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Abstract. In the realm of robotic-assisted surgeries, like laparoscopic
cholecystectomy, the integration of deep learning (DL) models marks a
significant advancement in achieving surgical precision and minimal in-
vasiveness, which in turn, elevates patient outcomes and reduces recov-
ery times. However, the vulnerability of these DL models to adversarial
attacks introduces a critical risk, emphasizing the need for enhanced
model robustness. Our study addresses this challenge by proposing a
comprehensive framework that not only fortifies surgical action recogni-
tion models against adversarial threats through adversarial training and
pre-processing strategies but also incorporates uncertainty estimation
to enhance prediction confidence and trustworthiness. Our framework
demonstrates superior resilience against a wide spectrum of adversar-
ial attacks and showcases improved reliability in surgical tool detection
under adversarial conditions. It achieves an improvement from 8% to
23.58% in terms of triplet (instrument, verb, triplet) predictions. These
contributions significantly enhance the security and reliability of deep
learning applications in the critical domain of robotic surgery, offering
an approach that safeguards advanced surgical technologies against ma-
licious threats, thereby promising enhanced patient care and surgical
precision. Code is available at https://github.com/umair1221/guardian.

Keywords: Robotic Surgery · Adversarial Attacks · Adversarial Train-
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1 Introduction

In modern surgical procedures, a wide array of specialized tools are utilized
to ensure precision and efficacy, ranging from scalpels and forceps to advanced
robotic instruments. With advancements in technology, there has been a notice-
able shift towards integrating robotic-assisted procedures into surgical practices
like laparoscopic cholecystectomy [16], offering enhanced dexterity and minimally
invasive techniques for improved patient outcomes.
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The integration of robotics into surgical procedures significantly enhances
precision and patient outcomes. Combining deep learning algorithms with robotic
platforms further augments their capabilities [13], enabling more effective task
execution and real-time decision-making. Despite these advancements, robotic
surgery faces unique security challenges due to its highly interactive operational
environment within hospitals, making it more susceptible to adversarial attacks
compared to less interactive specialties such as radiology. These attacks can ex-
ploit some vulnerabilities of deep learning models [11], potentially manipulating
robotic actions and leading to severe consequences such as surgical inaccuracies,
patient harm, and diminished trust in robotic-assisted surgeries.

These critical implications emphasize the imperative for effective defense
methods to protect such complex medical systems. In a study by Han et al.
[10], the authors highlight the vulnerabilities of deep learning models in ECG
signal analysis. Additionally, Aguiar et al. [7] reveal similar susceptibilities in
COVID-19 X-ray classification whereas Morshuis et al. [23] show the suscepti-
bility of MRI reconstruction algorithms to adversarial perturbations, thereby,
risking diagnostic accuracy. Furthermore, Rahman et al. [29] explore the vul-
nerabilities in COVID-19 diagnostics using medical IoT data while Puttagunta
et al. [28] provide an overview of defensive measures in medical imaging. Al-
malik et al. [3] introduce SEViT, a technique enhancing the resilience of vision
transformers in chest X-rays and fundoscopy. Moreover, similar attacks can also
arise from cyber-attacks, camera feed manipulation, or sensor noise in robotic-
assisted surgeries, similar to scenarios in autonomous vehicles [5]. Research on
tele-operated robots like Raven-II [6] and [24,2] show vulnerabilities that can
affect fully autonomous systems. Lastly, Cheng et al. [4] analyze the vulnera-
bilities of deep learning models in surgical action recognition under adversarial
conditions, establishing a foundation for our study. However, Cheng et al. [4]
did not provide a robust training framework to mitigate the impact of these
adversarial attacks.

We introduce a novel defense mechanism for deep learning-enabled robotic-
assisted surgical systems against adversarial attacks. Our innovative framework,
GUARDIAN, enhances decision-making accuracy through uncertainty estima-
tion and augments the safety of robotic-assisted surgical procedures using ad-
versarial training. Integrating adversarial training with refined object detection
algorithms, our approach as illustrated in Fig. 1 increases the accuracy of surgi-
cal instrument identification under adversarial attacks. Through comprehensive
evaluations across diverse datasets, we demonstrate the potential to elevate both
the reliability and security of robotic-assisted surgical systems. This paper does
not aim to provide a new technical contribution but rather perform an extensive
analysis of how the existing methods can be further enhanced for robotic-assisted
surgical applications. In summary, our main contributions are as follows:

– We propose a framework for enhancing adversarial resilience in surgical
triplet recognition, incorporating in-depth adversarial training and reliable
tool detection. Our approach also explores the cross-task transferability of
adversarial attacks between recognition and detection tasks. To the best of
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Fig. 1. GUARDIAN: A three-step approach to enhance model robustness and pre-
dictive accuracy. It begins with transforming clean samples into perturbed ones via ad-
versarial attacks, posing it as a maximization problem for the model, Mθ. The process
proceeds with two training phases: enhancing tool detection through cross-task trans-
ferability of adversarial examples and refining triplet recognition with live adversarial
training. Here, LYOLO denotes the combination of classification and bounding-box loss.
The final step applies conformal prediction post-training, evaluating prediction relia-
bility, with the dotted line indicating gradient updates.

our knowledge, this paper is the first to investigate this crucial task and
devise a robust mechanism against adversarial attacks.

– We embed an inferential uncertainty estimation mechanism to support the
model’s predictive confidence fidelity, underpinning surgical decision-making
with empirical insights.

– We conduct a comprehensive assessment, utilizing ablation studies to sys-
tematically delineate the robustness of our methodology against various ad-
versarial challenges and hyperparameter settings.

2 Methodology

In this work, we consider two models: the surgical action triplet recognition
model (denoted by Mθ) and the tool detection model (denoted by Mφ) which
are commonly performed tasks in such clinical practice. We use the recognition
model Mθ to generate adversarial samples and analyze their performance under
various attacks. Tool detection model Mφ is used to study cross-task transfer-
ability (from action triplet recognition to tool detection) of the baseline attacks.

Surgical Action Triplet Recognition - Primer: For surgical action triplet
recognition in laparoscopic cholecystectomy surgery video frames, the model
containing four classification heads is given a frame/image and it provides pre-
dictions of four entities: instruments (I), verb/actions (V), targets (T) and triplet
combination of all these components (IVT). Let’s denote the recognition model,
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clean three-channel input image and categorical ground-truth labels with Mθ,
x ∈ Rc,h,w and y = {y

I
, y

V
, y

T
, y

IVT
} respectively. The number of classes in each

component are denoted with |I|, |V|, |T|, and |IVT|. When the input image is
passed through the model, the prediction scores/logits ŷ = Mθ(x) are obtained
where ŷ = {ŷ

I
∈ R|I|, ŷ

V
∈ R|V|, ŷ

T
∈ R|T|, ŷ

IVT
∈ R|IVT|}.

For normal training with clean images, the following objective is optimized;

minimize
θ

1

N

N∑
i=1

LBCE-Logit(Mθ(xi),yi), (1)

where (xi,yi) is image-labels pair, LBCE-Logit(Mθ(x),y) = L(ŷ
I
, y

I
)+L(ŷ

V
, y

V
)+

L(ŷ
T
, y

T
)+L(ŷ

IVT
, y

IVT
) is sum of component-wise binary cross-entropy loss and

θ denotes model’s weights.
Adversarial Attack on Recognition Model Mθ: An adversarial attack on
a pre-trained deep learning model aims to find a human-imperceptible perturba-
tion which when added to the image makes the model predict the wrong output.
Let’s denote the clean image with x and perturbed image with x′ = x+ δ where
δ is the perturbation. In a vanilla adversarial attack, an adversarial image x′ is
obtained by optimizing the following objective:

maximize
δ

LBCE-Logit(Mθ(x+ δ),y)

s.t. − ϵ ≤ ∥δ∥p ≤ +ϵ,
(2)

where ϵ is the perturbation budget and “ℓp” denotes ℓp norm. In general, ℓ2
and ℓ∞ norms are used in adversarial attacks. While generating the adversarial
sample x′, the model Mθ is kept frozen i.e. its weights are not updated.
Defense: To counter the adversarial attack, we consider adversarial training [21]
as a first measure of defense. In adversarial training, firstly the model is attacked
in a frozen state to get adversarial samples (Eq. 2), and then its weights are
updated against these samples (Eq. 3). Formally, adversarial training is a min-
max objective that is optimized as follows:

minimize
θ

(
maximize

δ
LBCE-Logit(Mθ(x+ δ),y)

)
s.t. − ϵ ≤ ∥δ∥p ≤ +ϵ,

(3)

Adversarial training makes the model robust to adversarial attacks. Since adver-
sarial training is compute-intensive and requires many GPU hours, therefore, we
also consider other defense mechanisms that perform preprocessing to neutralize
the adversarial perturbations such as Spatial Smoothing (SS) [32], Pixel Defend
(PD) [30], Feature Squeeze (FS) [32], and JPEG compression [8].
Cross-task Transferability of Adversarial Attack: We also study the trans-
ferability of the adversarial attack from recognition model Mθ to tool detection
model Mφ. Cross-task transferability occurs when adversarial samples from one
model (e.g., recognition) also fool another model (e.g., detection) trained on the
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same input for different output tasks. For this purpose, we first generate ad-
versarial samples by attacking Mθ and then perform inference on pre-trained
tool detection model Mφ. Moreover, we adversarially train Mφ to analyze its
robustness against the adversarial samples.
Uncertainty Estimation: Our methodology enhances decision-making under
adversarial conditions by incorporating conformal prediction (CP), which pro-
vides statistically valid prediction intervals to gauge confidence. This method
flags low-confidence predictions often linked to adversarial inputs, thus improv-
ing accuracy in surgical action recognition. We divide our dataset into training
and calibration sets to train the model and then calibrate it for confidence scores.
We define a nonconformity measure and set a threshold that ensures prediction
sets accurately reflect the true label with a specified confidence level. For in-
stance, using CP with a 10% miscoverage level (α=0.1), our model outputs
probable actions like grasping (0.65), suturing (0.22), and cutting (0.08), cap-
turing the true action 90% of the time and enhancing decision-making reliability.

3 Experimental Setup

Datasets: Our research utilizes two datasets: CholecT45 [25], and m2cai16-
tool-locations [14]. CholecT45, a subset of CholecT80 [31], contains 45 videos
annotated with 100 triplet classes (Instrument, Verb, Target) across 5 folds,
using 4 for training/validation and 1 for testing. This dataset facilitates an in-
depth analysis of surgical procedures, instruments, and actions. The m2cai16-
tool-locations dataset provides 2,532 frames with bounding box annotations for
seven surgical tools.
Baseline Models: Our baseline model, Rendezvous (RDV) [26], stands as a
state-of-the-art (SOTA) solution, specializes in surgical action triplets (instru-
ment, verb, target) recognition during laparoscopic cholecystectomy surgery. The
RDV model inputs a laparoscopic image and predicts sets of triplets in the
image. Furthermore, to address the cross-task transferability of adversarial at-
tacks, we first fine-tuned the YOLOv8 model [15] for surgical tool detection on
the m2cai16-tool-locations dataset. Then, we created adversarial images by at-
tacking the RDV model and subsequently utilized them to test the detection
capabilities of the YOLOv8 model [17,18].
Adversarial Attacks: We apply four adversarial attacks named Projected Gra-
dient Descent (PGD) [22], Fast Gradient Sign Method (FGSM) [9], Basic It-
erative Method (BIM) [20], and Gaussian Noise (GN) [9], adapted from the
TorchAttack [19] library and customized to suit our model’s specifications. We
perform different experiments on these attacks across varying parameters (steps,
step-size, perturbation budget, standard deviation): steps ∈ {5, 10, 15, 20};α ∈
{2, 4, 8, 16}; ϵ ∈ {4, 8, 16, 32};σ ∈ {0.05, 0.1, 0.5, 0.9}, to rigorously assess our
model’s resilience against adversarial inputs.
Evaluation Metrics: We assess our model’s performance and adversarial at-
tack impact using metrics like mean Average Precision (mAP) for accuracy, along
with LPIPS [33], PSNR [12], and SSIM [12] for evaluating perceptual effects of
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perturbations. For predictive reliability, we apply conformal prediction metrics
such as marginal coverage and average set size. The marginal coverage is the
percentage of times the true label is included in the prediction set, reflecting
reliability, whereas the average set size is the mean number of labels per set.
These are essential in surgical contexts to assess the model’s accuracy in gen-
erating prediction intervals and are crucial for enhancing the decision-making
process.
Experimental Configuration: We utilize the PyTorch framework [27] with
Python 3.10. The baseline experiments are conducted on workstations equipped
with an Intel Xeon Silver 4215 processor, NVIDIA Quadro RTX 6000 GPU, and
128 GB RAM. The batch size of 32 is used for training and testing experiments.
To optimize our framework, we fine-tune RDV and YOLOv8 hyperparameters to
uncover the ideal settings. Fig. B in the Appendix showcases the performance of
the RDV model against different learning rates. Using Optuna [1] library with
a linear scheduler and SGD optimizer with weight decay, we identify optimal
learning rates of 0.009108, 0.001168, and 0.001372 for the RDV model.

4 Results and Discussion

4.1 Adversarial Attack and Defense

We present a comprehensive evaluation of RDV model resilience against ad-
versarial perturbations. In pristine conditions, the model demonstrates superior
performance, as anticipated without adversarial interference. In Table 1, our
comparison of various adversarial attacks on the CholecT45 dataset reveals that
the GN attack induces the highest fooling rate. However, this results in signifi-
cant image quality degradation, resulting in noticeable visual perturbations, an
outcome generally to be avoided. We further provide an in-depth analysis of
the performance of each attack against different metrics influenced by hyper-
parameter variations in the supplementary materials.

We train the RDV model against each identified attack, subsequently evalu-
ating the model’s performance on both clean images and those subjected to each
attack. This process allows us to assess the model’s robustness and its ability to
transfer learning across various adversarial conditions. Typically, all models show
a slight reduction in performance on clean images compared to models trained
exclusively on unperturbed images. This phenomenon is commonly observed in
adversarial training and thus emphasizes its effectiveness. The training is con-
ducted with optimal epsilon values to fine-tune the process. Additionally, we
apply pre-processing techniques to both clean and adversarially trained models.
As outlined in Table 2, our comparative analysis between different methods in-
dicates minor variations in performance across each attacked model, illustrating
the adversarial training’s capacity to enhance model resilience effectively.

4.2 Adversarial Object Detection

Quantitative Results: In our study, we also assess the YOLOv8 (Mφ) robust-
ness to different adversarial attacks. Initially, the baseline model achieves around
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Table 1. Comparative evaluation of image quality measures (PSNR, SSIM, LPIPS) and
component accuracy (mAP for I, V, T, IVT) under clean and adversarial conditions,
highlighting the model’s resilience in surgical recognition tasks.

Evaluation Measures → Image Quality Measure Rendezvous Performance
Attacks ↓ PSNR ↑ SSIM ↑ LPIPS ↑ I ↓ V ↓ T ↓ IVT ↓

Clean Images - - - 81.29 55.21 31.16 25.12
PGD (ϵ = 8/16) 33.69/28.70 73.20/51.74 83.35/76.92 66.06/51.21 42.16/31.31 23.37/16.45 17.05/12.26
FGSM (ϵ = 8/16) 30.59/24.64 62.98/36.43 78.29/66.97 30.11/25.00 16.24/15.11 11.24/10.01 8.18/7.16
BIM (ϵ = 8/16) 33.06/28.45 71.67/52.91 82.23/74.51 17.28/17.28 10.98/10.12 8.83/8.08 8.75/8.01
GN (σ = 0.1/0.5) 29.57/23.49 60.35/35.98 72.35/64.89 20.31/15.17 12.79/10.34 7.36/5.18 6.45/4.27

Table 2. Quantitative evaluation of mAP for triplet recognition (IVT) across adver-
sarially trained models against PGD, FGSM, BIM, and GN attacks, along with pre-
processing methods demonstrating robustness on both clean and adversarial images.

Models → GUARDIAN (ours) Defense Methods
Attacks ↓ MClean MPGD

è
MFGSM

è
MBIM

è
MGN

è
SS PD FS JPEG

Clean Images 25.21 23.84 23.47 23.65 23.12 - - - -
PGD 17.31 21.32 22.76 23.58 21.89 18.98 14.75 19.87 21.04
FGSM 8.64 21.48 23.02 22.47 21.67 17.23 12.86 18.29 20.58
BIM 8.29 20.95 23.17 22.84 21.53 15.58 13.64 17.45 19.75
GN 6.84 21.25 22.65 22.95 20.98 10.04 8.63 16.37 18.22

Table 3. Comparative analysis of mAP for the YOLOv8 model in the tool detec-
tion task on the m2cai16-tool-locations dataset [14], contrasting conventional training
against adversarial training with GUARDIAN. Here, the bold values represent the best
mAP performance against the adversarial attacks.

Models → Baseline Model Mφ GUARDIAN (ours) Mè
φ

Attacks ↓ mAP@[.5, .95] mAP@.5 mAP@.7 mAP@[.5, .95] mAP@.5 mAP@.7

Clean Images 61.62 95.48 70.24 52.87 95.52 68.62
PGD (ϵ = 32) 26.25 53.35 23.55 57.85 93.24 63.28
FGSM (ϵ = 32) 3.56 6.89 3.64 54.94 90.55 58.98
BIM (ϵ = 32) 8.97 19.45 7.79 56.79 92.14 61.33
GN (σ = 0.5) 0.00 0.00 0.00 43.63 80.54 43.75

Clean PGD FGSM BIM GN

Fig. 2. Comparing YOLOv8’s object detection mAP@.5 on clean versus perturbed
images, with correct predictions highlighted in green/blue and incorrect ones in red.

95% mAP score at an IoU threshold of 0.5 on clean images. However, its perfor-
mance significantly degrade under the influence of different attacks. Remarkably,
after undergoing adversarial training with GUARDIAN, Mèφ demonstrates sig-
nificant recovery in mAP scores against these attacks particularly against the GN
attack, as detailed in Table 3. Here, è represents our model after the adversarial
training.
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Table 4. Results for conformal prediction. The marginal coverage and the correspond-
ing average set size are reported for different confidence intervals.

Confidence Level (%) → Marginal Coverage (%) Average Set Size
Models ↓ 97 ↑ 95 ↑ 90 ↑ 80 ↑ 97 ↓ 95 ↓ 90 ↓ 80 ↓

MPGD
è 78.57 71.57 60.47 52.83 30.42 52.33 64.65 72.74

MFGSM
è 76.42 70.85 58.97 51.29 29.88 51.17 63.45 71.59

MBIM
è 77.95 69.23 61.34 53.17 31.07 53.42 65.89 73.98

MGN
è 75.68 68.74 57.39 50.21 28.56 50.79 62.34 70.21

Qualitative Results: Fig. 2 illustrates the YOLOv8’s object detection results
at an IoU threshold of 0.5, comparing clean images with those perturbed by
PGD, FGSM, BIM, and GN attacks, highlighting its detection performance in
adversarial scenarios. Fig. A in the supplementary material provides further
qualitative insights into the image quality degradation caused by attacks.

4.3 Uncertainty Estimation

Our adoption of conformal prediction (CP) highly elevates the robustness as-
sessment of the RDV model under adversarial conditions. As shown in Table 4,
CP maintains high marginal coverage at a 97% confidence level, affirming model
reliability. However, with lower confidence levels, the performance predictably
declines, demonstrating CP’s precision-reliability balance. Additionally, the re-
duced average set size at higher confidence levels highlights CP’s effectiveness in
improving predictive accuracy.

Table 5. Comparison (mAP %) of our method with others for surgical component
recognition. AT refers to adversarial training, and GUARDIAN combines all method-
ologies. BIM was chosen for its ability to reduce performance while maintaining per-
ceptual integrity.

Methods ↓ I ↑ V ↑ T ↑ IVT ↑

RDV (No Attack) 81.29 55.21 31.16 25.12
RDV + BIM 17.15 10.05 8.32 8.01
RDV + BIM + AT 74.07 46.31 28.37 22.23
Ours (GUARDIAN) 76.68 48.41 29.49 23.04

4.4 Ablation Study

We also conduct several ablations to assess the impact of learning rate variations
on adversarial training effectiveness (Fig. B in Appendix), as well as the influ-
ence of adversarial attack hyperparameters on image quality (Table A,B,C of
Appendix) and the recognition of surgical components as shown in Fig. C of the
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Appendix. The results of these studies are detailed in the supplementary section.
Moreover, Table 5 also provides the comparison of different methods against our
robust framework for surgical component recognition. Here, in Guardian, CP is
used post-adversarial training to quantify uncertainty in predictions. CP gen-
erates a set of possible labels for each prediction, but for mAP calculation, we
consider the highest confidence label from each set.

5 Conclusion

In conclusion, our work develops a framework that improves the resilience of
deep learning models against adversarial attacks in robotic-assisted surgery by
incorporating adversarial training along with conformal prediction for precise
uncertainty estimation. This method significantly enhances the accuracy and
reliability of surgical predictions crucial for decision-making. Our evaluations
across various datasets confirm the effectiveness of our framework in enhancing
predictive accuracy and ensuring surgical safety. Currently, we focus on estab-
lished approaches for surgical action recognition. Future work will explore de-
veloping specialized attacks targeting key areas such as instruments, verbs, and
targets to refine the precision of adversarial challenges.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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