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ABSTRACT

Real-time analysis and prediction of meteorological anomalies protect human lives
and infrastructure. Traditional methods rely on numerical threshold setting and
manual interpretation of weather heatmaps with Geographic Information Systems
(GIS), which can be slow and error-prone. Our research redefines Meteorological
Anomalies Analysis(MAA) by framing it as a Visual Question Answering (VQA)
problem, thereby introducing a more precise and automated solution. Leveraging
Vision-Language Models (VLM) to simultaneously process visual and textual data,
we offer an effective aid to enhance the analysis process of weather heatmaps. Our
initial assessment of general-purpose VLMs (e.g., GPT-4-Vision) on MAA revealed
poor performance, characterized by low accuracy and frequent hallucinations due
to inadequate color differentiation and insufficient meteorological knowledge. To
address these challenges, we introduce ClimateIQA, the first meteorological
VQA dataset, which includes 8,760 wind gust heatmaps and 254,040 question-
answer pairs covering four question types, both generated from the latest climate
reanalysis data. We also propose Sparse Position and Outline Tracking (SPOT),
an innovative technique that leverages OpenCV and K-Means clustering to capture
and depict color contours in heatmaps, providing ClimateIQA with more accurate
color spatial location information. Finally, we present Climate-Zoo, the first
meteorological VLM collection, which adapts VLMs to meteorological applications
using the ClimateIQA dataset. Experiment results demonstrate that models from
Climate-Zoo substantially outperform state-of-the-art general VLMs, achieving an
accuracy increase from 0% to over 90% in MAA verification.

1 INTRODUCTION

Meteorology is essential for disaster preparedness, agricultural planning, and climate resilience,
as it encompasses the study of weather patterns, climate change, and severe weather events. One
important task in meteorology is Meteorological Anomalies Analysis (MAA), which includes both
anomalies detection and interpretation. MAA has become increasingly urgent due to the rise in
these events driven by global warming. Traditionally, MAA relies on numerical threshold setting
and manual analysis of weather anomaly heatmaps, which visualize data such as temperature, wind
speed, and precipitation (Wunsch et al., 2022). Nonetheless, traditional methods using Geographic
Information Systems (GIS) to analyze these heatmaps often require manual work, making the process
time-consuming and error-prone.

In recent years, AI has advanced in processing large datasets and accelerating meteorological tasks.
Machine learning models, such as Convolutional Neural Networks (CNNs), have been used for
weather prediction and anomalies detection. Yet they mostly use numeric data and often yield
low accuracy (Fang et al., 2021). Large Language Models (LLMs), such as ChatClimate (Vaghefi
et al., 2023), ClimateGPT (Thulke et al., 2024), and ClimSight (Koldunov & Jung, 2024), excel at
generating textual weather reports but struggle with interpreting visual data, which are an essential
part in MAA.

Although General Vision-Language Models (VLMs) such as GPT-4-Vision (Achiam et al., 2023),
Qwen-VL (Bai et al., 2023), and LLaVA 1.6 (Liu et al., 2024a) have broad abilities in visual
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Conversation 1
User: Could you identify the ocean regions currently 
undergoing strong gales, storm or hurricane?
Llava-v1.6: The image you‘ve provided appears to be a 
satellite image of the Earth’s atmosphere, possibly showing 
cloud patterns. However, without specific data or a legend, 
it’s not possible to accurately identify the ocean regions 
currently undergoing strong gales, storms, or hurricanes. 
GPT-4-Vision: Sorry, I can’t help with identifying weather 
patterns or ocean conditions from an image. For accurate 
and up-to-date information on oceanic weather phenomena 
such as strong gales… (21 words remaining)
Climate-Zoo (ours) : High Seas of the North Atlantic 
Ocean, Canary Islands, Southern Peninsula, Brazilian 
(Trindade) part of the South Atlantic Ocean, Alagoas, 
Russian part of the Sea of Okhotsk…(332 words remaining)

Conversation 2
User: Can you verify whether it is true or false that the 
location specified as High Seas of the Indian Ocean is 
currently experiencing strong gales, storm or hurricane?
Llava-v1.6: Without specific data or information about the 
current weather conditions in the High Seas of the Indian 
Ocean, it is not possible for me to verify whether there are 
strong gales, storms, or hurricanes occurring at that location.
GPT-4-Vision: I'm sorry, but I can't directly verify current 
meteorological conditions such as storms or hurricanes in 
any location, including the high seas of the Indian Ocean. To 
get the most accurate and up-to-date information on weather 
conditions, you should consult real-time data from an 
official meteorological service or weather forecasting 
agency.
Climate-Zoo  (ours): True

Caption: Globally, regions are battling intense 
weather phenomena, including powerful gales, 
storms, and hurricanes, with wind gusts 
surpassing 20.7 m/s. The fury of these winds is 
felt over vast lands and oceanic stretches alike. 
Notably, areas such as High Seas of the North 
Atlantic Ocean... Closer to human habitation, 
land regions, … (325 words remaining)

Figure 1: Comparative Analysis of Visual Chat and Reasoning Abilities in Meteorological Anomalies
Analysis. Regions marked in yellow indicate strong breezes, red indicates hurricanes, and green
indicates moderate breezes. In the conversation, hallucinations are marked in blue, refusal-to-answer
responses are marked in red, and accurate responses are marked in green.

question answering, they struggle with MAA. Our case study (Figure 1) and initial assessment
(Figure 2) demonstrate that these models often make mistakes when interpreting meteorological
heatmaps. Three common issues observed are color misidentification, incorrect and irrelevant
responses (hallucinations), and incomplete answers. A potential solution to these issues is to fine-tune
VLMs using specialized meteorological data. However, prior meteorological datasets, for example,
Extremeweather (Racah et al., 2017) and ClimSim (Yu et al., 2024), primarily focus on numeric
analysis of anomalies detection. The lack of relevant guidelines and prior work leaves researchers
with little guidance on creating effective images and Question-Answering pairs for MAA. To this
end, our research uses a novel approach to identify issues underlying the poor performance of VLMs
on MAA and propose potential solutions. The contributions of this work are:

1. We identify a set of issues and corresponding solutions for improving VLMs performance in heat
map-based MAA. These findings can serve as a baseline framework for future efforts in this field.

2. We propose a novel method, Sparse Position and Outline Tracking (SPOT), to detect anomalies
and obtain spatial information on colored regions in meteorological heatmaps. SPOT uses K-Means
(Krishna & Murty, 1999) to obtain color representations (Figure 3). Experiments show that color
spatial location obtained via SPOT has a 100% accuracy.

3. We release the first meteorological VQA dataset, ClimateIQA. It consists of 8,760 high-resolution
images and 254k instruction samples. Compiled from ERA5 (Hersbach et al., 2020) reanalysis data,
data processed by SPOT, geography knowledge bases (Programme, 2019; Institute, 2018), and the
Beaufort Scale (Monmonier, 2005), ClimateIQA is designed to train VLMs to identify anomalies, as
well as interpret and describe meteorological heatmaps.

4. We introduce Climate-Zoo, the first collection of meteorological VLMs built upon state-of-the-art
VLMs (e.g., Qwen-VL-Chat (Bai et al., 2023), Llava 1.6 (Liu et al., 2024a), and Yi-VL (Young
et al., 2024)). Climate-Zoo substantially outperforms existing models on meteorological heatmap
anomalies interpretation and can effectively localize areas of anomalies, setting a new benchmark for
meteorological AI tools.

2 RELATED WORK

2.1 VISION LANGUAGE MODELS AND VISUAL QUESTION ANSWERING

The integration of visual and textual data has led to the development of advanced VLMs, which
typically build upon the capabilities of text-only LLMs, such as GPT-4 (Achiam et al., 2023),
LLaMA (Touvron et al., 2023), Gemini (Team et al., 2023), and Claude (Anthropic, 2024). Notable
developments in VLMs include GPT-4-vision (Achiam et al., 2023), Qwen-VL (Bai et al., 2023), and
LLaVA (Li et al., 2024), which have substantially enhanced the efficiency of VQA tasks. These tasks
require models to comprehend and respond to information and questions in both visual and textual
formats.
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➕

• Over the North Atlantic 
Ocean, west of the British 
Isles and Scandinavia.

• North Pacific Ocean, east of 
Japan.

• Across central Asia.
• Southern hemisphere, over 

the Southern Ocean

List the color names + Identify 
all the areas in red color

• North Atlantic Ocean
• Southern Hemisphere, 

southern part of the Atlantic 
Ocean, east of the southern 
tip of South America.

• Pacific Ocean, east of Japan 
and northeast of Australia.

• Antarctica in the Southern 
Ocean.

• Northern Pacific Ocean, just 
east of the northern edge of Asia 
and stretching towards North 
America.

• Southern Atlantic Ocean, east 
of South America's southern tip.

• Patches near the tip of South 
America and on the border 
between Chile and Argentina.

• The North Atlantic, northeast of 
Canada and west of Europe.

Add grid + List the color names 
in grids + Identify all the areas in 
red color

Identify all the areas in red color
Split image + List the color names 
in sub images + Identify all the 
areas in red color

1. North Atlantic Ocean (large prominent area indicating very strong 
wind gusts). 2. Southern Atlantic Ocean, east of the southern tip of 
South America. 3. Pacific Ocean, notably east of Japan and northeast of 
Australia. 4. Off the coast of Antarctica in the Southern Ocean.
30N-90N, 120E-120W: Eastern Asia, the Pacific Ocean, and North 
America. Red areas seem to be over the ocean. 30S-30N, 120W-0: 
Covers parts of the Eastern Pacific, South America, the Atlantic Ocean, 
Africa, and the Western part of the Indian Ocean. South America, 
specifically in northern areas. 30S-90S, 120W-0: western coast of 
South America, off the coast of Chile and Peru. Southern Ocean, south 
of the Atlantic Ocean.

Experiment 1 Experiment 4Experiment 2 Experiment 3

Figure 2: Result of the Initial Assessment via Prompt-Tuning GPT-4-Vision. Sentences in red mark
inaccurate responses, sentences in orange and black mean surprising findings (patches and geography
coordinates), and sentences in green mark accurate answers.

To enhance model performance in VQA, researchers have adopted advanced methods for visual
feature extraction (Zheng et al., 2023), developed robust model architectures (Liu et al., 2024a), and
explored innovative learning paradigms (Chen et al., 2024). Despite these advancements, VQA tasks
continue to face challenges, such as the occurrence of hallucinations (Bai et al., 2024), often stemming
from issues like data quality and visual uncertainty (Leng et al., 2023). Addressing these issues
highlights the critical need for high-quality datasets and effective strategies to mitigate challenges in
VQA tasks.

2.2 AI FOR METEOROLOGY

The integration of AI in meteorology has seen many applications, such as employing AI for long-
term weather prediction (Lam et al., 2022), typhoon trajectory forecasting (Bi et al., 2022), and
weather classification (Dalal et al., 2023). Models like Pangu-weather Bi et al. (2023), Fengwu Chen
et al. (2023), and NeuralGCM Kochkov et al. (2024) are outstanding. The advent of LLMs like
ClimSight (Koldunov & Jung, 2024), ChatClimate (Vaghefi et al., 2023), Arabic Mini-ClimateGPT
(Mullappilly et al., 2023), and ClimateGPT (Thulke et al., 2024) has broadened the scope of textual
data processing in meteorology. These models have been instrumental in assimilating general
meteorological knowledge related to climates, answering common queries, and offering insights.
However, these models predominantly rely on textual data. This becomes particularly limiting
when addressing complex challenges such as the analysis of anomalies distributions in heatmap,
where textual data alone proves inadequate and prone to inaccuracies, often leading to serious
hallucinations (Bulian et al., 2023). Meteorologists often need to interpret data from satellite images
(Liu et al., 2024b), radar (Guastavino et al., 2022), heatmaps (Lee et al., 2024), and isobaric maps
(Xu et al., 2024) to make accurate assessments. Nonetheless, there remains a lack of VLMs capable
of interpreting such visual meteorological data.

3 INITIAL ASSESSMENT OF GPT-4-VISION

Among various VLMs, GPT-4-Vision (Achiam et al., 2023) has demonstrated exceptional capabilities
in understanding and generating visual and textual content (Singh et al.). We began with an in-depth
evaluation of its ability to identify and localize red regions in heatmap images, indicating areas
like high wind speed, temperatures, or significant weather metrics, aiming to pinpoint areas for
enhancement based on its limitations. Four experiments were designed for this assessment (Figure 2):

1. Direct Red Region Identification: We tested the VLM’s ability to identify red regions directly,
without guidance, to evaluate its color perception and localization capabilities.

2. Two-Step Color Identification: After observing potential color confusion in the first experiment,
the process was altered to first list all colors in the image, then identify red regions specifically,
improving the accuracy of color recognition.
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Color Filter

K-Means
Geographic

Knowledge Base

SPOT

ClimateIQA

254k Question
Answer Pairs8760 Images

Geo-Indexing

Enumeration

Verification

Description
➕

Question & Answer Templates

Coordinates

Wind Speed

Locations

Coordinates

Figure 3: Dataset Creation Process. Images were processed using SPOT to extract color contours
(marked in blue) and representative point coordinates (marked in purple), such as (-40, 65). The
extracted data were integrated into geographic knowledge bases to retrieve location-specific informa-
tion. These data, including location, coordinates, and wind speed, were then input into predefined
question-and-answer templates, resulting in the generation of 254,040 question-answer pairs. The
final dataset, ClimateIQA, pairs these QA pairs with 8,760 images, enabling comprehensive climate-
related visual question answering.

3. Grid-Based Color Identification: To capture fine-grained details, we implemented a grid-based
method, dividing images into a 6 × 6 grid, each with geographic details. The model identified all
colors which are present in the cell and then located the red-colored regions, evaluating the model’s
ability to capture local color information and its impact on localization accuracy.

4. Image Segmentation and Combined Analysis: Employing image segmentation via the PIL toolkit
(Umesh, 2012), we divided the input image into sub-images and tasked the VLM with analyzing both
the overall and segmented images. The results were then combined for a comprehensive interpretation,
aiming to improve the completeness and accuracy of the model’s responses.

The results varied across experiments. In Experiment 1, GPT-4-Vision struggled with direct identifi-
cation of red regions, inaccurately marking locations such as "Across central Asia". Experiment 2
showed improvement with correct identifications, though responses were incomplete and the recall
rate was just 5%. Experiment 3, the grid-based approach, better-captured details like patches but had
inconsistent performance across different images, with an average accuracy of 7%. Experiment 4
utilized a segmented and combined analysis approach, yielding the most accurate results among our
trials. The model successfully identified sub-image colors and provided more detailed interpretations,
including specific geographic coordinates and thorough annotations. Despite these improvements,
the responses were still incomplete, with an average recall rate of only 12%. Additionally, similar to
Experiment 3, erroneous results occurred when segmented image analysis led to incorrect color judg-
ments. The increased number of generated answers correlated with a higher error rate, highlighting a
critical area for further enhancement.

Overall, these experiments highlight areas for improvement in VLMs, particularly in addressing color
confusion and enhancing geographical knowledge. Despite improvements in image segmentation and
combined analysis, further refinements are necessary for more accurate and reliable performance in
identifying and localizing colored regions in images.

4 CLIMATEIQA DATASET CREATION

As shown in Figure 3, we ensured the reliability of the image sources and developed a new method
for accurately extracting color and position information from the images.

4
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4.1 DATA COLLECTION AND PRE-PROCESSING

Our meteorological data were derived from the ERA5 hourly dataset on single levels. ERA5, produced
by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020),
provides comprehensive global climate and weather records since 1940. This dataset is created using
data assimilation techniques that integrate model outputs with observational data, enhancing accuracy
by reconciling forecasts with new observations every 12 hours. For this study, we selected hourly
wind gust data for 2023. Due to the complexity of wind gust heatmaps, which contains two times
colors than precipitation or temperature heatmaps, wind gust data is especially representative for
identifying anomalies. The method developed with wind gust data can be conveniently extended in
the future to analyze less complex heatmaps, such as heatmaps for heatwaves, droughts, and heavy
precipitation.

To classify wind speeds, we employed the Beaufort Scale (Monmonier, 2005), a widely recognized
system that quantifies wind speed by observing its impact at sea or on land. The Beaufort Scale
categorizes wind speeds from 0 to 12, with each level associated with a specific wind speed range
and descriptive physical conditions. In our analysis, each wind force level is represented by a
unique color gradient, starting from white for the lowest wind speeds and progressing through light
cyan, aquamarine, light green, light lime green, light lemon yellow, light yellow, peach, light coral,
salmon, deep pink, and dark magenta, culminating at dark purple for the highest wind speeds. In
meteorological research, Beaufort scale level 8 (20.8 m/s) is commonly used to demarcate extreme
weather conditions Radinović & Ćurić (2014); Weaver et al. (2021). Therefore, we marked colors
after "peach" as anomalies in the heatmaps. To facilitate the geographical localization of anomalies,
we superimposed a world map onto each heatmap.

To extract and compile color information from meteorological heatmap images, we developed a
method called "SPOT" (Sparse Position and Outline Tracking). Here are the process:

1. Color Segmentation: Initially, our SPOT method extracts contours from heatmaps based on
four primary colors: red, yellow, white, and green, using OpenCV as the color filter (Culjak et al.,
2012). We obtain the contour coordinates of each color region to address the issue of irregular shapes
often encountered in heatmaps. This process is iterated twice to ensure accuracy, selecting the best
segmentation result to mitigate errors.

2. Representative Point Selection: Given the large volume of contour coordinate data, we represent
each color region’s geographical location and distribution shape using a minimal set of points. We
start by determining the number of points needed based on the area of each color region within the
image. To tackle the challenge of representing irregularly shaped color regions with a few coordinates,
we applied the K-Means clustering algorithm to compute the centroid coordinates for each region.
We set the random state to 0 to ensure reproducibility and eliminate randomness. The number of
clusters (k) is determined by the area of the color regions: Less than 1% of the total area: 1 point.
1%-5% of the total area: 3 points. 5%-10% of the total area: 5 points. More than 10% of the total
area: 10 points.

3. Filtering Outliers: We implemented a rule-based function to ensure all points fall within their
respective color regions. Any points found outside these regions are automatically excluded and
replaced with new points from the nearest valid contour. In a processed heatmap containing 5,448
points, approximately 122 points may fall outside the contour, resulting in an efficiency rate of about
97.7%. Our method reroutes these outlier points to maintain the robustness and accuracy of the model.
As shown in Figure 3 of our paper, each purple dot precisely represents the spatial location and shape
of the corresponding color region.

As illustrated in Figure 3, each purple dot represents the position and shape of its corresponding color
region. With the help of the SPOT method, we can correctly identify the spatial location of different
color regions with 100% accuracy. The pseudo-code of SPOT is in Appendix 1.

4.2 CREATING INSTRUCTION-TUNING DATA

After identifying the representative points for each color block using SPOT, we indexed the corre-
sponding geographical names of these points coordinates using two geographic databases: the IHO
Sea Areas (Institute, 2018) and the World Bank-approved Administrative Boundaries (Programme,

5
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Heatmap Image  Verification Enumeration Geo-Indexing Description

Figure 4: Distribution of red and yellow point coordinate data collected by SPOT (left) and the final
ClimateIQA dataset (right).

2019). The IHO Sea Areas database delineates the boundaries of the world’s major oceans and seas,
while the World Bank-approved administrative boundaries database includes international borders,
disputed areas, coastlines, lakes, and a usage guide.

We then designed templates (Table 6) for question and answer generation, ensuring that each question
and answer pair would be generated based on the templates and could be substantiated by the data.
We filled in the blanks of templates with essential information such as specific locations, coordinates
to systematically generate the corresponding question and answer pairs, forming the instruction-
tuning data. As shwon in Table 6, we divided all the instruction-tuning data into four different
types: (1) Verification questions that determine whether a location in the heatmap has anomalies ; (2)
Enumeration questions that list all the places that have anomalies in the whole heatmap; (3) Geo-
Indexing questions that provide the coordinates of a anomalies in the heatmap; and (4) Description
questions that provide a detailed interpretation of anomalies for the given image.

The development of these four tasks is based on the limitations identified during our initial assessment
experiments with VLM in session three. Specifically, we identified that the VLM lacked sufficient
geographic and meteorological knowledge, leading to incorrect answers, inaccurate color localization,
and incomplete responses. To address these issues, we constructed the following four tasks, each
targeting a specific area of improvement: Verification Questions aims to enhance the model’s accuracy
in identifying anomalies, which is critical for timely and precise weather forecasting. Geo-Indexing
Questions focuses on improving the model’s capability to accurately locate colors within images,
which is essential for correct geographical referencing and the interpretation of meteorological data.
Enumeration Question is designed to enhance the completeness of the model’s responses, ensuring that
all relevant aspects of a query are adequately addressed. Description Questions involves generating
comprehensive reports, which are vital for detailed meteorological analysis and communication of
weather-related findings. Each of these tasks is meticulously crafted to address specific weaknesses
in VLM, thereby improving its overall performance in anomalies recognition and analysis.

4.3 DATASET STATISTICS

Our approach produced 8,760 high-resolution heatmaps, each measuring 3510 × 1755 pixels. These
images provide detailed visual representations of global wind patterns. An example of instruction-
tuning data is shown in Figure 6. With geographical names fixed (Figure 4), the question type
distribution is as follows: Verification Questions (34.5%), List Questions (27.6%), Geo-Indexing
Questions (34.5%), and Description Questions (3.4%). We focused on localizing anomalies, collecting
points in red (wind speeds exceeding 20.8 m/s) and yellow (wind speeds between 10.8-20.7 m/s). Of
the data collected by SPOT, 37% of the points are red, and 63% are yellow.

This process yielded a large-scale instruction-tuning dataset of 254,040 data points. We further split
it into training, validation, and testing sets in a 7:1:2 ratio, with 177,828 instruction samples for
training, 25,404 for validation, and 50,808 for testing. We designate 203k, including both training
and validation data, as fine-tuning dataset.
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Geo-Indexing

Enumeration

Verification

Description

Visual
Language Model

Climate-Zoo

Supervised
Fine-tuning

203k QA 
Pairs

8760
Images Extreme Weather 

Events Detection

User: Can you verify whether it is true or 
false that the location specified as Indian 
Ocean is currently experiencing strong 
gales, storm or hurricane?
Assistant: True

User: Could you identify the ocean 
regions currently undergoing strong gales, 
storm or hurricane?
Assistant: Russian, the Sea of Okhotsk

8 x H100

ClimateIQA

Figure 5: Process Supervised Fine-tuning Climate-Zoo.

Meanwhile, as employing a less frequent sampling strategy would mitigate redundancy and enrich
the dataset with more unique information, we also create a ClimateIQA-daily using daily wind gust
data, anchored at 00 UTC. ClimateIQA-daily contains only 365 images and has the same question
type ratio distribution as ClimateIQA.

5 CLIMATE-ZOO: ADAPTING VLMS TO METEOROLOGY

This section details our methods to enhance the performance of VLMs on MAA through prompt-
tuning and supervised fine-tuning with ClimateIQA.

Base models Based on model performance on VLM benchmarks (Goyal et al., 2017; Lu et al.,
2022), we selected three state-of-the-art VLMs as our base models for improvement: Llava-v1.6-
mistral-7b (Liu et al., 2024a), Qwen-VL-Chat (Bai et al., 2023), and Yi-VL-6B (Young et al., 2024).
Llava-v1.6 excels in multimodal understanding, Qwen-VL-Chat in visual dialog tasks, and Yi-VL-6B
in visual reasoning.

Supervised fine-tuning

Supervised fine-tuning involves instructing a pre-trained model to improve its performance on a
specific task by providing task-specific information. As depicted in Figure 5, we used 70% of the
data for training, 10% for validation, and 20% for testing. Our strategy included freezing the weights
of the visual encoder and employing a unified encoder layer to reduce computational costs and
mitigate overfitting risks. This approach is supported by (Khattak et al., 2023), who demonstrated
that pre-trained visual encoders are proficient at extracting meaningful features. Additionally, the size
of the training dataset significantly impacts fine-tuning effectiveness. We conducted experiments with
different dataset sizes (10k, 50k, 100k, and 203k) to evaluate the effects on fine-tuning performance
and ultimately selected the best-performing model.

Training details We conducted full-parameter training on three prominent large-scale VLMs: Llava-
v1.6 (7B parameters), Qwen-VL-Chat (7B parameters), and Yi-VL-6B (6B parameters), utilizing the
Swift toolkit for its efficiency and flexibility. In addition to full-parameter tuning, we also fine-tune
these models with Low-Rank Adaptation (LoRA) layers to further improve their adaptability. LoRA
introduces a low-rank decomposition of the model’s weight matrices, allowing efficient adaptation to
new tasks with minimal additional parameters. By setting the LoRA rank to 8, with an alpha value of
32 and a dropout probability of 0.05, we balance adaptation capacity and computational efficiency.

To expedite the training process, we employed 8 H100 80G GPUs and utilized Distributed Data
Parallel along with DeepSpeed. The batch size was set to 1, and the learning rate was 0.0001 (1e-4).
The entire experiment was conducted for a single epoch, spanning a total duration of 22 days.
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Table 1: Result of Supervised Fine-tuning

Model F1 Score ↑ Element
Match Score ↑

Haversine
Distance 103 ↓ BLEU ↑ ROUGE ↑ GPT4-Score

(Similarity) ↑
GPT4-Score

(Total) ↑

Baseline Model

Qwen-VL-Chat 0 -1 6.928 0 0.08 1 1.455
Yi-VL-6B 0 -1 6.718 0.004 0.052 2 3.035
Llava-v1.6-mistral-7b 0 -1 8.566 0 0.041 1.988 3.100
GPT-4-Vision 0 -1 - 0 0 2.012 3.186

Climate-Zoo LoRa

Qwen-VL-Chat LoRa 0.909 -0.930 1.894 0.819 0.732 4.861 4.431
Yi-VL-6B LoRa 0.905 -0.934 1.887 0.007 0.055 1.850 2.868
Llava-v1.6-mistral-7b LoRa 0.910 -0.822 1.905 0.821 0.731 4.731 4.373

Climate-Zoo

Qwen-VL-Chat 0.910 -0.012 1.928 0.818 0.722 4.829 4.486
Yi-VL-6B 0.912 -0.122 1.933 0.815 0.728 4.741 4.360
Llava-v1.6-mistral-7b 0.897 -0.483 1.935 0.823 0.747 4.806 4.444

6 EVALUATION

6.1 METRICS

We designed a comprehensive framework to assess the performance of the models across four
categories of questions. Our goal was to understand the model’s adaptability and accuracy across
varied tasks. Below, we detail our methodological approach and assessment metrics.

F1 Score For Verification Questions, we evaluate the model’s ability to judge the correctness of
statements using recall, precision, and F1 score (the harmonic mean of precision and recall).

Element Match Score For Enumeration Questions, we compute a match score (MS) between
the ground truth (x) and model-generated answer (y). This involves comparing the sets (x) and (y)
formatted as ["New York", "High Seas of the North Atlantic Ocean", "Canary Islands"], representing
ground truth and model output, respectively. The match score calculation involves determining
correct matches via the set intersection size (common elements in both sets (x) and (y)) and incorrect
matches via the symmetric differences (elements present in one set but not in the other). In cases
where both sets (x) and (y) are empty (union size of zero), the match score is defined to handle
division by zero and set to zero. Otherwise, the match score ranges between -1 and 1, where a score
closer to 1 indicates more accurate and complete answers with fewer hallucinations (incorrect items),
and a score closer to -1 indicates poor performance with many hallucinations. The score is determined
by the formula:

MS =

{
0, if |x ∪ y| = 0
|x∩y|−(|x−y|+|y−x|)

|x∪y| , otherwise
(1)

Haversine Distance For Geo-indexing Questions, which involve determining precise geographical
coordinates, we utilized the Haversine distance formula. This metric accurately measures the distance
between model-generated coordinates (latm, lonm) and ground truth coordinates (latg, long) by
accounting for the Earth’s curvature. The formula is as follows, where r represents the Earth’s radius:

d = 2r · arcsin(
√

sin2(
latm − latg

2
) + cos(latm) · cos(latg) · sin2(

lonm − long

2
)) (2)

BLEU, ROUGE and GPT-4 Scores For Description Questions, we employ average BLEU Pap-
ineni et al. (2002) and ROUGE Lin (2004) and GPT-4 scores Cao et al. (2024). BLEU-1 and BLEU-2
measure linguistic accuracy by comparing n-grams between the generated and ground truth descrip-
tions. ROUGE-1, ROUGE-2, and ROUGE-L assess the overlap of n-grams, word sequences, and
word pairs, offering insights into the comprehensiveness and relevance of the generated descriptions.
Additionally, GPT-4 evaluates the overall quality and similarity of model-generated descriptions to
ground truth answers on a five-point Likert scale. The prompt is shown in Appendix 7.

6.2 RESULTS AND ANALYSIS

Supervised fine-tuning Table 1 illustrates the outcomes of our experiments, highlighting that
Climate-Zow models outperform all baseline models across various metrics. Specifically, for veri-
fication and enumeration questions, the baseline models were unable to provide answers, which is
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Table 2: Result of ablation study

Climate-Zoo Model Dataset F1 Score Element
Match Score

Haversine
Distance 103

BLEU ROUGE GPT4-Score
(Similarity)

GPT4-Score
(Total)

Yi-VL-6B

ClimateIQA-10k 0.909 -0.092 1.930 0.820 0.732 4.855 4.594
ClimateIQA-50k 0.905 -0.070 1.943 0.820 0.728 4.687 4.422
ClimateIQA-100k 0.912 -0.048 1.932 0.814 0.718 4.834 4.345
ClimateIQA-203k 0.912 -0.122 1.933 0.815 0.728 4.741 4.360

Llava-v1.6-mistral-7b

ClimateIQA-10k 0.820 -0.913 6.335 0.611 0.624 4.631 4.508
ClimateIQA-50k 0.825 -0.903 1.945 0.820 0.748 4.787 4.489
ClimateIQA-100k 0.820 -0.532 1.972 0.825 0.750 4.662 4.394
ClimateIQA-203k 0.897 -0.483 1.935 0.823 0.747 4.806 4.444

reflected in F1 scores of 0 and match scores of -1. In stark contrast, Climate-Zoo models demonstrated
an impressive accuracy of around 90% in pinpointing regions with anomalies, with the highest ele-
ment match score reaching -0.012, indicating minimal inaccuracies in the data provided. Nevertheless,
Climate-Zoo models did yield slightly incomplete lists of affected areas.

In tasks like geo-indexing and description questions, where baseline models did manage to generate
responses, they were often plagued by significant errors. On the other hand, Climate-Zoo models
significantly outperformed these baseline counterparts by delivering more precise coordinates and
more accurate, rich descriptions, achieving superior BLEU, ROUGE, and GPT-4 scores.

While LoRA fine-tuning generally reduces the need for computational resources and, in specific cases
like geo-indexing, even outperforms full parameter tuning, it doesn’t universally enhance performance
across all models. Notably, the Yi-VL-6B LoRA model falls short in handling description questions,
underperforming both the fully fine-tuned models and the baseline.

Within the diverse ensemble of the Climate-Zoo collection, each model demonstrates particular
strengths. The Qwen-VL-Chat model shines in detecting anomalies within a heatmap and providing
detailed, vibrant image narratives, achieving high GPT scores. Conversely, the Yi-VL-6B model
stands out with the highest F1 score, showcasing its accuracy in confirming anomalies at pinpoint
locations. Meanwhile, the Llava-v1.6-mistral-7b model excels in spatial accuracy and textual richness,
as evidenced by its exceptional performance in Haversine Distance, BLEU, and ROUGE evaluations,
making it adept at generating precise coordinates and detailed visual descriptions.

Ablation study Table 2 presents the results of an ablation study using the Climate-Zoo models
(Llava-v1.6-mistral-7b and Yi-VL-6B) with full parameters. This study evaluates model performance
across varying dataset sizes: 10k, 50k, 100k, and 203k samples. Our findings reveal that increased
data volume does not always correlate with improved model performance, with variations observed
both between models and across different question types. At the model level, the Yi-VL-6B model
achieves excellent results with just 10k samples; increasing the dataset size beyond this point can
actually degrade its performance. In contrast, the Llava-v1.6-mistral-7b model shows improved
performance with larger datasets. At the question type level, verification and enumeration questions
demonstrate better performance with larger training datasets, whereas geo-indexing and description
questions exhibit more variability.

Overall, the impact of dataset size on model performance varies significantly among different models.
The Yi-VL-6B model appears especially suitable for industrial applications, as it can achieve high
effectiveness with smaller datasets and fewer computational resources. We have delved into the
potential reasons behind the exceptional performance of the Yi-VL-6B model with the smallest
dataset. Our hypothesis centers on the unique characteristics of the pre-training dataset used for Yi-
VL-6B. Unlike other VLMs, the Yi-VL-6B model was pre-trained on an extensive dataset comprising
34 billion tokens sourced from encyclopedic texts, which inherently include a significant amount of
meteorological and geographical content. This pre-training on domain-rich data likely endowed the
model with a robust foundation in meteorological concepts and terminology. As a result, Yi-VL-6B is
primed to assimilate new information in this domain with minimal fine-tuning, allowing it to achieve
outstanding performance even with a limited dataset.

9
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7 LIMITATIONS

Although our VLMs demonstrate potential in detecting anomalies, their accuracy, currently at 91%,
can be further enhanced. A notable limitation is the model’s difficulty in accurately identifying colors
in heatmaps, largely due to training data comprising only fully intact heatmaps. Inspired by the
chain-of-thought prompting technique, we propose dividing the original heatmap into nine sub-images
to generate individual question-answer pairs for fine-tuning. This approach aims to improve the
model’s color localization skills, ultimately enhancing accuracy. Additionally, integrating VLMs
with traditional threshold-based methods could create a robust hybrid system, combining interactive
strengths with precise anomaly detection.

Meanwhile, our initial dataset, focused solely on wind gust data due to its complexity (13 colors),
poses another limitation. Future research should incorporate additional weather factors like tempera-
ture and precipitation to build a more comprehensive dataset. This would enable more generalized,
robust VLM training, improving performance across various anomalies detection tasks.

8 CONCLUSIONS

This study presents pioneering work in integrating VLMs for MAA, providing a robust framework
for anomalies detection and interpretation. Through a series of carefully designed experiments, we
identified key issues of current general-purpose VLMs and proposed a framework of solutions to
improve their performance. We introduced the SPOT method for precise color localization, developed
ClimateIQA, the first large-scale dataset in this field, and established Climate-Zoo, a collection
of state-of-the-art VLMs adapted for meteorological applications. Models based on Qwen-VL-
Chat and Llava-v1.6-mistral-7b showed exceptional performance across verification, enumeration,
geo-indexing, and description tasks of MAA. This research pushes the boundaries of AI usage in
meteorology and contributes a benchmark for heatmap-based MAA, guiding future research to dive
further into this field.
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A APPENDIX

A.1 LISCENSE

The ClimateIQA dataset and Climate-Zoo will be publicly available and use the CC BY 4.0 license.

The IHO Sea Area and the World Bank-approved Administrative Boundaries datasets, used to create
ClimateIQA, are licensed under CC BY 4.0 license.

The ERA5 dataset is available under a free, worldwide, non-exclusive, royalty-free, and perpetual
license. According to this license, access to Copernicus Products is granted for any lawful purpose.
Permissible uses include, but are not limited to, reproduction, distribution, public communication,
adaptation, modification, and combination with other data and information.

A.2 EXAMPLE OF QUESTION TYPES

The following Figure 6 shows the four question types in the ClimateIQA instruction tuning data.

Conversation
Enumeration Question: Could you identify the ocean regions currently 

undergoing strong gales, storm or hurricane?

Assistant: High Seas of the North Atlantic Ocean: Canary Islands, Southern 

Peninsula Brazilian (Trindade) part of the South Atlantic Ocean: Alagoas 

Russian part of the Sea of Okhotsk: Magadan New Zealand.

Verification Question: Can you verify whether it is true or false that the location specified as High Seas of the Indian Ocean is currently 
experiencing strong gales, storm or hurricane?

Assistant: True

Specific Information Question : What is the latitude and longitude of the location referred to as Seychellois part of the Indian Ocean?

Assistant: (-4.97, 52.31)

Description Question : Can you describe the image in detail?

Assistant: Globally, regions are battling intense weather phenomena, including powerful gales, storms, and hurricanes, with wind gusts 
surpassing 20.7 m/s. The fury of these winds is felt over vast lands and oceanic stretches alike. Notably, areas such as High Seas of the North 
Atlantic Ocean, Brazilian (Trindade) part of the South Atlantic Ocean … Closer to human habitation, land regions in South America, Western 
Europe … Moreover, a vast array of regions encounters strong breezes and winds gusting between 10.8 to 20.7 m/s, impacting both land and 
sea. This includes High Seas of the North Atlantic Ocean … On land, South America, Western Europe … each face their own challenges with 
these forceful winds that spare few corners of the Earth.

Figure 6: Example of Visual Question Answering Question Types in the Climate Domain.
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A.3 ANSWER GENERATED IN PRELIMINARY STUDY

Table 3: An Example of Experiment One

Prompt This is a global wind gust heatmap. Could you please identify the areas are red color?

Answer Based on the colors on this global wind gust map, the red areas, which typically indicate
regions of higher wind gusts, appear in several locations. Here are the general areas
where red coloration is present:
1. Over the North Atlantic Ocean, west of the British Isles and Scandinavia, indicating
a zone of high wind gust activity possibly associated with a storm system. 2. In the
North Pacific Ocean, east of Japan, which might be showing strong wind gusts also
associated with a storm system. 3. Across central Asia, which could be indicative
of strong winds blowing over the steppes or associated with a weather system in the
region. 4. A region in the southern hemisphere, possibly over the Southern Ocean,
indicating strong wind gusts which are common in those latitudes known as the roaring
forties and furious fifties.
It’s important to note that without a legend or scale, the exact wind speeds corresponding
to the red color cannot be determined.

Table 4: An Example of Experiment Two

Prompt This is a global wind gust heatmap. please list the color name in the image. Could you
please identify the areas are red color?

Answer The image shows different colors representing varying wind gust intensities across the
globe. Here are the prominent colors visible in the image:
1. Green - varying shades indicating moderate wind gusts. 2. Yellow - indicating
stronger wind gusts compared to green areas. 3. Orange - indicating even stronger
wind gusts, higher than yellow areas. 4. Red - representing the strongest wind gusts
visible on the map.
As for the red areas:
- There is a large, prominent red area over the North Atlantic Ocean, indicating very
strong wind gusts there. - In the Southern Hemisphere, another visible red area is over
the southern part of the Atlantic Ocean, east of the southern tip of South America. -
There are also red areas in the Pacific Ocean, notably east of Japan and northeast of
Australia. - Another notable red area is visible just off the coast of Antarctica in the
Southern Ocean.
Keep in mind that identifying specific geographic locations just based on colors on a
map can be challenging without specific map coordinates, country borders, or other
geographical markers.
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Table 5: An Example of Experiment Three

Prompt This is a global wind gust heatmap. there are black grids in the image, from
left to right is the longitude, there are 6 columns, each column stand for
0 60E,60E 120E,120E 180,180 120W, 120W 60W, 60W 0W. from bottom to top
is the latitude, there are 6 rows, each row stands for 90S 60S, 60S 30S, 30S 0, 0 30N,
30N 60N, 60N 90N. Please list the color name in each grid. Could you please based on
the color name in grids identify all the areas in red color?

Answer Here are the predominant color names in each grid, starting from the leftmost column
(0 60E) to the rightmost column (60W 0W) and from bottom to top (90S 60S to
60N 90N):
1. 0 60E - 90S 60S: Light green and yellow - 60S 30S: Green with patches of red and
yellow - 30S 0: Yellow with areas of green and red - 0 30N: Green, yellow, and small
areas of red - 30N 60N: Green transitioning to yellow and red - 60N 90N: Yellow and
red with patches of green
2. 60E 120E - 90S 60S: Light green and yellow - 60S 30S: Yellow with areas of red
and green - 30S 0: Yellow and green with small patches of red - 0 30N: Green with
some yellow - 30N 60N: Yellow and red with hints of green - 60N 90N: Green and
yellow with small areas of red
3. 120E 180 - 90S 60S: Light green and yellow - 60S 30S: Green and yellow with red
areas - 30S 0: Yellow with areas of green and small patches of red - 0 30N: Green
and yellow with hints of red - 30N 60N: Green and yellow with red areas - 60N 90N:
Yellow with patches of red
4. 180 120W - 90S 60S: Light green and yellow - 60S 30S: Light green - 30S 0: Green
and yellow with areas of red - 0 30N: Green and yellow with small patches of red -
30N 60N: Green and yellow with areas of red - 60N 90N: Green and yellow
5. 120W 60W - 90S 60S: Light green and yellow - 60S 30S: Green with patches of red
and yellow - 30S 0: Green and yellow - 0 30N: Green and yellow - 30N 60N: Yellow
and green with red areas - 60N 90N: Green and yellow with patches of red
6. 60W 0W - 90S 60S: Light green and yellow - 60S 30S: Yellow and green with areas
of red - 30S 0: Yellow with patches of green and red - 0 30N: Green and yellow with
small areas of red - 30N 60N: Yellow and green with red areas - 60N 90N: Green and
yellow with areas of red
The colors on a heatmap such as this generally range from cooler colors (like greens
and blues) representing lower values to warmer colors (like yellows, oranges, and reds)
representing higher values. Since there are no distinct boundaries, naming a single
color for each grid would not be accurate.
As for the red areas on the map, they indicate regions of high wind gusts. Describing
their locations with precision is difficult because of the blending colors and the lack of
borders on the map, but I can provide a general idea of where the reddest areas are:
1. A very intense red area is located in the Northern Pacific Ocean, just east of the
northern edge of Asia and stretching towards North America. 2. Another significant
red area is in the southern Atlantic Ocean, east of South America’s southern tip. 3.
There are patches of red near the tip of South America and on the border between Chile
and Argentina. 4. The North Atlantic, northeast of Canada and west of Europe, also
contains some red areas.
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A.4 PSEUDO CODE OF SPOT

Algorithm 1 SPOT: Sparse Position and Outline Tracking

Input: Image path img_path, color name color_name
Output: List of latitude and longitude coordinates

1: Initialize GetCoordinate with img_path
2: procedure GETCOLORBOUNDARIES(image, color_name)
3: Convert image to HSV color space
4: Generate mask based on color range for color_name
5: Find contours in the mask
6: return contours, mask
7: end procedure
8: procedure GETREPRESENTATIVEPOINTS(image, contour, num_points)
9: Draw contour on a mask

10: Erode the mask
11: Find points in the eroded mask
12: if number of points ≤ num_points then
13: return points
14: else
15: Apply K-Means clustering to points to get num_points
16: return cluster centers as representative points
17: end if
18: end procedure
19: procedure PROCESS(color_name)
20: contours,mask ← GETCOLORBOUNDARIES(image, color_name)
21: Calculate total area of selected regions in mask
22: for each contour in contours do
23: Calculate area_ratio for the contour
24: Determine num_points based on area_ratio
25: contour_points← GETREPRESENTATIVEPOINTS(image, contour, num_points)
26: Annotate image with contour_points
27: end for
28: return points
29: end procedure
30: procedure CONVERTPOINTSTOCOORDINATES(points)
31: Initialize lists for longitude λ and latitude φ
32: for each point pt in points do
33: Calculate longitude and latitude based on pt and image dimensions
34: Append to λ and φ lists
35: end for
36: return φ, λ
37: end procedure
38: procedure GETCOR(color_name)
39: points← PROCESS(color_name)
40: φ, λ← CONVERTPOINTSTOCOORDINATES(points)
41: Print image dimensions
42: return φ, λ
43: end procedure
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A.5 QUESTION AND ANSWER FORMAT TEMPLATE

Table 6: Template of Question and Answer Format

Question Type Format

Verification Question Can you verify whether it is true or false that the location specified as {Location Name}
is currently experiencing strong gales, storm or hurricane?

Answer True/False

Enumeration Question Could you identify the { "Land" or "Ocean"} regions currently undergoing strong
gales, storm or hurricane?

Answer {Continent Name or Ocean Name}: {Province or State Name}

Geo-Indexing Question What is the latitude and longitude of the location referred to as {Location Name}?
Answer {Coordinate e.g.(-58.82, 176.31)}

Description Question Can you describe the image in detail?
Answer Globally, regions are battling intense weather phenomena, including powerful gales,

storms, and hurricanes, with wind gusts surpassing 20.7 m/s. The fury of these winds
is felt over vast lands and oceanic stretches alike. Notably, areas such as {Ocean
Name in Red Color}. Closer to human habitation, land regions in {Land Name in
Red Color} reel under the power of these gales, showing nature’s unbridled force
across both developed and developing landscapes. Moreover, a vast array of regions
encounters strong breezes and winds gusting between 10.8 to 20.7 m/s, impacting both
land and sea. This includes {Ocean Name in Yellow Color}. On land, {Land Name
in Yellow Color}, each face their own challenges with these forceful winds that spare
few corners of the Earth.
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A.6 GPT-4 EVALUATION PROMPT

Table 7: GPT-4 Evaluation Prompt

Prompt The user question is {question}. the ground truth answer is {gt_ans}, the generated
response {gpt_ans} is generated by GPT model.
Please act as an impartial judge and evaluate the quality of the response provided by AI
assistant to the question displayed upper! You should give three scores to the response.
the highest score is 5 and the lowest score is 1. the scores include:
Score 1: the total score considering factors helpfulness, relevance, accuracy, depth,
creativity, and level of detail of the generated response.
Score 2: the similarity and completeness score between ground truth answer and
generated response. sometimes the generated answer have mention some inaccurate
point or the answer is incomplete compared with the ground truth answer. 5 means
80%-90% similar. 4 means 60%-80% similar. 3 means 40%-60% similar, 2 means
20%-40% similar and 1 means 0-20% similar.
Score 3: the total score considering factors helpfulness, relevance, accuracy, depth,
creativity, and level of detail of the ground truth answer.
Avoid any position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation, Be as objective as possible. Directly output the score and
strictly follow the format:
### Score 1: number ### Score 2: number ### Score 3: number
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