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ABSTRACT

Planning in open-world environments, where agents must act with partially ob-
served states and incomplete knowledge, is a central challenge in embodied AI.
Open-world planning involves not only sequencing actions but also determin-
ing what information the agent needs to sense to enable those actions. Existing
approaches using Large Language Models (LLM) and Vision-Language Models
(VLM) cannot reliably plan over long horizons and complex goals, where they
often hallucinate and fail to reason causally over agent-environment interactions.
Alternatively, classical PDDL planners offer correct and principled reasoning, but
fail in open-world settings: they presuppose complete models and depend on ex-
haustive grounding over all objects, states, and actions; they cannot address mis-
alignment between goal specifications (e.g., “heat the bread”) and action speci-
fications (e.g., “toast the bread”); and they do not generalize across modalities
(e.g., text, vision). To address these core challenges: (i) we extend symbolic
PDDL into a flexible natural language representation that we term NL-PDDL,
improving accessibility for non-expert users as well as generalization over modali-
ties; (ii) we generalize regression-style planning to NL-PDDL with commonsense
entailment reasoning to determine what needs to be observed for goal achieve-
ment in partially-observed environments with potential goal–action specification
misalignment; and (iii) we leverage the lifted specification of NL-PDDL to facil-
itate open-world planning that avoids exhaustive grounding and yields a time and
space complexity independent of the number of ground objects, states, and ac-
tions. Our experiments in three diverse domains — classical Blocksworld and the
embodied ALFWorld environment with both textual and visual states — show that
NL-PDDL substantially outperforms existing baselines, is more robust to longer
horizons and more complex goals, and generalizes across modalities.

1 INTRODUCTION

Open-world planning1, where the agent operates under partial observability and incomplete knowl-
edge, is essential for embodied agents to perform real-world tasks. Such embodied environments
are inherently open-world and involve reasoning over a multitude of objects, posing challenges for
planning. For example, we consider Figure 1, where the agent is asked to “toast the bread and leave
it on a plate”. To efficiently identify the sequence of actions that achieve this goal given only partial
observations of the state and an incomplete environment model, the agent must find the relevant
objects (e.g., bread, toaster, and plate) while judiciously ignoring irrelevant ones. It must also use
its commonsense knowledge to reason that a toaster can heat bread, but a pot of water cannot.

The breakthrough of foundation models such as Large Language Models (LLM) and Vision-
Language Models (VLM) has led to their increased usage in planning (Yao et al., 2023b; Li et al.,
2024; Kong et al., 2024); yet, they come with critical limitations (Shojaee et al., 2025; Kambham-
pati et al., 2024). These models struggle to generate reliable long-horizon plans with sound causal
reasoning about the interactions between the agent and its environment as they lack a mechanism to

1In this work, we characterize open-world by partial observability and incomplete domain knowledge, dis-
tinguishing it from open-world games, which refers to open-ended tasks in expansive environments.
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“Please Heat the bread
and leave it on a plate

for me.”

“(?r) can toast (?o)”∧“(?y) is a plate”∧“The agent holds (Bread)” 

“(Bread) is heated”∧“(?y) is a plate”∧“The agent holds (Bread)” 

Initial State

No Op.

“(Bread) is heated”∧“(?y) is a plate”∧“(Bread) is on (?y)” 

Action: “pick up (?o)” ⊬ Any fluent

Action: “boil (?o) using (?r)” ⊬ Any fluent

“(?r) can toast (Bread)”∧“The agent is near (Bread)”∧“(?y) is a plate” 

No Op.

Action: “toast (?o) using (?r)”
“(Bread) is toasted”⊢“(Bread) is heated”

{?o/Bread}
Action: “pick up (?o)” Action: “put (?o) on (?r)” ⊬ Any fluent

No Op.

Se
le

ct
ed

 P
la

n 1. “pick up           ”

2. “toast            using           ”

3. “put            on                ”

No Op.
Regression Step 1

Regression Step 2

Regression Step 3

Planning Goal

Action: “put ?o on ?r”
“(Bread) is in (?y)”⊢“(Bread) is on (?y)”

{?o/Bread, ?r/?y}

Subgoal

The toaster
can be ?r

Subgoal

Action: “pick up (?o)”
“The agent possesses (Bread)”⊢“The agent holds (Bread)”

{?o/Bread}

“put (?o) on (?r)”, {"?o": "object","?r": "receptacle"}

Preconditions:
"The agent holds (?o)"

Effects:
Add:

"(?o) is in (?r)"
"The agent's hand is empty."

Del:
"The agent holds (?o)"

“pick up (?o)”, {"?o": "object"}
Preconditions:

"The agent's hand is empty"
"The agent is near (?o)"

Effects:
Add:

"The agent possesses (?o)"

“boil (?o) in (?r)”, {"?o": "obj.", "?r": "recept."}
Preconditions:

"(?r) can boil (?o)"
"The agent holds (?o)"

Effects:
Add:

"(?o) is boiled"

“toast (?o) using (?r)”, {"?o": "obj.","?r": "obj."}
Preconditions:

"(?r) can toast (?o)"
"The agent holds (?o)"

Effects:
Add:

"(?o) is toasted"

Goal

“(Bread) is heated”∧“(?y) is a
plate”∧“(Bread) is on (?y)” 

Goal in NL-PDDL

L
if

te
d

 R
eg

re
ss

io
nThe white plate

can be ?y
Agent's Actions

Figure 1: Overview of the NL-PDDL framework: (Agent’s Actions) The specification of actions
available to the agent are provided in a natural language (NL) variant of PDDL that we introduce.
(Goal) The user provides NL instructions that are automatically translated into an NL-PDDL goal
specification. (Initial State) The initial state is given as an image. (Planning Goal) Open-world
first-order planning proceeds top-down: starting from the goal, regressed subgoals are generated
that must hold before each action can be applied (e.g., the goal (bread) is heated regresses to the
action toast (bread) using (toaster), which generates subgoals the agent holds the (bread) and a
toaster is available). At each step, LLM-based entailment connects subgoals with the NL effects of
candidate actions and reasons about object affordances (e.g., a toaster can toast bread, but a pot of
water cannot). (Selected Plan) A VLM grounds the NL object names in a regressed subgoal to their
corresponding entities in the initial state image that are then used to instantiate an actionable plan.

track state changes and project how actions alter the world (Valmeekam et al., 2024). Moreover, they
fail on complex goals involving multiple logical constraints (Goebel & Zips, 2025), and their black-
box nature makes it hard to interpret or verify their generated plans (Aghzal et al., 2025). In contrast,
classical planners, such as those based on the Planning Domain Definition Language (PDDL) (Aero-
nautiques et al., 1998), have traditionally served the role of planning in AI. While verifiably correct,
these methods often presume all objects and relations are known in a perfect model that can be ex-
haustively grounded. These methods also cannot bridge misalignments between goals and action
specifications (e.g., reasoning that the action “toast the bread” is able to achieve the goal “heat the
bread”a rev). Such limitations are too restrictive for the the open-world setting we address here.

To overcome the limitations of existing methods, we introduce NL-PDDL, a planning framework
that combines the expressive flexibility of natural language (NL) with the formal guarantees of
symbolic planning. An overview of the NL-PDDL workflow is provided in Figure 1 and its caption.
Concretely, we make the following key contributions to open-world planning in embodied AI:

• We extend classical PDDL into NL-PDDL, a flexible representation that lets users specify goals
and actions abstractly in NL. This flexibility reduces the specification burden (vs. rigid PDDL
schemas) and tolerates semantically incomplete and syntactically imperfect domain and state de-
scriptions while maintaining sound plan generation.

• We propose an open-world, regression-style NL-PDDL planner that uses LLM-based common-
sense entailment over regressed subgoals to both infer the observations needed to achieve a target
(e.g., heat breadÑ find toaster) and resolve misalignments between (sub)goals and action effects.
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• We avoid exhaustive grounding via lifted regression (Reiter, 1991). Instead of reasoning about
specific objects (e.g., pan3, toaster1), lifted regression leverages the variables inherent in NL-
PDDL (e.g., “there exists some x that can toast bread”). Lifted plans are instantiated only when
suitable objects are found, making planning complexity independent of the number of objects and
abstractly capturing a lifted conditional plan of all initial state conditions that can achieve a goal.

• Across three diverse planning domains — Blocksworld (Valmeekam et al., 2022), ALFworld, and
ALFworld-Vision (Shridhar et al., 2021) — we show that lifted regression planning in NL-PDDL
achieves higher plan-success rates than strong baselines, remains robust as plan horizons increase,
and generalizes across both text and vision modalities.

2 METHODOLOGY

In this section, we present Natural Language PDDL (NL-PDDL), a framework for open-world,
goal-oriented planning by leveraging regression-style reasoning enhanced with LLM-based com-
monsense reasoning. While classical PDDL provides a sound framework for long-horizon planning,
it cannot facilitate commonsense reasoning unless such knowledge is explicitly encoded by a domain
designer. For example, a classical PDDL solver cannot infer that isToasted(bread) implies
isHeated(bread), even though it is intuitively clear to humans that “if bread is toasted, it is
likely heated”. NL-PDDL builds on the formal framework of classical PDDL but replaces sym-
bolic predicates, variables, and objects with typed NL counterparts, enabling seamless integration
of LLMs to perform commonsense entailment inferences during planning. For a formal review of
PDDL and first-order regression planning extended here, we refer the reader to Appendix B.

Natural Language Representation of PDDL. In classical PDDL, predicates, objects, and
variables are represented with rigid symbols. NL-PDDL replaces these symbols with typed
NL counterparts. For instance, the symbolic predicate isToasted(bread) becomes
“the (bread) is toasted”|“bread”:“food”, while “the (?o:food) is toasted” denotes its lifted form.
Here, ?o:food indicates that (?o) is of type food.

NL-PDDL Problem Definition. NL-PDDL problems are defined like classical PDDL problems,
but aimed at open-world planning. We define an NL-PDDL problem as a tuple P “ xG,A,F , hy,
whereG is a conjunctive formula expressing the agent’s goal, and F is the set of lifted NL predicates
in the domain. A is the set of actions apy⃗q, i.e., parameterized first-order operators. Each apy⃗q PA
is defined by: preconditions apy⃗q.pre Ď F, which must hold for the action to execute; add effects
apy⃗q.addĎF, which become true after the action is executed; and delete effects apy⃗q.delĎF, which
no longer hold after execution. The planning horizon hPN is the maximum length of feasible plans.
The goal in NL-PDDL is to construct a conditional plan Π that maps subgoal formulas to action
sequences that can achieve them:

Π“
“

pψ1px⃗1q, xa
1,1p ⃗x1,1q, ..., a1,n1p ⃗x1,n1qyq, ..., pψkpx⃗kq, xa

k,1p ⃗xk,1q, ..., ak,nkp ⃗xk,nkqyq
‰

, (1)

where each ψipx⃗iq is a first-order formula representing a subgoal, and xai,1px⃗i,1q, . . . , ai,nip ⃗xi,niqy

is the corresponding sequence of actions (i.e., a plan) with length ni ď h, and each ⃗xj,kĎ x⃗j . As an
example, the plan derived by NL-PDDL for the problem in Figure 1 is presented in Figure 2.

“(Bread) is heated”∧“(?y) is a plate”∧“(Bread) is on (?y)” 

“(Bread) is heated”∧“(?y) is a plate”∧“The agent holds (Bread)”

“(?r) can toast (Bread)”∧“(?y) is a plate”∧“The agent holds (Bread)” 

“(?r) can toast (Bread)”∧“(?y) is a plate”∧“The agent is near (Bread)” 

 

 “toast (Bread) using (?r)”

 

“put (Bread) on (?y)”

Subgoals
Action Sequences

,

,

,

,

“put (Bread) on (?y)”,

“put (Bread) on (?y)”
, “toast (Bread) using (?r)”     “pick up (Bread)”

,

Figure 2: The conditional plan derived by NL-PDDL for the problem in Figure 1.
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2.1 FIRST ORDER REGRESSION IN NL-PDDL

Effect Axioms. Following the methodology for first-order regression defined in Appendix B, we
first need to transform our NL-PDDL description into the effect axioms that are used to perform
regression planning. Specifically, following the notation of Appendix B, we build axioms of the
form of Equations 8 and 9, and provide a concrete example of γ`

“(?o) is toasted”,“toast(?o) using (?r)”p?o, ?rq
for action “toast(?o) using (?r)”, and predicate “(?o) is toasted” from the NL-PDDL description
in Figure 3. In English, this says an object “(?o)” is toasted in the next state if the agent holds

Running Example:

"toast (?o:object) using (?r:object)""(?o) is toasted''
Predicate Action

with respect tofor Positive Effect Axiom 

"(?r) can toast (?o)"
Precondition

"the agent holds (?o)""toast(?o) using (?r)" "(?o) is toasted''
Add Effect

Negative Effect Axiom  "put(?o: object) on (?r: receptacle)""the agent holds (?o)''
Predicate Action

with respect tofor 

"the agent is near (?r)" "the agent holds (?o)" "the agent holds (?o)''
Delete Effect

"put(?o) on (?r)"
Precondition

Figure 3: Example of positive and negative effect axiom based on NL-PDDL problem in Figure 1.

it, and the agent toasts “(?o)” using object “(?r)” that can toast “(?o)”. To illustrate negative
effect axioms, we construct γ´

“the agent holds(?o)”,“put(?o) on (?r)”p?o, ?rq for action “put(?o) on (?r)” and
predicate “the agent holds(?o)” in Figure 3. In English, this says if the agent holds an object “(?o)”,
is near receptacle “(?r)”, and puts “(?o)” on “(?r)”, then the agent no longer holds “(?o)” in the
next state.

These positive (negative) effect axioms are only constructed for predicates and actions if the pred-
icate is in the add (delete) effect of the action in the NL-PDDL description. Cases that a predicate
appears in the effects of multiple actions are handled via disjunction (see Appendix C for details).

Successor State Axioms. As described in Appendix B, successor state axioms (SSAs) are the
workhorse of lifted regression planning in that they allow the replacement of a predicate in a post-
action state with the necessary subgoals required to achieve it. Let F 1

ai
py⃗F q denote the value of a

predicate F py⃗F q in the next state after executing action aipy⃗q. The SSA for F py⃗F q is defined as:

F 1
ai
px⃗q ” γ`

F,ai
px⃗q _

`

F px⃗q ^ ␣γ´
F,ai

px⃗q
˘

. (2)

In English, an SSA states that a predicate F is true in the successor state iff it was made true by a
positive effect, or it was already true and not made false by a negative effect.

We construct the SSAs for each action-predicate pair. While we leave complete formal details to
the Appendix B due to space limitations, we provide the SSA for the predicate “is toasted(?o)” and
action “toast (?o) using (?r)”, and the predicate “the agent possesses(?o)” and action “put (?o) on
(?r)” in Figure 4 as examples to illustrate the process of SSA construction:

"the agent's hand is empty" "the agent is near (?o)"

Successor State Axiom for  "(?o) is toasted'' " toast (?o: object) using (?r:object)"and is:

"(?o) is toasted" 

Predicate Action

Running Example:

"(?o) is toasted'' "toast (?o) using (?r)" "the agent holds (?o)"
Positive Effect Axiom

"(?r) can toast (?o)"

"the agent's hand is empty" "the agent is near (?o)""the agent holds (?o)" "put (?o) on (?r)"
Negative Effect Axiom

"the agent is near (?r)"

Successor State Axiom for  "the agent holds (?o)" " put (?o: object) on (?r:receptacle)"and is:

"the agent holds (?o)" 

Predicate Action

Figure 4: Examples of constructing SSAs based on NL-PDDL problem in Figure 1.

After constructing the SSAs, NL-PDDL recursively regresses each subgoal through applicable ac-
tions to construct the conditional plan Π. We explain the regression procedure in the next section.

4
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2.1.1 REGRESSION OF POTENTIALLY MISALIGNED PREDICATES IN NL-PDDL

In regression planning with classical PDDL, goal predicates are only matched to action effects that
share the same predicate names. In NL, such exact matches rarely occur due to variability in phras-
ing, instead an action effect may entail a goal literal, e.g., “the bread is toasted” entails ($) “the bread
is heated”. In this section, we extend lifted regression planning using LLM entailment ($LLMq.

Regression of Positive NL Predicates. Let P 1px⃗q|x⃗ : T⃗x be a predicate in the next state. We aim to
regress it through an action ai, to derive pre-action conditions such that if they hold, executing ai
results in a next state that entails P 1px⃗q. To this end, we first identify a predicate F pz⃗qPF |z⃗ : T⃗z that
can be unified with P 1px⃗q. In PDDL, unification makes the two predicates syntactically identical
through variable substitution, but NL-PDDL allows a more general form of unification based on
commonsense entailment: predicates F pz⃗q and P 1px⃗q are unifiable iff they have equal arities and a
substitution θ exists that induces an injective mapping between their variables such that:

(i) For every pair of corresponding types tz P T⃗z and tx P T⃗x mapped by θ, tx $LLM tz .

(ii) After applying θ, the substituted predicateF pz⃗q entails the substituted goal predicateP 1px⃗q,
i.e., F pz⃗qθ $LLM P 1px⃗qθ. 2

A legal typed unification results in a substitution θ that is a mapping of variables to terms (e.g., θ “
tx{yu, so that F pxqθ ” F pyq), which then permits a misaligned regression to proceed. Formally,
let F 1

ai
pz⃗q P Φ denote the SSA formula for F 1pz⃗q with respect to ai under the unifier θ:

Regr$

`

P 1px⃗q, ai
˘

” F 1
ai
pzqθ. (3)

With Regr$, we can now formally regress a predicate through an action with misaligned effects:

                                       ,                                                         
SSA

"(?o) can toast (?r)" "the agent holds (?o)''

Running Example:

''food''  ''object'' Condition  i): Type Consistency

"(?o: object ) is toasted"
Predicate from SSAs

 ''bread'' 

 Condition ii): Predicates Entailments
''(bread) is toasted'  

''(bread) is heated''

 ''bread'' "(bread: food) is heated"
Misaligned Goal Predicate

"toast (?o: object) using (?r: object)"
Action

Unification
Unification Check

Figure 5: An example of a regression step of a positive predicate with goal–action misalignment.

In the example of Figure 5, to identify the subgoals necessary for the predicate “(Bread:food) is
heated” to hold after an action is executed, we aim to find a predicate unifiable with it. The predicate
“(?o:object) is toasted” qualifies, with θ“ t“?o”/“bread”u, because (i) type consistency holds
p“food”$LLM “object”q, and (ii) after substitution, p“bread is toasted”$LLM “bread is heated”q.
This allows us to derive the regressed subgoal condition (given by the SSA) that can achieve “(bread)
is heated”, which is how subgoal ψ3 is derived from ψ2 in the conditional plan example of Figure 2.

Regression of Negative NL predicates. As for negative predicates, we regress a negated predicate
␣P 1px⃗q|x⃗ : T⃗x

1
through an action ai to derive preconditions that ensure ␣P 1px⃗q holds after ai is

executed. Thus, we identify a predicate F pz⃗qPF |z⃗ : T⃗z that can be unified with P 1px⃗q. Let θ be the
unifier inducing an injective mapping between predicate variables such that:

(i) For every pair of corresponding types tx P T⃗x and tz P T⃗z mapped by θ, tx $LLM tz .

(ii) After applying θ, the substituted goal predicate entails the substituted precondition predi-
cate, i.e., P 1px⃗qθ $LLM F pz⃗qθ.

Critically note that the direction of entailment in check (ii) for negative NL predicates reverses from
the case for positive NL predicates. Let F 1

ai
pz⃗q PΦ be the SSA formula for F 1pz⃗q, with respect to

2This relaxation from syntactic equivalence to entailment-based unification allows, for example, unify-
ing “(?x:food) is on (?y:plate)” with “(?y:receptacle) is under (?x:object)”, as they are both binary and with
θ “ t?x{?y, ?y{?xu, we have “food”$LLM“object”, “plate”$LLM “receptacle”, and “(?x) is on (?y)”$LLM
“(?y) is under (?x)”.

5
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ai. Applying θ to this formula and negating the result gives the regressed condition for␣P 1px⃗q with
respect to ai:

Regr$

`

␣P 1px⃗q, ai
˘

” ␣F 1
ai
pz⃗qθ. (4)

We provide a worked example illustrating the regression of a negative NL predicate in Appendix D.

NL Regression with Multiple Entailments. A predicate P 1px⃗q|x⃗ : T⃗ may be semantically en-
tailed by multiple other predicates. For example, the goal “(?o) is cooked” may be entailed by
either “(?o) is toasted” or “(?o) is boiled”. In such cases, we aggregate all entailing predicates.

Let F`
$ “ tF1px⃗1q, . . . , Fmpx⃗mq | Fipx⃗iq P F ^ Fipx⃗iqtx⃗i{x⃗u $LLM P 1px⃗q u be the set of all

predicates that entail P 1px⃗q. The aggregated regression of P 1px⃗q with respect to action ai is:

Regr$

`

P 1px⃗q, ai
˘

”

m
ł

j“1

F 1
ai,jpx⃗q, where Fj P F

`
$ . (5)

The same construction applies to negated predicates, with entailment checked in the reverse direc-
tion. Let F´

$ “ tF1px⃗1q, . . . , Fmpx⃗mq | Fipx⃗iq P F ^ P 1px⃗qtx⃗i{x⃗u $LLM Fipx⃗iq u be the set of
all predicates entailed by P 1px⃗q. The aggregated regression of ␣P 1px⃗q with respect to ai is:

Regr$

`

␣P 1px⃗q, ai
˘

”

m
ľ

j“1

␣F 1
ai,jpx⃗q, where F 1

j P F
´
$ . (6)

2.1.2 REGRESSION OF FORMULAS Algorithm 1 REGRESSFORMULApψ1, aipy⃗iq, Fq
1: Input: ψ1 in DNF ; aipy⃗iq; F
2: Output: ψ “ Regr$pψ

1, aiq in DNF
3: ψ Ð ∅
4: for for each disjunct C P ψ do
5: D Ð J

6: for each literal Fjpx⃗jq in C do
7: Construct: F`

$ , F
´
$

8: F 1
ai,jpx⃗q Ð Regr$

`

Fjpx⃗q, ai
˘

9: D Ð D ^ F 1
ai,jpx⃗q

10: D Ð ConvertToDNF
`

Dq
11: end for
12: ψ Ð ψ _D
13: end for
14: return ψ

Full first-order formulas can now be regressed
using Algorithm 1: the formula is rewritten
in Disjunctive Normal Form (DNF), the pred-
icates in each disjunct are regressed follow-
ing the process in Section 2.1.1, and the re-
sults are incrementally combined in DNF. The
general regression process in the NL-PDDL
framework is summarized in Appendix E.

3 EXPERIMENTS

We pose the following research questions:

RQ1: Overall Planning Performance. How does NL-PDDL3 perform in terms of success rate
and computational cost across modalities (e.g., text, images), compared to baselines?

RQ2: Reasoning over Language Misalignment. How well does NL-PDDL handle planning
tasks where NL descriptions of the action specifications and the goal are misaligned?

RQ3: Effect of Task Complexity. How does NL-PDDL compare to baselines as task complexity
increases, measured by optimal plan length and the number of constraints in the goal?

3.1 EXPERIMENTAL SETUP

Open-World Tasks. We conduct open-world planning experiments on ALFWorld Text (Shridhar
et al., 2021) and ALFWorld Vision (cf. Figure 6) to evaluate performance across modalities. Agents
must operate under partial observability and incomplete task-relevant knowledge to complete com-
mon household tasks in virtual home environments. It supports a rich space of interactions, requiring
the agents to reason about object relations and action affordances without hardcoded annotations.
Following prior work (Yang et al., 2024; Shridhar et al., 2021; Yao et al., 2023b; Wang et al., 2023),
we evaluate NL-PDDL on 135 out-of-distribution tasks with 50 movement budget (cf. Appendix G).
We also extend both ALFWorld benchmarks by introducing misaligned language descriptions of the
agent’s action model and goals (cf. Appendix H).

3https://anonymous.4open.science/r/nl_pddl_planner-4C67/README.md
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Go to side table 1 Pick up apple 2 Go to microwave 2 Pick up apple 1 from
microwave 1

Heat apple 1 with
microwave 1 Go to side table 3

Instruction: "Heat a apple and put it on a side table"

Figure 6: An Example of a Visual ALFWorld Task.

Table 1: (RQ1) Performance of different methods in two open-world datasets without misalign-
ment between goal and model.:Reported performance in the original work.

Open-World Without Misalignment
Datasets Methods # Tok. # Expert Trajectory Fine-Tuning SR (%)

ALFWorld
Text

Direct
LLM-based Planner

GPT-4o 1,358,934 0 ✗ 21%
Gemini-2.0-Flash 1,176,406 0 ✗ 16%
LLaMA-3.1 1,193,640 0 ✗ 19%

Reflective
LLM-based Planner

ReAct (w examples) 5,507,266 0 ✗ 81%
ReAct (w model) 4,242,560 0 ✗ 34%
Reflexion-3: NA 0 ✗ 83%
Reflexion-10: NA 0 ✗ 91%
DEPS: NA 0 ✗ 76%

Fine-tuned LM BUTLER NA 100,000 ✓ 26%
Ours NL-PDDL 443,407 0 ✗ 94%

ALFWorld
Vision

Direct
VLM-based Planner

GPT-4o 1,823,539 0 ✗ 8%
Gemini-2.0-Flash 1,440,025 0 ✗ 2%
LLaMA-3.1 1,505,371 0 ✗ 2%

Fine-tuned VLM

LLaMA-Adapter: NA 170,000 ✓ 13%
InstructBLIP: NA 170,000 ✓ 22%
EMMA-3: NA 15,237 ✓ 37%
EMMA-10: NA 15,237 ✓ 82%

Ours NL-PDDL 679,148 0 ✗ 84%

Table 2: (RQ1) Performance comparison across closed-world Blocksworld variants without mis-
alignment. Direct LLM-based planners fail to generate valid plans for Mystery and Randomized
Blocksworld. NL-PDDL demonstrates consistent and robust performance across all variants.

Closed-World Without Misalignment

Method Blocksworld Mystery
Blocksworld

Randomized
Blocksworld

# Tok. SR (%) # Tok. SR (%) # Tok. SR (%)
GPT-4o 982,602 34% 834,890 0% 835,974 0%
Gemini-2.0 Flash 928,024 18% 834,060 1% 835,824 0%
LLaMA 3.1 963,565 44% 841,791 0% 842,622 0%
Fast Downward N/A 100% N/A 100% N/A 100%

NL-PDDL 0 70% 0 70% 0 70%

Closed-World Tasks. Blocksworld is a widely used closed-world planning domain in which the task
is to rearrange colored blocks, initially stacked or on a table, to achieve a given goal. We adopt a
variant introduced in Valmeekam et al. (2022) by converting goal specifications into NL descriptions
for NL-based planners. We include two additional variants to probe brittleness to surface form and
lexical priors by replacing object and goal names in the NL descriptions with random English words
(Mystery Blocksworld) and random strings (Randomized Blocksworld). Beyond these, we introduce
Misalignment Blocksworld, where the NL descriptions of action model and goals are contextually
meaningful but intentionally misaligned, to assess the commonsense entailment capabilities of plan-
ners (cf. Appendix H for details).

Baselines and Evaluation Metrics. We compare NL-PDDL with SOTA baselines in open- and
closed-world domains. In the open-world settings (i.e., ALFWorld Text and Vision), we compare
with (i) Direct LLM/VLM-based planners: GPT-4o (Hurst et al., 2024), Gemini-2.0 Flash (Team
et al., 2023), and LLaMA-3.1 (Grattafiori et al., 2024), (ii) Reflective LLM-based planners: Re-
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Table 3: (RQ2) Performance across settings with misalignment in open-world ALFWorld (Tex-
t/Vision) and closed-world Misalignment Blocksworld. Reported-results-only methods are omitted
since prior works did not consider misalignment.

Open-World With Misalignment

Category Method ALFWorld Text ALFWorld Vision Blocksworld
# Tok. SR (%) # Tok. SR (%) # Tok. SR (%)

Direct LLM
GPT-4o 1,440,470 17% (Ó5%) 1,811,404 7% (Ó1%) 937,905 27% (Ó7%)

Gemini-2.0 Flash 1,251,533 15% (Ó1%) 1,262,016 5% (Ò3%) 939,950 23% (Ò5%)

LLaMA-3.1 1,310,664 15% (Ó4%) 1,480,392 2% (-0%) 950,490 42% (Ó3%)

ReAct w/ examples 5,215,612 79% (Ó12%) N/A N/A N/A N/A
w/ model 4,428,914 23% (Ó11%) N/A N/A N/A N/A

Classical Planner Fast Downward N/A N/A N/A N/A 0 0%

Ours NL-PDDL 501,049 91% (Ó3%) 745,365 80% (Ó4%) 11,656 70%

Act (Yao et al., 2023b), Reflexion (Shinn et al., 2023), and DEPS (Wang et al., 2023), and (iii)
Fine-tuned LLM/VLMs: BUTLER (Shridhar et al., 2021), LLaMA-Adapter (Gao et al., 2023),
InstructBLIP (Dai et al., 2023), and EMMA (Yang et al., 2024), all trained on ALFWorld expert
demonsrations. In the closed-world setting, we compare against Direct LLM-based planners and
the classical Fast Downward (Helmert, 2006) planner, which serves as an upper bound on planning
performance. The detailed implementation of NL-PDDL on the ALFWorld and Blocksworld bench-
marks is included in Appendix I. Methods are evaluated under a feasible maximum runtime. For
evaluation, we consider two aspects: task Success Rate (SR), and associated cost, as captured by the
# Tokens Usage (# Tok.) in LLM.

4 RESULTS AND DISCUSSION

RQ1. In open-world tasks (cf. Table 1), NL-PDDL achieves superior SR on both ALFWorld Text
and Vision compared to all baselines. On ALFWorld Text, NL-PDDL achieves a 94% SR with
only 443K tokens, whereas ReAct consumes over ten times more tokens while reaching a lower SR.
Although Reflexion-10 achieves performance comparable to NL-PDDL, it depends on repeating
ten trials of the same task, which is infeasible for many embodied AI applications. Impressively,
NL-PDDL even outperforms all fine-tuned VLMs that rely on thousands of expert trajectories in
visual ALFWorld. Our results highlight its generalizability across different modalities for open-
world tasks. In closed-world tasks (cf. Table 2), NL-PDDL demonstrates robust performance with
a consistent 70% SR at 0 tokens. In contrast, direct LLM-based planners entirely fail to solve the
Mystery and Randomized variants, performing with less than 1% SR despite substantial token usage.
Fast Downward, a closed-world planner, achieves a 100% success rate on the three Blocksworld
domains. However, it is brittle under goal–action misalignment, as we demonstrate in RQ3.

RQ2. In Table 3, we evaluate the performance of different methods on open- and closed-world
tasks with misalignment between the NL descriptions of action models and goals. NL-PDDL
demonstrates clear robustness in the face of such misalignments. In open-world tasks, NL-PDDL
maintains a 91% SR on ALFWorld Text and 80% on ALFWorld Vision. By contrast, ReAct,
whether explicitly prompted to focus on action models or supported with few-shot examples, suf-
fers notable degradation, underscoring its sensitivity to misalignment. The closed-world Misalign-
ment Blocksworld variant highlights the gap: Fast Downward, though highly effective in purely
symbolic and aligned settings, does not perform commonsense entailment and fails under goal—
action schema misalignment; in contrast, NL-PDDL maintains performance comparable to other
Blocksworld variants, evidencing robust misalignment handling.

RQ3. We evaluate planner performance relative to optimal plan depth. NL-PDDL achieves per-
fect success up to depth 6, with performance declining to 84% at depth 8 and fails beyond depth
10 under the runtime limit. By contrast, LLM-based planners exhibit consistent deterioration across
all depths. NL-PDDL’s decline stems from scalability limitations under the predefined maximum
runtime, while LLM-based planners fail due to their inability to reason over an extended horizon.
The Fast Downward planner maintains perfect performance when the action model and goals are
fully aligned, but fails on the Misalignment Blocksworld where commonsense entailment reason-
ing is required. In open-world tasks where optimal depth is inconsistent, we measure NL-PDDL’s
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Figure 7: (RQ3) SR by goal complexity and optimal plan depth in ALFWorld and Blocksworld
across planners

performance against goal complexity. NL-PDDL remains stable, showing only a 3% average drop
across ALFWorld Text and Vision, while LLM/VLM-based planners degrade much more sharply,
underscoring their sensitivity to increasing goal complexity. Together, these results demonstrate the
robustness of NL-PDDL with respect to goal complexity across open- and closed-world tasks.

5 RELATED WORK

Eliciting Stronger Reasoning from LLMs: As LLMs scale, they remain prone to hallucinations
and logical fallacies (Tonmoy et al., 2024; Zhang et al., 2025) resulting in new prompting strategies
to mitigate these concerns. Step-by-step methods (Wei et al., 2022; Kojima et al., 2022; Yao et al.,
2023a) encourage incremental reasoning by breaking problems into sub-steps or branching search
trajectories. Reflective methods such as ReAct (Yao et al., 2023b) and Reflexion (Shinn et al., 2023)
add self-reflection, critiquing, and revision. Yet these methods often fail on tasks with several logical
constraints or long-horizon dependencies (Valmeekam et al., 2023b; 2022; Song et al., 2025); are
sensitive to prompt design and few-shot examples, iteration dependent (Pan et al., 2023); and remain
unverifiable since the LLM acts as a black box without guarantees of soundness (Shanahan, 2024).

Planning with LLMs and Symbolic Planners: A separate body of work integrates LLMs with
classical planners. One approach treats LLMs as planners that generate action sequences from sym-
bolic task descriptions (Silver et al., 2022; Song et al., 2023; Silver et al., 2024). Another uses
LLMs as translators, converting NL problems and domains into structured formats for symbolic
solvers (Guan et al., 2023; Kambhampati et al., 2024; Oswald et al., 2024; Yang et al., 2023). Both
approaches face limitations: LLM-as-planner approaches are unreliable due to reasoning errors and
hallucinations, while translator-based methods often introduce faulty predicates, actions, or logical
mappings of NL descriptions that cause downstream planning failures. Translation also imposes an
expressivity bottleneck, restricting applicability to problems encodable in symbolic form. Finally,
most assume closed-world settings, making them inappropriate for open-world planning.

Our Point of Departure: We introduce a novel NL-PDDL hybrid natural language variation of
PDDL to facilitate the use of powerful commonsense (V)LLM reasoning during planning, and blend
it with symbolic lifted regression over NL-PDDL to address open-world, long-horizon planning.

We further discuss NL-to-PDDL translation approaches and clarify their distinctions from NL-
PDDL in Appendix J.

6 CONCLUSION

We proposed NL-PDDL, a framework for open-world planning that extends symbolic PDDL to
support NL, improving accessibility for non-experts. NL-PDDL facilitates the integration of LLM
commonsense knowledge into open-world regression planning to address goal–action misalignment,
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while retaining soundness and verifiability. Empirically, we showed that lifted regression planning
in NL-PDDL achieves higher plan-success rates in contrast to existing strong baselines, remains
robust as plan horizons increase, and generalizes well across both text and vision modalities.
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A.2 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the methodology presented in this work is reproducible.
All code used in this study has been released in an anonymous repository to support reproducibility
and verifiability. Full descriptions of the methods and experimental setup are provided in both the
main text and the appendix to facilitate transparent evaluation and replication of our results.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to aid or polish the writing of this paper. Specifically,
we employed LLMs to improve the readability and clarity of the manuscript.

B FUNDAMENTALS OF REGRESSION PLANNING IN PDDL

In this section, we review PDDL and its representation of planning problems, then introduce the first-
order regression approach to planning. The corresponding operations for our proposed NL-PDDL
are presented in Section 2.1 of the main paper.

B.1 PDDL PLANNING REPRESENTATION.

A planning problem is defined as the tuple P “ xF , O, A, s0, Gy, where:

• F is the set of first-order predicates that describe properties of objects or relations be-
tween them, whose truth values may change as actions are applied, such as boiled(x),
can toastpx, yq, etc.

• O is the set of objects in the domain, which serve as the constants over which predicates
and actions are instantiated, (e.g., potato, plate, etc.).

• A is the set of actions aipy⃗q, i.e., parameterized first-order operators. Each action schema
is defined by:

– Preconditions: Denoted by aipy⃗iq.pre Ă F is the set of predicates that must hold for
the action to be applicable.

– Add effects: Denoted by aipy⃗iq.add Ă F is the set of predicates that become true
once the action is executed.

– Delete effects: Denoted by aipy⃗iq.del is the set of predicates that are no longer true
after the action is executed.

For instance, the action pickup(?o) has the preconditions hand empty and
near(?o), the add effect possess(?o), and the delete effect hand empty.

• s0 is the initial state, given as a set of ground predicates that hold true before any action is
executed.

• G is the goal condition, specified as a set of predicates that must be satisfied in a terminal
state.

In classical planning, problems are often specified in the Planning Domain Definition Language
(PDDL), which is divided into two parts: the domain and the problem instance. The domain defines
the agent’s action model together with the set of predicates F and the set of action schemas A. The
problem instance specifies a finite object set O, an initial state s0 and G given as a set of ground
predicates.

The objective of solving a planning problem is to find a conditional plan, i.e., a finite sequence of
actions π “ xap1q, . . . , apnqy, such that, starting from s0, executing each action in π sequentially
results in a state sn that satisfies the goal G. Here, the superscript piq in apiq indicates that a is the
action executed at the i-th step of the plan, i.e., it represents the horizon index of the action within
the sequence.
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Example. We represent the planning problem as

P “ xF , O, A, s0, Gy.

predicates F .

F “ thand empty, nearpxq,possesspxq,onpx, yq,isHotpxq can bakepx, yq,

full of waterpyq,bakedpxq, boiledpxqu.

Objects O.
O “ t bread, plate, toaster, pot u.

Actions A.
pickup(?o) :

pre: thand empty , near(?o)u

add: tpossess(?o)u
del: thand emptyu

puton(?o, ?r):

pre: tpossess(?o), near(?r)u
add: thand empty, on(?o,?r)u

del: tpossess(?o)u

toast(?o, ?r):

pre: t can toast(?o,?r), possess(?o)u

add: tisHot(?o)u
del: H

Initial state s0.

s0 “ thand empty, near(potato), near(plate), near(oven),near(pot),

boiling device(pot), can toast(bread,toaster),full of water(pot)u.

Goal G.
G “ t heated(bread), on(bread,plate) u.

B.2 FIRST ORDER REGRESSION

First-order Regression addresses open-world planning by lifting object representations into variables
and reasoning backward from goals. First-order regression allows the agent to generate lifted plans
without requiring prior knowledge of the full object set O or a complete initial state s0. In this
approach, beginning from the goal, the objective is to iteratively regress the target formula through
applicable actions, in order to compute the subgoals that must hold in earlier states. By repeating this
process, the agent constructs a sequence of actions that achieves the original goal while remaining
fully symbolic and lifted, enabling reasoning over unknown or partially observed objects.

In this section, we introduce the procedure for translating a PDDL problem into a first-order repre-
sentation and explain how regression is performed using the Successor State Axioms (SSAs).

B.2.1 PDDL TO FIRST-ORDER LOGIC DOMAIN THEORY

To axiomatize a PDDL domain theory, we begin by defining positive and negative effect axioms,
which specify how predicates change as a result of actions.

• Positive effect axioms: state which actions a P A can explicitly make each predicate F px⃗q
true.

• Negative effect axioms state which actions a P A can explicitly make the predicate F px⃗q
false.
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These axioms are essential for accurately regressing a goal through an action: to determine the
conditions that must have held before the action, one needs to know exactly how each action modifies
the state. To obtain these axioms, we make the following assumptions.

• No new variables outside of action parameter are introduced in preconditions and effects.
• No quantifiers are used in the action’s preconditions and effects.
• All unquantified variables are implicitly universally quantified.

We assume positive and negative effect axioms can be specified by considering all of the ways in
which each action can affect each predicate. Let F py⃗F q be a predicate in the current state, γ`

F,ai
py⃗, sq

is a first-order formula such that, if it holds in the current state s, then F 1py⃗F q holds after executing
aipy⃗q. Similarly, let γ´

F,ai
py⃗, sq be a first-order formula such that, if it holds in the current state s,

then ␣F 1py⃗F q holds after executing aipy⃗q. We write γ`
F,ai

py⃗q and γ´
F,ai

py⃗q as shorthands for the
state-dependent conditions γ`

F,ai
py⃗, sq and γ´

F,ai
py⃗, sq in the current state, respectively, and define

the normal form of effect axioms as following:

@y⃗ : T⃗
“

γ`
F,ai

py⃗q ñ F 1
ai
py⃗F q

‰

, @y⃗ : T⃗
“

γ´
F,ai

py⃗q ñ ␣F 1
ai
py⃗F q

‰

. (7)

Here, y⃗ : T⃗ indicates that each variable in y⃗ is assigned its type by a corresponding element in T⃗ .
Given a PDDL problem P with an action set A, we can derive effect axioms in the aforementioned
normal form, action by action. Consider an action apy⃗q P A, and let F py⃗F q be a predicate in its pos-
itive effect set, i.e., F py⃗F q P apy⃗q.add. The predicate parameters y⃗F correspond to a permutation
of a subset of the action parameters y⃗. We use y⃗zF to denote the remaining action parameters that
do not appear in y⃗F which are existentially quantified. With this setup, we construct the following
implication:

for each F py⃗F q P aipy⃗q.add : @y⃗ : T⃗ , a ra “ aipy⃗q ^
ľ

Prejpy⃗jqPaipy⃗q.pre

Prejpy⃗jq

loooooooooooooooooooooooomoooooooooooooooooooooooon

γ`
F,ai

py⃗q

s ñ F 1
ai
py⃗F q.

(8)

Similarly, for the predicates in the delete effects of the action, we have:

for each F py⃗F q P aipy⃗q.del : @y⃗ : T⃗ , a ra “ aipy⃗q ^
ľ

Prejpy⃗jqPaipy⃗q.pre

Prejpy⃗jq

loooooooooooooooooooooooomoooooooooooooooooooooooon

γ´
F,ai

py⃗q

s ñ ␣F 1
ai
py⃗F q.

(9)

We can combine multiple predicates with the same name via a disjunction. The detailed methodol-
ogy is outlined in Appendix C.

Positive effect axiom. For isHotp?oq with respect to the action toastp?o,?rq:

@?o:object,?r:object, a
´

a “ toastp?o,?rq ^ can toastp?o,?rq ^ possessp?oq
loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

γ`
isHot, toastp?o,?rq

ñ isHot’p?oq
¯

.

Negative effect axiom. For possessp?oq with respect to the action putonp?o,?rq:

@?o:object,?r:receptacle, a
´

a “ putonp?o,?rq ^ nearp?rq ^ possessp?oq
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

γ´
possess, putonp?o,?rq

ñ ␣possess’p?oq
¯

.
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Succesor State Axioms When a PDDL problem is transformed into the above normal form, Reiter
(1991) showed that, under the assumptions of the Unique Names Axioms (Reiter, 1980) and the
Explanation Closure Axioms (Reiter, 1991), we can construct Successor State Axioms (SSAs) that
capture how a predicate may change or persist as the agent interacts with the environment. Let
F 1
ai
py⃗F q denote the value of a predicate F py⃗F q in the next state after executing action aipy⃗q. The

SSA for F py⃗F q is defined as:

@y⃗ : T⃗ rF 1
ai
py⃗F q ” γ`

F,ai
py⃗q _

`

F py⃗F q ^ ␣γ
´
F,ai

py⃗q
˘

s. (10)

Intuitively, SSAs state that a predicate F 1py⃗F q in the next state can be true either because it is made
true by an action aipy⃗q, as specified by γ`

F,ai
py⃗q, or because it was already true in the previous state,

F py⃗F q, and the action does not make it false, i.e., ␣γ´
F,ai

py⃗q.

@?o:object, ?r:receptacle, a
«

possess’p?oq ”
`

a “ pickupp?oq ^ hand empty ^ nearp?oq
˘

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

γ`
possess, pickupp?oq

_

´

possessp?oq ^ ␣
`

a “ putonp?o,?rq ^ nearp?rq
˘

looooooooooooooooooooooomooooooooooooooooooooooon

γ´
possess, putonp?o,?rq

¯

ff

.

First-Order Regression Let ψ1 denote a first-order state description that holds after executing an
action ai. The regression operator Regrpψ1, aiq “backprojects” ψ1 to compute a logical formula
ψ that must hold before the execution of ai. Fortunately, SSAs provide us a logically equivalent
pre-action condition for each predicate F 1

ai
px⃗q P ψ1 with respect to an action ai P A. Regression of

the entire formula ψ1 is performed by recursively replacing each post-action predicate F 1px⃗q with
its corresponding precondition formula F 1

ai
px⃗q, as defined by the appropriate SSA.

RegrpF 1px⃗q, aiq ” F 1
ai
px⃗q (11)

RegrpisHot(?o),toast(?o, ?r)q ” can toast(?o,?r)^ possess(?o)

SSAs lay the foundation of lifted regression planning, since using SSAs, we are able to replace
a predicate in a post-action state with the subgoals that are required to hold before the action is
executed to achieve the predicate. We provide examples of this functionality in Section 2.1.

C COMBINING EFFECT AXIOMS

Combining Effect Axioms(Appendix) For predicates that appear in multiple action effects, we
need to combine them into a single effect axiom. For instance, we have two antecedent condition
formulae C1px⃗1, y⃗1q and C2px⃗2, y⃗2q where:

@x⃗1 : T⃗x1
, y⃗1 : T⃗y1

rC1px⃗1, y⃗1q ñ F px⃗1qs, (12)

@x⃗2 : T⃗x2
, y⃗2 : T⃗y2

rC2px⃗2, y⃗2q ñ F px⃗2qs. (13)

let θ “ tx⃗2 ÞÑ x⃗1, y2 ÞÑ y⃗1u be the most general unifier (MGU) of C1, and C2, i.e., the substitution
that unifies the variables of C2 with those of the C1 without introducing unnecessary restrictions.
We then apply θ to C2px⃗2, y⃗2q, i.e., SUBSTpθ, C2px⃗2, y⃗2qq “ C2px⃗1, y⃗1q, and form the following
implication:

@x⃗1 : T⃗x1
, y⃗1 : T⃗y1

rC1px⃗1, y⃗1q _ C2px⃗1, y⃗1qs ñ γ`
F,apx⃗1, y⃗1q, (14)

where SUBSTpθ, pq denotes the formula obtained by applying substitution θ to p.
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@a : A, ?o : object, ?r : object
“

`

a “ bakep?o,?rq ^ baking devicep?rq ^ can bakep?o,?rq ^ possessp?oq
˘

_
`

a “ boilp?o,?rq ^ boiling devicep?rq ^ full of waterp?rq ^ possessp?oq
˘‰

ñ isHot’p?oq

D EXAMPLE FOR REGRESSION OF NEGATIVE NL PREDICATES

                                                 ,                                    

Running Example:

''food''  ''object'' Condition  i): Type Consistency

"the agent holds(?o: object )"
Predicate from SSAs

 ''bread'' 

 Condition ii): Predicates Entailments

 ''bread'' 
Misaligned Goal Predicate

Unification
Unification Check

"the agent possesses
(bread:food)"

"pick up (?o: object)"
Action

"the agent's hand is empty"
SSA

"the agent is near (bread)''

''the agent possesses(bread)''  
''the agent holds(bread)''

,

Figure 8: An example of a regression step of a negative predicate with goal–action misalignment.

The process of regressing a negative NL predicate is summarized in Figure 8. To iden-
tify the subgoals necessary for the predicate ␣“the agent possesses(bread:food)” to hold af-
ter an action is executed, we aim to find a predicate that is unifiable with it. The predicate
␣“the agent holds(?o:object)” qualifies for this, under the substitution θ“t“?o”/“bread”u, be-
cause (i) type consistency condition holds p“food” $LLM “object”q, and (ii) once the substitution
is applied, p“the agent possesses (bread)”$LLM “the agent holds (bread)”q. Note that the direction
of the entailment in condition (ii) is the opposite of the case of positive predicates. The post-action
predicate ␣“the agent possesses(bread:food)” can thus be unified with the post-action predicate
␣“the agent holds(?o:object)”, which is in turn equivalent to its SSA with the action “pick up (?o)”,
which yields the new subgoal.

E NL-REGRESSION ALGORITHM

Algorithm 2 presents the regression process in the NL-PDDL framework. Starting from G, we
standardize actions and regress the current subgoal ψ1 through them. The result is simplified and
if valid, the action is appended to the plan, forming pψ, a⃗q. This process is repeated to depth h,
yielding the final plan Π which consists of all such pairs pψ, a⃗q where ψ is logically equivalent to
the original goal G.
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Algorithm 2 NL-REGRESSION ALGORITHM

1: Input: T “ xG, A, h, Fy
2: Output: Π Ď t pψ, a⃗q u with each ψ in DNF
3: Φ “

␣

F 1
ai
px⃗q

ˇ

ˇ F px⃗q P F , aipy⃗q P A
(

.
4: Frontier Ð tpG, r s, 0q u
5: ΠÐ t pG, r s, Hqu
6: while Frontier ‰ H do
7: Extract pψ1, a⃗, dq from Frontier
8: if d ě h then
9: continue

10: end if
11: for each aipy⃗q P A do
12: aipy⃗q Ð STANDARDIZEpaipy⃗qq //See Appendix F.1
13: ψ Ð REGRESSFORMULA

`

ψ1, aipy⃗q, Fq
14: if ψ is evaluated to False then
15: continue
16: end if
17: ψ Ð SIMPLIFYpψq //See Appendix F.2
18: a⃗1

Ð a⃗ } raipy⃗qs
19: Frontier Ð Frontier Y t pψ, a⃗1, d` 1q u
20: ΠÐ ΠY t pψ, a⃗1

q u

21: end for
22: end while
23: return Π

F OPERATIONS IN FIRST-ORDER REGRESSION

F.1 STANDARDIZATION

Let φ be a first-order formula. The standardization of φ, denoted STANDARDIZEpφq, is obtained by
renaming the bound variables in φ with fresh variables so that no two distinct quantifiers in φ bind
the same variable symbol.

Formally, if x1, . . . , xk are the bound variables in φ, then

STANDARDIZEpφq “ φrρpx1q, . . . , ρpxkqs,

where ρ is a bijective renaming function mapping each xi to a fresh variable x1
i such that x1

i R Varpφq
for all i. Here, Varpφq denotes the set of variables occurring in the formula φ.

F.2 SIMPLIFICATIONS

Regression typically generates a large, expanded DNF formula. To keep the resulting plan compact
and interpretable, we apply a set of simplification rules that maintain logical equivalence while
eliminating redundancy. These simplifications enable the planner to express subgoals clearly and
prevent repeated formulas from arising during regression.

F.2.1 EQUALITY-BASED QUANTIFIER ELIMINATION

We eliminate quantified variables that are equal to an object by replacing them with the object, i.e.,

Dx : T, rx “ x˚ ^ F pxqs ” F px˚q

where x˚ is an object. This transformation preserves logical equivalence while eliminating redun-
dant quantification. It is often applied during regression, where it is triggered by the need to unify
variables between predicates and action parameters. This rule is especially valuable when the re-
gressed formula includes equality constraints that enforce correspondences between variables.

F.2.2 CONTRADICTION EVALUATION

Contradictions often arise within regressed formulas and can be simplified to K (false). We consider
two main cases:
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• Conjunctive Formulas. A conjunction that contains mutually exclusive literals or unsat-
isfiable equality conditions simplifies to false. For example:

F pxq ^ ␣F pxq Ñ K,

x “ y ^ x ‰ y Ñ K.

These situations typically occur when inconsistent conditions are introduced through re-
gression or substitution.

Disjunctive Formulas. In disjunctions, the false literal K can be eliminated since it does
not affect the overall satisfiability:

K_ F pxq _ . . . ” F pxq _ . . .

F.2.3 NO NO-OP ASSUMPTION.

We assume that the domain does not contain no-op actions. A no-op action is an action that leaves
the state unchanged, so we assume that every action makes a meaningful change to the state. Hence,
any disjunct in the regressed formula that is logically identical to the original goal can be safely
eliminated.

RegrpGpxqq ”
ł

i

ΨDNF
i _ Gpxq ”

ł

i

Ψ1DNF
i

This guarantees that plans are constructed only from informative regressions.

F.2.4 DNF SUBSUMPTION.

Let ϕ be a DNF formula:

ϕ “
n
ł

i“1

Ci,

in which each clause Ci is a conjunction of literals. We say clause Ci subsumes another clause Cj if
Ci ñ Cj .

In this simplification technique, we eliminate any clause Cj for which there exists another clause Ci

such that Ci ñ Cj . Formally, if
Di ‰ j, such that Ci ñ Cj ,

the formula

ϕ “
n
ł

i“1

Ci

is simplified to
ϕ1 “

ł

i

Ci such that @j, k : pj ‰ kq ñ ␣pCj ñ Ckq

For example, with DNF subsumption, we have

rF1px⃗1q ^ F2px⃗2qs ^ rF1px⃗1q ^ F2px⃗2q ^ F3px⃗3qs ” rF1px⃗1q ^ F2px⃗2qs.

This simplification allows the planner to just maintain the most general subgoal formulas while
preserving correctness.

F.2.5 DUPLICATE DETECTION.

To prevent inefficiency during plan generation, a process called duplicate detection ensures the plan-
ner doesn’t repeatedly visit the same subgoal. Exploring logically equivalent but distinct branches
would lead to wasted computation and overly complex policies.

A regressed formula is marked as a duplicate if it is structurally identical to one already seen, ignor-
ing differences in how variables are named or how the conjuncts are ordered.

To enable this duplicate detection, every conjunctive formula is standardized by performing the
following steps:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Canonicalizing order: Sorting all predicates and their arguments into a fixed, canonical
sequence.

• Consistent variable mapping: Assigning variables consistently across the formula (e.g.,
uniformly replacing x, y, z with v1, v2, v3 in corresponding positions).

• Flattening: Removing nested conjunctions where possible.

G ALFWORLD DETAILS

G.1 ALFWORLD TASKS

ALFWorld simulates a typical household environment and focuses on daily embodied AI tasks.
Table 4 lists the supported task types along with their corresponding goal templates.

Table 4: Task-types and templated goal descriptions in ALFWorld.

Task-type Templates
Pick & Place (a) put a {obj} in {recep}.

(b) put some {obj} on {recep}.
Examine in Light (a) look at {obj} under the {lamp}.

(b) examine the {obj} with the {lamp}.
Clean & Place (a) put a clean {obj} in {recep}.

(b) clean some {obj} and put it in {recep}.
Heat & Place (a) put a hot {obj} in {recep}.

(b) heat some {obj} and put it in {recep}.
Cool & Place (a) put a cool {obj} in {recep}.

(b) cool some {obj} and put it in {recep}.
Pick Two & Place (a) put two {obj} in {recep}.

(b) find two {obj} and put them {recep}.

• Pick & Place (e.g., “put a plate on the coffee table”) — the agent must find an object of
the desired type, pick it up, find the correct location to place it, and put it down there.

• Examine in Light (e.g., “examine a book under the lamp”) — the agent must find an object
of the desired type, locate and turn on a light source with the desired object in-hand.

• Clean & Place (e.g., “clean the knife and put in the drawer”) — the agent must find an
object of the desired type, pick it up, go to a sink or a basin, wash the object by turning on
the faucet, then find the correct location to place it, and put it down there.

• Heat & Place (e.g., “heat a mug and put on the coffee table”) — the agent must find an
object of the desired type, pick it up, go to a microwave, heat the object by turning on the
microwave, then find the correct location to place it, and put it down there.

• Cool & Place (e.g., “put a cool bottle on the countertop”) — the agent must find an object
of the desired type, pick it up, go to a fridge, put the object inside the fridge and cool it,
then find the correct location to place it, and put it down there.

• Pick Two & Place (e.g., “put two pencils in the drawer”) — the agent must find an object
of the desired type, pick it up, find the correct location to place it, put it down there, then
look for another object of the desired type, pick it up, return to the previous location, and
put it down there with the other object.
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G.2 EXAMPLE TRAJECTORY

You are in the middle of a room. Looking quickly around you, you see a
drawer 15, a drawer 19,
a drawer 7, an armchair 1, ... and a drawer 10.
Your task is to: find two remotecontrol and put them in armchair.
> go to sidetable 2
You arrive at loc 34. On the sidetable 2, you see a remotecontrol 1.
> take remotecontrol 1 from sidetable 2
You pick up the remotecontrol 1 from the sidetable 2.
> go to armchair 1
You arrive at loc 1. On the armchair 1, you see nothing.
> put remotecontrol 1 in/on armchair 1
You put the remotecontrol 1 in/on the armchair 1.
> go to sofa 1
You arrive at loc 2. On the sofa 1, you see a newspaper 1, a pillow 1, and
a remotecontrol 2.
> take remotecontrol 2 from sofa 1
You pick up the remotecontrol 2 from the sofa 1.
> go to armchair 1
You arrive at loc 1. On the armchair 1, you see a remotecontrol 1.
> put remotecontrol 2 in/on armchair 1
You won!

H ENTAILMENT DETAILS

H.1 ENTAILMENT DESIGN

In this section we outline how we misaligned the action model and the goal for both AFLWorld and
Blocksworld domain.

ALFWorld Entailment Predicates Instead of using symbolic predicates such as, we define each
action effect and precondition directly in NL and allow multiple entailed variants. Hard string match-
ing is replaced with entailment sets as follows:

handEmpty : t“the agent’s hand is empty”, “the agent is not holding anything”u
inpo, rq : t“o is in r”, “o is inside r”, “o is stored in r”u
hotpoq : t“o is heated”, “o is hot”, “o is baked”u

washedpoq : t“o is washed”, “o is clean”, “o is cleaned”u
cooledpoq : t“o is chilled”, “o is cool”, “o is cooled”u

holdingpoq : t“the agent is holding o”, “the agent possesses o”, “the agent has o in possessing”u
onprq : t“r is turned on”, “r is on”, “r is switched on”u

Blocksworld Entailment Predicates). We express each predicate directly in NL and allow multi-
ple entailed variants rather than relying on canonical symbols. The entailment sets are:

handEmpty : t“the agent is not holding any objects”, “the agent is not holding anything”u
clearpbq : t“block b has nothing on top of it”, “no block is on b”u

onTablepbq : t“block b sits directly on the table”, “b is on the table”u
onpb1, b2q : t“block b1 is directly above block b2”, “b1 on b2”u

holdingpbq : t“the agent possesses block b”, “the agent is holding b”u

H.2 NATURAL LANGUAGE DESCRIPTION OF ACTION MODELS

We convert each action schema into a natural language description that specifies its preconditions
and effects. These NL descriptions are provided to all LLM- and VLM-based models. To test
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alignment, we intentionally modify the descriptions to use phrases that entail the goal but do not
exactly match the goal string, thereby requiring explicit entailment reasoning. Below we provide
examples of the NL descriptions of both the ALFWorld and Blocksworld action models.

Natural Language ALFWorld Action Model :

The pickup action requires the agent’s hand to be empty and results in the
agent holding the target object. The put action requires the agent to
already be holding an object and allows the object to be placed inside or
on top of another receptacle, after which the agent’s hand becomes empty.
The heat action requires the agent to be holding an object and to be at a
heating device, producing the effect that the object becomes hot or baked.
The wash action requires the agent to be holding the object and to be at a
washing device, resulting in the object becoming washed. The chill action
requires the agent to be holding the object and to be at a chilling device,
resulting in the object becoming chilled. The light action requires the
agent to be holding the object and to be at a lighting device, producing
the effect that the object becomes illuminated. Finally, device state can
be toggled by turn on and turn off, which require the agent to be at the
device and result in it being switched on or off

Natural Language Blocksworld Action Model :

The pickup action requires the agent’s hand to be empty and results in the
agent holding the target object. The put action requires the agent to
already be holding an object and allows the object to be placed inside or
on top of another receptacle, after which the agent’s hand becomes empty.
The heat action requires the agent to be holding an object and to be at a
heating device, producing the effect that the object becomes hot or baked.
The wash action requires the agent to be holding the object and to be at a
washing device, resulting in the object becoming washed. The chill action
requires the agent to be holding the object and to be at a chilling device,
resulting in the object becoming chilled. The light action requires the
agent to be holding the object and to be at a lighting device, producing
the effect that the object becomes illuminated. Finally, device state can
be toggled by turn on and turn off, which require the agent to be at the
device and result in it being switched on or off

I DESIGN DETAILS OF NL-PDDL ALFWORLD AND BLOCKSWORLD
IMPLEMENTATION

I.1 ALFWORLD

In addition to the core NL-PDDL planner, our ALFWorld agent consists of an VLM-based obser-
vation parser, a knowledge base (KB), and an LLM-based object grounder. The observation parser
extracts a list of object names from either text or image input. We use Gemini-2.0-Flash (Team
et al., 2023) for image observations parsing. After obtaining the object names, we use GPT-4o to
instantiate these into NL-predicates and update the agent’s KB. The KB is implemented using Py-
Datalog (Carbonnelle, 2024). Whenever new knowledge is acquired, the agent queries subgoals
generated by the NL-PDDL regression planner to determine a feasible plan to execute.

Observation Parser The observation parser is responsible for extracting candidate object names
and their types from either textual descriptions or visual observations. In the ALFWorld Text setting,
object names are directly provided in the environment description, so we simply parse this list to
extract object references. In the ALFWorld Vision setting, the parser receives RGB frames from a
simulated first-person camera. Here, we use Gemini-2.0-Flash (Team et al., 2023), a VLM capable
of open-vocabulary object detection, to generate bounding boxes around objects of interest. Gemini
is prompted with relevant object descriptions (e.g., “Find a cup”, “Find something that can wash the
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cup”) derived from subgoals generated by the NL-PDDL planner, and it returns a list of detected
objects with bounding boxes, labels, and confidence scores. The resulting object list serves as the
input to the grounding stage but does not by itself produce predicates or symbolic facts.

Object Grounder The object grounder bridges the gap between raw object names and the struc-
tured predicates required by the NL-PDDL planner. Given the list of parsed object tokens and
their textual or visual context, we use GPT-4o to generate grounded natural language predicates
that align with our lifted planning formalism. For example, given the input “mug is cleaned,” the
grounder infers the predicate clean(mug 1). The grounder also infers action-relevant relations
such as canClean(sink 1, apple 1) when provided with relevant context. This ensures that
grounded facts are consistent with both the agent’s environment and the symbolic schema expected
by the planner.

Knowledge Base The knowledge base (KB) stores grounded predicates and supports logical rea-
soning over them. We implement the KB using PyDatalog (Carbonnelle, 2024), a lightweight logic
programming library for Python that supports declarative predicate logic, variable binding, and rule-
based inference. During plan execution, the planner queries the KB to check whether a lifted subgoal
can be satisfied with the current facts. If the KB entails a subgoal, we bind the variables in both the
subgoal and the associated actions, and then execute the corresponding plan. This allows the planner
to maintain consistency between abstract subgoals and grounded execution.

I.2 BLOCKSWORLD

For the Blocksworld domain, we convert the original PDDL goal into a corresponding NL-PDDL
formulation. We follow the methodology of Valmeekam et al. (2023a) to ensure consistency be-
tween symbolic and natural language representations. The lifted regression planner then produces
a sequence of subgoals with a fixed horizon of 10, which are grounded and validated sequentially.
Each subgoal and the agent’s initial state are translated into PyDatalog and checked for logical con-
sistency with the original PDDL specification. Once all subgoals are validated, we use the standard
PDDL validator from Muise et al. (2022) to ensure correctness of the complete plan.

I.3 LLM PROMPT FOR TYPE CONSISTENCY CHECK

ROLE:
You are a helper agent in a common household setting.
You are checking TYPE ENTAILMENT between two predicates’ term types.

INSTRUCTION:
1. If the candidate’s term type set implies or matches the target’s term
type set for each corresponding term, answer YES.
2. Consider synonyms and common-sense subtype relations (e.g.,
’vegetable’ entails ’food’).
3. If information is unknown, be conservative and answer NO unless it’s
very likely.

INPUT:
- Target term types: {$predicates_in_action_model_type$}
- Candidate term types: {$misaligned_goal_type$}

OUTPUT FORMAT:
- Line 1: exactly YES or NO.
- Line 2: Reason.

RESPONSE:
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ROLE:
You are a helper agent in a common household setting.

QUESTION:
- if you know Predicate 2 "{$action_model_predicate$}" is true, can you
imply Predicate 1 "{$misaligned_goal_predicate$}" is true?.
- Respond with exactly "YES" if you think the statement is generally
implied
- Respond with "NO" if you think the statement is generally false

INPUT:
- Predicate 1: "{$misaligned_goal_predicate$}"
- Predicate 2: "{$action_model_predicat$e$}"

INSTRUCTION:
1. Use the definition of the predicates to determine if Predicate 2
implies Predicate 1.
2. You know the following background to determine the specific
information of the objects within Predicate 1 and Predicate 2: $goal
predicates$
3. When determining the response, consider the meaning of the Predicate
1 and Predicate 2 with the type of the specific object each refers to in
common contexts.
4. Be creative and think outside the box. If there is just a typo
between the two predicates, you should say Yes.

OUTPUT FORMAT:
- Line 1: exactly YES or NO.
- Line 2: Reason.

RESPONSE:

J WORKS ON TRANSLATING NL TO PDDL

PDDL has long been established as the primary standard for defining planning domains and prob-
lems in AI Gerevini (2020); Haslum et al. (2019). However, authoring accurate PDDL domains and
problem specifications is a resource-intensive process that requires human expertise. To facilitate
this process, a growing body of work has explored translating NL descriptions of planning domains
and problems into PDDL.

Early efforts include NLtoPDDL Miglani & Yorke-Smith (2020), a pipeline that leverages read-
ily available NL data by combining pre-trained contextual embeddings with Deep Reinforcement
Learning (DRL) techniques previously used to extract structured plans from NL. Another example
is FPTCP Huo et al. (2020), which constructs a ternary template of NL sentences to extract actions
and their associated objects in a human-in-the-loop framework.

With the emergence of large language models (LLMs), their strong language understanding and
commonsense reasoning abilities have been used to further facilitate PDDL construction from NL.
For instance, Xie et al. (2023) uses the in-context learning capabilities of LLMs to translate NL
domains and problems into PDDL via few-shot examples, demonstrating that using LLMs solely for
translation and delegating the planning step to a PDDL solver yields superior results compared to
direct LLM-based planning. Similarly, Smirnov et al. (2024) employs an LLM to generate PDDL
plans, but also introduces LLM-based consistency checks and error-correction loops to improve
plan quality. More recently, advanced approaches such as Ada ? have been proposed. Rather than
translating a pre-existing instruction or domain manual into a single PDDL file, Ada interactively
learns adaptive planning representations. In this framework, high-level action abstractions and low-
level controllers are jointly adapted to a given domain of planning tasks, guided by NL inputs.

Although these seminal works significantly improve the usability of PDDL, they are all limited to
translating NL inputs into PDDL and then relying on an existing PDDL planner—a process that can
be error-prone due to the inherent limitations of LLMs and the auxiliary techniques involved. In
contrast, NL-PDDL directly extends the PDDL framework to natively support NL specifications,
thereby eliminating the need for NL-to-PDDL translation. Moreover, prior approaches primarily
focus on generating and refining closed-world domains, whereas NL-PDDL supports open-world
planning with incomplete domain knowledge.
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K NUMBER OF UNDEFINED PREDICATES IN ALFWORLD

In practical scenarios, misalignment between an agent’s action model and the underlying task goals
is common. Consequently, it is essential for a symbolic planner to incorporate LLM-based reasoning
when necessary—a capability that NL-PDDL is explicitly designed to provide.

As shown in Table 5, In the ALFWorld domain, a total of 583 unique predicates appear across all
tasks, with an average of 52.26 predicates per task. Yet the action model defines only 22 predi-
cates—approximately 3.7% of all predicates observed in our experiments. The remaining predicates
arise dynamically from the user’s instructions and the agent’s interaction with the environment.

Because these predicates are not predefined, existing symbolic planning approaches that require
a fixed, closed-world predicate set become infeasible. In contrast, NL-PDDL is the only formal
framework that removes the need for a predefined predicate vocabulary by leveraging LLM-based
entailment reasoning to interpret and ground predicates on demand.

Table 5: Predicate statistics for the ALFWorld domain.

Statistic Value
Total Number of Predicates 583
Predefined Predicates 22
Predicates per Task 52.26

L ENTILAMENT CHECK

We conducted an additional ablation study (cf. Table 6) to evaluate the correctness of the LLM when
performing predicate-level affordance reasoning over natural-language predicates. We randomly
selected 20 predicates from ALFWorld and asked a human annotator to manually provide three
sentences that should be entailed by each predicate and three sentences that should not be entailed.
This yielded 120 entailment–non-entailment pairs in total. We then evaluated all pairs using the
NL-PDDL entailment procedure to assess the model’s precision and robustness in predicate-level
reasoning.

Table 6: Classification statistics for the ALFWorld predicate evaluation.

Metric Number of Instances
True Positive 60
True Negative 58
False Positive 0
False Negative 2
Total Accuracy 98.3

M LLM CALLS AND LATENCY

We randomly select 20 goals from Misaligned BlockWorld and Misaligned ALFWorld for each depth
and report the mean and 95% confidence interval of the total number of LLM calls in Table 7. These
totals include both local cache hits (i.e., we store all previously encountered LLM entailments in a
global cache shared across goals) and actual API calls.

Table 7: LLM call and entailment statistics across domains.

Domain ALFWorld with Misalignment Misalignment BlocksWorld
LLM API Call 50.4˘ 12.9 73.2˘ 23.4
Total Entailments Reasoning 221.5˘ 155.6 1263˘ 435.7
Avg Latency per Call 1.8648 sec 1.2443 sec
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