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ABSTRACT

With the rapid advancement of Vision Language Models (VLMs), VLM-based
Image Quality Assessment (IQA) seeks to describe image quality linguistically
to align with human expression and capture the multifaceted nature of IQA tasks.
However, current methods are still far from practical usage. First, prior works focus
narrowly on specific sub-tasks or settings, which do not align with diverse real-
world applications. Second, their performance is sub-optimal due to limitations in
dataset coverage, scale, and quality. To overcome these challenges, we introduce
Enhanced Descriptive image Quality Assessment (EDQA). Our method includes
a multi-functional IQA task paradigm that encompasses both assessment and
comparison tasks, brief and detailed responses, full-reference and non-reference
scenarios. We introduce a ground-truth-informed dataset construction approach
to enhance data quality, and scale up the dataset to 495K under the brief-detail
joint framework. Consequently, we construct a comprehensive, large-scale, and
high-quality dataset, named EDQA-495K. We also retain image resolution during
training to better handle resolution-related quality issues, and estimate a confidence
score that is helpful to filter out low-quality responses. Experimental results
demonstrate that EDQA significantly outperforms traditional score-based methods,
prior VLM-based IQA models, and proprietary GPT-4V in distortion identification,
instant rating, and reasoning tasks. Our advantages are further confirmed by real-
world applications including assessing the web-downloaded images and ranking
model-processed images. Datasets and codes will be released publicly.

1 INTRODUCTION

Image Quality Assessment (IQA) aims to measure and compare the quality of images, expecting to
align with human perception. With the emergence of Vision Language Models (VLMs) (Liu et al.,
2023a; OpenAI, 2023; Ye et al., 2023b), VLM-based IQA begins to attract more research interest (Wu
et al., 2024a;b;d;e; You et al., 2023). These methods leverage VLMs to describe image quality using
language, recognizing that language better mirrors human expression, and captures the multifaceted
nature of IQA tasks (You et al., 2023). However, existing VLM-based IQA methods still fall short
especially in aspects of functionality and performance.

Functionality. There are various application scenarios of IQA, but existing VLM-based IQA models
only support a few of them. For example, one scenario involves assessing a single image downloaded
from the web, while another requires comparing multiple images handled by different algorithms.
Also, image restoration needs to assess an image against a reference, while image generation requests
non-reference assessments. Therefore, a superior IQA model should be multi-functional to cater
to such diverse scenarios. However, existing methods limit to a specific subset of these tasks, such
as single-image assessment (Wu et al., 2024b), multi-image comparison (Wu et al., 2024d), or
full-reference setting (You et al., 2023), etc. Hence, the limitations in functionality hinder the wide
applications of prior methods.

Performance. Many IQA methods perform well on some specific datasets but may generalize poorly
to other images with different contents or distortions. For instance, Co-Instruct (Wu et al., 2024d)
performs well on TID2013 dataset (Ponomarenko et al., 2015) (85.0%), but drops significantly to
50.7% when testing on BAPPS dataset (Zhang et al., 2018). A more comprehensive comparison
on our newly created benchmark is given in Fig. 1, where it shows that previous works (Wu et al.,
2024b;d) under-perform even within their defined tasks and settings. One potential cause for this is the
limited scope of their training datasets. For example, the added distortion category in Q-Instruct (Wu
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(a) Full-reference (b) Non-reference

Figure 1: Performance comparison. Our model surpasses previous works including Q-Instruct (Wu
et al., 2024b), Co-Instruct (Wu et al., 2024d), and the proprietary GPT-4V (OpenAI, 2023) across a
broad range of tasks in both full-reference and non-reference settings. Traditional score-based IQA
methods like LPIPS (Zhang et al., 2018) and MUSIQ (Ke et al., 2021) have no language abilities, and
thus can only be used in instant rating task. Q-Instruct is only tested on single-image input tasks.

et al., 2024b) is limited; Co-Instruct (Wu et al., 2024d) directly utilizes GPT-4V (OpenAI, 2023),
which is not accurate in IQA tasks, to generate data; and the dataset scale in DepictQA (You et al.,
2023) remains small. Additionally, these methods are constrained in their usage by resizing images
to a fixed resolution (Wu et al., 2024b;d), while the image resolution is critical for quality assessment.
Therefore, the dataset’s coverage, quality, and scale together with the training techniques limit the
performance of previous methods.

To address these challenges, we propose a multi-functional IQA model to handle various image quality
assessment tasks. We categorize these tasks into two types, as shown in Fig. 2. (a) Single-image
assessment aims to evaluate the quality of a single image by identifying distortions (e.g., “blur” in
Fig. 2a top). It can also analyze the distortions’ impacts on contents (e.g., blur “affecting the definition
of mountains and trees” in Fig. 2a bottom). (b) Paired-image comparison focuses on comparing the
quality of two distorted images based on the clarity, colorfulness, and sharpness of presented contents.
For example, in Fig. 2b, despite reduced contrast, “Image A maintains more scene integrity”, as
“Image B’s serious noise level is more detrimental”. We omit multi-image comparison since it is
an easy extension of a pairwise one (Gu et al., 2020). Each type includes basic brief sub-tasks for
fundamental assessments and detailed sub-tasks to enhance reasoning abilities. Moreover, the model
supports both full-reference and non-reference settings, making it adaptable to diverse scenarios.

Under the multi-functional task paradigm, we construct a new large-scale dataset, EDQA-495K, for
comprehensive and accurate training and evaluation. First, for diverse distortion, we design and
implement 35 types of distortions, each with 5 levels. Second, to enhance the label quality, we inform
GPT-4V of the low-level ground truths (e.g., distortions) to leverage its strong high-level perception
and language abilities, while avoiding its sub-optimal IQA capabilities. Third, to increase the dataset
scale, we scale up the data amount to 495K under the brief-detail combined framework (You et al.,
2023). Moreover, our dataset is suitable for both full-reference and non-reference settings.

With EDQA-495K dataset, we then train a VLM model, named Enhanced Descriptive image Quality
Assessment (EDQA). During training, the original image resolution is retained, leading to a better
quality perception regarding resolution. Furthermore, we estimate the confidence of responses from
key tokens, providing vital auxiliary information, especially for filtering low-quality responses.

The performance of EDQA is evaluated in Fig. 1 and Sec. 5. In brief tasks, our model surpasses
general VLMs, IQA-specific VLMs, and score-based IQA methods by a large margin. For example,
we achieve 95.9% in non-reference comparison on TID2013 dataset, remarkably surpassing Co-
Instruct (85.0%) and GPT-4V (88.1%). In detailed tasks, our model also excels, e.g., recording
74.9% in non-reference comparison reasoning, compared to 48.1% for Co-Instruct and 60.3% for
GPT-4V. At last, experiments on real-world applications including assessing web-downloaded images
and comparing model-restored images further demonstrate our superiority. We hope that our multi-
functional model could serve as a stepping stone towards a unified VLM-based IQA model. Although
not yet fully realized, our method showcases the potential of VLM-based IQA models.
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What distortions are most prominent in the evaluated image?

The most prominent distortions are blur and insufficient saturation. 

Task1-brief: Distortion Identification

Task1-detail: Assessment Reasoning
Reference (Optional)

Evaluated Image

Evaluate the image quality with a comprehensive explanation.

The image depicts a landscape with mountains, trees, and a field. 
The evaluated image exhibits a significant blur distortion, reducing 

its detail and sharpness across the scene, particularly affecting the 
definition of the mountains and trees. Additionally, the colors 
appear washed out, indicating a weakening of saturation, which 
diminishes the vibrancy and contrast that would normally make the 
image more visually appealing. 

Overall, the quality of the evaluated image is poor due to the 
pronounced blur and reduced color intensity, which together 
significantly degrade the visual experience by making the scene 
appear indistinct and less lively.

Reference (Optional)

Image A

Image B

Which image do you believe has a better quality: Image A or Image B?

I believe Image A has a better overall quality.

Task2-brief: Instant Rating

Task2-detail: Comparison Reasoning

Compare the quality of Image A and Image B with detailed reasons.

The images depict a beach scene at sunset with silhouettes of people 
and the ocean in the background. 

In Image A, the contrast appears reduced, making the image look a 
little washed out, and there is a slight pixelation that reduces some 
details. In Image B, there is a significant amount of noise, which 
introduces graininess and disrupts the image clarity, especially 
noticeable in the sky and water.

Comparing the two, Image A maintains more of the scene's integrity
despite the reduced contrast and slight pixelation. Image B's serious 
noise level is more detrimental to the quality, as it significantly 
degrades the visual information. Thus, Image A has a better quality.

(a) Task1: Single-image Assessment (b) Task2: Paired-image Comparison

Figure 2: Task paradigm and qualitative results. EDQA focuses on two tasks including single-
image assessment and paired-image comparison in both full-reference and non-reference settings.
Each task contains a brief sub-task focusing on the fundamental IQA ability, and a detailed sub-task
fostering the reasoning capacities. More qualitative results in Fig. A10, A11, A12, and A13.

2 RELATED WORKS

Score-based IQA methods. Traditional IQA methods rely on scores to assess image quality and
can be divided into full-reference and non-reference methods. (a) Full-reference methods compute a
similarity score between a distorted image and a high-quality reference. Early works rely on human-
designed metrics such as image information (Sheikh and Bovik, 2006), structural similarity (Wang
et al., 2004), phase congruency with gradient magnitude (Zhang et al., 2011), etc. The rapid
advancement of deep learning has also inspired learning-based IQA methods that measure image
quality through data-driven training. Pioneered by PieAPP (Prashnani et al., 2018) and LPIPS (Zhang
et al., 2018), data-driven approaches (Bosse et al., 2018; Cao et al., 2022; Ding et al., 2020; 2021;
Ghildyal and Liu, 2022; Yin et al., 2022; Zhou and Wang, 2022) have spurred innovations in IQA,
exhibiting high consistency with human judgments. (b) Non-reference methods directly regress
a quality score without a reference image. Initially, human-designed natural image statistics are
adopted (Ma et al., 2017; Mittal et al., 2012; 2013; Moorthy and Bovik, 2010; 2011; Saad et al., 2012;
Tang et al., 2011). Subsequently, deep-learning-based methods (Kang et al., 2014; Liu et al., 2017;
Pan et al., 2018; Su et al., 2020; Sun et al., 2022; Zheng et al., 2021; Zhu et al., 2020) replace hand-
crafted statistics by learning quality priors from extensive data. Recent works focus on enhancing
performance by introducing multi-scale features (Ke et al., 2021), CLIP pre-training (Wang et al.,
2023), multi-dimension attention (Yang et al., 2022), continual learning (Zhang et al., 2022), multitask
learning (Zhang et al., 2023b), and so on. However, as discussed in You et al. (2023), score-based
IQA methods limit themselves in complex analyses and multi-aspect weighing of IQA, since the
information provided by a single score is far from sufficient.

Vision Language Models (VLMs) incorporate visual modality into large language models (Chiang
et al., 2023; Openai, 2023; Touvron et al., 2023a), aiming to leverage their emergent ability to achieve
general visual ability. These VLMs (Alayrac et al., 2022; Dai et al., 2023; Liu et al., 2023a; OpenAI,
2023; Wei et al., 2023; Ye et al., 2023a; Yin et al., 2023; Zhang et al., 2023a; 2024; Zhu et al., 2024a)
have demonstrated a general visual ability and can tackle a variety of multi-modality tasks, including
image captioning (Agrawal et al., 2019; Chen et al., 2015; Young et al., 2014), visual question
answering (Goyal et al., 2017; Liu et al., 2023b; Lu et al., 2022), document understanding (Masry
et al., 2022; Mathew et al., 2021; Singh et al., 2019), etc. Although proficient in these high-level
perception tasks, we demonstrate in Sec. 5 that general-purpose VLMs still struggle with IQA tasks.

VLM-based IQA methods aim to achieve better alignment with human perception leveraging
the power of VLMs (Wu et al., 2024e). Q-Bench (Wu et al., 2024a) establishes a comprehensive
benchmark for evaluating general-purpose VLMs in low-level perception tasks. Zhu et al. (2024b)
evaluates various VLMs on the widely-adopted two-alternative forced choice (2AFC) task. Q-
Instruct (Wu et al., 2024b) enhances the low-level perception ability of VLMs by introducing a
large-scale dataset. Q-Align (Wu et al., 2024c) employs discrete text-defined levels for more accurate
quality score regression. Co-Instruct (Wu et al., 2024d) concentrates on the quality comparison among
multiple images. DepictQA (You et al., 2023) performs quality description, quality comparison,
and comparison reasoning in the full-reference setting. Nonetheless, as highlighted in Sec. 1, these
methods focus only on specific aspects of IQA tasks, diverging from the original intents of VLMs’
universality and practical usage requirements, and their performance remains sub-optimal.
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Table 1: Overview of our distortion library with 12 super-categories and 35 sub-categories in total.

Super-category Blur Noise Compression Brighten Darken Contrast
Strengthen

Contrast
Weaken

Saturate
Strengthen

Saturate
Weaken Over-sharpen Pixelate Quantize

# Sub-category 6 6 2 4 4 2 2 2 2 1 1 3

3 TASK PARADIGM AND DATASET CONSTRUCTION

3.1 TASK PARADIGM

As highlighted in the introduction, there are various application scenarios for IQA models. First,
the evaluation objective can be either single-image assessment or paired-image comparison. The
former is useful to rate a web-downloaded image, while the latter suits comparing images processed
by two different algorithms. Second, the reference setting may be full-reference or non-reference.
For example, image restoration requires assessments based on references, while image generation
needs non-reference evaluations. Third, the response could be either brief or detailed. Brief
responses suit well-targeted tasks (e.g., comparison without reasons), while detailed responses
enhance interpretability and human interaction. To cater to such diverse scenarios, a practical IQA
method should be multi-functional. Therefore, we aim to establish such a multi-functional task
paradigm for VLM-based IQA research. As shown in Fig. 2, we focus on two tasks, each containing
both brief and detailed sub-tasks, and supporting both full-reference and non-reference settings.

• Task1: single-image assessment. (a) Brief sub-task: distortion identification. Given a distorted
image, the model should identify the most obvious distortions. (b) Detailed sub-task: assessment
reasoning. In addition to identifying distortions, the model should also describe how these
distortions affect the perception of image contents and the overall image quality.

• Task2: paired-image comparison. (a) Brief sub-task: instant rating. Given two distorted images,
the model should find the image with better quality. (b) Detailed sub-task: comparison reasoning.
Building upon the comparison results, the model should first compare the content loss caused
by distortions in the two images, then weigh different aspects to draw inferences, and finally
justify its comparison results. Note that we omit the multi-image (>2) comparison since it can be
achieved easily as the extension of paired case (Gu et al., 2020).

Compared with previous works, our design unifies various tasks, response types, and reference
settings into a multi-functional paradigm. In contrast, Q-Instruct (Wu et al., 2024b) focuses on
non-reference single-image assessment, Co-Instruct (Wu et al., 2024d) targets comparison among
multiple images in the non-reference setting, and DepictQA (You et al., 2023) primarily addresses
the full-reference setting. Although one can achieve unified IQA by combining these task-specific
IQA models, it is impractical due to the significant increase in network parameters, considering that
current VLMs are already quite large.

3.2 DISTORTION LIBRARY

Existing IQA datasets (e.g., BAPPS (Zhang et al., 2018), PieAPP (Prashnani et al., 2018)) usually
introduce distortions (e.g., noise, blur) into high-quality reference images to create distorted images
for evaluation. However, these datasets do not publicly release the distortion information of each
image, and their distortions only cover limited scenes. Therefore, we aim to develop a comprehensive
large-scale distortion library.

Distortion generation. Our distortion system comprises 12 super-categories in total, with each
super-category consisting of multiple sub-categories. For instance, the “blur” category encompasses
“Gaussian blur”, “motion blur”, “lens blur”, etc. In total, there are 35 sub-categories. For each sub-
category, there are 5 severity levels: “slight”, “moderate”, “obvious”, “serious”, and “catastrophic”.
A summary is illustrated in Tab. 1. Considering the need to assess high-quality images as well, we
retain the original image without any distortions in 5% proportion. See details in Appendix B.1.

Multi-distortion setups. In practical usage, multiple distortions may occur simultaneously on
the same image. While a simple way to simulate them is to add multiple distortions recursively,
real-world scenarios are more complex. First, one distortion may weaken another, such as “brighten”
weakens “darken”, “blur” weakens “over-sharpen”. Second, certain distortions exhibit similar visual
results, such as “pixelate” looks similar to “blur”, making it challenging to identify both if they are
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applied simultaneously. We also observe that humans can identify at most two distortions when three
or more are applied, as illustrated in Fig. A3. Hence, we limit the distortion number to two and
manually review all possible combinations to exclude contradictory or similar combinations. See
details of multi-distortion setting in Tab. A1 and Appendix B.1.

3.3 DATASET CONSTRUCTION

High-quality and large-scale datasets are crucial for training VLMs. Following Liu et al. (2023a);
Yin et al. (2023), training VLMs requires {images, question, response} triplets, where “images” are
the ones to be evaluated, “question” describes the task, and “response” is the ground truth answer. In
this section, we detail the construction of our dataset from the selection of images and the collection
of questions and responses.

Image collection. Typical IQA datasets involve two types of images: high-quality reference images
and distorted images to be evaluated. Generating distorted images is easy given our comprehensive
distortion library introduced in Sec. 3.2. Existing studies often collect a large number of distorted
images from a small number of references (Gu et al., 2020; Ponomarenko et al., 2015). However,
the semantic richness of images is also crucial for VLM training. Therefore, we primarily source
reference images from the KADIS-700K dataset (Lin et al., 2020), which offers 140K pristine
reference images from diverse natural and daily scenes. We also leverage other IQA datasets for their
convenience to generate responses (details are below).

Question collection. Humans often express similar questions using different sentences, necessitating
model robustness to various user questions. For each task, we initially prompt GPT-4 (Openai, 2023)
to generate 50 candidate questions. Subsequently, we manually eliminate ambiguous and repetitive
ones and correct inaccurate ones, creating a question set of 20 questions (see Appendix B.2). These
questions are randomly sampled during training and testing to form the data pair.

Response collection. We employ two response types as shown in Fig. 3. The first comprises brief
templated responses that are easy to produce, where we emphasize the quantity to bring robust
fundamental skills. The second consists of detailed responses, where we emphasize the quality to
enhance the model’s advanced reasoning abilities. Existing methods to collect detailed responses
mainly rely on human annotation (Wu et al., 2024b; You et al., 2023) and GPT-4V generation (Wu
et al., 2024d). However, human annotation can be biased and vary in quality particularly when
annotators are untrained or tired (You et al., 2023). Also, GPT-4V is not fully reliable since its IQA
performance is still unsatisfactory as evidenced in Sec. 5.

We rethink the key aspects of our desired responses and GPT-4V’s corresponding abilities, introducing
GT-informed generation by prompting the Ground Truth (GT) details to enhance GPT-4V’s generation.
Specifically, a high-quality detailed response should contain image contents, key distortions, the
impacts of distortions on contents, and conclusions (e.g., comparison results). While GPT-4V excels
at identifying contents and analyzing impacts, it struggles with distortion identification and quality
comparison, which will be shown in Sec. 5. To compensate for that, we directly provide it with
explicit GT information. The response generation for each task is detailed subsequently.

Task1-brief: distortion identification. As shown in Fig. 3a, we first establish a response pool containing
20 templates with unspecified distortions. Next, we add distortions into the reference to create its
distorted counterpart and populate a sampled template with the specific distortions to complete the
response. For streamlined evaluation, we randomly select half of the questions and append the short
answer prompt: “Answer the question using a single word or phrase.” Correspondingly, the response
will be a single phrase, like “noise”, specifying the distortions.

Task1-detail: assessment reasoning. Given the reference image, we initially introduce distortions to
corrupt the reference. Then, GPT-4V is input with both two images and the distortion information,
and requested to assess the quality of the distorted image, as illustrated in Fig. 3b. We instruct
GPT-4V to respond from three dimensions: contents, distortions along with their impacts on contents,
and overall quality. Here prior studies (Wu et al., 2024b;d) primarily focus on low-level properties,
while we consider how these low-level distortions influence the display of high-level contents.

Task2-brief: instant rating. We begin by sampling a reference image and its two distorted versions
from existing IQA datasets, and then compare the Mean Opinion Score (MOS) to determine the
better one, as shown in Fig. 3c. Similar to distortion identification, we assemble a response pool
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(a) Task1-brief: Distortion Identification (112k single + 112k multi-distortion)

(b) Task1-detail: Assessment Reasoning (20k single + 8k multi-distortion)

(c) Task2-brief: Instant Rating (216k traditional, generative, model-based distortions)

(d) Task2-detail: Comparison Reasoning (20k single + 8k multi-distortion)

Distortion Info.
Class:  Compression
Severity:  3 (obvious)

Prompt: … discuss how these distortions affect the image contents …

GPT-4V Response:   The image depicts a rural house with a red facade and a tiled roof, 
surrounded by greenery and a wooden fence.

Compression artifacts are evident, with loss of detail in the foliage and a blocky appearance 
in the sky, detracting from the image's natural look.

Overall, the visual quality of the image is poor due to the obvious compression distortion, 
reducing visual clarity and the image's aesthetic appeal.

Image B, MOS: 1.60Image A, MOS: 2.87

Templated Response:   Image A has a better overall quality. 

Existing
Score-based
IQA Datasets

Compare MOS

Sample

Distortion Info. of A
Class:  Pixelation
Severity:  1 (slight)

Distortion Info. of B
Class:  Darken
Severity:  3 (obvious)

Assistant model 
(trained with Task2-
Brief data): 
Image A is better

Prompt: ... discuss how 
these distortions affect 
the image contents …

Reference

Reference Evaluated Image Add Pixelation

Add Darken

GPT-4V Response: The images depict a mountainous landscape with a cyclist on a dirt road.
In Image A, slight pixelation is present, reducing sharpness and detail, particularly noticeable on the

mountain textures and the cyclist. Image B is darker, with an obvious loss of brightness and contrast,
affecting visibility and color fidelity, especially in shadowed areas.

Comparing the two, Image A retains more detail and color accuracy despite the pixelation, making it
the better one over Image B, which suffers from a significant loss of detail due to the darkening effect.

Templated Response: 
The most obvious 
distortion is Noise. 

Distortion Info.    
Class:  Noise

Reference Evaluated ImageAdd 
Speckle 
Noise

Reference

Image B

Image A
Add JPEG 

Compression

Figure 3: Construction of EDQA-495K dataset. For distortion identification, templated responses
are generated using distortion information. In instant rating, we sample images from existing datasets
and compare the Mean Opinion Score (MOS) to determine the better image for templated response
creation. For assessment reasoning and comparison reasoning tasks, we provide GPT-4V with
evaluated images and Ground Truth (GT) details (i.e., distortion information, comparison results
from an assistant model) to facilitate detailed and accurate response generation, called GT-informed
generation. This additional information is critical as GPT-4V cannot produce it accurately.

of 20 templates to convert the comparison results into textural responses, and append the short
answer prompt for the convenience of evaluation. We select three IQA datasets for training, including
BAPPS (Zhang et al., 2018), KADID-10K (Lin et al., 2019), and PIPAL (Gu et al., 2020), to cover a
diverse range of reference images.

Task2-detail: comparison reasoning. As depicted in Fig. 3d, given a high-quality image, we randomly
apply distortions to produce two distorted images. We first train an assistant model using the large-
scale instant rating data to predict the comparison results. Note that GPT-4V does not perform well
on the quality comparison task, as shown in our experiments in Tab. 4 and Tab. 8, and thus we train
our own comparison model. Then, similar to assessment reasoning, we inform GPT-4V of the three
images, distortion information, and comparison results to generate detailed responses.

Setup of non-reference setting. Our dataset accommodates both full-reference and non-reference
settings. However, even for humans, identifying subtle distortions (e.g., minor brightness adjustments)
without a reference is challenging. Thus, in the non-reference setting, we selectively remove samples
with “slight” severity on some specific distortions, including “brighten”, “darken”, “contrast weaken”,
“contrast strengthen”, “saturate weaken”, “saturate strengthen”, “quantize”, and “over-sharpen”.

Table 2: Statistics of our EDQA-495K dataset.
Task1-brief Task1-detail Task2-brief Task2-detail
Distortion

Identification
Assessment
Reasoning

Instant
Rating

Comparison
Reasoning

Train 112,000 / 112,000 19,829 / 7,981 215,676 19,809 / 7,958
Validation 28,000 / 28,000 200 / 100 41,120 200 / 100

Dataset statistics. The dataset statistics are
illustrated in Tab. 2 (more in Appendix B.2).
All tasks, except instant rating, are displayed in
the single-distortion / multi-distortion format.
Our training set contains 439,676 brief samples
and 55,577 detailed samples. For instant rating,
the training set includes BAPPS, KADID, and
PIPAL, while the validation set consists of BAPPS, KADID, PIPAL, TID2013 (Ponomarenko
et al., 2015), LIVE-MD (Jayaraman et al., 2012), and MDID2013 (Sun et al., 2017). To ensure no
intersection between training and validation sets for those overlapped datasets, the original splits are
kept. For detailed tasks, all samples in the validation set have been carefully checked by humans.

4 MODEL DESIGN

We primarily follow LLaVA-1.6 (Liu et al., 2024) and mPLUG-Owl2 (Ye et al., 2023b) to construct
our model, which is composed of a vision encoder, vision abstractor, and LLM. The vision encoder
is a frozen CLIP pre-trained ViT-L/14 (Radford et al., 2021). The vision abstractor is a four-layer
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transformer, reducing the number of vision tokens to 64 and mapping the vision tokens to textual
space. The base LLM is Vicuna-v1.5-7B (Chiang et al., 2023). Following You et al. (2023), we also
adopt the unique tag technique, i.e., using specific tags for various types of images, to ensure that the
language model can distinguish different input images. To increase robustness, an external high-level
perception dataset (detailed description dataset in Yin et al. (2023)) is incorporated during training as
a regularization, similar to Wu et al. (2024b); You et al. (2023). See model details in Appendix C. Our
experiments in Tab. A9 also show that model architecture has little influence on model performance.

Retaining resolution in training. Although previous VLM-based IQA models typically resize all
input images to a fixed resolution (Wu et al., 2024b;d), we find this might hurt their performance, as
resolution variation may affect visual quality. Instead, we retain the original image resolution during
training. Specifically, we interpolate (in bicubic mode) the position embedding in CLIP (Radford et al.,
2021) to accommodate varying image resolutions. Ablation studies detailed in Sec. 5.4 demonstrate
our model’s capability to assess quality variations attributable to resolution, even without explicitly
training on such tasks.

Confidence estimation. In many applications, it is important to know a confidence score that
indicates when the model is uncertain of its response. Here we use the confidence scores of some
key tokens as the confidence of the entire answer. Intuitively, the key tokens are distortion names
in distortion identification, and are either “Image A” or “Image B” in instant rating. For detailed
reasoning tasks, which feature diverse and non-structured responses, we utilize semantic change
testing (Duan et al., 2023) to identify the top 20 tokens with the highest importance scores as key
tokens. In semantic change testing, we employ all-MiniLM-L6-v2 (Reimers and Gurevych, 2019) as
the similarity model, due to its high processing speed (14K sentences per second). The predicted
likelihood of key tokens is averaged as the confidence score. Fig. 6 and Fig. A6 verify that confidence
and model performance are highly correlated.

5 EXPERIMENTS

5.1 METRICS AND BASELINES

Accuracy, SRCC, and PLCC. The accuracy metric is utilized for distortion identification and instant
rating tasks. VLMs usually produce diverse textual outputs, and we transform them into brief results
for accuracy calculation. Specifically, we prompt our EDQA with “Answer the question using a
single word or phrase” to encourage direct output of brief responses. For baseline models, we include
all potential answers in the prompt and instruct the model to identify the most accurate one. We
emphasize that our key motivation is to generate descriptive language rather than quality scores.
However, our approach can produce quality scores using pair-wise comparison if required. The
quality scores are assessed using Spearman Rank Correlation Coefficient (SRCC) and Pearson Linear
Correlation Coefficient (PLCC). The results of quality score are given in Appendix D.1.

GPT-4 score, BLEU, and ROUGE-L. We employ the GPT-4 score to evaluate assessment reasoning
and comparison reasoning tasks, following Liu et al. (2023a). Specifically, we provide GPT-4 with
both the model-generated response and the corresponding ground truth response. GPT-4 assesses the
helpfulness, relevance, accuracy, and level of detail in the model-generated response relative to the
ground truth, assigning an overall score on a scale of 0 to 10, where a higher score indicates better
quality. This average score is subsequently normalized to a scale of 0 to 100%, reported as the GPT-4
score metric. We further evaluate the reasoning tasks with classical metrics including BLEU and
ROUGE-L score following See et al. (2017); Vaswani (2017).

Baselines. We categorize our baseline methods into general-purpose VLMs and IQA-specific VLMs.
For general VLMs, we include mPLUG-Owl2 (Ye et al., 2023b) (based on LLaMA-2-7B (Touvron
et al., 2023b)), LLaVA-1.6 (Liu et al., 2024) (based on Vicuna-v1.5-7B (Chiang et al., 2023)), and
the proprietary GPT-4V (OpenAI, 2023). IQA-specific VLMs are represented by Q-Instruct (Wu
et al., 2024b), Co-Instruct (Wu et al., 2024d), and CLIP-like LIQE Zhang et al. (2023b). Note that
Q-Instruct only supports single-image inputs, thus we only test it on non-reference single-image
assessment tasks. Additionally, we compare traditional score-based IQA methods including full-
reference ones (PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), DISTS (Ding et al.,
2020)) and non-reference ones (NIQE (Mittal et al., 2013), ClipIQA (Wang et al., 2023), MUSIQ (Ke
et al., 2021), MANIQA (Yang et al., 2022)) in instant rating task and score regression experiments.
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Table 3: Distortion identification results under both single-distortion and multi-distortion cases. The
accuracy metric is reported in the full-reference / non-reference settings. EDQA greatly outperforms
all baselines and maintains its high accuracy in out-of-distribution (OOD) setting.

General VLM IQA-specific VLM

mPLUG-Owl2 LLaVA-1.6 GPT-4V Q-Instruct Co-Instruct LIQE EDQA EDQA (OOD)

Single-dist. 10.1 / 11.6 14.0 / 15.3 46.7 / 45.2 - / 15.5 27.2 / 34.4 - / 33.1 97.7 / 94.1 82.1 / 73.2
Multi-dist. 10.8 / 10.7 12.0 / 12.1 41.5 / 39.8 - / 23.9 30.2 / 33.3 - / 31.4 91.3 / 89.3 76.6 / 77.2

Table 4: Instant rating results on multiple benchmarks in the full-reference / non-reference setting
with the accuracy metric. Q-Instruct is tested by inputting single images to calculate quality scores,
and then compare the scores to rate. EDQA surpasses all baselines by a large margin.

Methods BAPPStest KADIDtest PIPALtest TID2013 LIVE-MD MDID2013 Mean

Full-refer.
Score-based

IQA

PSNR 68.9 / 78.7 / 80.9 / 85.0 / 89.7 / 78.0 / 80.2 /
SSIM 69.7 / 77.1 / 82.6 / 78.7 / 88.1 / 76.8 / 78.8 /
LPIPS 79.4 / 79.7 / 84.2 / 86.6 / 91.3 / 85.4 / 84.4 /
DISTS 79.7 / 85.8 / 84.6 / 87.0 / 93.1 / 88.5 / 86.5 /

Non-refer.
Score-based

IQA

NIQE / 49.9 / 66.9 / 59.7 / 65.0 / 86.9 / 82.2 / 68.4
ClipIQA / 59.7 / 75.8 / 72.6 / 85.8 / 65.8 / 47.0 / 67.8
MUSIQ / 59.2 / 76.1 / 77.8 / 80.1 / 87.2 / 81.1 / 76.9

MANIQA / 54.9 / 68.4 / 79.2 / 77.3 / 75.4 / 63.5 / 69.8

General VLM
mPLUG-Owl2 50.1 / 50.1 50.6 / 50.8 49.6 / 49.6 48.6 / 48.5 49.9 / 50.1 50.6 / 50.5 49.9 / 49.9

LLaVA-1.6 54.1 / 56.2 50.4 / 51.9 52.0 / 52.6 54.2 / 57.0 54.4 / 56.5 54.3 / 53.1 53.2 / 54.6
GPT-4V 70.3 / 63.2 83.2 / 81.5 78.5 / 78.2 84.4 / 88.1 79.6 / 72.7 70.6 / 67.6 77.8 / 75.2

IQA-specific
VLM

Q-Instruct - / 41.6 - / 81.7 - / 74.6 - / 88.8 - / 73.1 - / 48.5 - / 68.1
Co-Instruct 49.8 / 50.7 52.0 / 82.4 50.6 / 72.5 59.3 / 85.0 50.0 / 70.3 50.0 / 58.0 52.0 / 69.8

EDQA (Ours) 84.7 / 82.4 93.6 / 93.1 90.5 / 90.0 96.9 / 96.4 92.1 / 91.8 90.0 / 89.6 91.3 / 90.6

5.2 RESULTS ON BENCHMARKS

Quantitative results of distortion identification are shown in Tab. 3. First, the performance of
Co-Instruct is stably superior in the non-reference setting compared to the full-reference setting,
attributed to its training without reference. Second, the performance of open-source general VLMs,
including mPLUG-Owl2 and LLaVA-1.6, is still limited, but the proprietary GPT-4V (OpenAI,
2023) outperforms other general-purpose VLMs and exceeds prior specialized IQA VLMs. Third,
EDQA significantly surpasses all baseline methods, demonstrating our model’s efficacy. Finally, we
evaluate our model in an out-of-distribution (OOD) setting. Specifically, for a particular category
of distortion (e.g., noise), we use some sub-categories (e.g., Gaussian noise) during training, and
different sub-categories (e.g., impulse noise) for evaluation. Results in the last column of Tab. 3 show
that our method maintains high accuracy even under such an OOD setting.

Quantitative results of instant rating are demonstrated in Tab. 4. First, in the full-reference
context, traditional score-based methods, even the simplest PSNR, outperform all general VLMs
including GPT-4V and prior IQA-specific VLMs, indicating the inadequacy of existing VLMs in
full-reference IQA tasks. Second, conversely, in the non-reference scenario, GPT-4V and Co-Instruct
excel beyond most score-based approaches, except MUSIQ. Third, Co-Instruct is trained on multi-
image comparison tasks without reference, and thus its performance in full-reference setting drops
by quite a large margin. This further demonstrates the necessity of unifying full-reference and
non-reference settings. Finally, EDQA demonstrates superior performance across both settings by a
large margin, showcasing its substantial advantage.

Quantitative results of assessment reasoning and comparison reasoning are shown in Tab. 5 and
Tab. 6. First, the performance of the VLM-specific models significantly declines on tasks outside
their defined scopes. For instance, Co-Instruct’s performance is unsatisfactory on full-reference
tasks. Second, GPT-4V shows robust reasoning abilities, stably outperforming prior IQA-specific
VLMs. Third, EDQA surpasses GPT-4V, especially in the non-reference setting, affirming its superior
reasoning abilities. Finally, EDQA achieves relatively good GPT-4 score and ROUGE-L, indicative
of the overall semantic accuracy, but a low BLEU score (yet remains much higher than GPT-4V),
which reflects word-level consistency. This suggests that while our predicted answers do not precisely
duplicate the ground truths word-for-word, they preserve similar meanings with diverse expressions.

Qualitative results of our model on the four tasks in the non-reference setting are depicted in Fig. 2.
More qualitative results are provided in Appendix D.4 and Fig. A10, A11, A12, A13, A14.
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Table 5: Assessment reasoning and comparison reasoning results under
both single-distortion and multi-distortion cases. GPT-4 score metric is
reported in the full-reference / non-reference setting.

Methods
Assessment Reasoning Comparison Reasoning

Single-distortion Multi-distortion Single-distortion Multi-distortion

GPT-4V 67.8 / 59.2 71.0 / 62.3 66.2 / 60.3 67.2 / 60.1
Q-Instruct - / 45.7 - / 45.8 - -
Co-Instruct 40.1 / 45.3 41.9 / 46.7 37.6 / 48.1 35.6 / 48.0

EDQA (Ours) 76.8 / 74.2 75.6 / 72.3 75.1 / 74.9 71.7 / 68.7

EDQA (Ours)
51.49%

Q-Instruct
5.94%

Co-Instruct
2.97%

GPT-4V
39.60%

Figure 4: User study.
Table 6: Assessment reasoning and comparison reasoning results with classic metrics (BLEU and
ROUGE-L) in the full-reference / non-reference setting.

Methods
Assessment Reasoning Comparison Reasoning

Single-distortion Multi-distortion Single-distortion Multi-distortion
BLEU ROUGE-L BLEU ROUGE-L BLEU ROUGE-L BLEU ROUGE-L

GPT-4V 0.020/0.010 0.248/0.224 0.023/0.015 0.246/0.223 0.029/0.025 0.261/0.243 0.030/0.024 0.251/0.238
Q-Instruct - / 0.003 - / 0.210 - / 0.002 - / 0.198 - - - -
Co-Instruct 0.008/0.005 0.201/0.204 0.002/0.003 0.209/0.203 0.039/0.041 0.239/0.234 0.034/0.036 0.239/0.234

EDQA (Ours) 0.132/0.129 0.423/0.422 0.180/0.170 0.420/0.415 0.207/0.207 0.466/0.463 0.176/0.172 0.420/0.413

Quality score regression. Thought our key motivation is to generate descriptive language rather
than quality scores, our approach can produce quality scores if required. We transform the score
regression problem into instant rating tasks, and calculate the win rate of one image against others
(selected by round robin for a small number, random sampling for a large number) as the quality
score. The details and results are give in Appendix D.1.

5.3 REAL-WORLD APPLICATIONS

Assessing web-downloaded images. A practical usage of an IQA model involves assessing the
quality of real images. We collect a total of 50 real-world images from the web, featuring diverse
contents including animals, plants, faces, buildings, and landscapes. Qualitative results in Fig. 5 and
Fig. A14 indicate that our method can assess real images with detailed descriptions. More importantly,
EDQA can describe how the distortions affect the contents. For example, in Fig. 5d, our model first
accurately identifies the “severe quantization”, then describes that the quantization “causes banding in
the sky and water”, and finally concludes that the quality “is considerably degraded”. We also conduct
a user study with 20 participants involved. Participants are instructed to choose the assessment result
that is of the highest quality among the test methods. The results are shown in Fig. 4, revealing that
our approach stably outperforms baseline methods in aligning human perception.

Table 7: Results on model-processed images.

NIQE ClipIQA MUSIQ ManIQA GPT-4V EDQA

Rank ↓ 2.20 1.40 1.60 1.80 1.34±0.27 1.20
Accuracy ↑ 45.5 72.7 77.3 66.4 74.5 82.7

Comparison on model-processed images. To
develop image restoration models, one often needs
to compare the restoration quality of different mod-
els. To simulate this, we consider five distortions
including “defocus blur”, “motion blur”, “noise”,
“JPEG compression”, and “low resolution”. For each distortion, three to four candidate models
are used to process the distorted images. We manually rank the restored results, assigning “1” to
the best restoration, “2” to the second best, etc. Different IQA methods are adopted to compare
these restored images pairwise and find the best restoration. The average rank of the found best
restoration and the accuracy of the paired comparison are reported in Tab. 7. First, EDQA achieves an
average rank of 1.20 (1 is the best), outperforming both GPT-4V and score-based methods. Second,
though the temperature is set to 0, GPT-4V shows variability with a large standard deviation. Third,
model-restored images are generally out-of-distribution for our model, while EDQA exhibits excellent
generalization ability on these images. See details in Tab. A13 and Fig. A8.

5.4 ABLATION STUDIES

Assistant model. To construct comparison reasoning responses, we train an assistant model to
predict comparison results (see Fig. 3). These results serve as pseudo labels, which are subsequently
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The image depicts a bridge over a body of water with 
buildings in the background. The image has a moderate level 
of saturation weakening, resulting in a washed-out 
appearance with less vibrant colors. This affects the visual 
impact, making the scene less lively and potentially less 
engaging. Overall, the quality of the evaluated image is
diminished due to the reduced color intensity, but the content 
remains recognizable and the image is still reasonably clear.

The image depicts a close-up of a person’s face. The 
evaluated image exhibits significant pixelation, resulting in 
loss of detail and blocky appearance, particularly noticeable 
on the cheeks and hair. Additionally, there is noise present, 
introducing graininess to the image, but it’s less impactful 
than the pixelation. Overall, the image quality is poor due to 
the severe pixelation which greatly diminishes the clarity and 
detail of the subject, while the noise adds a relatively minor 
degradation to the visual fidelity.

The image depicts a train station with a locomotive, tracks, and 
buildings. The image has a moderate darkening distortion, 
reducing visibility, especially in shadowed areas, and affecting the 
overall contrast and detail. Despite the darkening, the image 
retains most of its content integrity, but with compromised 
vibrancy and clarity. The overall quality is acceptable but not 
optimal, with the main subject still recognizable but less engaging 
due to the diminished brightness and contrast.

The image depicts a serene seascape with a wooden pier 
extending into the ocean under a blue sky. The image exhibits 
severe quantization, resulting in a significant reduction of color 
depth, which causes banding in the sky and water, and a loss of 
detail. Additionally, the image is slightly darkened, which slightly 
mutes the colors but is less impactful than the quantization. 
Overall, the image quality is considerably degraded due to the 
heavy quantization. The distortion significantly affects the visual 
experience, making the image appear unnatural and less pleasing.

The image depicts a sunset with a vibrant orange sky above a 
silhouette of a landscape. The image exhibits slight compression 
and obvious pixelation. The compression has led to a loss of fine 
details, with blocky artifacts visible, especially in areas of subtle 
color gradients. The severe pixelation results in a significant loss 
of detail, which makes the silhouette of the landscape and the 
sunset’s gradient appear as large, flat areas. Overall, the quality is 
substantially degraded, with the pixelation being most serious, as 
it severely impacts the natural gradation of the scene.

The image depicts a cartoon character in a natural setting 
with leaves and a tree trunk. The image exhibits significant 
blur, reducing detail and making the subject indistinct. 
Additionally, there is a slight compression artifact present, 
which can be observed as a subtle blockiness, particularly 
noticeable in areas of subtle color gradation. Overall, the 
quality is compromised, with the blur having a more 
pronounced effect. The loss of detail makes the image less 
suitable for purposes where clarity is important.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Qualitative results on assessing web-downloaded images. More results in Fig. A14.

Table 8: Our assistant model
surpasses GPT-4V greatly in
instant rating task. The metric
is accuracy in the full-reference
/ non-reference setting.

GPT-4V Our Assistant

TID2013 84.4 / 88.1 94.9 / 94.6
LIVE-MD 79.6 / 72.7 93.1 / 92.8
MDID2013 70.6 / 67.6 90.1 / 89.8

Table 9: Retaining resolution is
important to identify the images
with better aspect ratio or higher
resolution.

Retain Resolution?
H↔W 0.8× 0.9×

Training Inference

✗ ✗ 73.0 91.7 77.2
✓ ✗ 85.6 99.0 94.8
✓ ✓ 98.8 99.3 96.8

Figure 6: Confidence and perfor-
mance are highly correlated.

provided to GPT-4V to generate responses. We compare the assistant model to GPT-4V on three
out-of-distribution IQA datasets. The results in Tab. 8 affirm the superiority of the assistant model.

Retaining resolution. In Tab. 9, we study the effects of retaining resolution. We sample 1,000
high-quality images with an aspect ratio greater than 4 : 3. These images are either resized by
swapping their height and width (H↔W) or down-sampled by a scale factor of 0.8 or 0.9. The model
needs to compare the original and resized images to determine the better one. The alternative of
retaining resolution is resizing the two images to a larger resolution, which can maintain the quality
difference between the original and resized images (v.s., resizing to a smaller resolution results in two
nearly the same images). The results in Tab. 9 prove that retaining resolution is crucial for identifying
images with better aspect ratio or higher resolution. More results in Appendix D.2 and Tab. A8.

Confidence. We examine the correlation between model performance and estimated confidence
in Fig. 6. For distortion identification and instant rating tasks, across both full-reference and non-
reference settings, our model demonstrates improved performance as the confidence interval increases.
This validates the effectiveness of our confidence estimation. Details in Appendix D.2 and Fig. A6.

Model architecture is studied in Appendix D.2 and Tab. A9, showing little influence on performance.

6 CONCLUSIONS AND LIMITATIONS

We introduce EDQA, a VLM-based IQA model, empowered by a new multi-functional task paradigm,
dataset enrichment, and training technique, surpassing baseline methods in both benchmarks and two
real-world applications, showing the potential of descriptive quality assessment.

Limitations. First, the fine-grained abilities requiring more high-level perception skills are still
unsatisfactory. For example, in Fig. 5c, though identifying noise and pixelation successfully, our
model fails to point out that they are respectively located in the left and right parts. One possible
solution is to take the segmentation model to add various distortions to different regions. Second, for
the convenience of evaluating, analyzing, and improving the model, we mainly focus on standardized
answers. To achieve more flexible responses, LLM rewriting and human annotation can be introduced
to increase linguistic diversity during dataset construction. Third, whether our assessment can be
used as feedback to improve the quality of generation or restoration models is still under-explored.
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APPENDIX

A OVERVIEW

This Appendix is structured as follows. Dataset details are described in Appendix B, followed by the
details of model, training and inference in Appendix C. More ablation studies, qualitative results, and
the details of real-world applications are presented in Appendix D.

B DATASET DETAILS

B.1 DETAILS OF DISTORTION LIBRARY
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Figure A1: Reference for dis-
torted images in Fig. A2.

As stated in Sec. 3.2, to facilitate the dataset construction, we
design and implement a comprehensive distortion library. Our
distortion system contains 12 distortion super-categories in total,
with each category consisting of multiple sub-categories. For
instance, the “blur” category encompasses “Gaussian blur”, “motion
blur”, “lens blur”, etc. In total, there are 35 sub-categories. For
each sub-category, there are 5 severity levels: “slight”, “moderate”,
“obvious”, “serious”, and “catastrophic”. In this section, we
elaborate on our distortion implementations, including the principles,
formulas, and severity setup. We also provide one example for each
implementation in Fig. A2, with the reference image in Fig. A1.

Blur.

• Gaussian blur. The distorted image is generated by convolving the reference image with a
Gaussian blur kernel. We set the kernel size (sk) to be a function of the standard deviation (σk)
of the blur kernel: sk = round(4× σk) + 1.

• Motion blur. Linear motion blur is applied to the reference image using the linear filter, where
(r, σ) ∈ [(5, 3), (10, 5), (15, 7), (15, 9), (20, 12)].

• Glass blur. Filter the image using a Gaussian filter, then randomly jitter each
pixel in the image by x pixels, and repeat this process n iterations. [σ, x, n] ∈
[(0.7, 1, 1), (0.9, 2, 1), (1.2, 2, 2), (1.4, 3, 2), (1.6, 4, 2)].

• Lens blur. This distortion uses the circular average filter, where r ∈ [1, 2, 4, 6, 8].

• Zoom blur. The image is gradually zoomed in and overlaid to calculate the average.

• Jitter blur. Each pixel is randomly displaced by a shift of randint(−p, p) pixels both in x and y
dimensions, with a total of 5 displacements, where p ∈ [1, 2, 3, 4, 5].

Noise.

• Gaussian noise in RGB space. Additive Gaussian noise is applied to each of the RGB channels of
an image, where σ ∈ [0.05, 0.1, 0.15, 0.2, 0.25].

• Gaussian noise in YCrCb space. Similar to the Gaussian noise in RGB
space, this distortion is implemented in YCbCr space, where (σl, σr, σb) ∈
[(0.05, 1, 1), (0.06, 1.45, 1.45), (0.07, 1.9, 1.9), (0.08, 2.35, 2.35), (0.09, 2.8, 2.8)].

• Speckle Noise. Speckle Noise is also known as Multiplicative Gaussian noise, where σ ∈
[0.14, 0.21, 0.28, 0.35, 0.42].

• Spatially correlated noise. The reference image is first corrupted by an additive Gaussian noise,
which results in each pixel being corrupted by an independent and identically distributed noise
pattern. The resultant image is then filtered with an average filter of kernel size 3 × 3, correlating
the intensity of each pixel with those of the neighboring pixels. More specifically, the distorted
image is given by:

ID(x, y, c) =
1

|Nn|
∑
i∈Nn

(IR(xi, yi, ci) +N(xi, yi, ci)), (A1)

where ID is the distorted image, IR is the reference image, Nn is the set of neighboring pixels,
and N(x, y, c) ∼ N (0, σ2

g).

• Poisson noise. This distortion generates Poisson noise based on the image pixel values, where
intervals ∈ [80, 60, 40, 25, 15].

• Impulse noise. Impulse noise is also known as salt and pepper noise. The density of the noise:
d ∈ [0.01, 0.03, 0.05, 0.07, 0.10].

Compression.

• JPEG. The distorted image is a JPEG-compressed version of the reference image, where the
parameter in Pillow, quality q ∈ [25, 18, 12, 8, 5].
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• JPEG 2000. This distortion is an advanced compression widely used, where the Pillow’s parameter
quality q ∈ [29, 27.5, 26, 24.5, 23].

Brightness.

• Brightness shift in HSV space. The RGB image is mapped to HSV, and then we enhance
and reduce the brightness by V channel, where σ ∈ [0.1, 0.2, 0.3, 0.4, 0.5] for Brightening and
σ ∈ [−0.1,−0.2,−0.3,−0.4,−0.5] for darkening.

• Brightness shift in RGB space. We enhance and reduce the brightness in all channels, where
σ ∈ [0.1, 0.15, 0.2, 0.27, 0.35] for Brightening and σ ∈ [−0.1,−0.15,−0.2,−0.27,−0.35] for
darkening.

• Gamma Brightness tuning in HSV space. The RGB image is mapped to HSV space and then
we enhanced and reduce the brightness by V channel with a gamma function, where γ ∈
[0.7, 0.58, 0.47, 0.36, 0.25] for brightening and γ ∈ [1.5, 1.8, 2.2, 2.7, 3.5] for darkening.

Contrast.

• Contrast tuning by scaling. Given an input image Iin, there is a corresponding Imean, which is a
gray image in which each element is the mean of Imean. The distorted image ID is generated
as following: ID = Imean ∗ (1.0 − α) + Iin ∗ α, where α ∈ [0.75, 0.6, 0.45, 0.3, 0.2] for
strengthening and α ∈ [1.4, 1.7, 2.1, 2.6, 4.0] for weakening.

• Contrast tuning by stretching. Contrast changing is performed as follows: ID(x, y, c) =

1/(1 + ( ĪC
IR(x,y,c)+ϵ )α), where ID is the distorted image, IR is the reference image, and

ĪC is the mean intensity for channel c. α ∈ [1.0, 0.9, 0.8, 0.6, 0.4] for weakening, and
α ∈ [2.0, 4.0, 6.0, 8.0, 10.0] for strengthening.

Saturate.

• Saturate tuning in HSV space. The reference image is firstly mapped into HSV space and then
the S channel is scaled, where the scale factor s ∈ [0.7, 0.55, 0.4, 0.2, 0.0] for weakening and
s ∈ [3.0, 6.0, 12.0, 20.0, 64.0] for enhancement.

• Saturate tuning in YCbCr space. The reference image IR is firstly mapped into YCbCr space and
then the distorted image ID is generated like the following formulation:

ID(x, y, Cb) = 128 + (IR(x, y, Cb)− 128)× s, (A2)

ID(x, y, Cr) = 128 + (IR(x, y, Cr)− 128)× s, (A3)
where s ∈ [0.6, 0.4, 0.2, 0.1, 0.0] donates the scale factor for weakening and s ∈
[2.0, 3.0, 5.0, 8.0, 16.0] for strengthening.

Over-sharpen. The reference image IR is firstly processed by a Gaussian blur kernel to generated
a blurred image Iblur. Then the original image is over-sharpened with cv2.addWeighted(IR, 1 +
α, Iblur,−α, 0), where α ∈ [2, 2.8, 4, 6, 8].

Pixelate. The reference image is firstly down-sampled in BOX mode, then up-sampled to the original
resolution in NEAREST mode, where the down-sampling factor σ ∈ [0.5, 0.4, 0.3, 0.25, 0.2].

Quantize.

• Color quantization using histogram equalization. The color elements are divided into an equal
histogram for quantization, where the number of classes c ∈ [24, 16, 8, 6, 4].

• Color quantization using histogram median. This distortion is implemented by the function
PIL.Image.Quantize.MEDIANCUT, where the number of classes c ∈ [20, 15, 10, 6, 3].

• Color quantization using OTSU method, which is implemented by existing function skim-
age.filters.threshold multiotsu to generate thresholds. The number of classes c ∈ [15, 11, 8, 5, 3].

Multi-distortion setups. As discussed in Sec. 3.2, multiple distortions may occur simultaneously on
the same image in practical usage. First, we observe that humans can identify at most two distortions
when three or more are applied, as in Fig. A3, thus we limit the number of applied distortions to two.
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Gaussian Blur Glass Blur Jitter Blur Lens Blur Motion Blur

Zoom Blur Gamma Brighten HSV Gamma Brighten RGB Shift Brighten HSV Shift Brighten RGB

Compression JPEG2000 Strengthen Contrast 
by Scale

Strengthen Contrast 
by Stretch

Weaken Contrast 
by Scale

Weaken Contrast 
by Stretch

Gaussian Noise RGB Gaussian Noise YCbCr Impulse Noise Poisson Noise Spatially Correlated
Noise

Speckle Noise Over-sharp Pixelation Quantization using 
Equalization Histogram

Quantization using 
Histogram Median

Saturate Strengthen 
HSV

Saturate Strengthen 
YCbCr

Saturate Weaken 
HSV

Saturate Weaken 
YCbCr

Gamma Darken HSV Gamma Darken RGB Shift Darken HSV Shift Darken RGB Compression JPEG

Quantization using 
OTSU method

Figure A2: Distortion examples of our distortion design. We showcase one example for each
distortion implementation. The reference image is depicted in Fig. A1.

Second, some distortions could weaken each other’s presentation (e.g., “brighten” weakens “darken”,
“blur” weakens “over-sharpen”). Also, certain distortions show similar visual effects (e.g., “pixelate”
looks similar to “blur”), making it hard to identify both if applied simultaneously. Hence, to exclude
contradictory or similar distortion combinations, we manually review all possible combinations. All
feasible distortion combinations used in our dataset are provided in Tab. A1.

Out-of-distribution setups. In Tab. 3, we evaluate our model in an out-of-distribution (OOD) setting.
Specifically, for a particular category of distortion (e.g., noise), we use some sub-categories (e.g.,
Poisson noise) during training, and different sub-categories (e.g., impulse noise) for evaluation. Here
we provide a detailed split of training distortions and evaluation distortions in Tab. A2.
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Table A1: Multi-distortion setting where we show all feasible distortion combinations.

First Distortion All Possible Second Distortions

Blur Brighten, Compression, Contrast Strengthen, Contrast Weaken, Darken, Noise, Quantize, Saturate Strengthen,
Saturate Weaken

Brighten Blur, Compression, Noise, Pixelate, Quantize
Compression Blur, Brighten, Contrast Strengthen, Contrast Weaken, Darken, Noise, Saturate Strengthen, Saturate Weaken
Contrast Strengthen Blur, Compression, Noise, Pixelate, Quantize
Contrast Weaken Blur, Compression, Noise, Pixelate, Quantize
Darken Blur, Compression, Noise, Pixelate, Quantize

Noise Blur, Brighten, Compression, Contrast Strengthen, Contrast Weaken, Darken, Over-sharpen, Pixelate, Saturate
Strengthen, Saturate Weaken

Over-sharpen Brighten

Pixelate Brighten, Contrast Strengthen, Contrast Weaken, Darken, Noise, Over-sharpen, Quantize, Saturate Strengthen,
Saturate Weaken

Quantize Brighten, Contrast Strengthen, Contrast Weaken, Darken, Noise, Over-sharpen, Pixelate, Saturate Strengthen,
Saturate Weaken

Saturate Strengthen Blur, Compression, Noise, Over-sharpen, Pixelate, Quantize
Saturate Weaken Blur, Compression, Noise, Over-sharpen, Pixelate, Quantize

(a) Noise + Compression + Blur
→ Noise + Blur

(b) Noise + Quantize + Contrast Strengthen
→ Noise + Contrast Strengthen

(c) Saturation Strengthen + Over-sharpen + Quantize
→ Saturation Strengthen + Quantize

Figure A3: Humans usually identify at most two distortions (blue) when three (purple) are applied.

B.2 DETAILS OF DATASET CONSTRUCTION

Template pool. As stated in Sec. 3.3, for brief tasks, the questions and answers are templated and
sampled from a pool. The questions of detailed tasks are also sampled from a pool. The question pools
and answer pools (if possible) of distortion identification, instant rating, assessment reasoning, and
comparison reasoning tasks are given in Tab. A14, Tab. A16, Tab. A15, and Tab. A17, respectively.

Statistics of the response length in our EDQA-495K dataset are detailed in Appendix B.2. We
provide statistics on both word count and string length. For the instant rating task, there is no
distinction between single-distortion and multi-distortion cases. We also depict the word length
distribution of detailed reasoning responses in Fig. A4.

Wordcloud map of our EDQA-495K dataset is given in Fig. A5. We manually exclude “Image A”
and “Image B”, since they are constant proper nouns across all texts. The most frequent words in our
EDQA-495K dataset (e.g., “overly high”, “color quantization”, “high contrast”, “high saturation”,
and “detail”) are all highly relevant to the low-level properties and the visual quality of images.

C DETAILS OF MODEL SETUPS

Model Architecture. EDQA primarily adopts the architecture from LLaVA-1.6 (Liu et al., 2024)
and mPLUG-Owl2 (Ye et al., 2023b), structured as follows. Specifically, the input images and
the question texts are first tokenized, then fused, finally processed by the Large Language Model
(LLM) for response generation. (1) Tokenizing input images and question texts. We use a frozen
CLIP pre-trained ViT-L/14 (Radford et al., 2021) as the image encoder to convert the input images
into visual tokens. The question texts are tokenized into textual tokens using the SentencePiece
tokenizer (Kudo and Richardson, 2018). To bridge the different embedding spaces of visual and
textual tokens, we implement a trainable image abstractor, which is a four-layer transformer network,
to map visual tokens into the textual space following Ye et al. (2023b). The abstractor can also
significantly reduce the number of vision tokens, relieving the computing pressure. (2) Token fusion.
We integrate the visual tokens into pre-defined positions within the textual tokens as token fusion. (3)
Response generation using LLM. The fused tokens are fed into LLM to generate the final response.
Here we mainly conduct experiments with Vicuna-v1.5-7B. Despite their capabilities, pre-trained
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Table A2: Setting of out-of-distribution (OOD) distortion identification.

Category Training distortions Validation distortions

Blur Motion blur, Glass blur, Lens blur, Zoom blur Gaussian blur, Jitter blur

Noise Gaussian noise in YCrCb space, Speckle noise, Spatial correlated
noise, Poisson noise Gaussian noise in RGB space, Impulse noise

Compression JPEG compression JPEG2000 compression
Brighten Shift brighten in HSV & RGB spaces, Gamma brighten in HSV space Gamma brighten in RGB space
Darken Shift darken in HSV & RGB spaces, Gamma darken in HSV space Gamma darken in RGB space
Contrast strengthen Contrast strengthen by scaling Contrast strengthen by stretching
Contrast weaken Contrast weaken by scaling Contrast weaken by stretching
Saturate strengthen Saturate strengthen in HSV space Saturate strengthen in YCrCb space
Saturate weaken Saturate weaken in HSV space Saturate weaken in YCrCb space
Quantization Quantization by OTSU method, Quantization by histogram median Quantization by histogram equalization

Table A3: Response length statistics in EDQA-495K dataset, reported as word count / string length.
For instant rating task, there is no distinction between single-distortion and multi-distortion cases.

Distortion Identification Assessment Reasoning Instant Rating Comparison Reasoning

Single-distortion 10.36 / 69.81 64.37 / 430.23
9.30 / 52.02

93.20 / 604.97
Multi-distortion 12.84 / 88.67 87.31 / 588.44 114.04 / 740.68

LLMs typically do not perform well on IQA tasks without adjustments. Therefore, we employ
LoRA (Hu et al., 2021), a fine-tuning technique that efficiently modifies a small subset of parameters
within the LLM. Specifically, we apply LoRA to adjust the projection layers in all self-attention
modules, following Hu et al. (2021); Yin et al. (2023). This approach allows for targeted refinement
of the model’s performance on IQA tasks without the need for extensive retraining.

Model setup. Since the CLIP pre-trained ViT-L/14 (Radford et al., 2021) encodes each 14 × 14
patch to a visual token, the resolution of the input image should be integer multiples of 14. Therefore,
we first pad the size of input images to integer multiples of 14 with zero-padding. We encode the
image patches into visual tokens using the CLIP pre-trained ViT-L/14 (Radford et al., 2021), with
each token having a channel of 1024. The vision abstractor can reduce the number of vision tokens
to 64 and map the vision tokens to the hidden dimension of the LLM, which is 4096. Without the
vision abstractor, the maximum resolution is limited to 672, constrained by computation resources
(RTX A6000 GPUs). However, with the vision abstractor, we can process images with much larger
resolutions (up to 2500× 2500). In our experiments, the maximum image resolution is 1092× 1456,
thus the resolutions of all images are retained. The vision abstractor consists of four transformer
layers with 64 learnable query embeddings. In LoRA of LLM, the parameters of rank and scale
factor are both set as 16. There are 32 attention layers in the LLM in total. In each attention layer, the
projection weights of “query”, “key”, “value”, and “output” are adjusted using two delta parameters
with the shape of 4096× 16 and 16× 4096, respectively.

Training and inference setup. In our experiments, we set the LoRA rank to 16. EDQA is trained for
1 epoch with batch size 64. Adam optimizer with (β1, β2) = (0.9, 0.95), weight decay 0.001, and
learning rate 0.0002 is used for training. During inference, the temperature is set to 0, since lots of
predicted information (e.g., distortion, comparison result) need to be certain.

C.1 COMPLEXITY AND EFFICIENCY

Training cost. The total parameters are 7.11B, including 6.76B for LLM, 0.30B for vision encoder,
and 54M for vision abstractor. The trainable parameters are 70M (54M for vision abstractor and 16M
for LoRA), constituting only 0.98% of the total parameters. The model is trained on 8 GPUs (RTX
A6000). The training is completed in around 22 hours.

Inference cost. The inference latency depends on the response length and it is tested on a single
RTX A6000 GPU. For example, for brief tasks task with the short answer prompt (about 2.92 words),
the inference time stands at approximately 2.23s / batch=32, transformed to 0.07s / sample. For the
assessment reasoning task (75.84 words on average), the inference time is 22.97s / batch=32 (i.e.,
0.72s per response). EDQA remains deployable on a single consumer GPU (e.g., RTX3090).
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Figure A4: Word length distribution of detailed
responses in our EDQA-495K dataset.

Figure A5: Wordcloud map of our introduced
EDQA-495K dataset.

Table A4: Results of quality score regression with SRCC / PLCC metrics in full-reference setting.

Methods PIPALtest KADIDtest TID2013 CSIQ

SSIM 0.624 / 0.680 0.750 / 0.751 0.746 / 0.802 0.861 / 0.857
FSIM 0.673 / 0.746 0.855 / 0.857 0.841 / 0.875 0.937 / 0.937
LPIPS 0.639 / 0.718 0.799 / 0.803 0.798 / 0.851 0.905 / 0.926

EDQA (Ours) 0.743 / 0.780 0.938 / 0.943 0.852 / 0.886 0.934 / 0.949

D MORE RESULTS

D.1 QUALITY SCORE REGRESSION

Our key focus in this work is to generate descriptive language rather than quality scores. We focus
more on linguistic descriptions because language is an effective interaction tool in an LLM-based
intelligent agent. With the rapid development of LLMs and multi-modal techniques, in an LLM-
based intelligent agent, language could be a useful tool for interacting and communicating across
quality-related tasks such as image assessment, refinement, editing, and recommendation. Still, if it
is required, our approach can produce quality scores.

Quality score regression. The score regression results are evaluated on the PIPAL, KADID, TID2013,
and CSIQ datasets. These datasets include high-quality reference images and their distorted versions
under various distortions. We calculate the win rate of an image against others to determine its quality
score. Specifically, for an image A, we randomly sample comparison candidates, such as B, C, D,
etc., which share the same content as A but have different distortions. Image A is then compared
pairwise with each of its comparison candidates (B, C, D, etc.). In the full-reference setting, the
reference image, Image A, and one compared candidate are input into our model for comparison.
In the no-reference setting, only Image A and its one compared candidate are input for comparison.
Finally, the win rate of Image A against all its compared candidates is calculated as its quality score.
The comparison numbers per image for PIPAL, KADID, TID2013, and CSIQ datasets are 58, 62, 60,
and 15, respectively. We show that the comparison number per image could be reduced significantly
without large performance degradation in Tab. A7. The results of quality score regression are given
in Tab. A4 and Tab. A5, proving that our method can generate accurate quality scores.

Assessing in-the-wild images with different contents. Existing real-world IQA datasets like
KonIQ Hosu et al. (2020) and SPAQ (Fang et al., 2020) contain real distorted images with various
contents. To regress quality scores from such a dataset, our model needs to compare images with
different contents though it is trained only to compare images with similar contents, as shown in Task
2 of Fig. 2. The results in Tab. A6 show that even with a task gap between training and test, our
original EDQA still achieves comparable results with previous score-based IQA methods in score
regression. Furthermore, we formulate real-world IQA datasets into instant rating tasks to re-train
our EDQA, i.e., trained on KonIQ then evaluated on SPAQ, and vice versa. Our re-trained EDQA
outperforms all baseline score-based methods trained on the same dataset. These results indicate that
our method is capable of assessing in-the-wild images with different contents.
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Table A5: Results of quality score regression with SRCC / PLCC metrics in non-reference setting.

Methods PIPALtest KADIDtest TID2013 CSIQ

NIQE 0.300 / 0.367 0.430 / 0.499 0.315 / 0.413 0.660 / 0.747
CLIPIQA 0.448 / 0.491 0.644 / 0.653 0.616 / 0.690 0.761 / 0.798
MUSIQ 0.539 / 0.570 0.650 / 0.668 0.578 / 0.693 0.755 / 0.811

MANIQA 0.558 / 0.602 0.482 / 0.527 0.472 / 0.603 0.701 / 0.714

EDQA (Ours) 0.742 / 0.778 0.937 / 0.941 0.847 / 0.866 0.912 / 0.938

Table A6: Results of quality score calculation on SPAQ and KonIQ datasets with SRCC / PLCC
metrics. “LoRA” means the LLM is tuned using LoRA technique, where only 0.24% parameters
(16M) of whole LLM (6.76B) are trainable. EDQA needs to compare images with different contents
to obtain the quality score, since all images in the two datasets contain different contents. The original
EDQA is only trained to compare images with similar contents, which brings a task gap. When
trained on the same dataset as baselines, EDQA surpasses the baseline methods.

(a) Results on SPAQ dataset
Methods NIQE CLIPIQA MUSIQ MANIQA Q-Align-LoRA EDQA-LoRA EDQA-LoRA

Train Set - - KonIQ KonIQ KonIQ KonIQ Original

SRCC 0.664 0.700 0.856 0.755 0.854 0.859 0.835
PLCC 0.679 0.722 0.859 0.765 0.855 0.861 0.841

(b) Results on KonIQ dataset
Methods NIQE CLIPIQA DBCNN MUSIQ Q-Align-LoRA EDQA-LoRA EDQA-LoRA

Train Set - - SPAQ SPAQ SPAQ SPAQ Original

SRCC 0.530 0.685 0.731 0.753 0.782 0.787 0.717
PLCC 0.533 0.717 0.758 0.680 0.802 0.807 0.729

Influence of comparison numbers. We calculate the win rate of one image over other compared
images as the quality score. Here the compared images are selected by round robin for a small
number, and random sampling for a large number. For the SPAQ dataset, the number of possible
compared images is quite large, thus we adopt the random sampling strategy. The influence of
comparison numbers is investigated in Tab. A7. It is shown that the comparison number could be
reduced significantly without large performance degradation. In the most extreme cases (i.e., the
comparison number is 1 or 2), we use the estimated confidence as weights to calculate the win rate as
quality score. Otherwise, the values of the win rate are too discrete (i.e., the values of the win rate can
only be 0 or 1 when the comparison number is 1). The results of our EDQA are still reasonable in
such extreme cases. Considering that the random sampling may bring large randomness or variance,
we average the results with 5 random runs for small comparison numbers (i.e., < 10). Although the
comparison number is small and the sampling process is random, our method is still very stable with
relatively small standard deviations in Tab. A7.

D.2 MORE ABLATION STUDIES

Ablation study on retaining resolution. In Tab. 9 of the main paper, the effects of retaining
resolution is studied. Specially, we randomly sample 1,000 high-quality images whose aspect ratios
are greater than 4 : 3. These images are either resized by swapping their height and width (denoted as
H↔W), or bi-linearly down-sampled by a scale factor of 0.5, 0.75, 0.8, 0.85, 0.9, or 0.95. EDQA is
requested to conduct the instant rating task, i.e., compare the original and resized images to determine
the superior one. Note that in Tab. A8, the alternative method of retaining resolution is to resize both
original image and resized image to a larger resolution, which can maintain the quality difference. In
contrast, resizing both images to smaller resolution results in two nearly same images.

The results are presented in Tab. A8. First, overall, retaining resolution is crucial for identifying
images with better aspect ratio or higher resolution. Second, with down-sampling becomes severer
(i.e., aspect ratio is from 0.95 to 0.5), the accuracy is improved since the quality drop is more
significant. Third, for severe down-sampling (e.g., aspect ratio is 0.5) where the quality degradation
is quite obviously, retaining resolution or just resizing both images to a larger size both perform well
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Table A7: Influence of comparison numbers per image on SPAQ dataset with SRCC and PLCC
metrics. “(KONIQ)” means the model is trained on KONIQ dataset, which is also an in-the-wild IQA
dataset. For small comparison numbers (< 10), we average the results with 5 random runs.

Comparison Numbers 100 50 25 10 5 2 1

EDQA (Original) SRCC 0.835 0.832 0.826 0.806 0.731±0.006 0.647±0.009 0.577±0.015
PLCC 0.841 0.837 0.832 0.810 0.735±0.006 0.639±0.009 0.537±0.015

EDQA (KONIQ) SRCC 0.859 0.854 0.850 0.830 0.756±0.006 0.664±0.011 0.598±0.013
PLCC 0.861 0.858 0.852 0.833 0.757±0.007 0.652±0.011 0.546±0.015

Table A8: Retaining resolution during both training and inference is important to identify images
with better aspect ratio or higher resolution.

Retain Resolution?
H↔W 0.5× 0.75× 0.8× 0.85× 0.9× 0.95×

Training Inference

✗ ✗ 73.0 99.0 93.5 91.7 83.8 77.2 71.2
✓ ✗ 85.6 99.8 99.4 99.0 95.9 94.8 89.4
✓ ✓ 98.8 99.9 99.6 99.3 99.1 96.8 97.0

(≤ 99.0). Finally, however, for relatively slight down-sampling (e.g., aspect ratio is from 0.75 to
0.95), the performance of retaining resolution is stably superior than resizing.

Ablation study on confidence estimation. We further examine the correlation between model
performance and estimated confidence scores on a wider range of benchmarks. The results are
illustrated in Fig. A6. The performance of our model is consistently enhanced as the confidence
interval increases, validating the effectiveness of our confidence estimation.

Ablation study on model architecture. We compare two vision-text connectors (i.e., vision abstractor
v.s. projector) and three LLMs on distortion identification and instant rating tasks. The default vision-
text connector and LLM in this ablation study is vision projector and Vicuna-v1.5-7b. The results in
Tab. A9 show that the performance is similar. Considering that vision abstractor can greatly reduce
the computational burden than projector, we select abstractor in the main paper. For example, for a
448 × 448 image, projector generates 1024 tokens, while abstractor only outputs 64 tokens. Note
that the amount of computation is proportional to the square of the number of tokens.

Relationships between the comparison reasoning and instant rating tasks are studied in Tab. A10.
First, comparison reasoning task improves the performance on four instant rating datasets, but
decreases the results on two datasets. Overall, comparison reasoning task helps the instant rating.
Second, instant rating task stably improves the performance on comparison reasoning task.

Influence of input order on quality comparison. Recently, Zhu et al. (2024b) shows that some
VLMs are sensitive to the input order of paired images when comparing the quality of two images.
We test our model on the fine-grained dataset released by Zhu et al. (2024b) in Tab. A11. We follow
Zhu et al. (2024b) to report the consistency / accuracy / correlation as metrics. Consistency means
consistency in changing the order of input images. Our model achieves more than 0.90 consistency in
all splits. Also, our comparison accuracy and score correlation are both much higher than Q-Instruct
and GPT-4V. These results show that our model is robust to the order of input images. The statistics
of our model’s confidence are given in Tab. A12. The results show that the confidence of consistent
prediction is much higher than inconsistent prediction, reflecting the self-evaluation ability of EDQA.

D.3 DETAILS OF REAL-WORLD APPLICATIONS

Figure A7: An example of the model-
restored image.

Details of quality comparison on model-processed
images. We consider five common image restoration tasks:
super-resolution, denoising, JPEG compression artifact
removal, motion deblurring, and defocus deblurring. For
each task, we collect three to four cutting-edged models
in recent years (listed in Tab. A13), apply them to a
correspondingly degraded image, and then manually rank
the resultant model-processed images. To find the image
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(a) (b) (c)

Figure A6: Our estimated confidence scores are high correlated to the model performance on (a)
distortion identification and (b) (c) instant rating tasks on different benchmarks in both full-reference
and non-reference settings.
Table A9: Model architecture (i.e., vision-text connectors and LLMs) has relatively little influence
on model performance.

Types Architectures Distortion Identification Instant Rating

Single-dist. ID Multi-dist. ID BAPPStest KADIDtest PIPALtest TID2013 LIVE-MD MDID2013

Vision-text
connector

Projector 97.9 / 94.7 90.5 / 89.5 82.7 / 81.4 92.7 / 92.4 89.2 / 88.8 96.2 / 95.9 92.1 / 91.9 89.1 / 88.4
Abstractor 97.7 / 94.1 91.3 / 89.3 84.7 / 82.4 93.6 / 93.1 90.5 / 90.0 96.9 / 96.4 92.1 / 91.8 90.0 / 89.6

LLM
Vicuna-v1.5-7b 97.9 / 94.7 90.5 / 89.5 82.7 / 81.4 92.7 / 92.4 89.2 / 88.8 96.2 / 95.9 92.1 / 91.9 89.1 / 88.4
Vicuna-v0-7b 96.9 / 93.6 89.8 / 89.3 82.5 / 81.3 92.8 / 92.2 88.2 / 88.1 95.0 / 94.7 91.2 / 91.1 90.5 / 90.2
LLaMA-2-7b 97.0 / 94.0 90.6 / 89.1 81.7 / 81.5 92.6 / 92.0 88.4 / 87.9 94.6 / 94.1 91.8 / 91.1 90.9 / 90.7

considered best by VLMs, we linearly scan the candidates and compare them in pairs. As VLMs’
results are not deterministic and may be sensitive to the presentation order of images, we repeat the
linear scan 10 times and randomly shuffle the scan order each time.

We have shown that our EDQA can consistently find the near-optimal candidate compared to GPT-4V
and scored-based methods. A highlight is that our EDQA generalizes well on these out-of-distribution
(OOD) model-processed images. For example, the image in Fig. A7 is restored from a noisy image.
There is still remnant noise, which is somewhat strange. For such an OOD image, our EDQA correctly
recognizes it to be inferior, but MANIQA, MUSIQ, and NIQE consider it as the best of the four
candidates. We provide two qualitative results of detailed comparison reasoning on model-processed
images in Fig. A8. One compares SwinIR and FBCNN in the JPEG compression artifact removal
task, and the other compares MPRNet and MAXIM in the deblur task. Our model can generate a
reasonable explanation for the comparison results.

D.4 MORE QUALITATIVE RESULTS

More qualitative results of assessment reasoning, comparison reasoning, and assessment on web-
downloaded images are presented in Fig. A10, Fig. A11, Fig. A12, Fig. A13, and Fig. A14. EDQA
could accurately identify distortions, analyze their impacts on the display of image contents, then
weigh the advantages and disadvantages of different aspects, and finally draw a final conclusion (e.g.,
overall quality, comparison results). In Fig. A9, we also present some qualitative results on assessing
images with extremely severe distortions. Our model performs well in such extreme cases.
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Table A10: Relationships between the comparison reasoning task and instant rating task.
Overall, these two tasks are beneficial to each other.

(a) Results on the instant rating task

BAPPStest KADIDtest PIPALtest TID2013 LIVE-MD MDID2013 Mean

Only Rating 81.6 / 81.6 92.4 / 92.3 89.1 / 89.0 94.2 / 94.1 92.9 / 92.7 92.1 / 91.7 90.4 / 90.2
Co-training 84.7 / 82.4 93.6 / 93.1 90.5 / 90.0 96.9 / 96.4 92.1 / 91.8 90.0 / 89.6 91.3 / 90.6

(b) Results on the comparison reasoning task
Single-distortion Multi-distortion

GPT-4 Score BLEU ROUGE-L GPT-4 Score BLEU ROUGE-L

Only Reasoning 74.3 / 69.6 0.203 / 0.202 0.465 / 0.453 70.6 / 69.1 0.165 / 0.165 0.414 / 0.407
Co-training 75.1 / 74.9 0.207 / 0.207 0.466 / 0.463 71.7 / 68.7 0.176 / 0.172 0.420 / 0.413

Table A11: Quality comparison results on the fine-grained dataset released by Zhu et al. (2024b)
with consistency / accuracy / correlation metrics.

Datasets Setting Q-Instrcut GPT-4V EDQA (Ours)

CSIQ Various levels, same type 0.115 / 0.081 / 0.557 0.419 / 0.402 / 0.906 0.955 / 0.925 / 0.958
CSIQ Various types, same level 0.117 / 0.069 / 0.416 0.325 / 0.244 / 0.482 0.905 / 0.690 / 0.857
SPAQ Various score regions 0.448 / 0.233 / 0.328 0.653 / 0.398 / 0.448 0.921 / 0.596 / 0.961

Table A12: Confidence statistics on the fine-grained dataset released by Zhu et al. (2024b) within
consistent and inconsistent responses.

Datasets CSIQ (various levels) CSIQ (various types) SPAQ

Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent

Confidence 0.933±0.120 0.629±0.083 0.860±0.141 0.611±0.098 0.900±0.125 0.649±0.110

Table A13: Image restoration models used in comparing model-processed images, including
SwinIR (Liang et al., 2021), HAT (Chen et al., 2023b), X-Restormer (Chen et al., 2023a),
MPRNet (Zamir et al., 2021), Restormer (Zamir et al., 2022), FBCNN (Jiang et al., 2021),
MAXIM (Tu et al., 2022), MPRNet (Zamir et al., 2021), DRBNet (Ruan et al., 2022), and IFAN (Lee
et al., 2021). For FBCNN, “q=90” means training on the quality factor 90, and “blind” means blind
to the quality factor.

Image restoration task Image restoration models

Super-resolution SwinIR, HAT, X-Restormer
Denoising SwinIR, MPRNet, Restormer, X-Restormer
JPEG compression artifact removal SwinIR, FBCNN (q=90), FBCNN (blind)
Motion deblurring MAXIM, MPRNet, Restormer
Defocus deblurring DRBNet, IFAN, Restormer

Image A (SwinIR) Image B (FBCNN)

The images depict two tigers, one with orange and black stripes and the
other with a mix of orange and white stripes, with a natural background.
In Image A, there is a slight compression artifact present, which can be
observed as a subtle blockiness in the image, reducing the sharpness and
detail, particularly noticeable in the fur texture of the tigers. Image B
appears to be free from such distortions, maintaining the integrity of the
details and colors.
Comparing the quality of Image A and Image B, Image B is of better quality.
It retains the clarity and detail of a high-quality image, while Image A's
slight compression slightly degrades the visual information.

JPEG compression artifact removal 

Image A (MPRNet) Image B (MAXIM)

Deblur
The images depict an outdoor scene with air conditioning units in the
foreground and a large poster in the background.
In Image A, there is a slight blur distortion, reducing the sharpness and
detail of the image content, particularly noticeable on the text and finer
details of the poster and units. Image B appears to be free from distortion,
maintaining clarity and detail throughout.
Comparing the two, Image B has better quality as it retains the sharpness
and detail of a high-quality image, making it superior to Image A, which
suffers from a slight loss of detail due to the blur distortion.

Figure A8: Qualitative results of detailed comparison reasoning on model-processed images.
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The image depicts a cityscape with skyscrapers and a clear sky. 

The evaluated image suffers from extreme compression 
artifacts, resulting in significant loss of detail, blockiness, and 
color banding, which severely degrade the visual integrity of 
the scene. 

Overall, the quality is poor, rendering the image nearly 
unrecognizable and unsuitable for most applications.

(a) (b)

The image depicts a vintage car parked on a street. 

In the evaluated image, catastrophic compression artifacts 
are evident, resulting in severe pixelation and loss of detail, 
which significantly degrades the car's features and the 
background. 

The overall quality is extremely poor, rendering the image 
nearly unrecognizable and unsuitable for most uses.

The image depicts a serene lakeside scene with mountains in 
the background and a reflection in the water.
The evaluated image suffers from severe compression 
artifacts, resulting in a loss of detail and blockiness, 
particularly noticeable in the mountains and the reflection on 
the water. Additionally, the colors appear unnaturally vibrant 
due to serious saturation enhancement, which distorts the 
natural tones and reduces the visual comfort.
Overall, the image quality is significantly degraded, with the 
compression and excessive saturation detracting from the 
natural beauty and clarity of the scene.

The image depicts a white flower with a yellow center, 
surrounded by green leaves.

The evaluated image suffers from extreme compression, 
resulting in significant loss of detail and blocky artifacts that 
severely degrade the image. The distortion makes it difficult to 
discern the flower's petals and the leaves' texture.

Overall, the quality of the evaluated image is poor, with the 
catastrophic compression, which detract from the visual 
experience.

(c) (d)

The image depicts an urban landscape during twilight with 
buildings and a clear sky.
The evaluated image has been darkened significantly, 
obscuring details and reducing visibility, particularly in 
shadowed areas. Additionally, there is a slight compression 
artifact present, which slightly degrades the image sharpness 
and introduces minor blockiness, especially noticeable in 
areas of subtle color gradients.
Overall, the image quality is compromised, with the 
darkening having a more pronounced effect than the 
compression, resulting in a loss of detail and a less visually 
appealing representation of the scene.

The images depict a nighttime cityscape with illuminated 
buildings and reflections on water. 

The evaluated image has been darkened, reducing visibility 
and contrast, particularly in the midtones and shadows. This 
distortion moderately affects the ability to discern details in 
the darker areas of the cityscape and water. 

Overall, the image quality is degraded but still recognizable, 
with the main structures and lights remaining identifiable 
despite the loss of detail.

(g) (h)

The images depict a night scene with a mountain, trees, and a 
bright light in the sky, possibly a moon or a lightning strike. 

The evaluated image has been darkened to a catastrophic 
degree, obscuring most details and leaving only the brightest 
areas visible. This severe darkening diminishes the image's 
content, making it difficult to discern features and reducing the 
visual impact. 

The overall quality of the evaluated image is poor, as the 
extreme darkening makes it nearly unusable for practical usage.

The image depicts a playground scene at night with a swing 
set and a bench. 

The evaluated image has a obvious darkening distortion, 
which reduces the visibility of details, particularly in 
shadowed areas. 

Overall, the image quality is poor due to the reduced 
darkening distortion, making the evaluated image less 
suitable for purposes where clarity is important.

(e) (f)

Figure A9: Qualitative results on assessing images with extremely severe distortions.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table A14: Question pool and answer pool of distortion identification task.
# Question / Answer

1 Q: What are the primary degradation(s) observed in the evaluated image?
A: The primary degradation(s) in the evaluated image is/are {}.

2 Q: What distortion(s) are most apparent in the evaluated image?
A: The most apparent distortion(s) in the evaluated image is/are {}

3 Q: Identify the chief degradation(s) in the evaluated image.
A: The chief degradation(s) in the evaluated image is/are {}.

4 Q: Pinpoint the foremost image quality issue(s) in the evaluated image.
A: The foremost image quality issue(s) is/are {}.

5 Q: What distortion(s) stand out in the evaluated image?
A: The distortion(s) that stand out is/are {}.

6 Q: What distortion(s) are most prominent in the evaluated image?
A: The most prominent distortion(s) is/are {}.

7 Q: What critical quality degradation(s) are present in the evaluated image?
A: The critical quality degradation(s) presented is/are {}.

8 Q: Highlight the most significant distortion(s) in the evaluated image.
A: The most significant distortion(s) in the evaluated image is/are {}.

9 Q: What distortion(s) most detrimentally affect the overall quality of the evaluated image?
A: The distortion(s) that most detrimentally affect the overall quality is/are {}.

10 Q: Determine the most impactful distortion(s) in the evaluated image.
A: The most impactful distortion(s) in the evaluated image is/are {}.

11 Q: Identify the most notable distortion(s) in the evaluated image’s quality.
A: The most notable distortion(s) in the evaluated image’s quality is/are {}.

12 Q: What distortion(s) most significantly affect the evaluated image?
A: The distortion(s) that most significantly affect the evaluated image is/are {}.

13 Q: Determine the leading degradation(s) in the evaluated image.
A: The leading degradation(s) is/are {}.

14 Q: What distortion(s) are most prominent when examining the evaluated image?
A: The most prominent distortion(s) is/are {}.

15 Q: What distortion(s) are most evident in the evaluated image?
A: The most evident distortion(s) in the evaluated image is/are {}.

16 Q: What quality degradation(s) are most apparent in the evaluated image?
A: The most apparent quality degradation(s) is/are {}.

17 Q: In terms of image quality, what are the most glaring issue(s) with the evaluated image?
A: The most glaring issue(s) with the evaluated image is/are {}.

18 Q: What are the foremost distortion(s) affecting the evaluated image’s quality?
A: The foremost distortion(s) affecting the evaluated image’s quality is/are {}.

19 Q: Identify the most critical distortion(s) in the evaluated image.
A: The most critical distortion(s) is/are {}.

20 Q: In the evaluated image, what distortion(s) are most detrimental to image quality?
A: In the evaluated image, {} is/are the most detrimental distortion(s) to image quality.

21 Q: What are the most severe degradation(s) observed in the evaluated image?
A: The most severe degradation(s) is/are {}.

22 Q: What are the leading distortion(s) in the evaluated image?
A: The leading distortion(s) in the evaluated image is/are {}.

23 Q: What are the most critical image quality issue(s) in the evaluated image?
A: The most critical image quality issue(s) in the evaluated image is/are {}.

24 Q: What distortion(s) most notably affect the clarity of the evaluated image?
A: The distortion(s) that most notably affect the clarity is/are {}.

Table A15: Question pool of assessment reasoning task.
# Question

1 Could you assess the overall quality of the image and elaborate on your evaluation?
2 How would you rate the image’s quality, and what factors contribute to your assessment?
3 Can you provide a detailed evaluation of the image’s quality?
4 Please evaluate the image’s quality and provide your reasons.
5 How do you perceive the quality of the image, and what aspects influence your judgment?
6 Offer an assessment of the image’s quality, highlighting any strengths or weaknesses.
7 What is your opinion on the quality of the image? Explain your viewpoint.
8 Assess the quality of the image with detailed reasons.
9 How does the image’s quality impact its overall effectiveness or appeal?
10 Evaluate the image’s quality and justify your evaluation.
11 How about the overall quality of the image, and why?
12 Provide a thorough evaluation of the image’s quality.
13 Examine the image’s quality by considering factors influencing its clarity.
14 Analyze the image’s quality, and detail your findings.
15 Provide a comprehensive assessment of the image’s quality, including both strengths and areas for improvement.
16 Assess the image’s quality from a professional standpoint.
17 Evaluate the image’s clarity and explain how it contributes to the overall quality.
18 How would you rate the overall quality of the image, and why?
19 What is your opinion on the image’s quality? Elaborate on your evaluation.
20 Evaluate the quality of the image and provide a comprehensive explanation.
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Table A16: Question pool and answer pool of instant rating task.

# Question / Answer

1 Q: Which image do you believe has better overall quality: Image A or Image B?
A: I believe Image {} has better overall quality.

2 Q: Determine which image exhibits higher quality between Image A and Image B.
A: In my assessment, Image {} exhibits higher quality.

3 Q: Compare the general quality of Image A and Image B, and state your preference.
A: My preference leans towards Image {} to have better general quality.

4 Q: In your opinion, which image demonstrates superior quality: Image A or Image B?
A: In my opinion, Image {} demonstrates superior quality.

5 Q: Which of the two images, Image A or Image B, do you consider to be of better quality?
A: I consider Image {} to be of better quality.

6 Q: Evaluate the quality of Image A and Image B, and decide which one is superior.
A: I conclude that Image {} is superior.

7 Q: Between Image A and Image B, which image do you think has better quality overall?
A: I think Image {} has better quality overall.

8 Q: Determine which image, Image A or Image B, you perceive to have better quality.
A: I determine that Image {} has better quality.

9 Q: Assess the quality of Image A and Image B, and choose the one you believe is superior.
A: I choose Image {} to be superior in terms of quality.

10 Q: Which image stands out to you as having better quality: Image A or Image B?
A: Image {} stands out as the superior choice in terms of quality.

11 Q: Can you compare the quality of Image A and Image B and decide which one is better?
A: I find Image {} to be better after comparing the quality of both.

12 Q: Decide which image, Image A or Image B, you think possesses higher quality.
A: I decide that Image {} possesses higher quality.

13 Q: Evaluate Image A and Image B, and select the one that you feel has better quality.
A: Upon evaluation, I select Image {} as the one with better quality.

14 Q: Which of the two images, Image A or Image B, appears to have superior quality to you?
A: To me, Image {} appears to have superior quality.

15 Q: Compare the quality of Image A and Image B, and determine which one you prefer.
A: My preference leans towards Image {} after comparing the quality.

16 Q: Make a judgment on which image, Image A or Image B, you consider to be of better quality.
A: I consider Image {} to be of better quality.

17 Q: Between Image A and Image B, which image do you perceive to have better quality overall?
A: I perceive Image {} to have better quality overall.

18 Q: Assess the quality of Image A and Image B, and indicate which one you find to be better.
A: I find Image {} emerges as the better option with superior quality.

19 Q: Which image, Image A or Image B, do you think displays better quality when compared?
A: When compared, Image {} displays better quality.

20 Q: Differentiate between Image A and Image B in terms of overall quality and decide which one is superior.
A: Image {} differentiates itself with superior quality.

Table A17: Question pool of comparison reasoning task.

# Question

1 Compare the overall quality of Image A with Image B and provide a comprehensive explanation.
2 Which image has better visual quality, Image A or Image B? Can you explain the comparison results?
3 Evaluate the general visual appeal and quality of both Image A and Image B, and elaborate on which one excels.
4 Discuss the overall impression and quality of Image A versus Image B, and justify your assessment.
5 Compare the overall quality between Image A and Image B, and justify your comparison results.
6 Assess the overall visual quality of Image A and Image B, discussing which one delivers a more compelling visual quality.
7 Which image demonstrates higher overall quality, Image A or Image B? Please provide detailed reasoning for your evaluation.
8 Analyze the overall quality of both Image A and Image B, and explain which image stands out.
9 Compare the perceived quality of Image A with Image B, providing insights into their respective strengths and weaknesses.
10 Discuss the visual quality of Image A and Image B, and elaborate on which one appears more appealing.
11 Can you evaluate the overall quality in both Image A and Image B, and explain which one is superior?
12 Compare the overall visual impact and impression of Image A versus Image B, and justify your assessment of their quality.
13 Which image exhibits higher overall quality: Image A or Image B? Please explain your reasoning.
14 Evaluate the visual quality in Image A and Image B, providing insights into their comparative strengths.
15 Compare the overall quality between Image A and Image B, and discuss which one appears more appealing.
16 Assess the visual quality of both Image A and Image B, and explain which one is better.
17 Which image demonstrates superior quality: Image A or Image B? Please elaborate on your evaluation.
18 Discuss the overall impression of Image A versus Image B, and justify your assessment of their comparative quality.
19 Compare the visual quality of Image A with Image B, providing detailed insights into their respective strengths and weaknesses.
20 Evaluate the overall quality of Image A and Image B, and explain which one has higher quality.
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The image depicts a dish with a sauce, possibly a type of soup 
or stew, with visible ingredients such as vegetables and 
possibly meat. The evaluated image exhibits significant noise, 
which manifests as graininess and speckles, reducing the 
clarity and making details harder to discern. Additionally, the 
colors appear washed out due to serious saturation weakening, 
resulting in a faded look that diminishes the visual appeal and 
makes the food look less appetizing. Overall, the image quality 
is poor, with the noise and desaturation severely impacting 
the visual experience, making it difficult to appreciate the 
texture and color of the food. 

The image depicts an urban scene with a skyscraper and a 
historic building under a cloudy sky. The image exhibits two 
distortions: pixelation and contrast enhancement. The 
pixelation is obvious, causing loss of detail and making the 
image appear blocky, particularly noticeable in the building‘s 
texture. The contrast enhancement is also obvious, leading to 
oversaturation of colors and loss of detail in darker areas, such 
as the building’s shadow. Overall, the quality is significantly 
degraded due to the distortions, which detract from the visual 
clarity and natural appearance of the scene.

The image depicts a squirrel on a textured ground. The 
evaluated image exhibits significant quantization artifacts, 
resulting in a loss of detail and a blocky appearance, 
particularly noticeable in the squirrel's fur and the ground 
texture. Additionally, the over-sharpening is evident through 
the exaggerated edges and unnatural halos around the squirrel, 
giving the image a harsh and unrealistic look. Overall, the 
image quality is considerably degraded due to these 
distortions, which detract from the natural appearance and 
detail of the subject. 

The image depicts a landscape with a green field in the 
foreground and a cloudy sky above. The evaluated image 
shows signs of quantization, evident in the slight banding of 
the sky, which reduces the smoothness of color transitions. 
Additionally, the contrast appears to be weakened, resulting in 
a washed-out look that diminishes the depth and vibrancy of 
the scene. Overall, the image quality is moderately affected. 
The quantization and contrast weakening are noticeable but 
not severe, maintaining the recognizability of the scene. 
However, the image lacks the visual impact and clarity that 
would be present in a higher-quality version. 

(a) (b)

The images depict a single rhino in a grassy savanna with trees 
in the background. In the evaluated image, the saturation 
appears to be significantly reduced, resulting in a washed-out 
look with muted colors. This distortion diminishes the visual 
impact, making the scene less vibrant and potentially less 
engaging. The overall quality of the evaluated image is 
noticeably degraded compared to the reference, with the 
obvious level of distortion affecting the image's aesthetic 
appeal by reducing color intensity and contrast.

(g) (h)

The image depicts a narrow street with buildings on either 
side and a person walking. The evaluated image exhibits a 
significant increase in contrast, resulting in loss of detail and 
color distortion, particularly in the shadows and highlights. 
Additionally, there is some compression, noticeable in the 
blocky artifacts and loss of fine detail, especially in the 
textures of the buildings and the street. Overall, the image 
quality is compromised, with the high contrast reducing visual 
comfort and the compression affecting the clarity, making the 
image less suitable for purposes where fidelity to the original 
scene is important. 

The images depict a white building with a central dome and 
columns, surrounded by greenery and a clear sky. The 
evaluated image shows moderate compression artifacts, 
including blockiness and loss of detail, especially noticeable in 
the building‘s texture and the foliage. The distortion slightly 
affects the sharpness and clarity of the image content. Overall, 
the quality of the evaluated image is reduced compared to the 
reference, with a noticeable impact on fine details and texture, 
but the main content remains recognizable.

(i) (j)

(k) (l)

The image depicts a serene outdoor pool area with loungers 
and a backdrop of greenery and a water feature. The 
evaluated image exhibits a slight blur, reducing the sharpness 
and detail of the scene, particularly noticeable in the foliage 
and loungers. Additionally, a slight darkening is present, which 
diminishes the vibrancy of the colors and the overall 
brightness, affecting the visual appeal of the outdoor setting. 
Overall, the image quality is moderately impacted by the 
distortions. The scene's beauty is somewhat compromised, 
but the image retains a recognizable depiction of the pool area, 
suitable for contextual understanding. 

The image depicts a close-up of a blossoming flower with a 
blurred background. The evaluated image exhibits two types 
of distortions. The noise is quite pronounced, presenting as 
graininess throughout the image, which significantly degrades 
detail and clarity. Additionally, there is slight pixelation, 
observable as a subtle blockiness in the image, reducing the 
sharpness of edges and fine details. Overall, the image quality 
is compromised, with the noise being the most detrimental 
factor, while the pixelation is less noticeable but still affects 
the image's crispness. The combination of these distortions 
results in a less than optimal visual experience. 

(e) (f)

The images depict a yacht docked at night with lights reflecting 
on the water. The evaluated image has been darkened 
significantly, obscuring details and reducing visibility, especially 
in shadowed areas. This distortion diminishes the visual impact 
and aesthetic appeal of the image. Overall, the quality of the 
evaluated image is poor due to the serious darkening, which 
compromises the clarity and detail that are essential for a 
high-quality image. 

The image depicts a charming outdoor scene with steps 
flanked by colorful flower pots. The evaluated image exhibits a 
slight blur, reducing the sharpness and detail of the scene, 
particularly noticeable in the textures of the stone steps and 
foliage. Additionally, there is a slight weakening of contrast, 
which makes the image appear washed out, diminishing the 
vibrancy of the colors and the depth of the shadows. Overall, 
the quality is moderately impacted, resulting in a less vivid and 
less detailed representation of the original scene.

(c) (d)

The image depicts a statue, likely of a guardian lion, with a red 
cloth draped over it, set against a backdrop of a building with 
tiled roof. The evaluated image exhibits excellent quality with 
sharp details, accurate colors, and no visible artifacts or 
distortions. The contrast is well-balanced, highlighting the 
textures and depth of the statue and the background. Overall, 
the image is of high quality, maintaining clarity and fidelity 
throughout, making it suitable for various uses where high-
resolution imagery is required. 

Figure A10: Qualitative results on assessment reasoning task in the full-reference setting. The two
images from top to down are the reference image and evaluated image, respectively.
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The image content features a close-up of a textile item with a 
digital thermometer display. Comparing the evaluated image 
with a high-quality image, they appear identical with no 
discernible distortions or quality differences. The overall 
quality of the evaluated image is high, maintaining sharpness, 
color accuracy, and detail integrity as a high-quality image. 

The image depicts a coastal scene at sunset with rocks in the 
foreground and a colorful sky. The image exhibits a slight blur, 
reducing the sharpness and detail of the rocks and the horizon. 
Additionally, the contrast appears to be obviously 
strengthened, resulting in exaggerated darks and lights, which 
diminishes the natural gradation of the sky and the subtlety of 
the sunset. Overall, the image quality is compromised by the 
blur, which affects the clarity, and the heightened contrast, 
which creates an unnatural and harsh visual experience. 

The image depicts a wedding cake topper with flowers. The 
evaluated image exhibits significant blur, reducing detail and 
sharpness, particularly affecting the flowers. Additionally, the 
contrast appears overly enhanced, leading to loss of detail in 
the highlights and shadows, making the image look unnatural. 
Overall, the image quality is poor due to the severe blur and 
excessive contrast, which detract from the visual clarity and 
color balance, making it difficult to appreciate the finer details 
of the subject matter.

The image depicts a close-up of tomatoes with visible details 
such as the texture of the skin and the seeds. The image 
exhibits a significant reduction in contrast, resulting in a 
washed-out appearance where the vibrancy of the tomatoes' 
colors is diminished. Additionally, there is a slight pixelation 
effect, which causes a loss of fine detail, making the image 
appear less sharp. Overall, the image quality is compromised, 
with the serious weakening of contrast more pronounced than 
the slight pixelation. The image lacks the depth and clarity that 
would be expected in a high-quality photograph of this subject.

The image depicts a snowy landscape with two individuals 
walking away from the camera, trees in the background, and a 
clear sky. The evaluated image suffers from severe pixelation, 
causing loss of detail and making the scene appear blocky. 
Additionally, the colors appear washed out due to serious 
desaturation, reducing the visual impact and making the image 
look faded. Overall, the image quality is poor, with significant 
degradation in both detail and color vibrancy in the image, 
which detracts from the viewer's ability to appreciate the 
content of the scene. 

The image depicts a modern building with a glass facade and a 
contrasting sky. The evaluated image suffers from severe 
darkening, obscuring details and diminishing the visual impact. 
Additionally, serious compression artifacts are present, 
resulting in a loss of fine detail and introducing blockiness, 
particularly noticeable in the sky and building edges. Overall, 
the image quality is poor, with significant loss of detail and 
color accuracy due to the combined effects of darkening and 
compression distortions, which severely degrade the visual 
experience. 

The image depicts a sunset over a body of water with buildings 
along the shore. The image exhibits significant noise, which 
obscures fine details and creates a grainy appearance, 
particularly noticeable in the sky and water. Additionally, there 
is a slight pixelation, reducing the clarity of the edges and 
contours, most evident in the outlines of the buildings and the 
horizon. Overall, the image quality is compromised, with the 
noise being the detrimental factor, while the pixelation further 
affects sharpness. These distortions results in a loss of detail 
and an overall degradation of the visual experience.

The image depicts a child at a beach with a bucket. The 
evaluated image shows obvious noise distortion, reducing 
detail clarity, especially in the water surface and the bucket's 
texture. Overall, the image quality is compromised but the 
main subject remains recognizable despite the introduced 
noise graininess.

The image depicts a rescue boat near a pier with a body of 
water and a cityscape in the background. The image suffers 
from obvious pixelation, which significantly reduces detail and 
clarity, making it difficult to discern finer features such as text 
on the boat and the distant buildings. Additionally, there is 
slight quantization, which may contribute to a reduction in 
color depth, though this is less noticeable than the pixelation. 
Overall, the image quality is substantially compromised, with 
the pixelation being most detrimental, as it greatly affects the 
ability to appreciate the content and details of the scene.

(a) (b)

The image depicts a sunset over a body of water with a boat on 
the horizon. Moderate noise distortion is present, reducing 
detail and clarity, particularly in the sky and water regions. 
Despite the noise, the image retains its general composition 
and color balance, but the overall quality is compromised, 
resulting in a less visually pleasing experience.

(c) (d)

The image depicts the moon against a dark background. The 
evaluated image suffers from serious noise distortion, which 
significantly degrades detail and clarity, making the moon's 
surface features less distinct. Overall, the image quality is poor, 
with the noise greatly affecting the visual integrity and the 
image's utility for detailed analysis or enjoyment.

(e) (f)

(g) (h)

The image depicts a close-up of a green leaf with a small insect 
on it. The image exhibits two main distortions: color saturation 
enhancement, which makes the colors appear unnaturally vivid 
and reduces detail, and oversharpening, which introduces halo 
artifacts around edges and makes the image look unnatural. 
Overall, the image quality is compromised by these distortions, 
resulting in a loss of natural appearance and detail, which 
detracts from the visual experience.

The image depicts a canal scene with boats and buildings in 
the background. The image suffers from severe contrast 
enhancement, resulting in loss of detail and color distortion, 
particularly in the sky and water. Additionally, heavy pixelation 
obscures finer details, making the scene blocky and difficult to 
discern. Overall, the image quality is poor, with significant 
degradation in both color fidelity and clarity, which greatly 
diminishes the viewer's ability to appreciate the content.(i) (j)

The image depicts a scenic landscape with a field of yellow 
flowers and mountains in the background. The image exhibits a 
serious saturation increase, resulting in unnaturally vibrant 
colors that diminish the realism of the scene. Additionally, 
there is a slight compression artifact present, which slightly 
reduces the image's sharpness and detail. Overall, the quality 
is compromised by the exaggerated color saturation, which 
overshadows the natural beauty of the landscape, while the 
compression has a less pronounced but is still noticeable.(k) (l)

The images depict two individuals in elaborate costumes, likely 
at a festive event. Upon comparison, the evaluated image 
appears identical to a high-quality image, with no discernible 
distortions or quality loss. The overall quality of the evaluated 
image is excellent, maintaining sharpness, color fidelity, and 
detail integrity akin to a high-quality image. 

The image depicts a close-up of vibrant tulips with a soft-focus 
background. Compression artifacts are evident, with a loss of 
detail and blockiness, particularly noticeable in the petals and 
leaves. The overall quality is compromised, with the image 
appearing less sharp and the color gradations less smooth 
compared to a high-quality version. 

The image depicts a scenic waterfall with surrounding greenery 
and a stream. The image exhibits a serious oversharpening
effect, resulting in exaggerated edges and a halo effect around 
objects, which diminishes the natural look of the scene. 
Additionally, the image is obviously brightened, causing a loss 
of detail in the highlights and a washed-out appearance, 
particularly noticeable in the water. Overall, the image quality 
is compromised by the excessive sharpening and brightness, 
which detract from the visual comfort and realism that would 
be expected in a natural landscape photograph.

The image depicts a wristwatch with a wooden background. 
The evaluated image suffers from two distortions: over-
brightening, which washes out details and reduces contrast, 
and pixelation, which significantly degrades the resolution, 
making the watch's features indistinct. The combination of 
these distortions results in a loss of detail and clarity, making 
the image appear of low quality. Overall, the image quality is 
poor due to the severe impact of both brightening and 
pixelation on the visual information.

(m) (n)

(o) (p)

(q) (r)

Figure A11: Qualitative results on assessment reasoning task in the non-reference setting.
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(a) (b)

(c) (d)

The images depict a stone fortress with a flag atop, set against a clear sky. In Image A, the 
serious darkening reduces visibility, obscuring details and creating a gloomy atmosphere. The 
slight quantization may cause subtle color banding but is less noticeable. Image B shows slight 
compression artifacts, which can slightly degrade sharpness and introduce minor blockiness, but 
these effects are minimal. Comparing the two, Image B retains more of the original scene's 
clarity and color accuracy, making it the better-quality image despite the slight compression 
artifacts. Image A's heavy darkening significantly impacts the visibility of details, which is more 
detrimental to the image quality than the slight compression seen in Image B.

The images depict a statue flanked by two columns in front of a building with windows. In Image 
A, quantization distortion is evident, resulting in a loss of detail and color depth, making the 
image appear less natural. Image B suffers from a serious reduction in contrast, making the 
image look washed out, and an obvious blur, which significantly reduces detail and sharpness. 
Comparing the two, Image A, despite its quantization, retains more detail and structure, making 
it easier to discern the content. Image B's combined issues of low contrast and blur make it 
harder to appreciate the details of the statue and the building. Therefore, Image A has better 
quality than Image B. 

The images depict a sunset with silhouetted hills and a vineyard. In Image A, the saturation is 
excessively increased, resulting in unnaturally vibrant colors that detract from the image's 
realism. Image B has slight pixelation, which reduces detail but retains more natural colors. 
Comparing the two, Image B maintains a more authentic representation of the scene despite the 
pixelation, making it the better-quality image over the overly saturated Image A. 

The images depict an antelope lying on the ground. In Image A, slight noise is present, which 
introduces graininess but retains most details. Image B suffers from serious blur, significantly 
reducing detail and making the content less recognizable. Comparing the two, Image A has better 
quality because the subject remains identifiable, whereas the serious blur in Image B severely 
degrades the image, making it difficult to discern fine details. 

(e)

The images depict a scenic mountain landscape with a person hiking in the foreground. In Image 
A, there is a serious blur distortion, which significantly reduces the sharpness and detail of the 
entire scene, making it difficult to discern fine details. Additionally, the image is overly bright, 
washing out colors and reducing contrast. Image B appears to have a slight darkening effect, 
which slightly affects the visibility of details but maintains overall image integrity. Comparing the 
two, Image B has better quality because the slight darkening does not impair the image as 
severely as the serious blur and obvious brightening in Image A. The details and colors in Image B 
are more discernible, making it the superior image in terms of quality. 

The images depict a sunset over the ocean with a clear sky and a silhouette of land in the 
foreground. In Image A, there are no visible distortions, and the colors appear vibrant and true to 
life. Image B, however, exhibits a slight desaturation, reducing the vividness of the colors, 
particularly noticeable in the sky and the sunset. Additionally, there is a slight pixelation, which 
can be observed in the loss of detail, especially in the finer textures of the water and the tree. 
Comparing the two, Image A has better quality due to its lack of distortions and more accurate 
color representation. The details in Image A are sharper and more visually appealing, making it 
the superior image in terms of quality. (f)

(g)

The images depict a wedding archway with chairs lined up underneath, set against a backdrop of 
trees and a clear sky. In Image A, there is a slight blur that softens the details, particularly 
noticeable on the edges of the chairs and the leaves of the trees. In Image B, there is a serious 
desaturation, making the colors appear washed out and less vibrant, combined with noise that 
introduces graininess, especially visible in the sky and on the archway. Comparing the two, Image 
A retains more of the original color and detail despite the slight blur. Image B's serious 
desaturation and noise significantly degrade the visual experience, making the image appear less 
natural and more distorted. Therefore, Image A has better quality than Image B.

The images depict a close-up of a flower with a dark background. In Image A, the saturation is 
weakened, resulting in a washed-out appearance that reduces the vibrancy of the colors. Image 
B suffers from serious blur, obscuring details, and obvious noise, introducing graininess and 
further degrading clarity. Comparing the two, Image A, despite the desaturation, retains more 
detail and structure, making it easier to discern the flower's features. Image B's dual distortions 
significantly impair the visual information, making it harder to identify the subject and 
appreciate the image's details. Conclusively, Image A has better quality than Image B, as it 
preserves more of the original content's integrity and is less visually disruptive. (h)

(i)

The images depict a close-up of a thistle-like plant with spiky textures and a central seed head. In 
Image A, there is a serious blur, which significantly reduces the sharpness and detail of the plant, 
making the fine textures and edges indistinct. Additionally, there is a moderate darkening effect, 
which diminishes the visibility of details in the darker areas. Image B exhibits a slight increase in 
contrast, which makes the colors appear more vivid and the edges more defined. However, this 
adjustment does not significantly degrade the image quality. Comparing the two, Image B has 
better quality because the slight increase in contrast enhances the visual appeal without 
introducing the severe loss of detail and reduced visibility seen in Image A due to the serious blur. (j)

The images depict a cluster of pink cherry blossoms against a backdrop of branches and sky. In 
Image A, moderate noise distortion is evident, presenting as graininess throughout, which 
somewhat obscures detail but retains the overall structure. Image B exhibits obvious noise 
distortion, with the graininess being more pronounced and significantly degrading the image's 
clarity, making details harder to discern. Comparing the two, Image A has better quality than 
Image B, as the noise level is less intrusive, preserving more of the original image's detail and 
color integrity. 

(k)

The images depict a city skyline at dusk with a prominent skyscraper. In Image A, the saturation 
is excessively increased, resulting in an unnatural, overly vibrant color palette that obscures 
details and diminishes visual appeal. Image B shows slight compression artifacts, which may 
slightly reduce sharpness and introduce minor blockiness, but these effects are subtle. 
Comparing the two, Image B retains more of the original scene's natural appearance and detail, 
making it the better-quality image over Image A, which suffers from severe color distortion. 

(l)

The images depict a white church with a small door, surrounded by vegetation under a blue sky. 
In Image A, the saturation is weakened, resulting in a monochromatic appearance that 
diminishes the visual impact but retains structural details. Image B suffers from extreme 
compression, leading to significant loss of detail and introduction of artifacts, which severely 
degrade the image content. Comparing the two, Image A maintains more of the original 
structure and detail despite the desaturation, making it the better-quality image over Image B, 
which has suffered catastrophic compression artifacts. 

Figure A12: Qualitative results on comparison reasoning task in the full-reference setting. The
three images from left to right are the reference image, Image A, and Image B, respectively.
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The images depict a house with a prominent tower, 
surrounded by greenery and a clear sky. In Image A, the 
brightness is increased to an obvious degree, which washes 
out some details but retains the overall structure and content. 
In Image B, the contrast is seriously weakened, making the 
image appear flat and details are harder to distinguish. 
Additionally, there is a serious level of pixelation, which 
significantly degrades the image by reducing the resolution 
and making the content blocky. Comparing the two, Image A 
maintains more of the original structure and details despite 
the increased brightness. Image B's serious contrast reduction 
and pixelation make it much harder to appreciate the details 
of the house and the surrounding environment. Therefore, 
Image A has better quality.

The images depict the interior of a submarine with various 
control panels and indicators. In Image A, pixelation is evident, 
reducing detail and making the image appear blocky. This 
distortion impacts the legibility of text and the clarity of the 
indicators. Image B shows signs of compression, which 
typically introduces artifacts like blurring and loss of fine detail, 
but these effects are less pronounced than pixelation. 
Comparing the two, Image B retains more detail and 
readability, making it the better-quality image despite its slight 
compression artifacts. Image A's obvious pixelation more 
significantly degrades the visual information, making it inferior 
to Image B. 

The images depict a sunset over the ocean with a clear sky and 
the sun reflecting off the water. In Image A, the saturation is 
slightly weakened, resulting in a less vibrant but still clear 
image. In Image B, moderate compression artifacts are present, 
causing a loss of detail and introducing blockiness, especially 
noticeable in the sky and water. Comparing the two, Image A 
retains more of the original detail and has a more natural 
appearance despite the reduced saturation. Image B's 
compression artifacts significantly degrade the visual quality. 
Therefore, Image A has better quality than Image B.

The images depict a grassy field with a fence and a clear sky. In 
Image A, slight pixelation is evident, reducing detail and 
sharpness. Image B exhibits obvious noise, introducing 
graininess and color distortion, and serious darkening, which 
significantly reduces visibility and detail. Comparing the two, 
Image A retains more of the original scene's details despite the 
pixelation. Image B's heavy noise and darkening severely 
degrade the image, making it difficult to discern details. 
Therefore, Image A has better quality than Image B.

The images depict a row of colorful toy cars lined up on a 
concrete surface. In Image A, moderate blur distortion reduces 
the sharpness and detail, making the image content less 
distinct. In Image B, slight oversharpening introduces minor 
artifacts around edges but retains more detail than Image A. 
Comparing the two, Image B has better quality as it preserves 
more detail and the distortion is less intrusive, despite the 
slight oversharpening, making it closer to a high-quality image 
than the moderately blurred Image A.

The images depict a truck in front of a building with a sign. In 
Image A, there is significant blur, reducing detail and 
sharpness, and heavy noise, which introduces graininess and 
further degrades clarity. These distortions make it difficult to 
discern fine details and text on the sign. Image B appears to 
have a desaturation issue, with colors looking washed out and 
muted, but it retains more detail and clarity compared to 
Image A. Comparing the two, Image B has better quality 
because it maintains more of the original structure and detail, 
despite the weakened saturation. Image A's serious blur and 
noise distortions more severely impact the image's usability 
and aesthetic quality. 

The images depict a close-up of a textured surface, possibly a 
brick path with moss growth. In Image A, there is a serious 
level of blur distortion, which significantly reduces the 
sharpness and detail of the texture and moss, making the 
image content less recognizable. Image B appears to be a 
brighter version of Image A, with a moderate increase in 
brightness that does not significantly degrade the image 
content. Comparing the quality of Image A and Image B, Image 
B retains more of the original detail and structure of the scene, 
despite the increased brightness. Therefore, Image B has 
better image quality than Image A, as the distortion is less 
intrusive and preserves more information. 

(a) (b)

The images depict an architectural detail, possibly a ceiling 
with a light fixture. In Image A, pixelation is evident, reducing 
detail and clarity, making the image appear blocky. This 
distortion significantly affects the ability to discern fine details. 
Image B shows quantization distortion, which leads to a 
reduction in color depth, causing banding and posterization 
effects. However, the structural details remain more intact 
compared to Image A. Comparing the two, Image B retains 
more detail and has a more natural appearance despite the 
color issues, making it the better-quality image over Image A, 
which suffers from more severe detail loss due to pixelation. 

(c) (d)

(e) (f)

The images depict a bird perched on a branch with a blurred 
background. In Image A, catastrophic compression has led to 
significant loss of detail and blocky artifacts, severely 
degrading the image. Image B has a slight saturation 
weakening, which may cause colors to appear less vibrant but 
retains more detail. Comparing the two, Image B has better 
quality as it preserves more of the original content and 
structure, despite the reduced saturation. Image A's extreme 
compression artifacts make it the lower quality image. 

(g) (h)

The images depict a clock tower against a cloudy sky backdrop. 
In Image A, there are no visible distortions, and the image 
appears clear and well-balanced. Image B, however, exhibits a 
significant darkening effect that reduces visibility, especially in 
shadowed areas, and a quantization distortion that manifests 
as a reduction in color depth, leading to banding in the sky and 
a loss of detail in the tower. Comparing the two, Image A has 
better quality due to its lack of distortions, maintaining the 
integrity of the original scene with clear details and 
appropriate brightness levels. Image B's distortions 
significantly degrade the visual experience by obscuring details 
and altering the intended color gradations. Therefore, Image A 
is the higher quality image. 

The images depict a miniature motorcycle replica with a 
decorative flame design on the handlebars. In Image A, there 
is a significant blur distortion, which severely affects the clarity 
and detail of the motorcycle. Additionally, there is a slight 
saturation increase, which makes the colors appear a bit more 
vivid but is not as impactful as the blur. Image B appears to be 
free of distortions, with clear and sharp details throughout, 
allowing for a high level of visibility of the motorcycle's 
features and the decorative flame design. Comparing the two, 
Image B is of better quality than Image A. The absence of 
distortions in Image B results in a more accurate and visually 
appealing representation of the motorcycle.

(i) (j)

(k) (l)

The images depict a scenic waterfront with boats and buildings. 
In Image A, heavy noise distortion obscures details, making the 
scene grainy and less recognizable. Image B shows 
quantization distortion, resulting in a blocky appearance with 
color banding, yet details remain more discernible than in 
Image A. Comparing the two, Image B retains more of the 
original scene‘s structure and is less visually disruptive than 
the serious noise in Image A. Therefore, Image B has better 
quality than Image A. 

Figure A13: Qualitative results on comparison reasoning task in the non-reference setting. The two
images from top to down are Image A and Image B, respectively.
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The image depicts a bridge over a body of water with buildings 
in the background. The image has a moderate level of 
saturation weakening, resulting in a washed-out appearance 
with less vibrant colors. This affects the visual impact, making 
the scene less lively and potentially less engaging. Overall, the 
quality of the evaluated image is diminished due to the 
reduced color intensity, but the content remains recognizable 
and the image is still reasonably clear.

The image depicts a close-up of a person’s face. The evaluated 
image exhibits significant pixelation, resulting in loss of detail 
and blocky appearance, particularly noticeable on the cheeks 
and hair. Additionally, there is noise present, introducing 
graininess to the image, but it’s less impactful than the 
pixelation. Overall, the image quality is poor due to the severe 
pixelation which greatly diminishes the clarity and detail of the 
subject, while the noise adds a relatively minor degradation to 
the visual fidelity.

The image depicts a train station with a locomotive, tracks, and 
buildings. The image has a moderate darkening distortion, 
reducing visibility, especially in shadowed areas, and affecting 
the overall contrast and detail. Despite the darkening, the 
image retains most of its content integrity, but with 
compromised vibrancy and clarity. The overall quality is 
acceptable but not optimal, with the main subject still 
recognizable but less engaging due to the diminished 
brightness and contrast.

The image depicts a serene seascape with a wooden pier 
extending into the ocean under a blue sky. The image exhibits 
severe quantization, resulting in a significant reduction of color 
depth, which causes banding in the sky and water, and a loss of 
detail. Additionally, the image is slightly darkened, which 
slightly mutes the colors but is less impactful than the 
quantization. Overall, the image quality is considerably 
degraded due to the heavy quantization. The distortion 
significantly affects the visual experience, making the image 
appear unnatural and less pleasing.

The image depicts a sunset with a vibrant orange sky above a 
silhouette of a landscape. The image exhibits slight 
compression and obvious pixelation. The compression has led 
to a loss of fine details, with blocky artifacts visible, especially 
in areas of subtle color gradients. The severe pixelation results 
in a significant loss of detail, which makes the silhouette of the 
landscape and the sunset’s gradient appear as large, flat areas. 
Overall, the quality is substantially degraded, with the 
pixelation being most serious, as it severely impacts the 
natural gradation of the scene.

The image depicts a close-up of a pink flower with green 
foliage in the background. The image suffers from significant 
blur, which obscures fine details such as the texture of the 
petals and the structure of the flower's center. Additionally, 
there is a slight compression artifact present, which can be 
observed as a subtle blockiness, particularly noticeable in 
areas of subtle color gradation. Overall, the image quality is 
considerably degraded due to the severe blur. The image lacks 
clarity and sharpness, making it difficult to appreciate the 
intricate details of the flower.

The image depicts a child playing on a grassy field. The 
evaluated image has been significantly brightened, causing loss 
of detail in the highlights and a washed-out appearance. 
Additionally, there is noticeable compression, evident from the 
blocky artifacts and loss of fine detail, particularly in areas of 
subtle color gradation. These distortions reduce the natural 
look of the scene and make the image less pleasing to the eye. 
Overall, the quality of the evaluated image is poor due to the 
excessive brightness and compression artifacts, which detract 
from the visual experience.

The image depicts a person standing in front of a car, looking 
slightly to the side with a blurred background. The evaluated 
image has a serious level of brightening distortion, causing 
overexposure that washes out details, especially in lighter 
areas like the person's hair and the sky. This distortion 
significantly reduces the image's dynamic range and contrast, 
making it less visually appealing. Overall, the quality of the 
image is poor due to the excessive brightness that diminishes 
the clarity and natural appearance of the scene.

The image depicts a cartoon character in a natural setting 
with leaves and a tree trunk. The image exhibits significant 
blur, reducing detail and making the subject indistinct. 
Additionally, there is a slight compression artifact present, 
which can be observed as a subtle blockiness, particularly 
noticeable in areas of subtle color gradation. Overall, the 
image quality is compromised, with the blur having a more 
pronounced effect. The loss of detail due to the blur makes 
the evaluated image less suitable for purposes where clarity 
is important.

(a) (b)

The image depicts a toy figure. The evaluated image exhibits a 
slight darkening, reducing the vibrancy and visibility of details, 
particularly in shadowed areas. Additionally, there is a slight 
compression artifact present, which can be observed as a 
subtle blockiness in the image, affecting the overall sharpness 
and clarity. Overall, the image maintains a reasonable quality 
with some loss in detail and color fidelity due to the applied 
distortions, but it remains recognizable and the main subject is 
still clearly visible.(c) (d)

The image depicts a portrait of an elderly man with glasses. 
The image suffers from severe pixelation, causing loss of detail 
and making facial features indistinct. Additionally, the image is 
slightly brighter, which slightly washes out the colors but is less 
impactful than the pixelation. Overall, the image quality is 
significantly degraded due to the pixelation, which is the 
dominant distortion affecting the image's clarity and detail.(e) (f)

(g) (h)

The image depicts pigeons perched on a brick wall. The 
evaluated image has a serious darkening distortion, 
significantly reducing visibility and obscuring details. Shadows 
are deepened, and the overall contrast is affected, making the 
image content less discernible. The overall quality is poor due 
to the loss of detail and diminished visibility, which detracts 
from the image's aesthetic and informational value.

The image depicts a scenic mountain landscape with a 
reflective lake in the foreground. The evaluated image exhibits 
high quality with sharp details, vibrant colors, and no visible 
artifacts or distortions. The dynamic range is well-managed, 
preserving details in both shadows and highlights. Overall, the 
image quality is excellent, providing a clear and accurate 
representation of the scene.(i) (j)

The image depicts a person in a monk‘s robe, possibly in a 
religious setting. The evaluated image suffers from severe 
compression artifacts, visible as blocky regions and loss of fine 
detail, which significantly degrade the image’s clarity. 
Additionally, the contrast appears slightly reduced, flattening 
the image‘s depth and making it less vivid. Overall, the image 
quality is poor due to the heavy compression, which impacts 
the viewer's ability to discern details, and the slight contrast 
weakening, which diminishes the visual impact.(k) (l)

The image depicts five individuals standing on a bridge with a 
backdrop of trees and a blue sky with clouds. The evaluated 
image exhibits excellent quality with sharp details, vibrant 
colors, and appropriate contrast. There are no visible artifacts 
or distortions, and the dynamic range is well-represented. 
Overall, the image quality is high, with all elements presented 
clearly and accurately.

The image depicts a scenic view of a temple complex during 
twilight. The evaluated image has a slight darkening distortion, 
which marginally reduces the visibility of details, especially in 
shadowed areas. Despite this, the overall quality remains high, 
with the main features and colors still clearly discernible. The 
evaluated image retains most of its aesthetic appeal and 
information content.

The image depicts a close-up of a cat's face, capturing its 
expression and features. The evaluated image exhibits 
significant blur, reducing detail and sharpness, particularly 
affecting the clarity of the cat's fur and facial features. 
Additionally, there is a slight increase in brightness, which 
slightly washes out the colors but is less impactful than the 
blur. Overall, the image quality is compromised, with the blur 
being the most detrimental factor, as it significantly affects the 
ability to discern fine details and textures. The slight 
brightening has a minor effect in comparison.

The image depicts a smiling person holding a beverage, with 
another person in the background. The image exhibits 
significant blur, reducing detail and sharpness, particularly 
noticeable in facial features and textures. Additionally, there is 
a slight increase in brightness, which slightly washes out colors 
but is less impactful than the blur. Overall, the image quality is 
compromised, with the blur being the dominant factor 
affecting the clarity and detail, while the brightness adjustment 
has a minor effect on the visual experience.

(m) (n)

(o) (p)

(q) (r)

Figure A14: Qualitative results on assessing web-downloaded images.
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