dimensions, we derived sufficient conditions for stability and validated that AdamW
converges only to stable equilibria when it converges at all. These results reveal that AdamW’s
theoretical properties are unexpectedly fragile. Its stability hinges on delicate interactions between
curvature, weight decay, and momentum, yet the method remains the default optimizer in practice.
This contrast suggests that while AdamW succeeds empirically, its dynamics are theoretically un-
satisfying, and points to the need for more natural optimizers that preserve its effectiveness while
offering stronger guarantees.

Limitations This work provides concrete examples of AdamW’s non-convergence and empirical
evidence of limit-cycle behavior, but we do not give a formal proof characterizing the dynamics
(e.g., cycles versus chaos). In the multi-dimensional case, eigenanalysis is too complex for inter-
pretable necessary-and-sufficient conditions, and we offer only preliminary sufficient ones. Neural
network training adds further complications: high dimensionality, discrete learning-rate schedules,
stochasticity, and the AdamW’s preference of fixed points along manifolds of stationary points, and
the expense of large-scale experiments. We regard these as important directions for future study.
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A DEFERRED PROOFS

A.1 DERIVATION OF THE ADAMW ODE
We now sketch how the AdamW ODE arises as the continuous-time limit of the discrete update, and
how the discrete dynamics can be interpreted as a semi-implicit Euler scheme applied to this ODE.
Let g, = V f(x¢). The AdamW updates are

m; = fimy 1 + (1 — B1)gs,

vy = Bove1 + (1 — B2)gi?,
my
T =% — | —— + Az | .

t+1 t—1n < \/’th Te t)

With the common approximation 1, =~ m,, ¥; ~ v, and the substitution h; = /v;, we set
n=At, py=1—alAt, [:=1-—0bAL.

Continuous-time limit. Consider the first-moment update:

my—my1 _ —(aAt)my ., + (aAt)g: —am,_ i +a
AL At t—1 gt-
Letting At — 0, the left-hand side becomes 7, and m;_; — my, giving m; = a(g; — m,). In

the same way,

ZCt+1 — Ty o my

p— —A [ = -
At ht+€ Ly - Ly

and for v; = h{?,

©2
s ®2 b [ 9t
T = —b’Ut,1 + bgt — ht =3 ( — ht) .

Semi-implicit Euler discretization. Starting from the AdamW ODE

. . x, ©2
— )\.’Et, my = a(Vf(:I:t) — mt), ht = g(% — ht) s

a semi-implicit Euler step of size At updates (m, v) explicitly at ¢ and then advances @ using the
new (Myy1,vs11). Writing v = h®? and g; = Vf(x;):

my1 = my + Ata(gy — my) = (1 — aAt)my + (aAt)gy,
v = v+ Atb(ge? — v,) = (1 — bA v, + (bADG?,  hipr = Vori1,

mt+1 mt+1
—a At ) =2 L g, ),
Terr =&t ( hiti +e wt) ot 77< Vi1 T € T wt)

with the identifications n = At, f; = 1 — aAt, S =1 — bAt. This is exactly the AdamW update
without bias correction, confirming that AdamW implements a semi-implicit Euler discretization of
the AdamW ODE.

A.2 IMPLICIT OBJECTIVE OF ADAMW

Theorem A.1. Let f : RY — R be continuously differentiable, and let \,e > 0. Then x €
R? satisfies the fixed-point condition equation 2| if and only if x is a stationary point of the {.-
constrained and regularized problem

m%}i F(x) = f(x) + £ ®(\x), subjectto ||zl < %, (11)
EAS

where ®(x) = Zle od(x;) with
o(x) = —|x| —log(1l — |z|), |z <1.

Moreover, since ¢p(x) — +o0 as |x| — 1, the regularizer ® serves as a barrier function that
naturally enforces the constraint | x||os < 5.

12
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We begin with the following lemma with the regularizer:
Lemma A.2. Let ¢ : R — RU {+oo} be

d

P(x) = Z o),

=1

—|x] —log(1l — |z|), |z| <1,
+o00, lz] > 1,

o) = {

and for \ > 0 define the rescaled barrier ¢ (x) == X" ¢p(A\z) and @ (z) == >, p(x;). Then Py
is convex and, for |x| < 1/,

Az " A

¢&(x):1—7|)\x|’ Nz) = W

Moreover, the conjugate of ¢ is ¢™ (y) = [y| — elog(|y| + €) with (¢*)'(y) = {4 and (¢")"(y) =

(lyl+e)*”

Proof. The stated derivatives follow by direct differentiation on (—1, 1); convexity holds since ¢y >
0. The conjugate and its derivatives are obtained by a standard one-dimensional Legendre transform;
see the expressions above. O

Lemma A.3. Fore,\ > 0andany g,x € R,

g
lgl +e

+Adr=0 < g+ed\(x)=0,

and hence the left-hand side is well-defined only if |\x| < 1. In R%, the equivalence holds element-
wise.

Proof. Using Lemma oh\(z) = % If ‘q‘% + Az = 0, then |[\z| < 1 and sign(z) =
—sign(g). Simple algebra yields g + e % = 0. The converse is identical in reverse. O

Lemma Ad4. Let F(x) = f(x) + $®(Ax) = f(x) + e Pr(x). On{x: || M|l <1},

VF(@) = Vf(@) +cVor(@),  VF(z) = Vif(@)+ Diag(uﬁ;aﬂw> '

Proof. Both identities follow by differentiating coordinatewise and invoking Lemma|A.2) O

Proof of Theorem. Fixed points <> stationary points. For AdamW fixed points (discrete or con-
tinuous limit without bias corrections), the stationary condition for « reads

Vf(x.)
[V f(x)| + e

By Lemma[A.3]this is equivalent to

+ Ax, =0 (elementwise).

Vi(xe) +eVPy(x.) = VF(x.) =0, [[ABuloo <1

Thus fixed points lie in the open cube {||Ax||. < 1} and are precisely the unconstrained stationary
points of F' there.

Conversely, any stationary point of equation [3| must satisfy ||[A\@.||-c < 1: since ®(Axz) — +oo
as |Az;| 1 1, no optimality condition can be met on the boundary for a continuous f. Hence the
inequality constraints are inactive, the Lagrange multipliers vanish, and the stationary conditions
reduce to VF(x,) = 0, which is equivalent (by Lemma[A.3) to the AdamW fixed-point condition.
This proves the coincidence of fixed points and stationary points. [

13
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A.3 STABILITY CONDITION OF ADAMW ODE

Writing the AdamW ODE in a vectorized form, we have:

d x —m/(h+e)—\x
prie flz), z:= lm] , flz)=| aVflx)—m) |. (12)
h 5(Vf(x)*?/h — h)

By differentiating the system J(z) := 0 f(z)/0z, we obtain:

A —Diag(1/(h +¢€)) Diag(m/(h + €)?)
J(z) = aV?f(zx) —al 0
bDiag(V f(x)/h)V?f(x) 0 —2 (Diag(V f(z)®?/h?) + 1)
Noting that at equilibrium point z, = [x., M., h.], we have V f(x)®? = h92, this yields:
I —Diag(1/(h« +¢€)) Diag(m./(h. +¢)?)
J(z) = aV2f(z.) —al 0
bDiag(V f(x.)/h) V2 f () 0 —bI

This following lemma is useful for simplifying the characteristic polynomial:
Lemma A.5. If [x.,m., h.] is an fixed point of AdamW in Eq. equation|[]] then

V2F(z.) = V2 f(x.) + Diagﬁii*w = V?f(z.) + Diag2 (h, +¢)°.

Proof. At equilibrium, we have 7%= + Az, = 0 and h, = |V f(x.)| = |m.|. Hence

h.+e
|| h.

AL, | = = .

.| h.+e h.+e
Therefore,

e Ae A
= =2 (h, 2,
= Pl (ef(ha v et

The claim then follows from lemmal[A.2] O

Lemma A.6 (Routh-Hurwitz criterion for cubics). All roots of the cubic equation s®+a8% + a1 s+
ag = 0 have negative real part (i.e., the system is Hurwitz stable) if and only if

a9, a1, ag >0 and asaq > q.

Proof. (=) Suppose all roots satisfy $(s;) < 0. Writing the polynomial as
(s —51)(s — 52)(5 — 83) = 8% + aas® + 15 + ap,
Vieta’s relations give
ag = —(81+ 82+ 83), @1 = 8182 + 8183 + S283, Qo = —818283.
Since R(s;) < 0, each coefficient is strictly positive. Moreover,
asay —ap = (—(s1 + 52 + 83)) (5182 + 5183 + 5283) + $15253 > 0,
where non-negativity follows whether the roots are all real or include a complex-conjugate pair.
(<) Conversely, assume oo, a1, ag > 0 and s > . - If s € R were positive, then
s3 +a232 + ays+ ap >0,

contradiction. Hence all real roots satisfy s < 0. Now let s = u + v with v # 0. Substituting and
separating real and imaginary parts yields
3u® + 200u + oy = V2, u? + au? + aqu+ ag = (3u+a2)112‘
Eliminating v? gives
8u? 4 8agu? + 2(a2 + ar)u + (aza; — ag) = 0.

If u > 0, every term on the left-hand side is strictly positive, a contradiction. Thus u < 0, i.e., all
complex roots lie in the closed left half-plane.

Therefore, the given conditions are necessary and sufficient for Hurwitz stability. [
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Corollary A.7. Assume a,b,e > 0 and X > 0. Let [x,, M, hy] be an equilibrium of the AdamW
ODE. Then [, M., h.] is Hurwitz stable if and only if F"' (x,) > 0 and

eC

[afa+2) = b+ Mzl () > ~ 75y

(13)
where C' = (a + b+ X)(ab + aX\ + bX) — ab) > 0.

Proof. Assume a,b,e > 0 and A > 0. Recall from the Routh—Hurwitz criterion (Lemma[A.6)) that
all roots of a cubic s3 4+ aps? + a1 5 + ap have negative real part if and only if

ag, a1, ag >0 and asay > ag.

For the characteristic polynomial of J(z.),

(a —b)H. beh, abeH,

xg(8) =8>+ (a+b+N\)s*+ |ab+al + n + = s+ TR

we identify

(a—b)H,  beh, abeH,
+ g = h2 .

ar=a+0+ A, «p=ab+aA+ I hz,

Since a,b,e > 0 and X > 0, clearly a; > 0. Moreover, o > 0 if and only if H, = F"(z,) > 0,
which shows that any Hurwitz stable equilibrium must be a strict local minimum of F'.
It remains to impose aor; > ap. Substituting the definitions and rearranging, one obtains

e

[(a+ b+ A)(ah. — bhy) — abe] H, > [(a+ b+ X)(ab+ aX + bA) — ab)\]m.
— .

Using h. /i, = |A\x.| and i, = e/(1 — |Az,]), this inequality is equivalent to

eC

[a(a+2) = bb+ .|} £ () > — =5

where
C:=(a+b+A)(ab+ aX+ bX) —abX > 0.

Thus the equilibrium (z., m., hy) is Hurwitz stable if and only if F”'(z,) > 0 and the above
inequality holds. O

Corollary A.8. Assume a,b,e > 0, and A > 0. Let [x,, m., h,] is an equilibrium point of AdamW
ODE. Ifa = b, or A = 0, then x. is Hurwitz stable iff F"(x,) > 0.

Proof. By LemmalA.6] Hurwitz stability of an equilibrium z, = [z, m., h,] requires F"'(z,) > 0
and

_ " 7
(a+b+ N [ab+m+ (a—b)H. beF (x*)] _ abeF"(z.)

he 12 12

*

This can be rearranged as

(a—b)H,
R

beF" (x.)

2 > 0.

(a+b+A) [abJra/\Jr }+(b+>\)

If @ = b, the term involving (a — b) vanishes, and the inequality simplifies to

beF" (x,)

> 0.

(a+b+A)(ab+aX)+ (b+ N)

Since a = b > 0, A > 0, and e > 0, this condition is automatically satisfied whenever F"'(z,) > 0.
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If A = 0, the dynamics reduce to the unconstrained Adam system. In this case A, = e, h. = 0, and
F"(x,) = H,. The inequality then becomes

(a — b)H*] b2H,
+
& &

(a+b) {ab—i— >0,

which simplifies further to
2
(a+b)ab+ Y H >0
e
Because a, b, e > 0, this condition is equivalent to requiring H, > 0, i.e. F'(z,) > 0.

In both cases, stability is therefore equivalent to F/(z.) > 0, completing the proof. O

A.4 THE DISCRETE ADAMW SYSTEM

Definition A.9 (Lyapunov stability for discrete systems). Consider the autonomous system z; 1 =
T(z:), where T : D — R? with domain D C R%. Let z, € D be a fixed point, i.e. T(z) = Zs.
Then:

* z,. is Lyapunov stable if for every ¢ > 0 there exists § > 0 such that || zg — z.|| < ¢ implies
|zt — z«|| < € for all integerst > 0.

* z, is asymptotically stable if it is Lyapunov stable and there exists §' > 0 such that ||zo —
zi|| < & implies limy_, o0 2t = 2.

* z. isunstable if it is not Lyapunov stable; i.e., there exists ¢ > 0 such that for every § > 0
one can find ||z — z.|| < & but ||z; — z.|| > € for some integert > 0.

Lyapunov’s stability characterizes robustness of discrete trajectories, while the following Schur sta-
bility criterion describes how the linearized neighborhood near a fixed point behaves.

Definition A.10 (Schur stability). Let z. be a fixed point of zi11 = T(z¢) and let J(z.) =
[8TZ- / 3zj]z denote the Jacobian at z.. Then z, is Schur stable if every eigenvalue A € C of
J(z.) satisfies |A| < 1.

Lyapunov’s indirect method (discrete form) states: If J(z,) is Schur stable, then the fixed point z.
is asymprotically stable. If J(z,) has an eigenvalue with |A| > 1, the fixed point is unstable.

We first write the standard discrete time AdamW update in a vectorized form:

Bim+(1-61)V f(x
T (1= Az - Uﬁém(kﬁz)w()m)@(z/)me
z2ep1=T(2), z=|m|, T(z):= Bimy + (1 — B2)V f(x) )
h Boh+ (1= By)Vf(x)?/h

where 85 = % Note that the term corresponding to a1 involves more terms than the continu-
ous counterpart. This is because AdamW update corresponds to the semi-implicit Euler discretiza-
tion of the AdamW ODE and we need to write @,y in terms of [x;, my, h:] only for analysis.
Nevertheless, we will use m,1 and h;; to simplify expressions in the following. Differentiating
this system J(z) := 0T'(z)/0z, we obtain:

{%7_:[1 —nﬂlDiag(ﬁ) {%7;:,1
J(z) = (1= 51)V?f(z) I 0
(1 — B2)Diag(TH2L) V2 f () 0 (1+ B2)I — Diag("4:)
where
02141 = (1—=2n)I —n(1 — p1)Diag () V2 f(x)
oxy hif1+e
+ (1 — 32)Diag <fm> VQf(a:t)
3wt+1

. . My / INTY: Vf(wt)QQ
e (e R L )
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Similarly, at fixed point z, = [z, M., h.], we have Vf(z)®? = h®2, this yields:

Ozt —np1Diag(71) npzDiag ((hmf)z)
J(z:) = (1— B1)V2f () B I 0
(1 — Bo)Diag(YL=) V2 f () 0 BoI
where
0 .
;7::1 = (1 —2n)I —n(1 — B)Diag (h* - e> V2f(m*)

n(1 — B2)Diag <(h*h—:e)2) V2f(93*)

Consider the one-dimensional case. The characteristic polynomial of the Jacobian at the fixed point
is
xg(s) = det(sI — J(z.)) = s* + as® + bs +c,

where

nH,

h3
nH,
=7 {5132(% — hy) + Brhe — Bzh*} + (B1B2 + B1 + B2) — nA(B1 + B2),
Cc = ﬂlﬁg(’l]A — 1)

To analyze the stability criterion given the polynomial, we can take advantage of the following
lemma.

a =

[0 Bobe+ (B = D] = 1+ 8+ 1) + (s — ),

Lemma A.11 (Schur-Jury criterion for cubics). All roots of the cubic polynomial s +ass% + a5+
oo = 0 lie strictly inside the unit disk (i.e., the system is Schur stable) if and only if the following
four inequalities hold:

ol <1, 14+ast+ar+ap>0, 1l—as+a;—ay>0, 1—a1+a2a07043>0.

Applying Lemma[A TT|reveals the stability condition for the discrete system.
B182(nA —1)| <1, F"(z.) >0,

o3

(L= Pa]) f7 (@)l = Az )(B1 = 1)(B2 + 1) +2 \)\T/*Kﬁl B2)]

+(B1B2 + 1+ P2+ 1)(2—nA) >
(1= [Az.]) £ (22) [BrB2(nA — 1) (|Az] (B2 — 1) — (B1 — 1)) + b1 |/\$*|(ﬁ2 —1) = B2(B1 — 1)]
—(B1B2 — 1) (BinA — Br + 1) (BanA — B2+ 1) > 0.

o3

A.5 MULTIDIMENSIONAL CASE

Lemma A.12. Let z, = (., m., h.) be an equilibrium point of the AdamW ODE equation |5 If
a # b, then the linearized dynamics z; = J(z.)z; imply that T, satisfies

&p 4 Aoy + Ay + Aoz = 0, (15)
where
Ay =(a+b+ NI
Ay = (ab + aX + b\ + (a — b) Diag(1/(h. + €))V?f(z.) + bDiag(e/(h. + €)?) V2 f(x.),
Ay = ab [Diag(e/(hy +€)*)V? f(x.) + AT ],
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Proof. Linearize the AdamW ODE equationat the equilibrium z, = (., m., h.). Let (x, m, h)
denote infinitesimal perturbations (we drop ¢ notation for readability). Writing H := V? f(z,) and

. 1 . m, e (Vf(=s) . e
U = Dlag(m>, V = Dlag<m>7 D = Dlag( h* )7 S = Dlag(m>7
the linearized dynamics are
&=- x—Um+Vh, m=aHz—-m) h=bDHzx—h). (16)

Differentiate the first equation and substitute equation[T6}
&= & —Um+Vh=—-\&—aUHx +aUm + bV DHz — bVh.
Using the identity

VD= Diag( (h:rj:ey)Diag( VJ;ET*)) = Diag((h*hf*e)z) =U-25,

where we used m.. = V f(x.) and h, = |V f(x.)| (elementwise) at equilibrium, we obtain

Z+ At + (e —b)UHx +bSHx = aUm — bV h.

Eliminate Um using the first line of equation[I6f Um = —& — Az + V'h, and thus
4+ AN+a)x+ (a—b)UHz +bSHx + alx = (a — b)Vh. (17)
When a # b, equation[I7] gives

1
Vh:7a_b[j¢+()\+a)j:+(a—b)UHoc+bSHa:+a)\m] (18)

Differentiate equation substitute kb = b(DHx — h) from equation and use equation |18 to
eliminate V h:

&+ (A+a)E+ [(a—bUH+bSH + aX|& — b(a — b)VD Hx + b(a — b)Vh = 0.

Using VD = U — S, this becomes
F+A+a)z+ [(a —b)UH + bSH + a)\I]w' —bla—b)(U—-S)Hx +b(a—b)Vh =0.

Substituting equation[I8|to eliminate V' h gives

i+ (a+b+Ni+ [(ab+a)\+b)\)I+(afb)UH+bSH}ab+ab[SH+)\I}w:0.

Recognizing U = Diag(1/(h. + ¢)) and S = Diag(e/(h. + €)?) yields the claimed coefficients
Ay =(a+b+ NI,
A; = (ab+ a\ + b\ I + (a — b) Diag(1/(h. + €))V? f(z.) + bDiag(e/(h. + €)*) V> f(x.),
Ay = ab [Diag(e/(hs +€)*)V? f(z.) + M ],

which completes the proof. O

Lemma A.13 (First-order reduction). Let x; solve the third-order ODE
:.I.E.t + AQ."I'}t + Alibt + A0$t =0.
Define y, = x; and z; = Y. Then (x, ys, z¢) satisfies

r=vy, y==z2 2z=-Apx—Ay— Asz.

Proof. Immediate by substitution: & = y, y = 2, and using & = 2 in the original ODE. [

18
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Lemma A.14 (Derivative identities). Let (x,y, z) evolve according to Lemma For any sym-
metric matrices P, Q, K define

Wi(z,y) = |[Asz +yllp, Waly. 2) = Ay +2llg, Waly) = |lyllk.

with ||u||; == u" Mu. Then

d

&W1 =2(Asz +y)  P(Asy + 2),

d

&W2 = —2(A2y +2) (QAz + QA 1Y),
d

—Wy =2y Kz.

a2y K=

Proof. For Wi,usex =y and y = z:

d

—(Az +y) = Ay + 2,
de

hence LW = 2(Asx +y) " P(Asy + 2).

For W5, note
d
dt
s0 LWy = 2(Asy + 2) TQ(— Aoz — Ary).

For W3, y = z, hence %Wg; =2y Kz. O]

(Asy+2)=Asz+2=—-Apx — Ay,

Lemma A.15 (Lyapunov cancellation). Let Q be symmetric positive definite and define
P:=QA)A;", K =Q(A; - A)A;"), L:=A;Q(A - AA;").
Assume QAg and QA; are symmetric. Consider
V@,y.2) = 3 (I Asz + ylp + | Aoy + 213 + lyl% ).
Then along trajectories of Lemma

d
&V($t7yt,zt) =-1 y' (L+L")y.

Proof. Combine Lemma

d

@V = (A +y) P(Ayy + 2) — (Ay + 2) (QApz + QA1y) +y ' Kz.
With P = QAOAQ1 we have QAg — PA; = 0and QA; — P = K. Substituting yields

d
aV = (Aw+2) Ky+y K=z
=-y A Ky
=y AJQ(A — AyA; ')y
=3y (L+L)y.
0

Lemma A.16 (Lyapunov stability for the third-order system). Consider 'y + Asx: + A1@: +
Apxy = 0. If there exists a symmetric positive definite @ such that

1. QAyand QA are symmetric;
2. QAp, QA and Q(A1 Ay — Ay) are positive definite,

then the dynamics are asymptotically stable.
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Proof. By Lemmal[A.T3] stability of the third-order system is equivalent to stability of its first-order
form. Define P, K, L as in Lemma Assumptions (1)—(2) ensure P, K > 0 and L+ LT -0
Thus V in Lemma[A.T3]is positive definite and radially unbounded.

Along trajectories,

d
av(fﬂmymzt) = _%yt—r([’ "‘LT)yt <0,

so V' is nonincreasing. Hence trajectories are bounded and Lyapunov stable.

By LaSalle’s invariance principle, the Q-limit set lies inside £ = {(z,y,2) :y =0}.On &, & =0,
S0 x is constant; also y = z = 0. Finally 2 = — Agx = 0 implies = 0 because Q Ay >~ 0. Thus
the only invariant set is (0, 0, 0), so the system is asymptotically stable.

In this derivation we used the fact that A5 is symmetric positive definite and commutes with every
matrix. This holds automatically because

Ay =(a+b+ NI,

a scalar multiple of the identity. O

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as a general-purpose assistive tool in preparing this paper.
Specifically, LLMs were employed to polish the writing for clarity and readability, and to provide
stylistic suggestions. In addition, we interacted with LLMs during the process of generating plots
and conducting numerical checks to validate some of the theoretical results. No part of the research
questions, theoretical analysis, or main contributions was produced by LLMs; their role was limited
to writing assistance and auxiliary support in experimentation and visualization.
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